
Estimation and testing in a partial linear

regression model under long-memory

dependence
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We discuss estimation and testing of hypotheses in a partial linear regression model, that is, a

regression model where the regression function is the sum of a linear and a nonparametric component.

We focus on the case where the covariables and the random noise do not necessarily have summable

autocovariance functions, and the estimators and test statistics are based on kernel smoothing. We

obtain the bias, variance and asymptotic distribution of both estimators for the parametric and

nonparametric parts, as well as the asymptotic distributions of the statistics used, both under the null

hypothesis and local alternatives. We thus generalize the results of Speckman and of Beran and Ghosh

to the case of general structures for the autocovariance function and complete the results of González-

Manteiga and Vilar-Fernández to the case of a partial linear regression model. Simulations and a real

data example provide promising results for our tests.
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1. Introduction

Complete agreement on the definition of long-memory processes has not yet been reached.

Many definitions in the literature are based on the behaviour at the origin of the spectral

density of the process, or even on the asymptotic behaviour of the Allen variance (Beran

1994; Heyde and Yang 1997). In this paper, we adopt one of the more general definitions

based on the spectral density. A second-order stationary process fWig with covariances

rW (k) � cov(W1, W1þk) and spectral density f (º) ¼ (2�)�1
P1

k¼�1 exp(�ikº)rW (k) is said

to have long memory if f (0) ¼ 1. Thus, we have short memory if 0 , f (0) , 1, while

the case f (0) ¼ 0 is known as antipersistence.

Long-memory processes appear to be of great importance in many different real situations,

including agriculture, economics, geophysics and hydrology; see Mandelbrot and van Ness

(1968) for a pioneering study on mathematical models with long memory, and Beran (1992)
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for a survey. Processes with short memory are well known and often used in practice; see

Box and Jenkins (1976). As Beran (1994, p. 52) wrote concerning antipersistence, ‘in

practice, this case is rarely encountered (though it may occur after overdifferencing), mainly

because the condition
P1

k¼�1 rW (k) ¼ 0 is very unstable’; see Beran and Feng (2002) and

the references therein for a discussion of antipersistence and some practical examples.

Several results on statistical inference for these three types of processes have been

established and show that many properties that hold under one type do not hold under the

others. For example, in the setting of fixed-design nonparametric regression and under

suitable conditions, Hall and Hart (1990) showed that the optimal rate of convergence of the

Nadaraya–Watson estimator for the trend function under long-memory errors is necessarily

slower than under short-memory ones, while Beran and Feng (2002) obtained the result that,

in the presence of antipersistent errors, the convergence rate of a local polynomial estimator

(or a kernel estimator) is faster than for short-memory errors (thus, if the type of

dependence structure is not taken into account, it can completely invalidate statistical

inference). The reader will find other examples and references in the general monograph by

Beran (1994).

Concerning the conditions imposed on these processes, attention has been paid to two

parametric models: fractional Gaussian noise (Mandelbrot and Van Ness 1968) and the

fractional autoregressive integrated moving average (FARIMA) process (Granger and Joyeux

1980). Depending on the value of the self-similarity and difference parameters of these two

models, respectively, the models can have long memory, short memory or antipersistence.

Throughout this paper, most of the conditions on the dependence of the processes will be

based on links between finite sums of absolute covariances and smoothing parameters.

Therefore, on the one hand, most of our results will not need any parametric assumption on

the decay rates of rW nor any Gaussian condition for the process, and on the other hand,

most of them will hold under these three types of dependence structures. Nevertheless,

because the case of short memory has been extensively studied and that of antipersistence is

less interesting for statistical applications, we will focus on the long-memory case, in the

sense that our assumptions will be justified under this structure.

This paper deals with the semiparametric regression model

yi ¼ r(xi1, . . . , xip, ti) þ �i ¼ �T
i �þ m(ti) þ �i (i ¼ 1, . . . , n), (1)

where r is the regression function, � is a p-vector of unknown parameters, m is an unknown

smooth function, and �i is the random noise (we have denoted �T
i ¼ (xi1, . . . , xip)). This

model is a special type of partial linear regression model and was introduced by Engle et al.

(1986) to study the effect of weather on electricity demand. It is clear that it generalizes the

linear model and restricts the multivariate nonparametric model; it is more flexible than the

linear model and eliminates (or reduces) the ‘curse of dimensionality’. See Härdle et al.

(2000) for several examples concerned with practical problems involving partial linear

regression models, and Aneiros-Pérez and Quintela-del-Rı́o (2002) for a recent study of this

model under short-memory errors.

As in Speckman (1988), Linton (1995), and Beran and Ghosh (1998), among others, we

will assume that the xij are spread out in some fashion and are correlated with the points

ti ¼ (i � 0:5)=n. More specifically, we will suppose that
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xij ¼ g j(ti) þ �ij (1 < i < n, 1 < j < p), (2)

where the g j are unknown smooth functions and �ij are random variables with zero mean.

Most studies of model (1) assume short-memory (Aneiros-Pérez and Quintela-del-Rı́o

2001) or particular long-memory conditions on �ij and �i (Beran and Ghosh 1998). The

objectives of this paper are, under the possible presence of general long-memory

dependence, to tackle the estimation of � and m in (1) and to consider the problem of

testing hypotheses on � or m in (1).

This paper is organized as follows. In Section 2 we present the estimators and some

asymptotic properties (bias, variance and distribution), together with sufficient assumptions

to obtain them. Section 3 is devoted to testing hypotheses on � and m in (1). We present

the test statistics and their asymptotic distributions, under both the null and alternative

hypotheses. In Section 4, the finite-sample behaviour of the proposed tests is illustrated with

a simulation study, and a simple example based on real data is given. Section 5 is devoted

to the illustration of how our general methodology applies to a typical class of long-

dependent processes, including fractional Gaussian noise and FARIMA processes. In Section

6 some useful technical lemmas are given, and in Section 7 proofs of theorems are given.

2. Estimators and asymptotic properties

2.1. Notation

Let us first introduce some notation. In this paper, [z] denotes the integer part of z 2 R,

and for f : [0, 1] ! R, we use f to denote ( f (t1), . . . , f (tn))T. Furthermore, for

v ¼ (v1, . . . , vs) 2 Rs, jvj2 means
Ps

i¼1v
2
i , and for the matrix A ¼ (aij), kAk2 denotes

the L2 norm (or spectral norm) of A (that is, kAk2 ¼ maxjvj6¼0jAvj=jvj) and kAk1 and kAk1
mean max j

P
ijaijj and maxi

P
jjaijj, respectively. We also will use the notation

y ¼ (y1, . . . , yn)T, X ¼ (�1, . . . , �n)T ¼ (x1, . . . , x p) ¼ (xij)i¼1,...,n; j¼1,..., p,

� ¼ (��1 , . . . , ��n )T ¼ (�1, . . . , � p) ¼ (�ij)i¼1,...,n; j¼1,..., p, � ¼ (�1, . . . , �n)T:

For the autocovariance functions of the stationary processes f�ign
i¼1 and f�ijgn

i¼1

( j ¼ 1, . . . , p) we will write

r�(k) ¼ E(�1�1þk), r� j
(k) ¼ E(�1 j�1þk, j),

S� j ,n ¼
Xn

k¼0

jr� j
(k), j( j ¼ 1, . . . , p), S�,n ¼

Xn

k¼0

jr�(k)j, S�0,n ¼ max
1< j< p

S� j,n,

V� ¼ E(��i ��T
i ), V� ¼ E(��T):

Throughout the paper, we will always use the notion of convergence in distribution of a

sequence of generic variables Z n ¼ Gn(�, X) conditioned on the design matrix X. We specify
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that the limit involved in the definition of convergence in distribution of these conditioned

variables must be interpreted as holding in probability with respect to the distribution of xij.

2.2. The estimates

Robinson (1988) and Speckman (1988) proposed to estimate � in (1) by means of

�̂�b ¼ (~XXT
b
~XXb)�1 ~XXT

beyyb: (3)

Furthermore, Speckman (1988) estimated m(t) in (1) through the kernel estimator

m̂mh(t, �̂�b) ¼
Xn

i¼1

wn,h(t, ti)(yi � �T
i �̂�b):

In these estimators, b and h are smoothing parameters such that nb ! 1, nh ! 1, b ! 0

and h ! 0 as n ! 1, these being the usual conditions in the nonparametric literature (note

that to estimate � in model (1) we must use nonparametric estimation). For any (n 3 q)

matrix A (q > 1), we denote ~AAz ¼ (I�Wz)A (for z ¼ b or z ¼ h), where Wz ¼
(wn,z(ti, t j))i, j with wn,z(�, �) being a weight function that can take different forms, thus

providing different estimators. Speckman (1988) used general weights, while Robinson (1988)

worked with Nadaraya–Watson weights. In this paper, we will focus on the Gasser–Müller

weights with boundary kernels, that is:

wn,z(t, t j) ¼

z�1

ð j=n

( j�1)=n

K
t � u

z

� �
du if t 2 [z, 1 � z],

z�1

ð j=n

( j�1)=n

Kq

t � u

z

� �
du if t ¼ qz 2 [0, z),

z�1

ð j=n

( j�1)=n

K�
q

t � u

z

� �
du if t ¼ 1 � qz 2 (1 � z, 1],

8>>>>>>>>>><>>>>>>>>>>:
(4)

where we have supposed that t j ¼ ( j � 0:5)=n and t 2 [0, 1]. Conditions on the kernel

functions K, Kq and K�
q will be specified below. Another option could be to use local

polynomial estimators, which were suggested in Stone (1977) and have the property of

automatic boundary correction.

