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In recent years wavelet-based methods have been proposed to estimate density and regression

functions, most often in settings with independent and identically distributed observations. An

attractive feature of these methods is that the rate of convergence is unaffected by the presence of

discontinuities in the function being estimated. We provide structure and mean-square analyses of

wavelet-based estimators of counting process intensities in the context of the multiplicative intensity

model.
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1. Introduction

Wavelet-based methods provide an attractive and powerful tool for the nonparametric

estimation of objects with spatially variable smoothness properties. This is primarily due to

the local adaptability to different levels of smoothness in the target function provided by

wavelet thresholding. A number of authors have studied wavelet methods in various settings,

especially density and regression function estimation. In much of this work, it is assumed

that observations (or errors) are independent and identically distributed (i.i.d.), but in some

cases dependent observations have been considered. Recent work on statistical applications

of wavelets includes Donoho et al. (1995; 1996), Kerkyacharian and Picard (1993), Donoho

and Johnstone (1994; 1998), Hall and Patil (1995; 1996), Hall et al. (1996), Johnstone and

Silverman (1997), Marron et al. (1998) and Truong and Patil (1996).

Here we consider wavelet-based estimation in Aalen’s multiplicative intensity model for

counting processes. In this context, observations are neither independent nor identically

distributed. Our principal objective is to establish the mean integrated square error (MISE)

properties of wavelet-based estimators of the intensity function.

Our main results are formulated in a similar way to Hall and Patil’s (1995) results

concerning MISE properties of wavelet-based density estimators based on i.i.d. observations.

However, a number of new technical issues arise in the proofs of analogous results in the

counting process framework. Here, key roles are played by two inequalities for point

process martingales. One of these is an exponential probability inequality due to Courbot
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(1996) which is analogous to Bennett’s inequality in the independent case, but allows

random jump sizes. The other is a point process analogue of Rosenthal’s inequality; see

Wood (1999; 2001) and references therein for further details. These inequalities are stated

in Section 3.1.

The kernel-based estimator of an intensity function Æ was first proposed and studied in

the counting process context by Ramlau-Hansen (1983a; 1983b). There he showed that the

MISE is of the form

MISE ¼ C1(nbn)
�1 þ C2b

2r
n þ of(nbn)�1 þ b2r

n g, (1:1)

where n denotes sample size, bn is the bandwidth of the kernel-based estimator, r > 2 is the

order of the kernel, and C1 and C2 are constants depending on both the kernel and the

unknown intensity function. The first term on the right of (1.1) is associated with variance

and the second is associated with squared bias. The constant C2 in the squared bias term is

proportional to the integral of the square of the rth derivative of the intensity function, and

the MISE expansion for the kernel-based estimator generally fails if Æ does not have r

continuous derivatives. We show that an analogue of (1.1) also holds in the case of nonlinear

wavelet estimators, and that it remains valid even if the target intensity function is only

piecewise continuous. Thus, as in the case of density estimation based on i.i.d. observations,

wavelet methods enjoy good convergence rates in the counting processes framework even

when smoothness conditions on the target function are imposed only in a piecewise sense.

Kolaczyk (1999) has also considered wavelet-based estimators of intensity in a counting

process framework. To estimate intensity functions of a certain class of burst-like Poisson

processes, he proposes an approach based on wavelet shrinkage. An interesting proposal in

his paper is to use (asymmetric) upper and lower thresholds of standard order (n�1 log n)1=2

to take account of the skewness of the Poisson distribution. Kolaczyk’s paper and the

developments here are complementary in that we focus on MISE properties of the

estimators, whereas he focuses more directly on thresholding issues.

Our main results, Theorems 2.1 and 2.2, are described in Section 2. Auxiliary results

required to prove the main results are given in Section 3, and the main results are proved in

Section 4.

2. Main results

In Section 2.1 we briefly summarize basic properties of wavelets, and in Section 2.2 we

explain how wavelet estimators of the (deterministic component of the) intensity of a

counting process can be constructed. In Section 2.3 we introduce our basic assumptions

concerning the random component of the counting process intensity (the Y process) and

provide discussion of the assumptions made. In Section 2.5 these assumptions are discussed

in the context of an example. Our main results, Theorems 2.1 and 2.2, are given in Section

2.4.
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2.1. Wavelet transform

Let ł and � respectively denote mother and father wavelet functions of the rth order,

possessing the properties
Ð
ł2 ¼

Ð
�2 ¼ 1, �k �

Ð
xkł(x)dx ¼ 0 for 0 < k < r � 1, and

�r ¼ r!k (say) 6¼ 0. Furthermore, for arbitrary p . 0, and defining pi ¼ p2i for i > 0, the

class of functions � j(x) ¼ p1=2�( px� j) and łij(x) ¼ p
1=2
i ł(pix� j) form an orthonormal

basis for the class of square-integrable functions f . The orthogonality relations may be

expressed by
Ð
� j1� j2 ¼ � j1 j2,

Ð
łi1 j1łi2 j2 ¼ �i1 i2� j1 j2 ,

Ð
�ił jk ¼ 0, where �ij denotes the

Kronecker delta.

In addition to the standard properties of wavelets listed above, we suppose that both �
and ł are bounded and compactly supported. For a detailed discussion of wavelets with

compact support, see Daubechies (1992).

2.2. Wavelet-based estimators

Let (�, F , P) be a probability space and let fF t, t 2 [0, 1]g be an increasing, right-

continuous family of sub-sigma-fields of F . We take F t to represent the information

collected during the period [0, t]. In this setting, a counting process N is a stochastic

process on [0, 1], adapted to fF tg, where each sample path is a right-continuous step

function with N (0) ¼ 0 and a finite number of jumps, each of size þ 1. Suppose that

EN (1) , 1. Since N is increasing and hence a submartingale, it follows from the Doob-

Meyer decomposition that N ¼ Aþ M , where A is a predictable increasing process and M

is a martingale. We also assume that there exists a non-negative left-continuous process º,

adapted to fF tg, with right-hand limits such that A(t) ¼
Ð t

0
º(s)ds. Then, by Aalen (1978),

M(t) ¼ N (t) �
Ð t

0
º(s)ds is a square-integrable martingale with variance process

hMi(t) ¼
Ð t

0
º(s)ds. The process º is called the intensity process of N , and

E[dN (t)jF t] ¼ º(tþ) and var(dN (t)jF t) ¼ º(tþ). We assume that º(t) can be written in

the form

º(t) ¼ Æ(t)Y (t), t 2 [0, 1],

where Æ is an unknown non-stochastic function, the underlying intensity function, while Y is

an observable stochastic process. The function Æ is assumed to be left-continuous with right-

hand limits, and Y is assumed to be predictable with respect to fF tg. The intensity Æ is

interpreted as the transition intensity on the individual level, and in most applications Y (t)

measures the size of the risk population just before time t.

