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A Peskun ordering between two samplers, implying a dominance of one over the other, is known among the Markov
chain Monte Carlo community for being a remarkably strong result. It is however also known for being a result that
is notably difficult to establish. Indeed, one has to prove that the probability to reach a state y from a state x, using a
sampler, is greater than or equal to the probability using the other sampler, and this must hold for all pairs (x,y) such
that x � y. We provide in this paper a weaker version that does not require an inequality between the probabilities
for all these states: essentially, the dominance holds asymptotically, as a varying parameter grows without bound,
as long as the states for which the probabilities are greater than or equal to belong to a mass-concentrating set.
The weak ordering turns out to be useful to compare lifted samplers for partially-ordered discrete state-spaces
with their Metropolis–Hastings counterparts. An analysis in great generality yields a qualitative conclusion: they
asymptotically perform better in certain situations (and we are able to identify them), but not necessarily in others
(and the reasons why are made clear). A quantitative study in a specific context of graphical-model simulation is
also conducted.
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1. Introduction

1.1. Peskun ordering: Context, original version and some variants

Let us consider the situation where one is interested in sampling from π, a probability distribution
defined on a measurable space (X,X), with X finite and assumed to correspond to the support of π,
and X a sigma-algebra on X. In a sampling context, π is often referred to as the target distribution.
Let us consider that, to sample from π, one has access to two Markov chain Monte Carlo (MCMC)
algorithms and wonders which one is best. Establishing a Peskun ordering (Peskun, 1973) is possibly
the most sought-after route when one wants to prove that a given MCMC algorithm is superior in
terms of statistical efficiency to another. The statistical efficiency is measured in terms of asymptotic
variances: for any Markov kernel P acting on (X,X) and for any f : X→ R, we denote by var( f ,P) the
asymptotic variance in a central limit theorem for a MCMC estimator of π f , the expectation of f (X)
under X ∼ π. In this paper, all considered Markov kernels are assumed to be irreducible and aperiodic,
so that the associated samplers are valid1. The original ordering is presented in Theorem 1.

Theorem 1 (Peskun, 1973). Let P1 and P2 be two Markov kernels that are reversible with respect to
π. If P1(x,y) ≥ P2(x,y) for all (x,y) ∈ X2 with x � y, then var( f ,P1) ≤ var( f ,P2) for all f : X→ R.

1By valid, we mean that a law of large numbers and a central limit theorem hold for time-averages of functionals of Markov
chains.
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The strength of this result lies in its universality: the order between the asymptotic variances holds for
all functions f , which explains why we say that a sampler associated with P1 is superior to a sampler
associated with P2, for the problem at hand. This ordering is however known to be rather challenging
to establish. It is indeed only in specific situations that one can establish that the probability to reach y
from x with P1 is greater than or equal to that with P2, and this for all (x,y) ∈ X2 with x � y.

The result of Peskun (1973) was generalized in several ways. First, Tierney (1998) extended it to
general state-spaces. Andrieu, Lee and Vihola (2018) then provided a quantitative form requiring that
the order on the Markov kernels holds, but up to a multiplicative factor, that is P1(x,y) ≥ ω P2(x,y) for
all (x,y) ∈ X2 with x � y, for some ω > 0, while yielding similar conclusions:

var( f ,P1) ≤
var( f ,P2)
ω

+
1 −ω
ω
Var[ f (X)].

These results are valid for reversible Markov chains only. Recently, Andrieu and Livingstone (2021)
went beyond the reversible scenario. These authors consider a specific type of non-reversibility for
which the chains can be seen as being “almost” reversible; they are reversible, up to an involution.
This type of non-reversibility nevertheless covers a remarkably large number of known non-reversible
MCMC algorithms, including lifted algorithms (Chen, Lovász and Pak, 1999, Diaconis, Holmes and
Neal, 2000, Gustafson, 1998, Horowitz, 1991).

1.2. Our proposal: A weaker and asymptotic version

With a result as strong as the original ordering, it is somewhat expected to be difficult to establish it.
The main result of this paper is that a weaker version of this ordering can lead to similar, but weaker,
conclusions. This weaker ordering2 is particularly well suited for situations where the two Markov
chains of interest are well understood, but only on some subsets of the state-space. We believe that
this weaker version will allow to compare samplers in situations in which it was not possible before.
Indeed, we believe that the difficulty in establishing the original ordering comes from the verification
of P1(x,y) ≥ P2(x,y) for all (x,y) ∈ X2 with x � y.