Under suitable conditions, including independent errors, Robinson (1988) and Speckman

(1988) showed that �̂�b is n1=2-consistent for � and asymptotically normal. Furthermore,

Speckman (1988) found that m̂mh(t, �̂�b) is nv=(2vþ1)-consistent for m(t), where he assumed

that m has v > 2 continuous derivatives on [0, 1]. As usual in many functional estimation

problems (see Györfi et al. 1989; Bosq 1998), these rates of convergence obtained for

independent and identically distributed samples are still the same in the setting of short-

memory errors. In this context, Gao (1995), assuming a linear process on the errors,

investigated the asymptotic normality of �̂�b, and the rates of strong convergence of �̂�b

and m̂mh(t, �̂�b), and Aneiros-Pérez (2001) proved the asymptotic normality of these

estimators under Æ-mixing errors. In the particular long-memory context where
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r�(k) ¼ ck�Æ� and r� j
(k) ¼ c j k

�Æ j (k . 0, 0 , Æ�, Æ j , 1, j ¼ 1, . . . , p), Beran and Ghosh

(1998) obtained the n1=2-consistency of �̂�b by calculating the asymptotic orders for its bias

and variance, together with the asymptotic normality of the properly normalized estimator.

On the other hand, Gao and Ahn (1999), by approximating m in (1) using a finite series

summation, constructed nÆ�=2- and n(vþ1)Æ�=(2(vþ1)þÆ�)-consistent estimators for � and m,

respectively. They assumed that �ij and g j in (2) are equal to zero and known, respectively.

On the errors �i, they supposed either r�(k) ¼ ck�Æ� (k . 0, 0 , Æ� , 1) or summability

conditions which involve xij, r� and the family of functions used to approximate m. As far

as we know, partial linear regression models have not been studied under general long-

memory conditions on the errors.

2.3. Some asymptotic properties

In this section we will need some of the following assumptions. Since we wish to make our

study quite general, we keep these assumptions in quite a complicated form, but in Section

5 we will show how they are satisfied for common long-dependent processes.

Assumption 1.

(a) f�ign
i¼1 is a stationary process with E(�1) ¼ 0 and E(�2

1) ¼ � 2
� , 1.

(b) f�ijgn
i¼1 is a stationary process with E(�1 j) ¼ 0, E(�2

1 j) , 1 and autocovariance

function r� j
(k) monotone and convergent to 0 as k ! 1 ( j ¼ 1, . . . , p).

(c) f�ign
i¼1 is independent of f�ijgn

i¼1 ( j ¼ 1, . . . , p).

Assumption 2.

(a) n�1�T�!P V�, where V� is a positive definite matrix.

(b) n(�T�)�1�TV��(�T�)�1 !P A, where A is a positive definite matrix.

(c) n1=2(�T�)�1�T�!d N (0, A).

Assumption 3.

(a) The function m has two continuous derivatives on [0, 1].

(b) The functions g1, . . . , g p have two continuous derivatives on [0, 1]:

Assumption 4. The design points ti are ti ¼ (i � 0:5)=n (i ¼ 1, . . . , n).

Assumption 5.

(a) K: R ! R is a Hölder continuous and non-negative function with support [�1, 1].

Furthermore,
Ð

K(u)du ¼ 1 and
Ð

uK(u)du ¼ 0.

(b) For q 2 [0, 1] , Kq(�) (K�
q (�)) has support [�1, q] ([�q, 1]) and is Hölder continuous,Ð

Kq(u)du ¼
Ð

K�
q (u)du ¼ 1 and

Ð
uKq(u)du ¼

Ð
uK�

q (u)du ¼ 0.

(c) supq2[0,1]maxfj
Ð

u2 Kq(u)duj, j
Ð

u2 K�
q (u)duj,

Ð
K2

q(u)du,
Ð

K
�2
q (u)dug , 1.
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Assumption 6.

(a) nb8 ! 0 as n ! 1.

(b) nh2 ! 1 as n ! 1.

(c) b2 ¼ o(h).

Assumption 1 is quite usual in nonparametric time series (see Hall et al. 1995), while

Assumptions 3, 4 and 6 are common in nonparametric kernel smoothing. Note that

Assumption 5 is sufficient to avoid boundary effects, and the existence of such modified

kernels was proven by Gasser et al. (1985). It is clear that Assumption 5(c) is satisfied if

the kernels Kq and K�
q are uniformly bounded in q. Assumption 2 is related to the long-

memory setting and will be discussed specifically in Section 5.

Theorem 1. (a) Under Assumptions 1(b), 2(a) and 3–5, if E(�i) ¼ 0 then we have that

E( �̂�bjX) � � ¼ O(b4 þ n�2) þ O p((b4 þ n�2)1=2((nb)�1S�0,[nb])
1=2):

(b) Under Assumptions 1, 2(a), 2(b), 3(b), 4 and 5 and if, in addition, (b2 þ n�1)S�,n ! 0

and (nb)�1S�0,[nb]S
2
�,n ! 0 as n ! 1, then we have that

var( �̂�bjX) ¼ n�1Aþ op(n�1):

(c) Under Assumptions 1, 2(a), 2(c), 3–5 and 6(a), and if, in addition, b3S�0,[nb] ! 0,

(b4 þ n�2)S�,n ! 0 and (nb)�1S�0,[nb]S�,n ! 0 as n ! 1, then, conditionally on X,

n1=2( �̂�b � �)!d N (0, A):

Remark 1. Theorem 1 generalizes Speckman’s (1988) Theorems 2 and 4 and Beran and

Ghosh’s (1998) Theorem 1 to the case of a general structure of autocovariances for �ij and �i.

The autocovariance structure of f�ig has no effect on the conditional bias of �̂�b, but we can

observe the effect of the autocovariance of f�ijg. Furthermore, it must be noted that, in the

case of Theorem 1(b, c), the conditions on the bandwidth depend on the autocovariance

functions of �ij and �i. We observe that, under assumptions of Theorem 1(a, b) together

with nb8 ! 0 and b3S�0,[nb] ! 0 as n ! 1, the bias of b��b is of smaller order than its

variance.

In the next theorem we reveal some asymptotic properties of m̂mh(t, �̂�b). To obtain the

asymptotic normality of the properly normalized nonparametric estimator, we need to

assume additional conditions on f�ign
i¼1. Specifically, one of the following assumptions must

be satisfied:

Assumption 7. f�ign
i¼1 is a stationary Gaussian process with E(�1) ¼ 0, var(�1) ¼ � 2

� , 1
and autocovariance function r�(k) ¼ � 2

� L(k)k�Æ� (k . 0), where 0 , Æ� , 1 is a fixed

constant and L is a function defined on [0, 1), slowly varying and positive in some

neighbourhood of infinity. Furthermore, C�
L ¼ supfjL(x)j=jL(nh)j : 1 < x < nh, n 2 Ng

, 1, nh1þ4=Æ�=L1=Æ� (nh) ! 0 and nÆ��1 hÆ�=L(nh) ! 0 as n ! 1.
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Assumption 8. f�ign
i¼1 is a mean-zero stationary process such that �i ¼

P1
j¼0c je j�i, whereP1

j¼0c2
j , 1, and the feig are independent and identically distributed with E(ei) ¼ 0 and

E(e4
i ) , 1. The spectral density of the process f�ig is of the form f �(º) ¼ j1 � eiºjÆ��1 g(º),

where g is a continuous spectral density on [��, �] which is bounded both away from zero

and infinity, and 0 , Æ� , 1.

Let us introduce the following notation. We denote Cn,h,Æ� ,L ¼ ((nh)Æ�=L(nh))1=2 (with

L ¼ 1 if Assumption 8 holds) and � 2
Æ� , g,K ¼ s(Æ�)g(0)

Ð 1

�1

Ð 1

�1
K(u)K(v)ju � vj�Æ�du dv

(with s(Æ�) ¼ 1 and g(0) ¼ � 2
� if Assumption 7 holds, and s(Æ�) ¼ 2�ˆ(Æ�)

(ˆ((1 � Æ�)=2)ˆ((1 þ Æ�)=2))�1 if Assumption 8 holds).

We also need the following usual condition on the kernel:

Assumption 9. The kernel K is symmetric and differentiable with bounded derivative.

Theorem 2. (a) Under the assumptions of Theorem 1(a), together with Assumptions 6(b) and

6(c), if h�4b3 n�1S�0,[nb] ! 0 as n ! 1, we have

E(m̂mh(t, �̂�b)jX) � m(t) ¼ bias(m̂mh(t, �))(1 þ op(1)) ¼ O p(h2):

(b) Under the assumptions of Theorem 1(b), and if r� is monotone and r�(k) ! 0 as k ! 1,

we have

var(m̂mh(t, �̂�b)jX) ¼ var(m̂mh(t, �))(1 þ op(1)) ¼ O p((nh)�1S�,[nh]):

(c) Under the assumptions of Theorem 1(a, b), together with Assumptions 6(a), 7 or 8, and 9,

and if, in addition, h log(nh) ! 0 and b3S�0,[nb] ! 0 as n ! 1, then, conditionally on X,

Cn,h,Æ�,L(m̂mh(u1, �̂�b) � m(u1), . . . , m̂mh(uk , �̂�b) � m(uk))!d �Æ�, g,K (N1, . . . , Nk),

where, for each fixed k 2 N, 0 , u1 ,� � �, uk , 1 are arbitrary fixed points and

N1, . . . , Nk are independent standard normal variables.