One can describe the above by writing the model

dNn(t) ¼ Æ(t)Yn(t)dt þ dMn(t),

where dMn(t) is noise. An index n is used to indicate the n-dependence of the counting

process and is introduced to provide a suitable stochastic framework; see Andersen et al.

(1993) for examples.

If Æ(t) is a square integrable then the wavelet transform of Æ(t) is given by

Counting process intensity estimation by orthogonal wavelet methods 3



Æ(t) ¼
X
j

b j� j(t) þ
X1
i¼0

X
j

bijłij(t), (2:1)

where b j ¼
Ð
Æ� j and bij ¼

Ð
Æłij are wavelet coefficients. Then the nonlinear estimator of

Æ(t), obtained by thresholding empirical wavelet coefficients, has the form

Æ̂Æn(t) ¼
X
j

b̂b j� j(t) þ
Xq�1

i¼0

X
j

b̂bij I(jb̂bijj . �)łij(t), (2:2)

where

b̂b j ¼
ð1

0

� j(s)
J n(s)

Yn(s)
dNn(s) ¼

XN (1)

k¼1

� j(Tk)

Yn(Tk)
,

b̂bij ¼
ð1

0

łij(s)
J n(s)

Yn(s)
dNn(s) ¼

XN (1)

k¼1

łij(Tk)

Yn(Tk)
,

the Tk are the jump times of the counting process Nn(t), and J n(s) ¼ IfYn(s) . 0g. Also we

define J n(s)=Yn(s) ¼ 0 when Yn(s) ¼ 0 . Finally, set

b j ¼
ð1

0

� j(t)J n(t)Æ(t)dt, bij ¼
ð1

0

łij(t)J n(t)Æ(t)dt:

For notational convenience, the dependence of b̂b j, b̂bij, b j and bij on n is suppressed.

2.3. The Y Process

The following assumptions are made concerning the process Yn(t):

(A1) For each n > 1, fYn(t) : t 2 [0, 1]g is predictable with respect to the filtration

fF (n)
t : t 2 [0, 1]g.

(A2) There exists an E0 . 0, independent of n and t, such that Yn(t) , E0 implies that

Yn(t) ¼ 0.

(A3) The function u(t) ¼ E(Yn(t)=n) is continuous and satisfies

inf
t2[0,1]

u(t) > �0 (2:3)

for some constant �0 . 0.

(A4) For each ª . 0,

sup
t2[0,1]

E[jn�1Yn(t) � u(t)jª] ¼ O(n�ª=2): (2:4)

(A5) For some fixed º0 . 0,

P[n�1Yn(t) , º0 for some t 2 [0, 1]] ¼ O(n�1): (2:5)

We briefly comment on the above assumptions. In the framework we are considering,

(A1) is a natural assumption to make. In many applications of Aalen’s model, Yn(t) is a
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non-negative integer-valued process, in which case (A2) is satisfied with E0 ¼ 1. In (A3),

the continuity assumption can be weakened, but (2.3) does seem to play an essential role in

our proof of Theorem 2.1 below, as do (2.4) and (2.5). Apart from the very mild

assumption of left continuity made in (A1), (A5) is the only explicit assumption we make

about the sample path properties (as opposed to the moments) of the Y process. Note that,

if (A3) is assumed, then (A5) is implied by the following: for some � . 0,

E sup
t2[0,1]

jn�1Yn(t) � u(t)j�
" #

¼ O(n�1):

This assertion follows easily from an application of Chebyshev’s inequality.

2.4. Main results

We now introduce some further definitions before stating our main results, Theorems 2.1

and 2.2. Recall the assumption in Section 2.1 that
Ð
yhł(y) ¼ 0 for each integer

0 < h < r � 1, and

k ¼ (r!)�1

ð
y r ł(y) dy 6¼ 0:

Suppose that the support of ł and support of � are both contained in the interval [��1, �2].

Define

C0 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r

2r þ 1

1

º0

sup
t2[0,1]

Æ(t),

s
(2:6)

where º0 is the quantity referred to in assumption (A5).

Theorem 2.1. Assume the following: that � and ł satisfy the conditions stated in Section

2.1; that Yn(t) satisfies conditions (A1)–(A5) stated in Section 2.3; and that the intensity Æ(t)

has rth derivative Æ(r) which is bounded and piecewise continuous and has left and right

limits everywhere on [0, 1]. Suppose also that

p ! 1, q ! 1, pq�
2 ! 0, p2rþ1�2 ! 1, (2:7)

where

� > C(n�1 log n)1=2, C . C0, (2:8)

and C0 . 0 is defined in (2.6). Then

E

����
ð

(Æ̂Æn � Æ)2 � n�1 p

ð
Æ

u
þ p�2rk2(1 � 2�2r)�1

ð
Æ(r)2

� ����� ¼ o(n�1 pþ p�2r) (2:9)

as n ! 1.

Remark 2.1. Theorem 2.1 may be viewed as a counting process analogue of Theorem 2.1(i)
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in Hall and Patil (1995), which was obtained for wavelet density estimators. Note the

similarity of our C0, given in (2.6), and C0 ¼ 2fr sup f =(2r þ 1)g1=2 given by Hall and Patil

(1995). However, our C0 also depends on a quantity, º0, which appears in assumption (A5)

and has no analogue in Hall and Patil (1995).

Remark 2.2. To implement the estimator (2.2) we need to specify C0, which depends on r,

which is either known a priori or may be guessed, and on unknowns º0 and sup t2[0,1]Æ(t).

Note that the unknown º0 may be estimated by º̂º0 ¼ inf t2[0,1]n
�1Yn(t); and sup t2[0,1]Æ(t) may

be estimated by sup t2[0,1]Æ̂Æ(y), where Æ̂Æ(t) is a pilot estimator of Æ(t). However, more

investigations are needed into the practical implementation of such an approach.

Remark 2.3 Comparison with traditional MISE formulae. From result (2.9), by taking the

expected value on the left-hand side inside the modulus signs, we obtain a wavelet version of

the traditional MISE formula:ð
E(Æ̂Æn � Æ)2 � n�1 p

ð
Æ

u
þ p�2rk2(1 � 2�2r)�1

ð
Æ(r)2

, (2:10)

where ‘�’ means that the ratio of the left- and right-hand sides converges to 1 as n ! 1.