Recent concepts such as approximate spectral gaps introduced in Atchadé (2021) and large sets
proposed in Yang and Rosenthal (2023) have shown that bounds on the convergence time of Markov
chains can be obtained by exploiting the particular behaviour of the process on some subset of the
state-space. When the process is particularly efficient on such a subset, resulting bounds can be tighter
than traditional ones that account for the whole state-space. We here leverage similar ideas.

Consider that an order on the probabilities P1(x,y) ≥ P2(x,y) can be established but only on a subset
X̃2 ⊂ X2. It is natural to expect that if the mass concentrates on X̃ and under some mixing guarantees
(to guarantee that when the chains exit X̃ they do not take too long to come back), then var( f ,P1) �
var( f ,P2) for a class of functions f , where the approximation is a consequence of working under
a limiting regime to represent a phenomenon of mass concentration. In the following, we prove a
result essentially corresponding to that just described. We now provide an overview of a motivating
application which is explored in the manuscript.

2For brevity, we will use “weaker ordering” or “weak ordering” to refer to the proposed weaker version of Peskun’s ordering.
As will be seen, using such expressions is however an abuse of terminology because the binary relation defined by our “weak
ordering” does not establish an order on the set of reversible Markov kernels in the mathematical sense.
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1.3. Lifted samplers: A motivating application

Lifting the state-space is a generic technique which yields what are referred to as lifted samplers.
The state-space is lifted (i.e., extended) to incorporate auxiliary variables. The idea is to think of the
random variables we want to sample as position variables and to associate to them direction variables,
to guide the Markov chains so as to avoid backtracking, a behaviour often exhibited by reversible
schemes that is suspected to increase the autocorrelation of the process. Consider for instance that
X = {1, . . . ,K}, where K is a positive integer. We associate to the variable X a direction variable
ν ∈ {−1,+1}. A Markov chain is defined on the lifted state-space X × {−1,+1}. The lifted sampler
proceeds as a Metropolis–Hastings (MH, (Hastings, 1970, Metropolis et al., 1953)) algorithm in the
sense that a proposal is accepted with a given probability, but in this case the proposal is deterministic
and given by y = x + ν when (x, ν) is the current state. The randomness thus comes from the decision
to accept or reject the proposal; in the latter case, the direction is reversed. The lifting technique can
be seen as a way to equip the resulting stochastic process with some memory of its past (the direction
it comes from), while retaining the Markov property. It can be shown that the resulting Markov chains
admit π ⊗U{−1,1} as invariant distribution, where U{−1,1} denotes the uniform distribution over the
set {−1,1} and π ⊗U{−1,1} is the product measure. The sampler is thus valid and expectations under
π can be approximated by considering functions f : X × {−1,+1} → R of solely the first argument.

Let Plifted be the Markov kernel associated to this algorithm, and let PMH be the Markov kernel
associated to its non-lifted counterpart, which is a MH algorithm proposing y = x + 1 or y = x − 1,
each with probability 1/2. Theorem 7 in Andrieu and Livingstone (2021) allows to establish that
var( f ,Plifted) ≤ var( f ,PMH), for any f of solely the first argument and any distribution π. As Peskun’s,
this result is universal. It is however remarkable that it holds, not only for any f , but also for any π. It
is also remarkable to obtain such a result given that the lifted sampler is implemented at no additional
computational cost over its non-lifted counterpart, and also with no additional implementation diffi-
culty (lifted samplers often possess these qualities). The result on the order between the asymptotic
variances is essentially a consequence of having the same acceptance probabilities in both algorithms.
There is thus no lost in terms of acceptance probabilities by using the lifting technique, while there is
a potential gain in terms of persistent movement.

The superiority of Plifted over PMH for any π at no additional computational cost motivates an inves-
tigation of lifted samplers for other types of discrete state-spaces, especially given the limited number
(or rather the absence) of real-world models where the state-space is of the form X = {1, . . . ,K}. This
latter set is totally ordered; a natural first step in the investigation is thus to consider partially-ordered
discrete state-spaces. A definition of partially-ordered sets as well as a generic lifted algorithm to sam-
ple from distributions defined on such a set are presented in Section 3. Important applications of such
an algorithm include simulation of systems formed from binary variables, such as those simulated us-
ing the Ising model, and Bayesian variable selection when the posterior model probabilities can be
evaluated, up to a normalizing constant.