Remark 2. As in Theorem 1 above, the conditions on the bandwidths depend on the

autocovariance functions of the processes �ij and �i. Theorem 2(a, b) generalizes Speckman’s

(1988) Theorem 3 to the case of a general structure of autocovariances for �ij and �i. As in

Speckman (1988), and using the results of Csörgő and Mielniczuk (1995) and Deo (1997) on

normality, we observe similar asymptotic behaviour for the nonparametric estimators

m̂mh(t, �̂�b) and m̂mh(t, �). From Theorem 2(c), we have that the finite-dimensional distributions

of the properly normalized estimator m̂mh(�, �̂�b) converge to those of a Gaussian white noise

process. This is a common fact in fixed-design nonparametric regression (see Csörgő and

Mielniczuk 1995; Deo 1997) but, as Csörgő and Mielniczuk (1999) showed, in the case of

random-design nonparametric regression with long-memory errors, depending on the amount

of smoothing employed, these finite-dimensional distributions can converge to a degenerate

process with completely dependent marginals. It is natural to expect that this fact will remain

in a partial linear regression model with random explanatory variable t.
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3. Testing of hypotheses

In any regression analysis, it is very important to reduce the dimension of the vector of

explanatory variables or, in general, to simplify the model. In the particular case of a partial

linear regression model like (1), one can try to do this by testing the hypotheses

H0,� : � ¼ �0 and H0,m : m ¼ m0:

Under the assumption that the errors are independent and identically distributed, Gao (1997)

designed a method for testing the hypothesis H0,�, where the statistic used was based on m

approximated by a B-spline function. Actually, in many cases the observations are

sequentially gathered in time, and then there is correlation among the errors. Taking this

fact into account, González-Manteiga and Aneiros-Pérez (2003) assumed that f��i g are

independent and identically distributed and f�ig is an MA(1) short-memory process, and

they tested H0,� and H0,m by using statistics based on kernel smoothing (see (5) and (6)

below). As we have noted in Section 1, there exist settings where the assumption of short-

memory processes is restrictive. In this section we focus on the problem of testing the

hypotheses H0,� and H0,m under the possible presence of long-memory dependence in �ij

and/or �i. For this, we will use the same statistics as González-Manteiga and Aneiros-Pérez

(2003), that is,

d2
�( r̂rn, H0,�) ¼ n�1

Xn

i¼1

( r̂rn(�T
i , ti) � r̂rn,�0

(�T
i , ti))

2 ¼ ( �̂�b � �0)T(n�1 ~XXT
h
~XXh)( �̂�b � �0) (5)

and

d2
m( r̂rn, H0,m) ¼ n�1

Xn

i¼1

( r̂rn(�T
i , ti) � r̂rn,m0

(�T
i , ti))

2 ¼ n�1
Xn

i¼1

(m̂mh(ti, �̂�b) � m0(ti))
2, (6)

where r̂rn(�T, t) ¼ �T�̂�b þ m̂mh(t, �̂�b), r̂rn,�0
(�T, t) ¼ �T�0 þ m̂mh(t, �0) and r̂rn,m0

(�T, t) ¼
�T�̂�b þ m0(t). The motivation for (5) and (6) is clear. Taking into account that under

general conditions (see Theorems 1 and 2) r̂rn(�T, t) is a consistent estimator for the

regression function r(�T, t) ¼ �T�þ m(t), together with the fact that, under the null

hypotheses H0,� and H0,m, r(�T, t) also is consistently estimated by r̂rn,�0
(�T, t) and

r̂rn,m0
(�T, t), respectively, we have that (5) and (6) are natural statistics for testing the

parametric hypothesis H0,� and the nonparametric hypothesis H0,m, respectively. Observe that

under H0,m we could use the least-squares estimator of � in the model yi � m0(ti) ¼
�T

i �þ �i, say �̂�, which would be introduced in the expression r̂rn,m0
(�T

i , ti) in (6) instead of

�̂�b. As a result, the summand �T
i ( �̂�b � �̂�) appears, the study of d2

m is more complicated and

perhaps the final distance is less natural. Because of this, we have preferred to use �̂�b.

3.1. Parametric test

By means of the asymptotic distribution under H0,� of the statistic d2
�( r̂rn, H0,�) (see (5)),

we will obtain the approximate Type I error of the test. To study the power of this test, and
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to obtain information about the Type II error, we introduce the following alternative

hypotheses:

H
c,n
1,� : � ¼ �n

1 ¼ �0 þ cn�1=2, where c 6¼ 0 ( p 3 1) is an arbitrary fixed vector;

H1,� : � 6¼ �0:

To obtain the asymptotic behaviour of the statistic d2
�( r̂rn, H0,�) under H0,�, H

c,n
1,� and H1,�,

we will need the following additional assumption, which will be discussed in Section 5:

Assumption 10. n�1�TV��!P � 2
�V�, where V� was defined in Assumption 2(a) above.

Theorem 3. Suppose that the assumptions of Theorem 1(c), together with Assumptions 2(b)

and 10, hold. Then, conditionally on X, we have that:

(a) Under the null hypothesis H0,�,

F(b, h) �
nd2

�( r̂rn, H0,�)

� 2
�

¼ ( �̂�b � �0)T(~XXT
h
~XXh)( �̂�b � �0)

� 2
�

!d �2
p,

where �2
p denotes the chi-square distribution with p degrees of freedom.

(b) Under H
c,n
1,�,

F(b, h)!d �2
p(Ł), (7)

�2
p(Ł) being a chi-square distribution with p degress of freedom and non-centrality

parameter Ł ¼ ��2
� cTV�c.

(c) Under H1, �,

F(b, h) ! 1 as n ! 1:

Remark 3. Note that the local alternative hypothesis H
c,n
1,� depends on n, and therefore

the notion of convergence in distribution should be specified. Indeed, expression (7) should

be understood as

8� . 0, P� n
1
(F(b, h)jX , �) ��Ł(�)!P 0, as n ! 1,

where �Ł is the �2
p(Ł) distribution function.

Remark 4. It is clear that � 2
� in F(b, h) can be replaced by any consistent estimator �̂� 2

�
without affecting Theorem 3. Therefore, in practice, in testing H0,� at a given significance

level Æ by means of the asymptotic distribution proven in Theorem 3(a), H0,� is rejected if

d2
�( r̂rn, H0,�) . n�1�̂� 2

��
�1(1 � Æ),

where � is the �2
p distribution function. A natural estimate of � 2

� is �̂� 2
� ¼ n�1

Pn
i¼1�̂�

2
i , where

�̂�i ¼ yi � r̂rn(�T
i , ti) are residuals from the semi-parametric fit. Observe that Theorem 3

complements Theorem 2.1 of González-Manteiga and Aneiros-Pérez (2003), who obtained a
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similar result but unconditionally on the design matrix and assuming that ��i and �i are

independent and identically distributed and short-memory processes, respectively.

3.2. Nonparametric test

In the nonparametric test, acceptance of the null hypothesis yields a p-variate linear

regression model, and the estimation errors can be large if we wrongly accept this

hypothesis. So there really is a need for information about the power of the test, and for

this purpose we will look at local alternatives of the form

H
cn

1,m : m(ti) ¼ mn
1 (ti) ¼ m0(ti) þ cn m

�
(ti) (i ¼ 1, . . . , n):

To obtain the asymptotic behaviour of the statistic d2
m( r̂rn, H0,m) (see (6)) under H0,m and

H
cn

1,m we will need the following additional assumptions:

Assumption 11. The errors �i are generated by a stationary causal process �i ¼
P1

j¼0b jei� j,

where feig is a sequence of independent and identically distributed random variables with

zero mean, zero kurtosis and E(je1j4þ2º) , 1 ( for some º . 0). Furthermore, r�(k) ¼
var(e1)

P1
j¼0b jb jþk (k > 0) is absolutely summable and

P1
k¼1 kjr�(k)j , 1.

Assumption 12. E(j�1 jj4º=(2þº)) , 1, j ¼ 1, . . . , p.

Assumption 13. nh3=2 ! 1 and hn(2þº)=(2ºþ2) ! 0 as n ! 1.

Assumption 14. m� is twice continuously differentiable and non-identically null on [0, 1].

Assumptions 11–13 are quite usual in such problems (see González-Manteiga and Vilar-

Fernández 1995; Biedermann and Dette 2000), while Assumption 14 is obviously necessary

to make possible the application of the results of Section 2. Assumption 11 will be

discussed in Section 5.