Here, the n�1 p term derives from variance, and the p�2r term from squared bias, exactly as

in the case of classical formulae for kernel function estimators. To obtain the wavelet formula

from its counterpart for kernel methods, albeit with different constants multiplying the bias

contribution, simply replace bandwidth bn by p�1. See, for example, Andersen et al. (1993,

Chapter IV) for a detailed account of the kernel case.

Of course, the right-hand side of (2.10) is asymptotically minimized by taking

p � an1=(2rþ1), where a ¼ f2rk2(1 � 2�2r)�1
Ð
Æ(r)2

(
Ð
Æ=u)�1g1=(2rþ1); and the minimum

size of (2.10) is const:n�2r=(2rþ1).

Theorem 2.2. Assume all the conditions of Theorem 2.1 , add the assumption that

p2rþ1
q n�2r ! 1, and impose the condition of r-times differentiability of Æ only in a

piecewise sense. That is, we ask that there exist points x0 ¼ 0 , x1 , . . . , xN , 1 ¼ xNþ1

such that the first r derivatives of Æ exist and are bounded and continuous on (xi, xiþ1) for

0 < i < N, with left- and right-hand limits. In particular, Æ itself may be only piecewise

continuous. Then the result of Theorem 2:1 holds.

Remark 2.4 Comparison with kernel estimators. This result is quite different from its

analogue for a kernel-based estimator, where the presence of discontinuities can dramatically

increase the order of magnitude of MISE. For detailed discussion of this point in the

comparable situation of density estimation, see Hall and Patil (1995).

2.5. An example

Consider n similar machines operating independently. For i ¼ 1, . . . , n, define I i(t) as

follows: I i(t) ¼ 1 if machine i is operable and busy at time t; I i(t) ¼ 0 if it is operable and
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idle at time t; and I i(t) ¼ �1 if it is under repair at time t. Note that, by assumption, the

I i(t) are i.i.d. processes. The problem is to estimate the breakdown rate Æ(t) of a typical

busy machine. Here we define Yn(t) ¼ #fi : I i(t�) ¼ 1g. Then the intensity of breakdowns

at time t is given by Yn(t)Æ(t). Assuming that each I i process is observed, we can

formulate the model so that assumption (A1) is satisfied; and, as defined, Yn(t) is integer-

valued and so satisfies (A2). If we make the very mild assumptions that

p0 ¼ P[I i(t) ¼ 1 for all t 2 [0, 1]] 2 (0, 1)

and

p90 ¼ P[I i(t) 6¼ 1 for any t 2 [0, 1]] 2 (0, 1),

where p0 þ p90 , 1 then, using the fact that Yn(t) is a binomial random variable with

parameters n and p 2 [p0, 1 � p90] for each t 2 [0, 1], it is straightforward to show that

(A3)–(A5) are also satisfied, so that Theorems 2.1 and 2.2 apply.

3. Auxiliary results

We now establish some lemmas which are required in the proofs of Theorems 2.1 and 2.2.

In proving these lemmas we make use of two results which we present now for

convenience. Observe that the notation used in Section 3.1 is sometimes different from that

used in the rest of the paper.

3.1. Two inequalities

The first result is a point process analogue of Rosenthal’s inequality; see Wood (1999, 2001)

for further details. Let (�, F , (F t) t>0, P) denote a filtered probability space satisfying the

‘usual conditions’; see, for example, Brémaud (1981) or Rogers and Williams (1987).

Suppose that Nt is a counting process (i.e. a right-continuous, non-negative, increasing

integer-valued process with jumps of size þ 1) which is adapted to (F t) t>0. It is assumed

that Nt has a predictable intensity º t, and that gt is another predictable process. Assume

that:

(a)
Ð t

0
ºsds , 1 almost surely;

(b) E[
Ð t

0
jgsjºsds] , 1.

Then, using Brémaud (1981), (a) implies that Mt ¼ Nt �
Ð t

0
ºsds is a local martingale which

has bounded variation on [0, t] with probability one, so that St ¼
Ð t

0
gsdMs is well defined as

a Stieltjes integral. Moreover, (b) implies that St is a martingale. The predictable quadratic

variation of St is given by hSi t ¼
Ð t

0
g2
sºsds. Choose t . 0. If (a) and (b) hold, and

EhSi t , 1, then, for any p > 2,

c pA p, t < EjStj p < C pA p, t, (3:1)

where

Counting process intensity estimation by orthogonal wavelet methods 7



A p, t ¼ E hSi p=2
t þ

ð t
0

jgsj pºsds
� �

and c p and C p are finite positive quantities which depend only on p.

The second result we shall need is an exponential inequality for local martingales due to

Courbot (1996). Let M2,loc
0 denote the class of locally square-integrable local martingales

which are null at zero. This class is defined as follows: fX t : t > 0g 2 M2,loc
0 if X0 ¼ 0

and there exists a non-decreasing sequence of stopping times 0 ¼ T0 < T1 < T2 . . . , with

limm!1Tm ¼ 1 almost surely, such that, for each m > 0, fXmin( t,Tm) : t > 0g is an L2

martingale, i.e. a martingale satisfying sup t>0EX 2
min( t,Tm) , 1. Let (˜X ) t ¼ X t � X t� be

the pure jump process associated with X t, and define jX j�t ¼ sups2[0, t]jX sj,
j˜X j�t ¼ sups2[0, t]j(˜X )sj. As usual, hX i t denotes the predictable variance process

associated with X t. Also, for x, y . 0, define the function �(x, y) by

�(x, y) ¼ (xþ y)logf(y=x) þ 1g � y:

The following inequality is due to Courbot (1996, Inequality 3.2(ii)); see also Shorak and

Wellner (1986, p. 897) for a closely related result. For x, �, a and t all positive.

P[jX j�t > x] < 2 exp ��
�2

a2
,
x

a

� �� �
þ 2P[hX i t . �2] þ P[j˜X j�t . a]: (3:2)

3.2. Some lemmas

We now present five lemmas which provide the basis for the proof of Theorem 2.1 and

Theorem 2.2.

Lemma 3.1. Under assumptions (A2)–(A4) , the following statements hold.

(i) For each x . 0,

sup
t2[0,1]

P[jn�1Yn(t) � u(t)j . x] ¼ O(n�ª),

for for any positive ª.

(ii) For each ª . 0,

sup
t2[0,1]

P[Yn(t) ¼ 0] ¼ O(n�ª):

(iii) For each ª . 0,

sup
t2[0,1]

E[fnJ n(t)=Yn(t)gª] ¼ O(1):

(iv) We have

sup
t2[0,1]

E

���� nJ n(t)

Yn(t)
� 1

u(t)

���� ¼ O(n�1=2):

8 P.N. Patil and A.T.A. Wood



Proof. (i) By Chebyshev’s inequality,

P jn�1Yn(t) � u(t)j . x
	 


< x�2ªE jn�1Yn(t) � u(t)j2ª
	 


,

so the desired conclusion follows immediately from assumption (A4).

(ii) Since

fø : Yn(t) ¼ 0g � fø : jn�1Yn(t) � u(t)j . �0=2g,

where �0 ¼ inf t2[0,1]u(t) is positive by assumption (A3), the result follows as a

consequence of part (i).

(iii) Define

An, t ¼ ø :
nJ n(t)

Yn(t)
> r��1

0

� �
,

where r . 1 is a constant and �0 . 0 is the quantity in (A3). On An, t,

n�1Yn(t) � u(t) < r�1�0 � u(t)

< r�1�0 � inf
t2[0,1]

u(t)

< �(1 � r�1)�0:

Thus

An, t � fø : jn�1Yn(t) � u(t)j . (1 � r�1)�0g

and, by part (i),

sup
t2[0,1]

P[An, t] < sup
t2[0,1]

P[jn�1Yn(t) � u(t)j . (1 � r�1)�0] ¼ O(n��), (3:3)

for any � . 0. Now

nJ n(t)

Yn(t)

� �ª

<
(n=E0)ª on An, t(by (A2))

(r=�0)ª on Ac
n, t:

�

Therefore, choosing � in (3.3) to satisfy � . ª, we obtain

sup
t2[0,1]

E
nJ n(t)

Yn(t)

� �ª

<
n

E0

� �ª

sup
t2[0,1]

P[An, t] þ
r
�0

� �ª

¼ O(1):

(iv) It is sufficient to show that sup t2[0,1]EjZn(t)j ¼ O(1), where

Zn(t) ¼ n1=2 nJ n(t)

Yn(t)
� 1

u(t)

� �
:

In view of the identity

Zn(t) ¼ n1=2fJ n(t) � 1g=u(t) � nJ n(t)

u(t)Yn(t)

� �
n�1=2fYn(t) � nu(t)g,

Counting process intensity estimation by orthogonal wavelet methods 9



the triangle inequality, the Cauchy–Schwarz inequality, and assumption (A3), the conclusion

follows since

sup
t2[0,1]

E[n1=2f1 � J n(t)g=u(t)] < n1=2��1
0 sup

t2[0,1]

P[Yn(t) ¼ 0] ¼ o(1)

using part (ii);

sup
t2[0,1]

E
nJ n(t)

Yn(t)

� �2
" #

¼ O(1)

by part (iii); and

sup
t2[0,1]

E[fn�1=2jYn(t) � nu(t)jg2] ¼ O(1)

using assumption (A4). h

Lemma 3.2. Suppose that the interval [��1, �2] contains the support of both � and ł.

(i) If j =2 [��2, pþ �1], then b̂b j, b j and b j are all zero.

(ii) If j =2 [��2, pi þ �1], then b̂bij, bij and bij are all zero.

Proof. Follows immediately from the definitions of the bs. h

In part (iii) and (iv) of Lemma 3.3 below,

hb̂b j � b ji ¼
ð1

0

� j(s)
2Æ(s)

J n(s)

Yn(s)
ds

is the predictable quadratic variation of b̂b j � b j, and a similar definition applies to hb̂bij � biji.

Lemma 3.3. Suppose that assumptions (A1)–(A4) are satisfied. Then the following results

hold for b j, b̂b j, b j, bij, b̂bij and bij defined in Section 2.2.

(i) For any r > 1 and ª . 0,

sup
j

Ejb j � b jjr ¼ O(n�ª):

(ii) For any r > 1 and ª . 0,

sup
0<i<q�1

sup
j

Ejbij � bijjr ¼ O(n�ª):

In (iii)–(viii) below, � > 2 is fixed but arbitrary.

(iii) sup jEhb̂b j � b ji�=2 ¼ O(n��=2).

(iv) supi, jEhb̂bij � biji�=2 ¼ O(n��=2).

(v) sup jEjb̂b j � b jj� ¼ O(n��=2).

(vi) sup0<i<q�1sup jEjb̂bij � bijj� ¼ O(n��=2).

(vii) sup jEjb̂b j � b jj� ¼ O(n��=2).

(viii) sup0<i<q�1sup jEjb̂bij � bijj� ¼ O(n��=2).
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Proof. The proofs of (i), (iii), (v) and (vii) are very similar to those of (ii), (iv), (vi) and

(viii), respectively, so we only give the latter.

(ii) Using Hölder’s inequality, Fubini’s theorem and the definitions of bij and bij, we

obtain

Ejbij � bijjr ¼ E

����
ð1

0

f1 � J n(s)głij(s)Æ(s)ds

����
r

< E

ð1

0

f1 � J n(s)gjłij(s)Æ(s)jrds

¼
ð1

0

P[Yn(s) ¼ 0]jłij(s)Æ(s)jrds

< sup
t2[0,1]

P[Yn(t) ¼ 0]

ð1

0

jłij(s)Æ(s)jrds

¼ O(n�ª),

for any ª . 0 by Lemma 3.1(ii).