Theorem 4. Suppose that the assumptions of Theorem 1(a, b), together with Assumptions 6(a)

and 11–14, hold. Then, if b3S�0,[nb] ! 0 as n ! 1, we have that, conditionally on X

(a) Under the null hypothesis H0,m,

(n2 h)1=2 d2
m( r̂rn, H0,m) �

X1
s¼�1

r�(s)

ð
K2

nh

0BBB@
1CCCA!d N (0, � 2

d),

where � 2
d ¼ 2(

P1
k¼�1 r�(k))2

Ð
(K � K)2 and K � K denotes the convolution of K

with itself.
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(b) Under H
c n

1,m, if cn ¼ (n2 h)�1=4 then

(n2 h)1=2 d2
m( r̂rn, H0,m) �

X1
s¼�1

r�(s)

ð
K2

nh

0BBB@
1CCCA!d N

ð
m

�
(u)2du, � 2

d

� �
,

and, if (n2 h)1=4cn ! 1 as n ! 1, then

(n2 h)1=2 d2
m( r̂rn, H0,m) �

X1
s¼�1

r�(s)

ð
K2

nh

0BBB@
1CCCA! 1:

Remark 5. From Theorem 4, we observe that the use of the statistic d2
m( r̂rn, H0,m) allows the

detection of alternatives at a distance of (n2 h)�1=4. In practice, in testing H0,m at a given

significance level Æ by means of the asymptotic distribution proven in Theorem 4(a), H0,m is

rejected if

d2
m( r̂rn, H0,m) . n�1 h�1=2�̂� d�(1 � Æ) þ n�1 h�1 ŜS

ð
K2,

where ŜS is an estimate of S ¼
P1

k¼�1 r�(k), �̂� 2
d ¼ 2ŜS2

Ð
(K � K)2 and � is the standard

normal distribution. As for ŜS, under the assumption that the errors �i follow an AR(k) model,

Aneiros-Pérez and Quintela-del-Rı́o (2002) proposed a consistent estimator for S, which can

be generalized to ARMA(k, z) models. This was based on consistent estimators of the

parameters of the AR(k) model, and it used the residuals of the semi-parametric fit. On the

other hand, González-Manteiga and Aneiros-Pérez (2003) constructed a consistent estimator

for S which does not assume a parametric model on the errors. This was based on second-

order differences ^̂��̂��i,k,s,b ¼ ŷy�i,b � k(k þ s)�1 ŷy�iþs,b � s(k þ s)�1 ŷy�i�k,b (where ŷy�i,b ¼ yi

� �T
i �̂�b), and is an extension of the Herrmann et al. (1992) estimator to the setting of a

partial linear regression model.

Remark 6. As seen in the proof of Theorem 4, its results remain valid if we replace

‘assumptions of Theorem 1(a, b)’ in its statement by ‘assumptions of Theorem 1(a, c)’. Note

that Theorem 4 extends Theorem 2.2 of González-Manteiga and Aneiros-Pérez (2003), who

obtained a similar result but unconditionally on the design matrix and assuming that ��i are

independent and identically distributed.

4. Simulation study and real data example

In this section we will extend Beran and Ghosh’s (1998) simulation study and real data

example. In their simulation study, they compared the least-squares estimate (LSE) of �
applied to x and y directly with the semi-parametric estimate (3). In one of their two
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models the LSE of � was unbiased, and in the other it was biased. In the two cases, the

semi-parametric estimate was better from the mean-square error point of view. The

objective of their real data example was estimation of �. In this section we will test

hypotheses on � and m. The Epanechnikov kernel (modified at the boundaries) was used.

4.1. A simulation study

A modest simulation study was carried out to observe the finite-sample behaviour of the

tests proposed (Theorems 3 and 4), together with the effect of the dependence and

bandwidths. Models (28) and (29) in Beran and Ghosh (1998) were used for the parametric

and nonparametric tests, respectively. Like these authors, we have used bandwidths of the

type b ¼ n�ª and h ¼ n�Ł, satisfying the assumptions of the theorems. For each possible

combination of the sample sizes (n ¼ 200, 500), parameters, bandwidths and functions

considered, M ¼ 5000 samples were generated. The null hypotheses H0,� : � ¼ �0 and

H0,m: m ¼ m0 were tested at the significance level Æ ¼ 0:1. Tables 1 and 2 show the

relative frequency of acceptance of H0,� and H0,m, respectively, both assuming unknown

and known � 2
� and

P1
s¼�1 r�(s).

Model (28) in Beran and Ghosh (1998) was yi ¼ �i�þ m(ti) þ �i, where the �i ¼ xi1

were independent and identically distributed with P(� t ¼ 1) ¼ P(� t ¼ �1) ¼ 0:5 ( p ¼ 1,

g1 ¼ 0), m(t) ¼ 2 þ 20=(1 þ t) and �i were generated by a FARIMA(0, d�, 0) process with

unit variance. Values of d� ¼ 0 and d� ¼ 0:3 were considered (recall that d� ¼ 0 means

independent and identically distributed standard normal, and 0 , d� , 0:5 means a long-

memory process, with r�(k) � cd� jkj2d��1 as jkj ! 1). The null hypothesis H0,� : � ¼ 0

Table 1. Relative frequency of acceptance of H0,� : � ¼ 0 (1 � Æ ¼ 0:90)

� ¼ 0 � ¼ 0:05 � ¼ 0:1

d� b ¼ h n ¼ 200 n ¼ 500 n ¼ 200 n ¼ 500 n ¼ 200 n ¼ 500

0 0.15 0.8906a 0.8936 0.8112 0.6960 0.5906 0.2798

0.8954b 0.8946 0.8164 0.6990 0.5960 0.2830

0.20 0.8910 0.8936 0.8104 0.6948 0.5892 0.2796

0.8964 0.8948 0.8182 0.6966 0.5954 0.2798

0.25 0.8920 0.8948 0.8106 0.6942 0.5880 0.2788

0.8976 0.8948 0.8156 0.6948 0.5954 0.2810

0.3 0.15 0.9022 0.9142 0.8052 0.6714 0.5342 0.2200

0.9370 0.9326 0.8534 0.7170 0.6108 0.2594

0.20 0.9008 0.9072 0.7966 0.6666 0.5324 0.2206

0.9332 0.9296 0.8464 0.7138 0.6098 0.2592

0.25 0.8974 0.9038 0.7940 0.6642 0.5342 0.2208

0.9314 0.9254 0.8464 0.7104 0.6074 0.2568

aUsing the estimated variance.
bUsing the true variance.
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was tested under � ¼ 0, � ¼ 0:05 and � ¼ 0:1. Because we have observed similar

behaviours for b ¼ h and b 6¼ h (for reasonable values of b and h), we only present

the former case. The estimate �̂� 2
� with pilot bandwidths b0 ¼ h0 ¼ 0:25 was used (see

Remark 4).

Remark 7. We observe that the frequencies in the � ¼ 0 column in Table 1 are close to

1 � Æ ¼ 0:90, and they decrease as � increases. Therefore, the test may be judged as

exhibiting desirable behaviour. Furthermore, we see that the test turns out to be quite

insensitive both to bandwidth selection (in the case of � estimation, this was observed by

Beran and Ghosh 1998) and to long memory, the level being similar with both n ¼ 200 and

n ¼ 500 (convergence is achieved with moderate sample size) and the power increasing as

the sample size increases.

In model (29) in Beran and Ghosh (1998), � ¼ 5, �i ¼ xi1 ¼ log(1 þ ti) þ �i1 and

m(ti) ¼ 2 þ 20ti were considered. Furthermore, �i1 were generated by a FARIMA(0, d�, 0)

process with unit variance and values of d� ¼ 0 and d� ¼ 0:3. These authors considered

these same types of processes for �i. Nevertheless, if we assume that �i follows a

FARIMA(0, d�, 0) process with d� . 0, then the assumptions of our Theorem 4 are not

satisfied. For this reason, we have supposed an AR(1) process for �i, with parameter r�
(r� ¼ 0 (similar to the case of d� ¼ 0) and r� ¼ 0:6 were considered). The null hypothesis

H0,m : m(t) ¼ 2 þ 20t was tested under m(t) ¼ 2 þ 20t, m(t) ¼ 2 þ 20t1:05 and m(t) ¼
2 þ 20t1:1. S ¼

P1
k¼�1 r�(k) ¼ � 2

�(1 þ r�)(1 � r�)�1 was estimated by means of

ŜS ¼ �̂� 2
�(1 þ brr�)(1 � brr�)�1, where brr� ¼ (

Pn�1
i¼1 �̂�i�̂�iþ1)(

Pn
i¼1�̂�

2
i )�1. The pilot bandwidths

b0 ¼ h0 ¼ 0:25 were used.

Remark 8. As in the parametric test, we observe that the nonparametric test may be judged as

exhibiting desirable behaviour. Nevertheless, important differences are seen. On the one hand,

the bandwidth h has greater influence than in the parametric case, and on the other hand, the

level and the power are affected by the dependence in � (not in �).

As noted above, the assumptions of our Theorem 4 include a short-memory structure for

�i. To illustrate the possible asymptotic behaviour of the nonparametric test d2
m( r̂rn, H0,m)

under H0,m, in the case of long-memory conditions on �i, M ¼ 100 000 values of

d2
m( r̂rn, H0,m) (with b ¼ 0:15 and h ¼ 0:04) were obtained from M samples of size

n ¼ 200. The density of d2
m( r̂rn, H0,m) was then estimated by means of the Rosenblatt–

Parzen estimator, with the plug-in bandwidth selector recommended by Jones et al. (1996).