(iv) Using Hölder’s inequality (with p ¼ �=(�� 2), q ¼ �=2 and p�1 þ q�1 ¼ 1),

Fubini’s theorem and Lemma 3.1(iii), and writing s1 ¼ (sþ j)=pi, we obtain

sup
i, j

Ehb̂bij � biji�=2 ¼ sup
i, j

E

ð1

0

łij(s)
2Æ(s)

J n(s)

Yn(s)
ds

 !�=2

< sup
i, j

E

ð�2

��1

ł(s)2Æ(s1)
J n(s1)

Yn(s1)
ds

 !�=2

< f2(�1 þ �2)g(��2)=2n��=2

3

ð�2

��1

jł(s)j�jsup
i, j

Æ(s1)j�=2E
nJ n(s1)

Yn(s1)

� ��=2
" #

ds

¼ O(n��=2):

(vi) We apply Rosenthal’s inequality (see (3.1)) with gs ¼ łij(s)J n(s)=Yn(s) and

ºs ¼ Æ(s)Yn(s). Again writing s1 ¼ (sþ j)=pi, the second term on the right-hand side of

(3.1) is given by

E

ð1

0

jłij(s)j�Æ(s)fJ n(s)=Yn(s)g��1ds

Counting process intensity estimation by orthogonal wavelet methods 11



< n�(��1) p
(��2)=2
i

ð��2

��1

jł(s)j�Æ(s1)EfnJ n(s1)=Yn(s1)g��1ds

¼ O(n��=2)

by Lemma 3.1(iii), for � > 2 and 0 < i < q� 1. Therefore, using (3.1) and part (iv) of the

present lemma,

Ejb̂bij � bijj� ¼ O(n��=2):

(viii) This follows from parts (ii) and (vi) since, for � > 0,

Ejb̂bij � bijj� < 2�fEjb̂bij � bijj� þ Ejbij � bijj�g: h

We now present another result which is required in the proof of Theorem 2.1. Let N (h)
n (t)

be a counting process with intensity º(h)
n (t), (h ¼ 0, 1, 2, 3), defined on the same probability

space, where º(0)
n (t) ¼ Æ(t)Yn(t), º(1)

n
(t) ¼ nÆ(t)u(t), º(2)

n (t) ¼ Æ(t)(Yn(t) � nu(t))þ and

º(3)
n (t) ¼ Æ(t)(nu(t) � Yn(t))

þ, with (x)þ ¼ max(x, 0). As before, it is assumed that Yn(t)

satisfies (A1). Define the corresponding counting process martingales by

M (h)
n (t) ¼ N (h)

n (t) �
ð t

0

º(h)
n (s)ds, h ¼ 0, 1, 2, 3:

It is assumed that the predictable quadratic covariation satisfies

hM (h)
n , M (k)

n i ¼ 0 if h 6¼ k: (3:4)

Note that (3.4) implies that, with probability one, none of the jump times of M (h)
n (t) coincide

with those of M (k)
n if h 6¼ k.

Consider the two pairs of superimposed process M (0)
n (t) þ M (3)

n (t) and M (1)
n (t) þ M (2)

n . It

is clear from the construction that

M (0)
n (t) þ M (3)

n (t) ¼ M (1)
n (t) þ M (2)

n (t) (3:5)

in distribution, the common intensity being

º(0)
n (t) þ º(3)

n (t) ¼ º(1)
n (t) þ º(2)

n (t) ¼ maxfÆ(t)Yn(t), nÆ(t)u(t)g:

Define

b̂bi � bi ¼
ð1

0

�i(s)
J n(s)

Yn(s)
dM (0)

n (s)

and

d̂d i � di ¼
1

n

ð1

0

f�i(s)=u(s)gdM (1)
n (s):

Then we have the following result.

Lemma 3.4. There exists a C . 0, independent of i, j and n, such that
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jcovf(b̂bi � bi)
2, (b̂b j � b j)

2g � covf(d̂d i � di)
2, (d̂d j � d j)

2gj

<
Cn�9=4 if i, j 2 (��2, pþ �1),

0 otherwise:

(

Proof. The main idea in the proof is the construction leading to (3.5). The ‘zero’ case

follows from Lemma 3.2(i), so we assume below that i, j 2 [��2, pþ �1].

Define

X hi ¼
ð1

0

�i(s)
J n(s)

Yn(s)
dM (h)

n (s), h ¼ 0, 1, 2, 3,

and

Zi ¼
ð1

0

f�i(s)=u(s)gdM (1)
n (s):

Note that

X 0i ¼ b̂bi � bi and Zi ¼ d̂d i � di: (3:6)

By the construction,

(X0i þ X3i, X0 j þ X3 j) ¼ (X 1i þ X 2i, X 1 j þ X 2 j) in distribution

for each i and j. So, in particular,

covf(X0i þ X3i)
2, (X 0 j þ X 3 j)

2g ¼ covf(X1i þ X2i)
2, (X 1 j þ X 2 j)

2g: (3:7)

Bearing (3.6) and (3.7) in mind, the conclusion of the lemma will follow from an application

of the triangle inequality if we can establish the inequalities

jcovf(X0i þ X3i)
2, (X 0 j þ X 3 j)

2g � cov(X 2
0i, X

2
0 j)j < Cn�9=4, (3:8)

jcovf(X1i þ X2i)
2, (X 1 j þ X 2 j)

2g � cov(X 2
1i, X

2
1 j)j < Cn�9=4, (3:9)

jcov(X 2
1i, X

2
1 j) � cov(Z2

i , Z
2
j)j < Cn�5=2, (3:10)

where C does not depend on i, j or n. To establish (3.8)–(3.10), we use the following

elementary result: if, for some K , 1, fUh,n : h ¼ 1, 2, 3, 4; n > 1g is a family of random

variables satisfying EU 4
h,n < K for all h, n, then, for any E . 0,

jcovf(n�1=2U1,n þ n�E�1=2U2,n)2, (n�1=2U3,n þ n�E�1=2U4,n)
2g

� covf(n�1=2U1,n)
2, (n�1=2U3,n)

2gj < Cn�E�2, (3:11)

where C ¼ C(K) depends only on K and is finite if K is finite. The proof of (3.11), which

involves several applications of the Hölder and Lyapunov inequalities, is straightforward and

is omitted.

We may use Rosenthal’s inequality as in the proof of Lemma 3.3(vi) to show that, for

some K , 1 independent of i and n,
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EX 4
hi < n�2K (h ¼ 0, 1), EX 4

hi < n�3K (h ¼ 2, 3)

and

E(X1i � Zi)
4 < n�4K:

To establish (3.8), we apply (3.11) with

U1,n ¼ n1=2X0i, U2,n ¼ n3=4X3,i, U3,n ¼ n1=2X0 j, U4,n ¼ n3=4X3 j;

to establish (3.9), we apply (3.11) with

U1,n ¼ n1=2X 1i, U2,n ¼ n3=4X 2i, U3,n ¼ n1=2X 1 j, U4,n ¼ n3=4X 2 j;

and, finally, to establish (3.10), we apply (3.11) with

U1,n ¼ n1=2X 1i, U2,n ¼ n(X 1i � Zi), U3,n ¼ n1=2X1 j, U4,n ¼ n(X 1 j � Z j):

h

Lemma 3.5. Suppose that the assumptions of Theorem 2.1 are satisfied. Then, for any �
satisfying

� > C(n�1 log n)1=2,

where C . C0 with C0 defined in (2.6), we have

sup
0<i<q�1

sup
j

P[jb̂bij � bijj . �] ¼ o(n�1 pþ p�2r) if j 2 [��2, pi þ �1],

0 otherwise:

�

Proof. The ‘zero’ case follows immediately from Lemma 3.2. To establish the result in the

other case, we may apply inequality (3.2). Consider the martingale

(b̂bij � bij)(t) ¼
ð t

0

łij(s)
J n(s)

Yn(s)
dMn(s), (3:12)

where Mn(t) ¼ Nn(t) �
Ð t

0
Æ(s)Yn(s)ds and Nn(t) is an integer-valued counting process; see

Section 2.2. Thus b̂bij � bij in previous notation is equal to (b̂bij � bij)(t) evaluated at t ¼ 1.