The same null hypothesis and structures for � as in Table 2 were considered, while �i was

taken to be: (1) an AR(1) process with parameter r� ¼ 0:6; (2) a FARIMA(0, 0.2, 0)

process; and (3) a FARIMA(0, 0.4, 0) process. Each process had unit variance. Because we

have observed that the corresponding estimated density is quite insensitive to the

dependence structure in �, in Figure 1 we only show the combination of a FARIMA(0,

0.3, 0) process in � with cases (1)–(3) on �. Furthermore, we show the approximation of

the density of the test given by our Theorem 4, for case (1).
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Remark 9. Two interesting facts can be seen in Figure 1. On the one hand, sample size n and

bandwidth h possibly cause the difference between the approximated density from Theorem 4

(solid line) and the theoretical density obtained from the Monte Carlo study (dotted line). On

the other hand, bandwidth h and the long memory in the errors �i, in some cases, appear to

Table 2. Relative frequency of acceptance of H0,m : m(t) ¼ 2 þ 20t (1 � Æ ¼ 0:90)

m(t) ¼ 2 þ 20t m(t) ¼ 2 þ 20t1:05 m(t) ¼ 2 þ 20t1:1

r� d� (b, h) n ¼ 200 n ¼ 500 n ¼ 200 n ¼ 500 n ¼ 200 n ¼ 500

0 0 (0.15, 0.03) 0.8222a 0.8388 0.1716 0.0030 0.0002 0.0000

0.8426b 0.8460 0.1968 0.0038 0.0002 0.0000

(0.15, 0.04) 0.8042 0.8278 0.1348 0.0018 0.0000 0.0000

0.8274 0.8398 0.1492 0.0014 0.0002 0.0000

(0.20, 0.03) 0.8224 0.8400 0.1716 0.0030 0.0002 0.0000

0.8432 0.8464 0.1968 0.0038 0.0002 0.0000

(0.20, 0.04) 0.8054 0.8294 0.1358 0.0018 0.0000 0.0000

0.8278 0.8396 0.1498 0.0014 0.0002 0.0000

0.3 (0.15, 0.03) 0.8180 0.8366 0.1744 0.0060 0.0004 0.0000

0.8420 0.8426 0.1988 0.0058 0.0004 0.0000

(0.15, 0.04) 0.7952 0.8224 0.1366 0.0034 0.0002 0.0000

0.8214 0.8302 0.1550 0.0032 0.0002 0.0000

(0.20, 0.03) 0.8198 0.8376 0.1744 0.0058 0.0004 0.0000

0.8466 0.8442 0.1998 0.0062 0.0004 0.0000

(0.20, 0.04) 0.8020 0.8238 0.1380 0.0034 0.0002 0.0000

0.8256 0.8340 0.1576 0.0032 0.0004 0.0000

0.6 0 (0.15, 0.03) 0.8558 0.8426 0.6034 0.3118 0.1482 0.0030

0.9618 0.8996 0.8348 0.4466 0.3532 0.0062

(0.15, 0.04) 0.7860 0.8118 0.5030 0.2662 0.0948 0.0018

0.9236 0.8754 0.7490 0.3572 0.2372 0.0042

(0.20, 0.03) 0.8564 0.8434 0.6054 0.3124 0.1496 0.0030

0.9630 0.8994 0.8342 0.4470 0.3530 0.0064

(0.20, 0.04) 0.7868 0.8120 0.5048 0.2660 0.0958 0.0018

0.9246 0.8756 0.7492 0.3582 0.2388 0.0042

0.3 (0.15, 0.03) 0.8474 0.8418 0.5922 0.3132 0.1484 0.0038

0.9626 0.8982 0.8392 0.4438 0.3592 0.0070

(0.15, 0.04) 0.7658 0.8078 0.4978 0.2644 0.0932 0.0028

0.9230 0.8752 0.7492 0.3664 0.2446 0.0034

(0.20, 0.03) 0.8492 0.8434 0.5946 0.3144 0.1512 0.0038

0.9638 0.9002 0.8414 0.4462 0.3600 0.0076

(0.20, 0.04) 0.7680 0.8090 0.5006 0.2674 0.0942 0.0026

0.9252 0.8772 0.7530 0.3684 0.2466 0.0034

aUsing the estimated sum of covariances.
bUsing the true sum of covariances.
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destroy the asymptotic normality of the nonparametric test. This empirical fact has been

proven in other settings; see Ho (1996) for the setting of density estimation.

Remark 10. As we suspected, the normal approximation of the statistics is worse for the

nonparametric test than for the parametric (the relative frequency of acceptance of H0 under

H0 is closest to 1 � Æ in the parametric case; see Tables 1 and 2), this fact being motivated

by the very slow speed of convergence of the corresponding statistic to the normal

distribution (very large sample sizes for the nonparametric test are then necessary). To solve

this problem, a bootstrap algorithm could be used to approximate the distribution of

d2
m( r̂rn, H0,m). In the setting of nonparametric regression (� ¼ 0), Vilar-Fernández and

González-Manteiga (2000) suggested bootstrap mechanisms (‘naive bootstrap’ and ‘wild

bootstrap’) for this goodness-of-fit test, assuming a stationary and reversible ARMA process

for the errors. Their simulation study showed that bootstrap tests gave better behaviour with

respect to the normal test, and it seems natural to expect a similar performance in our setting

of partial linear regression models. In the context of long-memory errors, and without

assuming a parametric structure on the errors, the ‘block bootstrap’ (Hall et al. 1995) could

be one option. In any case, the extension of these and other resampling mechanisms both to

the case of partial linear regression models and to the setting of long-memory dependence is

an open problem.
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Figure 1. Distribution from Theorem 4 —— (approximation of · · ·), r� ¼ 0:6 · · ·, d� ¼ 0:2 - � � � -,

d� ¼ 0:4 - � -
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4.2. A real example

Our Theorems 3 and 4 are illustrated by analysis of the average annual temperature for the

southern hemisphere against both the average annual temperature for the northern

hemisphere and the year (ti). The data set was extracted from the database held at the

Climate Research Unit of the University of East Anglia (http://www.cru.uea.ac.uk). We

define xi ¼
P12

j¼1(xij � n j)=12 and yi ¼
P12

j¼1(yij � s j)=12, where n j and s j are the average

monthly temperatures in the period 1950–1979 ( j ¼ 1, . . . , 12) for the northern and

southern hemispheres, respectively. xij and yij denote the average monthly temperatures in

the month j of year i for the northern and southern hemispheres, respectively. The two

series cover the period between 1856 and 2001. Thus the sample size is n ¼ 146.

Beran and Ghosh (1998) studied the series xi and yi, corresponding to the period 1854–

1989, from the point of view of � estimation. They modelled the residuals �̂�i and �̂�i by a

FARIMA(0, d, 0) process, with d ¼ 0:2 and 0:1, respectively, and they obtained approximate

confidence intervals for � and the parameters d. They showed that long memory is clearly

present in �, but this fact is not clear in �.

We analysed our residuals �̂�i and �̂�i with the same type of bandwidth as these authors,

and we have essentially obtained similar conclusions for the process �i. Nevertheless, Box–

Jenkins analysis of the residuals �̂�i suggests that an AR(1) process could be a reasonable

model for the errors �i (see Figure 2). Then, assuming an AR(1) process for �i and a

FARIMA(0, 0.2, 0) process for �i, we tested two important hypotheses: (1) H0,� : � ¼ 0 and

(2) H0,m : m ¼ 0. We calculated the statistics d2
�( r̂rn, H0,�) and d2

m( r̂rn, H0,m) for a grid of

values (b, h) 2 f0:05 þ 0:05i, i ¼ 0, 1, . . . , 6g3 f0:04 þ 0:01 j, j ¼ 0, 1, 2, 3g (b ¼ h 2
f0:05 þ 0:05i, i ¼ 0, 1, . . . , 6g were also used for d2

�( r̂rn, H0,�)). In all cases, the p-value

was 0:0000.
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Figure 2. (a) Sample and (b) sample partial autocorrelation functions
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5. Concluding remarks

For the purposes of this study, we have made our conditions on the dependence structures

of the errors as general as we could. To highlight our approach, this section will include a

discussion of some typical examples of long-dependent processes. More precisely, we will

look deeply at fractional Gaussian noise and FARIMA processes.

First of all, let us note that most of the conditions we have introduced in this paper are

quite usual in long-memory estimation. For instance, Assumptions 2(b) and 2(c) are quite

common (see Beran and Ghosh 1998), and they are known to be satisfied, under weak

conditions, both by fractional Gaussian noise and by FARIMA processes, as proven by

Yajima (1991) and Künsch et al. (1993). Furthermore, concerning Assumption 2(a), it

should be noted that this is a quite unrestrictive condition, satisfied for instance if ��i is

ergodic; see Yajima (1988) and Beran and Ghosh (1998) for discussion of the use of

ergodicity for noise regression modelling. Assumptions 7 and 8 are also quite usual in a

nonparametric setting (see Csörgő and Mielniczuk 1995; Deo 1997), and it should be noted

that they play a minor role in our work since they are only needed to prove Theorem 2(c).

Finally, note that Assumption 10 is also easily satisfied in many cases. For instance, it is

clear that if the �i are uncorrelated, then Assumption 10 reduces to Assumption 2(a), while

on the other hand if the ��i are uncorrelated and
Pn

k¼1 r2
�(k) ¼ o(n) (so that, �i may have

long memory), then Assumption 10 holds. Our Assumption 11 is the only restrictive

assumption of this paper since it implies that f�ig is a short-memory process. The reason

why we introduced it is that throughout the proof of Theorem 4 we need probabilistic

results, which are still unknown for general memory structures, on the limit distribution of a

properly normalized quadratic form in �i (specifically, in the study of A1,n below). At the

time of writing, the only existing results are on special quadratic forms in special types of

long-memory processes (Fox and Taqqu 1987), and they need to be extended to allow

general coefficients depending on n and general types of long-memory processes (obtaining,

possibly, central and non-central limit theorems). When �i satisfies Assumption 11, these

results can be obtained by means of Nieuwenhuis’s (1992) Theorem 2.3. Note, however, that

Assumption 11 is only needed for Theorem 4, and observe that we still allow long-memory

dependence for �ij.

The only assumptions which are really specific to our work are those linking the

autocovariance sums S�,n and S�0,n with the bandwidths h and b. Because they are new,

these conditions have been emphasized by being presented within the statement of each

theorem. It should be noted that these new conditions are easily satisfied by most of the

usual long-dependent processes. For instance (see Beran 1994), many classes of long-

memory processes have autocovariance of the form

jkj�D L(jkj) (0 , D , 1), (8)

L being some slowly varying function. It is easy to see that, if �i or �ij is a process of this

kind, we can write S�,n and S�0,n in the form

J (n)n�Dþ1, (9)
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for some other slowly varying function J . Therefore, it is easy to check, one by one, that all

the conditions linking S�,n and S�0,n with the bandwidths h and b hold for reasonable choices

of bandwidth. For instance, looking at Theorem 1(b), it is clear that a reasonable bandwidth

choice should make the trade-off between both components b2 and n�1 of the rate of

convergence, and so a good candidate is b � Cn�1=2. For this value of b, it is easy to check

by using (9), that if �i is long-dependent of the form of (8) then the condition

(b2 þ n�1)S�,n ! 0 is always satisfied. Similarly, all the conditions of this type appearing

in our work could be checked for processes �i or �ij satisfying (8). To conclude this point,

note that both fractional Gaussian noise and FARIMA processes are of type (8) (see Beran

1994).

Finally, we note that in most results the assumptions used are general, without restriction

to a particular type of dependence. Therefore, Theorems 1, 2(a, b) and 3 hold when �i and/

or �ij are either antipersistent, short memory or long memory (observe that Theorems 2(c)

and 4 use long- and short-memory conditions on the errors, respectively).

6. Some technical lemmas

The following lemmas will be used in the proof of the theorems.

Lemma 1. Let f : Rþ ! R be a monotone function such that f (k) ! 0 as k ! 1. Then, if

nh is large enough,

C1(nh)�1
X[nh]

k¼0

f (k) <
Xn

i¼1

Xn

j¼1

wn,h(t, ti)wn,h(t, t j) f (ji � jj) < C2(nh)�1
X[nh]

k¼0

f (k),

where C1 and C2 are positive constants, t 2 [0, 1], ti ¼ (i � 0:5)=n and wn,h(t, ti) are the

Gasser–Müller weights (see (4)) with kernel function satisfying Assumption 5.

Proof. Using the fact that wn,h(t, ti) 6¼ 0 ) ti 2 (t � h � 0:5n�1, t þ h þ 0:5n�1), the proof

of the lemma is a direct consequence of the assumptions. h

Remark 11. As a direct consequence of Lemma 1, it is clear that if fuign
i¼1 is a zero-mean

stationary process with monotone autocovariance function ru(k) ! 0 as k ! 1, then, if

nh ! 1 as n ! 1, we have that

C1(nh)�1
X[nh]

k¼0

ru(k) < var(̂ggh(t)) < C2(nh)�1
X[nh]

k¼0

ru(k),

where we have denoted ĝgh(t) ¼
Pn

i¼1wn,h(t, ti)(g(ti) þ ui), with g : [0, 1] ! R.

Lemma 2. Assume that fuign
i¼1 is a zero-mean stationary process with autocovariance

function ru, and fŁig is a sequence of real numbers. Then
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E
Xn

i¼1

Łiui

 !2
24 35 < 2 max

i2f1,...,ng
jŁij

� �2

n
Xn�1

k¼0

jru(k)j:

Proof. The proof is trivial and therefore omitted. h

Lemma 3. Let fuign
i¼1 and fvign

i¼1 be stationary processes with E(ui) ¼ E(vi) ¼ 0 and

autocovariance functions ru and rv, respectively. Suppose that fuign
i¼1 is independent of

fvign
i¼1. Let faijgij and k be real numbers such that aij ¼ 0 if ji � jj . k . 0. Then

E
Xn

i¼1

Xn

j¼1

aijuiv j

 !2
0@ 1A < 4 max

i, j
jaijj

� �2

n(2[k] þ 1)
Xn�1

i¼0

jru(i)j
Xn�1

j¼0

jrv( j)j:

If jrv( j)j decreases, then
Pn�1

j¼0 jrv( j)j above can be changed to
P2[k]

j¼0 jrv( j)j.

Proof. As a direct consequence of the assumptions, we have that

E
Xn

i¼1

Xn

j¼1

aijuiv j

 !2
0@ 1A ¼

Xn

i1¼1

Xn

i2¼1

ru(i1 � i2) 3
Xn

j1¼1

Xn

j2¼1

ai1 j1 ai2 j2 rv( j1 � j2)

< max
i, j

jaijj
� �2Xn

i1¼1

Xn

i2¼1

jru(i1 � i2)j3
Xi1þ[k]

j1¼i1�[k]

Xi2þ[k]

j2¼i2�[k]

jrv( j1 � j2)j

< max
i, j

jaijj
� �2

2n
Xn�1

i¼0

jru(i)j3 2(2[k] þ 1)
Xn�1

j¼0

jrv( j)j:

h

Lemma 4. Let fuign
i¼1 be a stationary process such that E(ju1jk) , 1 (k . 0). If

nha�k
n ! 0 as n ! 1, then

sup
t2[0,1]

����Xn

i¼1

wn,h(t, ti)ui

���� ¼ op(an),

where ti ¼ (i � 0:5)=n and wn,h(�, �) are Gasser–Müller weights with bounded kernel

function K with support [�1, 1] (see (4)).

Proof. Let � . 0. We have that

P sup
t2[0,1]

����Xn

i¼1

wn,h(t, ti)ui

���� . �an

 !
< C3 nhP(C4(nh)�1ju1j . �C5(nh)�1an)

< C6 nhE(ju1jk)a�k
n ! 0,
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where Ci (i ¼ 3, 4, 5, 6) are positive constants. h

Lemma 5. Under Assumptions 1(b), 2(a), 3(b), 4 and 5, we have that

n�1 ~XXT
b
~XXb !

P
V�:

Proof. The (i, j)th element of n�1 ~XXT
b
~XXb is

n�1~xxT
ib~xx jb ¼ n�1( ~ggT

ib~gg jb
þ ~ggT

ib
~�� jb þ ~ggT

jb
~��ib þ �T

i � j � �T
i Wb� j � �T

i W
T
b� j þ �T

i W
T
bWb� j):

(10)

Because ~ggi is a vector of biases, it satisfies j~ggibj2 ¼ O(nb4 þ n�1) (see Gasser and Müller

1984). Furthermore, from Assumption 2(a) we have that j�ij ¼ O p(n1=2), and by Lemma 1

(with f ¼ r�ij
) E(jWb� jj2) ¼ O(b�1S�0,[nb]), and then jWb� jj ¼ O p(b�1=2S

1=2
�0,[nb]). From the

last two results, and using the fact that (nb)�1S�0,[nb] ! 0 (because of Assumption 1(b) and

the fact that nb ! 1), it is easy to obtain that j~��ibj ¼ O p(n1=2). These results, together with

Assumption 2(a) and expression (10), give the result of the lemma. h

7. Proofs of main results

Proof of Theorem 1. (a) We have that

E( �̂�bjX) � � ¼ (n�1 ~XXT
b
~XXb)�1 n�1 ~XXT

b
~mmb: (11)

From Lemma 5, it is sufficient to study the p-vector n�1 ~XXT
b ~mmb. Its jth element is

n�1~xxT
jb
~mmb ¼ n�1

�
~ggT

jb
~mmb þ �T

j
~mmb � (Wb� j)

T ~mmb

�
: (12)

Using results obtained in the proof of Lemma 5, it is easy to see that

n�1~ggT
jb
~mmb ¼ O(b4 þ n�2), n�1(Wb� j)

T emmb ¼ O p

�
(b4 þ n�2)1=2((nb)�1S�0,[nb])

1=2
�
:

(13)

As for the second summand in (12), from Lemma 2 we obtain that

n�1�T
j
~mmb ¼ O p

�
(b4 þ n�2)1=2(n�1S�0,n)1=2

�
: (14)

Now, Lemma 5 and expressions (11)–(14), together with the fact that, for large enough n,

n�1S�0,n < (nb)�1S�0,[nb], give the result.

(b) We have that

var( �̂�bjX) ¼ n�1(n�1 ~XXT
b
~XXb)�1 n�1 ~XXT

b(I�Wb)V�(I�WT
b)~XXb(n�1 ~XXT

b
~XXb)�1: (15)

First of all, we consider the asymptotic behaviour of the ( p 3 p) matrix n�1 ~XXT
bV�

~XXb. Its

(i, j)th element can be written as
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n�1~xxT
ibV�~xx jb ¼ n�1�T

i V�� j þ n�1(�T
i V�~gg jb

� �T
i V�Wb� j þ ~ggT

ib
V�� j

þ ~ggT
ib
V�~gg jb

� ~ggT
ib
V�Wb� j � (Wb�i)

TV�� j (16)

� (Wb�i)
TV�~gg jb

þ (Wb�i)
TV�Wb� j):

Let us study the summands in (16). For this purpose, we will use the fact that

kV�k2 < (kV�k1kV�k1)1=2 ¼ kV�k1 ¼ O(S�,n): (17)

From (17) and results obtained in the proof of Lemma 5, together with the Cauchy–Schwarz

inequality, it is easy to obtain that

n�1�T
i V�~gg jb

¼ O p((b4 þ n�2)1=2S�,n), n�1�T
i V�Wb� j ¼ O p((nb)�1=2S

1=2
�0,[nb]S�,n),

n�1~ggT
ib
V�~gg jb

¼ O((b4 þ n�2)S�,n), n�1(Wb�i)
TV�� j ¼ O p((nb)�1=2S

1=2
�0,[nb]S�,n),

n�1~ggT
ib
V�Wb� j ¼ O p((b4 þ n�2)1=2(nb)�1=2S

1=2
�0,[nb]S�,n),

n�1(Wb�i)
TV�~gg jb

¼ O p((b4 þ n�2)1=2(nb)�1=2S
1=2
�0,[nb]S�,n),

n�1(Wb�i)
TV�Wb� j ¼ O p((nb)�1S�0,[nb]S�,n):