Let ˜ij denote the largest jump, in absolute value, of the martingale (b̂bij � bij)(t) for

t 2 [0, 1]. Then ˜ij is bounded above by the supremum of the integrand in (3.12). Therefore

˜ij < p1=2
q kłk1 sup

t2[0,1]

J n(t)

Yn(t)

 !
,

where kłk1 ¼ supx2[��1,�2]jł(x)j. Now, for any E . 0, we have
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f˜ij . E(n log n)�1=2g � p1=2
q kłk1 sup

t2[0,1]

J n(t)

Yn(t)
. E(n log n)�1=2

( )

� fn�1Yn(t) , E�1kłk1(n�1 pq log n)1=2 for some t 2 [0, 1]g

� fn�1Yn(t) , º0 for some tg

when n is sufficiently large since, by hypothesis, n�1 pq log n ! 0. Therefore, using (A5),

P[˜ij . E(n log n)�1=2] ¼ O(n�1) (3:13)

for any fixed E . 0.

The predictable quadratic variation of (b̂bij � bij)(t) over t 2 [0, 1] is given by

hb̂bij � biji ¼
ð1

0

łij(s)
2Æ(s)

J n(s)

Yn(s)
ds < kÆk1 sup

t2[0,1]

J n(t)

Yn(t)
,

where kÆk1 ¼ sup t2[0,1]Æ(t). Therefore,

P[hb̂bij � biji . n�1º�1
0 kÆk1] < P kÆk1 sup

t2[0,1]

J n(t)

Yn(t)
. n�1º�1

0 kÆk1
" #

< P[n�1Yn(t) , º0 for some t 2 [0, 1]]

¼ O(n�1) (3:14)

using (A5) again.

Put a ¼ E(n log n)�1=2, �2 ¼ kÆk1º�1
0 n�1 and x ¼ C(n�1 log n)1=2, where C . C0 with

C0 defined in (2.6). We now apply inequality (3.2). For small E . 0, we have

�
�2

a2
,
x

a

� �
¼ kÆk1

º0E2
þ C

E

� �
log 1 þ º0EC

kÆk1

� �
� C

E

" #
log n

¼ C2º0

2kÆk1
þ R(E)

" #
log n,

where R(E) ¼ O(E). Now we choose E so small that

C2º0

2kÆk1
þ R(E) .

C2
0º0

2kÆk1
,

in which case

exp ��
�2

a2
,
x

a

� �� �
¼ ofn�2r=(2rþ1)g ¼ o(n�1 pþ p�2r), (3:15)

so the desired conclusion follows from (3.2) and (3.13)–(3.15). h
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4. Proofs of theorems

Proof of Theorem 2.1. Using the orthogonality properties of �i(t) and łij(t) indicated in

Section 2.1, we may writeð
(Æ̂Æn � Æ)2 ¼

ð X
j

(b̂b j � b j)� j(t)

(

þ
Xq�1

i¼0

X
j

(b̂bij I(jb̂bijj . �) � bij)łij(t) þ
X1
i¼q

X
j

bijłij(t)

)2

dt

¼ I þ II þ III þ IV ,

where

I ¼
X
j

(b̂b j � b j)
2, II ¼

Xq�1

i¼0

X
j

b2
ij,

III ¼
Xq�1

i¼0

X
j

f(b̂bij � bij)
2 � b2

ijgI(jb̂bijj . �) and IV ¼
X1
i¼q

X
j

b2
ij:

The expectations of I , . . . , IV are approximated in steps 1 to 4 below.

Step 1. We show that

E

����X
j

(b̂b j � b j)
2 � n�1 p

ð1

0

Æ(s)

u(s)
ds

���� ¼ o(n�1 p): (4:1)

Using Lemmas 3.2 and 3.3, it will be seen that

E
X
j

(b j � b j)
2 ¼ o(n�1 p)

and ����EX
j

(b̂b j � b j)(b j � b j)

���� <X
j

fE(b̂b j � b j)
2g1=2fE(b j � b j)

2g1=2 ¼ o(n�1 p):

Consequently, (4.1) will be established if we can show that����EX
i

(b̂b j � b j)
2 � n�1 p

ð1

0

Æ(s)

u(s)
ds

���� ¼ o(n�1 p) (4:2)

and

var
X
j

(b̂b j � b j)
2

( )
¼ o(n�2 p2): (4:3)
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Now, using Lemma 3.1(iv),

E(b̂b j � b j)
2 ¼ Ehb̂b j � b ji ¼

ð1

0

�2
i (s)Æ(s)E

J n(s)

Yn(s)

� �
ds

¼ n�1

ð p� j

� j

�2(s)Æf(sþ j)=pguf(sþ j)=pg�1dsþ o(n�1), (4:4)

where u(t) is given in (A3) and the remainder term is of the stated order uniformly in j.

Since the support of � is contained in [��1, �2], we have the following:

(a) the limits of integration (� j, p� j) may be replaced by (�1, 1) when

j 2 (�1, p� �2);

(b) the number of integers j which lie in [��2, �1] [ [ p� �2, pþ �1] is bounded above

by 2(�1 þ �2); and

(c) when j =2 [��2, pþ �1], E[b̂b j � b j]
2 ¼ 0 by Lemma 3.2(i).