(18)

Now, from (16), (18) and the fact that (b2 þ n�1)S�,n ! 0 and ((nb)�1S�0,[nb])
1=2S�,n ! 0, we

obtain that

n�1 ~XXT
bV�

~XXb ¼ n�1�TV��þ op(1): (19)

Using Lemma 5, (15) and (19), it is easy to see that

var( �̂�bjX) ¼ (�T�)�1�TV��(�T�)�1 þ op(n�1) þ n�1V�1
� RnV

�1
� , (20)

where

Rn ¼ n�1(�~XXT
bWbV�

~XXb � ~XXT
bV�W

T
b
~XXb þ ~XXT

bWbV�W
T
b
~XXb):

By Assumption 2(b) and (20), the proof concludes if we demonstrate that Rn ¼ op(1). Taking

into account results obtained in the proof of Lemma 5, together with the fact that

kWbk2 ¼ kWT
bk2 ¼ O(1), we obtain that

jWT
b ~xx jbj ¼ jWT

b(� j �Wb� j þ ~gg
jb
)j ¼ O p

�
b�1=2S

1=2
�0,[nb] þ (nb4 þ n�1)1=2

�
,

and therefore

kWT
b
~XXbk2 ¼ k~XXT

bWbk2 ¼ O p

�
b�1=2S

1=2
�0,[nb] þ (nb4 þ n�1)1=2

�
:

Furthermore, Lemma 5 gives

k~XXbk2 ¼ k~XXT
bk2 ¼ O p

�
n1=2

�
:

Now, using these last two results, together with (17) and the fact that (b2 þ n�1)S�,n and

((nb)�1S�0,[nb])
1=2S�,n converge to zero, it is easy to see that

Rn ¼ O p

�
((nb)�1S�0,[nb])

1=2S�,n þ (b2 þ n�1)S�,n

�
¼ op(1):
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(c) From Theorem 1(a), we obtain that

n1=2( �̂�b � �) ¼ n1=2( �̂�b � E( �̂�bjX)) þ op(1):

Furthermore, using Lemma 5 and Assumption 2(a), it is easy to see that

n1=2( �̂�b � E( �̂�bjX)) ¼ n1=2(�T�)�1�T�þO p(jBnj2),

where

Bn ¼ �n1=2(�T�)�1�TWb�þ n1=2(�T�)�1(~ggb2Wb�)T(�2Wb�):

Demonstrate that Bn ¼ op(1) proves this part of the theorem (see Assumption 2(c)). By

Lemma 5, to obtain Bn ¼ op(1) it is sufficient to show that

�n�1=2�TWb�þ n�1=2(~ggb2Wb�)T(�2Wb�) ¼ op(1): (21)

Expression (21) can be written as Qn,b þ Ln,b ¼ op(1), where Qn,b ¼
Pn

i¼1

Pn
j¼1rij��i � j and

Ln,b ¼ n�1=2 ~GGT
b
~��b, with rij ¼ n�1=2(

Pn
k¼1wn,b(t k , ti)wn,b(t k , t j) � wn,b(ti, t j) � wn,b(t j, ti)).

We now bound Qn,b and Ln,b. Using the fact that we can write Ln,b ¼ n�1=2
Pn

i¼1ci,b�i, ci,b

being non-random p-vectors such that ci,bc
T
j,b ¼ O(b4 þ n�2) if i, j 2 Bb or

ci,bc
T
j,b ¼ o(b4) þ O(n�2) otherwise, where Bb is a set with #Bb ¼ O(nb), it is easy to

obtain that kvar(Ln,b)k2 ¼ o(b4S�,n) þ O(n�2S�,n). Therefore,

Ln,b ¼ op((b4S�,n)1=2) þ O p((n�2S�,n)1=2): (22)

As for Qn,b, applying Lemma 3 over each component and taking into account that

maxi, jjrijj ¼ O(n�3=2b�1) and rij ¼ 0 if ji � jj . k ¼ 3nb for large enough n (see Aneiros-

Pérez and Quintela-del-Rı́o 2002), it is easy to obtain that

Qn,b ¼ O p

�
((nb)�1S�0,[nb]S�,n)1=2

�
: (23)

Taking into account that (b4 þ n�2)S�,n ! 0 and (nb)�1S�0,[nb]S�,n ! 0, (22) and (23) give

(21). This concludes the proof. h

Proof of Theorem 2. (a) We have that

E(m̂mh(t, �̂�b)jX) � m(t) ¼ bias(m̂mh(t, �)) � wT
h(t)X bias( �̂�bjX), (24)

where wT
h(t) ¼ (wn,h(t, t1), . . . , wn,h(t, tn)). Taking into account relation (2), Lemma 1 and

the fact that the bias of the nonparametric estimator tends to zero, we obtain that

wT
h(t)X!P (g1(t), . . . , g p(t)): (25)

Now, from (25), Theorem 1(a) and the fact that

bias(m̂mh(t, �)) ¼ 0:5h2 m 0(t)

ð
u2 K(u)du þ o(h2)

(we suppose that nh2 ! 1), together with b2 ¼ o(h) and h�4b3 n�1S�0,[nb] ! 0, we obtain

that
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����wT
h(t)X bias( �̂�bjX)

bias(m̂mh(t, �))

���� ¼ op(1): (26)

Now (24) and (26) give the result.

(b) We have that

var(m̂mh(t, �̂�b)jX) ¼ var(m̂mh(t, �)) þ wT
h(t)X var( �̂�bjX)XTwh(t) (27)

� 2wT
h(t)X cov( �̂�b, m̂mh(t, �)jX):

From Theorem 1(b) and Lemma 1 (with f ¼ r�) we obtain that

kvar( �̂�bjX)k2

var(m̂mh(t, �))
¼ O p((h�1S�,[nh])

�1) ¼ op(1) (28)

and, together with (25),

kwT
h(t)X var( �̂�bjX)XTwh(t)k2

var(m̂mh(t, �))
¼ op(1): (29)

Now, using (28) together with (25), it is easy to see that, for k ¼ 1, . . . , p,

jwT
h(t)X cov( �̂�b,k , m̂mh(t, �)jX)j

var(m̂mh(t, �))
< C

var( �̂�b,k jX)

var(m̂mh(t, �))

 !1=2

¼ op(1), (30)

where �̂�b,k denotes the kth component of b��b and C is a positive constant. Now (27), (29) and

(30) give the result.

(c) We have that m̂mh(u j, �̂�b) ¼ m̂mh(u j, �) � wT
h(u j)X( �̂�b � �). Therefore, using (25) and the

n1=2-consistency of �̂�b, it is easy to see that m̂mh(u j, �̂�b) ¼ m̂mh(u j, �) þ O p(n�1=2),

j ¼ 1, . . . , k. Under Assumption 7 we can apply Csörgő and Mielniczuk’s (1995) Theorem

1 to obtain that

Cn,h,Æ� (m̂mh(u1, �) � m(u1), . . . , m̂mh(uk , �) � m(uk))!d �Æ� , g,K (N1, . . . , Nk),

while under Assumption 8 we can apply Deo’s (1997) Theorem 3 to obtain the same result.

Now, taking into account that, from Assumption 7 (or 8), Cn,h,Æ� ¼ op(n1=2), it is clear that

the result holds. h

Proof of Theorem 3. (a) From Theorem 1(c), we obtain that

n( �̂�b � �)TA�1( �̂�b � �)!d �2
p: (31)

Furthermore, Assumptions 2(a), 2(c) and 10 give A ¼ � 2
�V

�1
� . Now, using this result, Lemma

5 and the n1=2-consistency of �̂�b, it easy to obtain that

jn( �̂�b � �)TA�1( �̂�b � �) � ��2
� n( �̂�b � �)T(n�1 ~XXT

h
~XXh)( �̂�b � �)j ¼ op(1):
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This last result, together with (31), gives

( �̂�b � �)T(~XXT
h
~XXh)(b��b � �)

� 2
�

!d �2
p: (32)

(b) Because the difference between �̂�b and the true value of the vector of parameters � does

not depend on �, from Theorem 1(c) we have that, under H
c,n
1,�, n1=2( �̂�b � �0)!d N (c, A).

Therefore, arguments similar to those of Theorem 3(a) can be used to obtain the result.

(c) We will use the decomposition

F(b, h) ¼ ( �̂�b � �)T(~XXT
h
~XXh)( �̂�b � �)

� 2
�

þ n 2
( �̂�b � �0)T(n�1 ~XXT

h
~XXh)(�� �0)

� 2
�

� (�� �0)T(n�1 ~XXT
h
~XXh)(�� �0)

� 2
�

 !
: (33)

From the consistency of �̂�b and Lemma 5, we obtain that under H1, � the difference in large

parentheses in (33) tends to ��2
� (�� �0)TV�(�� �0) . 0 (V� is a positive definite matrix) as

n ! 1. This result, together with (32), concludes the proof. h

Proof of Theorem 4. We first give some general results which will be used throughout the

proof of the theorem. When these results depend on cn, they must be interpreted as valid

under H
c n

1,m, with cn verifying the conditions of the theorem (part (b)) or cn ¼ 0. Observe that

in this last case, H
cn

1,m ¼ H0,m.