Define A1 ¼ f j 2 Z : j 2 (�1, p� �2)g; A3 ¼ f j 2 Z : j 2 [��2, �1] [ [ p� �2, pþ �1]g;

and A2 ¼ f j 2 Z : j =2 [��2, pþ �1]g. Then, using (a)–(c) and (4.4), we obtain

X
j2Z

E[b̂b j � b j]
2 ¼

X
j2A1

þ
X
j2A2

þ
X
j2A3

 !
E[b̂b j � b j]

2

¼
X
j2A1

E[b̂b j � b j]
2

 !
þ O(n�1) þ 0

¼ n�1 p

ð1
�1

�2(s) p�1
X
j2A1

Æf(sþ j)=pg
uf(sþ j)=pg

" #
ds

 !
þ o(n�1 p)

¼ n�1 p

ð1

0

Æ(s)

u(s)
ds

 !
þ o(n�1 p):

The final step uses the fact that

����
ð1

0

Æ(s)

u(s)
ds� p�1

X
j2A1

Æf(sþ j)=pg
uf(sþ j)=pg

���� ¼ o(1),

which is itself a consequence of the continuity of u and Æ. Thus (4.2) has been proved.

To prove (4.3) we use Lemma 3.4, arguing as follows:

Counting process intensity estimation by orthogonal wavelet methods 17



var
X
i

(b̂bi � bi)
2

( )
¼
X
i

X
j

covf(b̂bi � bi)
2, (b̂b j � b j)

2g

¼
X3

a,b¼1

X
i2Aa

X
j2Ab

covf(d̂d i � di)
2, (d̂d j � d j)

2g
 !

þ O(n�9=4 p2) þ O(n�2 p)

¼
X
i2A1

X
j2A1

covf(d̂d i � di)
2, (d̂d j � d j)

2g
 !

þ o(n�2 p2): (4:5)

The moment generating function of (d̂d i � di, d̂d j � d j) is given by

Mij(Ł1, Ł2) ¼ E exp n1=2

ð1

0

Ł1�i(s) þ Ł2� j(s)

u(s)
dM (1)

n (s)

" #

¼ exp n

ð1

0

Æ(s)

u(s)
ˆ(
Ł1�i(s) þ Ł2� j(s)

nu(s)
)ds

" #
,

where ˆ(x) ¼ exp(x) � 1 � x. Using the moment generating function, it can be shown by

direct calculation that

sup
i, j

����covf(d̂d i � di)
2, (d̂d j � d j)

2g � 2fcov(d̂d i � di, d̂d j � d j)g2

���� < Cn�3, (4:6)

where C is a constant. Also, for i, j 2 A1,

cov(d̂d i � di, d̂d j � d j) ¼ n�1

ð1

0

�i(s)� j(s)
Æ(s)

Æ(s)
ds

¼ n�1

ð p�i

�i

�(s)�(sþ i� j)
Æf(sþ i)=pg
uf(sþ i)=pg ds

¼ o(n�1)

uniformly in i, j and n, due to the orthogonality properties of �. ThereforeX
i2A1

X
j2A1

fcov(d̂d i � di, d̂d j � d j)g2 ¼ o(n�2 p2): (4:7)

Putting (4.5), (4.6) and (4.7) together, we obtain the desired conclusion.

Step 2. We show that

E

����X
q�1

i¼0

X
j

b2
ij � p�2rk2(1 � 2�2r)�1

ð1

0

fÆ(r)(s)g2ds

���� ¼ o( p�2r):

Note that no random terms appear above, so we may ignore the expectation operator. Using

Taylor expansion of Æ and the fact that the first r � 1 moments of ł are zero, we obtain
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bij ¼
ð1

0

łij(s)Æ(s)ds

¼ p
�1=2
i

ð pi� j

� j

ł(s)Æf(sþ j)=pigds

¼ p
�1=2
i

ð pi� j

� j

ł(s)frg�1(s=pi)
rfÆ(r)( j=pi) þ o(1)gds

¼

kp�(rþ1=2)
i fÆ(r)( j=pi) þ o(1)g if j 2 (�1, pi � �2),

O( p
�(rþ1=2)
i ) if j 2 [��2, �1] [ [ pi � �2, pi þ �1],

0 otherwise,

8>>><
>>>:

(4:8)

where the order terms are uniform in i and j. Consequently,

Xq�1

i¼0

X
j

b2
ij ¼ k2

Xq�1

i¼0

X
j

p�2r�1
i fÆ(r)( j=pi)g2 þ o(1)

	 


¼ k2 p�2r
Xq�1

i¼0

2�2ir

ð1

0

fÆ(r)(s)g2dsþ o(1)

" #

¼ k2 p�2r(1 � 2�2r)�1

ð1

0

fÆ(r)(s)g2dsþ o( p�2r),

as required.

Step 3. We show that

E

����X
q�1

i¼0

X
j

(b̂bij � bij)
2 � b2

ij

n o
I(jb̂bijj . �)

���� ¼ o(n�1 pþ p�2r): (4:9)

It is sufficient to show that

sup
i, j

P[jb̂bijj . �]

 !Xq�1

i¼0

X
j

b2
ij ¼ o(n�1 pþ p�2r) (4:10)

and

Xq�1

i¼0

X
j

Ef(b̂bij � bij)
2 I(jb̂bijj . �)g ¼ o(n�1 pþ p�2r): (4:11)

Now for any positive �1, �2, �3 satisfying
P

�k ¼ 1,

I(jb̂bijj . �) < I(jb̂bij � bijj . �1�) þ I(jbij � bijj . �2�) þ I(jbijj . �3�),

and therefore
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sup
i, j

P[jb̂bijj . �] < sup
i, j

P[jb̂bij � bijj . �1�] þ sup
i, j

P[jbij � bijj . �2�] þ sup
i, j

I(jbijj . �3�):

(4:12)

Chose �2 and �3 so small that �1 is sufficiently close to 1 for the inequality �1C . C0 to

hold. Then by Lemma 3.5,

sup
i, j

P[jb̂bij � bijj . �1�] ¼ o(n�1 pþ p�2r): (4:13)

Also, by Lemma 3.3(ii) combined with Chebyshev’s inequality,

sup
i, j

P[jbij � bijj . �2�] ¼ o(n�1 pþ p�2r); (4:14)

and, since p2rþ1�2 ! 1 and jbijj < Bp
�r�(1=2)
i for some B . 0, it follows that

sup
i, j

I(jbijj . �3�) ¼ 0 (4:15)

for n sufficiently large. Putting (4.12)–(4.15) together, it will be seen that

sup
i, j

P[jb̂bijj . �] ¼ o(n�1 pþ p�2r);

and, by step 2,
Pq�1

i¼0

P
jb

2
ij is bounded. So (4.10) has been proved.

To establish (4.11), we use Hölder’s inequality to obtain

Xq�1

i¼0

X
j

Ef(b̂bij � bij)
2 I(jb̂bijj . �)g

<
Xq�1

i¼0

X
j

Ejb̂bij � bijj2=�1

n o�1

P[jb̂bijj . �]

n o�2

< sup
i, j

P[jb̂bijj . �]

( )�2Xq�1

i¼0

X
j

Ejb̂bij � bijj2=�1

n o�1

, (4:16)

where �1 and �2 are positive numbers which sum to 1. By Lemma 3.5 and (4.12)–(4.15), we

may choose �2 so close to 1 that

sup
i, j

P[jb̂bijj . �]

( )�2

¼ o(n�1 pþ p�2r); (4:17)

and by Lemma 3.3(viii) we have, for any �1 . 0,

sup
i, j

Ejb̂bij � bijj2=�1

n o�1

¼ O(n�1), (4:18)

and therefore
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Xq�1

i¼0

X
j

fEjb̂bij � bijj2=�1g�1 ¼
Xq�1

i¼0

O(n�1 pi) ¼ O(n�1 pq) ¼ o(1) (4:19)

by (2.7) and (2.8). Putting (4.17) and (4.19) together, we obtain (4.11).

Step 4. We show that

X1
i¼q

X
j

b2
ij ¼ o(p�2r):

By (4.8), jbijj < C p
�(rþ(1=2))
i for some constant C independent of i, j and n. Consequently,

X1
i¼q

X
j

b2
ij < C2

X1
i¼q

X
j

p
�(2rþ1)
i

¼ O
X1
i¼q

p�2r
i

 !

¼ O( p�2r
q )

¼ o( p�2r)

since pq ¼ p2q and q ! 1.

Putting steps 1–4 together, the proof of Theorem 2.1 is complete. h

Proof of Theorem 2.2. We only outline the proof of Theorem 2.2 since its derivation mostly

follows from careful inspection and modification of the proof of Theorem 2.1.

Let D denote the finite set of set of points where Æ(m) has a point of discontinuity for

some 0 < m < r. Since the support of � is contained in [��1, �2], both b j and b̂b j are

constructed entirely from (Stieltjes) integrals on a finite number of intervals in which Æ(m)

is everywhere continuous unless

j 2 K ¼ fk : k 2 ( ps� �1, psþ �2) for some s 2 Dg:

Also, since the support of ł is contained in [��1, �2] both bij and b̂bij are constructed from an

interval as just described unless

j 2 Ki ¼ fk : k 2 ( pis� �1, pisþ �2) for some s 2 Dg:

Therefore, ð
(Æ̂Æn � Æ)2 ¼ I(K) þ II(Ki) þ III(Ki) þ IV (Ki)

þ I( ~KK) þ II( ~KKi) þ III( ~KKi) þ IV( ~KKi),

where ~SS denotes the complement of S in Z and
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I(S) ¼
X
j2S

(b̂b j � b j)
2, II(S i) ¼

Xq�1

i¼0

X
j2S i

b2
ij,

III(S i) ¼
Xq�1

i¼0

X
j2S i

(b̂bij � bij)
2 � b2

ij

n o
I(jb̂bijj . �) and IV (S i) ¼

X1
i¼q

X
j2S i

b2
ij:

Using the proof of Theorem 2.1 it is clear that E[I( ~KKþ II( ~KKi) þ III( ~KKi) þ IV( ~KKi)] has the

asymptotic properties claimed for
Ð

(Æ̂Æn � Æ)2 in Theorem 2.1. Since K can have no more

than (�1 þ �2)(#D) elements it obviously follows that E[I(K)] ¼ o(n�1 p), and since Ki

contains no more than (�1 þ �2)(#D) elements it follows that IV (K) ¼ o(n�2r=(2rþ1)) as

pq ¼ o(n�2r=(2rþ1)) and at discontinuity points b2
ij is of size p�1

i .

To show that E[II(Ki) þ III(Ki)] is also of smaller size, write

II(Ki) þ III(Ki) ¼
Xq�1

i¼0

X
j2Ki

b2
ij I(jb̂bijj , �) þ

Xq�1

i¼0

X
j2Ki

(b̂bij � bij)
2 I(jb̂bijj . �): (4:20)

From (4.16)–(4.18) and the fact that q ¼ O(log n) it follows that the expected value of the

second term in (4.20) is of size o(n�1 p).

For the first term in (4.20) note that, since

I(jb̂bijj < �) < Ifjbijj < (1 þ E) �g þ I(jb̂bij � bijj . E�)

and

I(jbijj < (1 � E) �) < I(jb̂bijj < �) þ I(jb̂bij � bijj . E�),

then

s1 � ˜ <
Xq�1

i¼0

X
j2K i

b2
ij I(jb̂bijj , �) < s2 þ ˜,

where

s1 ¼
Xq�1

i¼0

X
j2Ki

b2
ij Ifjbijj < (1 þ E) �g,

s2 ¼
Xq�1

i¼0

X
j2Ki

b2
ij Ifjbijj < (1 � E) �g,

˜ ¼
Xq�1

i¼0

X
j2Ki

b2
ij I(jb̂bij � bijj . E�):

Now, again owing to the fact that Ki contains no more than (�1 þ �2)(#D) elements, both s1

and s2 are equal to o(n�2r=(2rþ1)). Further, in view of finite number of points in Ki, if follows

from (4.13) and (4.14) that E[˜] ¼ o(n�2r=(2rþ1)). h
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Introduction aux ondelettes et á l’analyse multiresolution. Lecture Notes, Univ. Paris XII.

Kolaczyk, E.D. (1999) Wavelet shrinkage estimation of certain Poisson intensity signals using

corrected thresholds. Statist. Sinica, 9, 119–135.

Marron, J.S., Adak, S., Johnstone, I.M., Neumann, M. and Patil, P.N. (1998) Exact risk analysis of

wavelet regression. J. Comput. Graph. Statist., 7, 278–309.

Ramlau-Hansen, H. (1983a) Smoothing counting process intensity by means of kernel functions. Ann.

Statist., 11, 453–466.

Ramlau-Hansen, H. (1983b) The choice of a kernel function in the graduation of counting process

intensities. Scand. Actuarial J., 165–182.

Rogers, L.C.G. and Williams, D. (1987) Diffusions, Markov Processes and Martingales, Volume 2: Itô
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