We have that �̂�b � � ¼( �̂�(0)
b � �) þ Bb, where Bb ¼ cn(~XXT

b
~XXb)�1 ~XXT

b ~mm
�
b and �̂�(0)

b denotes

the estimator (3) in the regression model yi ¼ �T
i �þ m0(ti) þ �i. Furthermore, as we can

see in the proof of Theorem 1(a) above, it can be verified that Bb ¼ O p(cnd n), where

d n ¼ b4 þ n�2 þ ((b4 þ n�2)(nb)�1S�0,[nb])
1=2. Now from this result, together with Theorem

1(a,b) and our assumptions on b and S�0,[nb], it is easy to obtain that

j�̂�b � �j ¼ O p(n�1=2 þ cnd n): (34)

Furthermore, by means of Lemma 4 and our conditions on the weights and g j, we have that

sup
t2[0,1]

����Xn

i¼1

wn,h(t, ti)�
T
i

���� ¼ op(h�1=4),

and then, together with (34), we have that

sup
1<i<n

jaij ¼ op(h�1=4(n�1=2 þ cnd n)), (35)

where we have denoted

ai ¼
Xn

j¼1

wn,h(ti, t j)�
T
j

 !
(���̂�b): (36)
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A result that we will also use is that

Bn ¼ O p(n�1=2), (37)

where

Bn � n�1
Xn

i¼1

Xn

j¼1

wn,h(ti, t j)� j

 ! Xn

k¼1

wn,h(ti, t k)�T
k

 !
: (38)

To show (37), it is sufficient to obtain an order O p(n�1=2) for each of the p components Bn,s

(s ¼ 1, . . . , p ). We have that

Bn,s � n�1
Xn

j¼1

c j,s� j þ n�1
Xn

j¼1

Xn

k¼1

d j,k,s� j�ks � B(1)
n,s þ B(2)

n,s,

where

c j,s ¼
Xn

i¼1

wn,h(ti, t j)
Xn

k¼1

wn,h(ti, t k)gs(t k)

 !
, d j,k,s ¼

Xn

i¼1

wn,h(ti, t j)wn,h(ti, t k):

Using our conditions on the weights and g j, we obtain that

sup
1< j<n

jc j,sj ¼ O(1), sup
1< j,k<n

jd j,k,sj ¼ O((nh)�1), d j,k,s ¼ 0 if j j � kj . 2nh þ 1:

(39)

From Lemma 2 above, and taking into account (39), we obtain that

E((B(1)
n,s)

2) ¼ n�2E
Xn

j¼1

c j,s� j

 !2
0@ 1A ¼ O(n�1):

Therefore, B(1)
n,s ¼ O p(n�1=2). As for B(2)

n,s, from Lemma 3 above, and using (39) and the facts

that S�,n ¼ O(1) and (nh)�1S�0,[nh] ! 0, we obtain that

E((B(2)
n,s)

2) ¼ n�2E
Xn

j¼1

Xn

k¼1

d j,k,s� j�ks

 !2

¼ O((n2 h)�1S�0,[nh]S�,n) ¼ o(n�1),

and then B(2)
n,s ¼ op(n�1=2). Now it is clear that (37) follows from the results above.

A known property (Gasser and Müller 1984), which we will use below, is that, if f has

two continuous derivatives on [0, 1], then

sup
t2[0,1]

����Xn

i¼1

wn,h(t, ti) f (ti) � f (t)

���� ¼ O(h2 þ n�1): (40)

We now decompose d2
m( r̂rn, H0,m) into five summands, which will facilitate the asymptotic

study of this statistic. It is easy to see that

Partial linear regression model under long-memory dependence 73



d2
m( r̂rn, H0,m) ¼

X5

i¼1

Ai,n, (41)

where

A1,n ¼ n�1
Xn

i¼1

(m̂mh(ti, �) � m(ti))
2, A2,n ¼ n�1

Xn

i¼1

(m0(ti)
2 � m(ti)

2),

A3,n ¼ 2n�1
Xn

i¼1

m̂mh(ti, �)(m(ti) � m0(ti)), A4,n ¼ n�1
Xn

i¼1

a2
i ,

A5,n ¼ 2n�1
Xn

i¼1

(m̂mh(ti, �) � m0(ti))ai:

We will show that A1,n properly standardized is asymptotically normal, while A2,n þ A3,n

gives the mean or the convergence to 1 of (n2 h)1=2(d2
m( r̂rn, H0,m) � (nh)�1

P1
s¼�1 r�(s)Ð

K2), depending on the conditions on cn. The rest of the terms are asymptotically negligible.

(a) Under H0,m, it is clear that A2,n ¼ A3,n ¼ 0. Using (35) we have that

A4,n ¼ op((n2 h)�1=2). Furthermore,

A5,n ¼ 2Bn(���̂�b) þ 2n�1
Xn

i¼1

Xn

j¼1

wn,h(ti, t j)m0(t j) � m0(ti)

 !
ai � A

(1)
5,n þ A

(2)
5,n:

From (34) and (37) we obtain that A
(1)
5,n ¼ O p(n�1), and by means of (35) and (40) we have

that A
(2)
5,n ¼ op((n�1=2 h�1=4)(h2 þ n�1)) ¼ op((n2 h)�1=2) (as a consequence of Assumption 13,

n2 h9 ! 0). Therefore, A5,n ¼ op((n2 h)�1=2). The term A1,n can be treated essentially in the

same way as the term ˜1 in González-Manteiga and Vilar-Fernández (1995), taking into

account the correction according to Biedermann and Dette (2000). Therefore,

ffiffiffiffiffiffiffiffi
n2 h

p
A1,n �

X1
s¼�1

r�(s)

ð
K2

nh

0BBB@
1CCCA!d N (0, � 2

d):

These results give this part of the theorem.

(b) Under H
c n

1,m, from Assumption 4 and the Hölder continuity of m0 and m�, it is easy to

obtain that

A2,n ¼ �2cn

ð
m0(u)m�(u)du � c2

n

ð
m�(u)2 du þ O(n�1(cn þ c2

n)): (42)
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A3,n can be broken down as

A3,n ¼ 2n�1
Xn

i¼1

Xn

j¼1

wn,h(ti, t j)m(t j)

 !
(m(ti) � m0(ti))

þ 2n�1
Xn

i¼1

Xn

j¼1

wn,h(ti, t j)� j

 !
(m(ti) � m0(ti)) � A

(1)
3,n þ A

(2)
3,n: (43)

It follows from (40), H
cn

1,m, Assumptions 4 and 13, and the Hölder continuity of m0 and m�
that

A
(1)
3,n ¼ 2cn

ð
m0(u)m�(u)du þ 2c2

n

ð
m�(u)2du þ O((h2 þ n�1)(cn þ c2

n)): (44)

Furthermore, considering A
(2)
3,n ¼

Pn
j¼1Ł j� j, where Ł j ¼ 2n�1

Pn
i¼1wn,h(ti, t j)(m(ti) �

m0(ti)), and using Lemma 2 above, we obtain that, under H
c n

1,m, E((A
(2)
3,n)2) ¼ O(n�1c2

n)

(we have used the fact that, under H
cn

1,m, sup jjŁ jj ¼ O(n�1cn)). Therefore,

A
(2)
3,n ¼ O p((n�1c2

n)1=2): (45)

Using (35), we have that

A4,n ¼ op

�
(h�1=4(n�1=2 þ cnd n))2

�
: (46)

We can break A5,n down as

A5,n ¼ 2Bn(�� �̂�b) þ 2n�1
Xn

i¼1

Xn

j¼1

wn,h(ti, t j)m0(t j) � m0(ti)

 !
ai

þ 2n�1cn

Xn

i¼1

Xn

j¼1

wn,h(ti, t j)m�(t j)

 !
ai

(see (36) and (38) for expressions for ai and Bn, respectively). Therefore, using (34), (35),

(37) and (40), together with Assumption 13, we have that, under H
c n

1,m,

A5,n ¼ O p(n�1 þ n�1=2cnd n) þ op(h�1=4(n�1=2 þ cnd n)(h2 þ n�1)) þ op(h�1=4cn(n�1=2 þ cnd n)):

(47)

As for A1,n, we have that

A1,n ¼ n�1
Xn

i¼1

(m̂m0h(ti) � m0(ti))
2 þ c2

n n�1
Xn

i¼1

bias(m̂m� h(ti))
2

þ 2cn n�1
Xn

i¼1

(m̂m0h(ti) � m0(ti))bias(m̂m� h(ti)) � A
(1)
1,n þ A

(2)
1,n þ A

(3)
1,n, (48)
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where

m̂m0h(t) ¼
Xn

i¼1

wn,h(t, ti)(m0(ti) þ �i), m̂m� h(t) ¼
Xn

i¼1

wn,h(t, ti)(m�(ti) þ �i):

Furthermore, as in (a), we have that

(n2 h)1=2 A
(1)
1,n �

X1
s¼�1

r�(s)

ð
K2

nh

0BBB@
1CCCA!d N (0, � 2

d): (49)

From (40), it is easy to obtain that

A
(2)
1,n ¼ O(c2

n(h4 þ n�2)): (50)

By the Cauchy–Schwarz inequality, together with (49) and (50), we have that

A
(3)
1,n ¼ O p((nh)�1=2cn(h2 þ n�1)): (51)

Now (41)–(51), together with our assumptions on cn, give the result. h
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