In the case of partially-ordered discrete state-spaces, Theorem 7 of Andrieu and Livingstone (2021)
still allows to prove the superiority of the lifted algorithm over its non-lifted counterpart, which is a
reversible sampler; however in this case, the non-lifted counterpart does not correspond to the MH
algorithm over which we wish to establish a superiority. This is essentially because, contrarily to the
totally-ordered case, the acceptance probabilities in the MH and lifted algorithms are in general dif-
ferent. In certain situations, they can be quite unbalanced in some area of the state-space in the lifted
algorithm, while they are not in the MH sampler. In contrast, in some other area of the state-space,
the acceptance probabilities are similar. When the mass concentrates on the latter area, we explore the
possibility of applying our weak ordering to compare the non-lifted counterpart and the MH algorithm
to prove that the lifted sampler is superior to the MH algorithm.
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1.4. Organization of the paper

We now describe how the rest of the paper is organized. We introduce our asymptotic Peskun ordering
in Section 2. We next use this result to identify situations in which the lifted samplers for partially-
ordered discrete state-spaces are expected to outperform (or not) their MH counterparts. Regarding the
organization of this part, we first present the lifted samplers in Section 3 and then carry out in Section 4
an analysis in great generality. Given that the analysis is carried out in great generality, we are not in a
position to verify the assumptions under which our asymptotic ordering holds. Rather, the analysis aims
to establish the results that can be obtained whenever the assumptions are verified. We next conduct in
Section 5 a thorough study in a context of a simulation of a simple graphical model. With this simple
model, we are in a good position to verify the assumptions of our theoretical result; Section 5 serves
as a user guide for applying our asymptotic Peskun ordering. The model corresponds to a Ising model
with an external field, but without spatial correlation. The target distribution thus factorizes and the
components of x are independent; the external field defines the marginal distributions. The model can
be seen as an approximation to that with weak spatial correlation, referred to in the literature as a
high temperature model. We will refer to the model studied in Section 5 as the simple Ising model.
The manuscript finishes in Section 6 with retrospective comments and possible directions for future
research. In Section 1 of the Supplementary Material (Gagnon and Maire (2024)), we study more
complex problems for which a verification of the assumptions is beyond the scope of the manuscript.
The first problem is about the simulation of a Ising model which is more complex than that considered
in Section 5 (with spatial correlation). Numerical results are provided and they are consistent with the
theoretical ones presented in Section 5. The second problem is that of variable selection in a real-life
situation. All proofs of theoretical results are deferred to Section 3 of the Supplementary Material
(Gagnon and Maire (2024)). While the paper is concerned with efficient sampling of distributions
defined on discrete state-spaces, we stress that numerous results and elements of our analyses translate
immediately to general state-space contexts.

2. A weaker and asymptotic version of Peskun’s ordering

Before presenting the theoretical result, we provide the intuition behind it (while being more precise
than in Section 1.2). This will help justify the assumptions, allow to highlight its relevance, and in fact
allow to present a sketch of the proof. Beforehand, we introduce required notation.

In all this section, we consider that the distribution of interest π is parameterized by some n ∈ N, that
is π ≡ πn. The state-space may also be parameterized by n and is thus denoted by Xn; we assume that,
for each n ∈ N, Xn is finite. We define two collections of Markov kernels, {P1,n} and {P2,n}, for which
P1,n and P2,n are πn-reversible for all n. We define a collection of subsets {X̃n ⊂ Xn} which we refer
to as control subsets. We introduce two collections of restricted kernels {P̃1,n} and {P̃2,n} which, for
all n, are defined for any (x,y) ∈ X̃2

n by

P̃i,n(x,y) := Pi,n(x,y) + Pi,n(x,Xn\X̃n)1y=x, i ∈ {1,2}.

The form of states like x and y may depend on n, but we make this dependence implicit to simplify.
We let π̃n be the probability measure defined as π̃n := πn( · ∩ X̃n)/πn(X̃n). It can be readily checked
that P̃1,n and P̃2,n are both π̃n-reversible, for all n. We define what we call (with some abuse of termi-
nology) the interior and the boundary of X̃n as X̃◦

n := {x ∈ X̃n : Pi,n(x,X̃
c
n) = 0} and ∂X̃n := X̃n \ X̃

◦
n,

respectively, where we assume that the definition of X̃◦
n is the same for i = 1,2. The functions for

which we want to approximate the expectations may also depend on n and are thus denoted by fn.
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The πn-weighted scalar product and p-norm are defined as 〈 fn,gn 〉πn :=
∑

x∈X fn(x)gn(x) πn(x) and
‖ fn‖πn ,p := [

∑
x∈X | fn(x)|pπn(x)]1/p , respectively, with ‖ fn‖πn for the 2-norm. In this section, we con-

sider that the functions are standardized, meaning that fn ∈ L2
0,1(πn), where L2

0,1(πn) := { fn : πn fn =
0 and ‖ fn‖πn = 1}. This should not be seen as a restriction given that the magnitude of asymptotic vari-
ances, which is proportional to ‖ fn‖2

πn , is irrelevant when it is of interest to establish an order among
them. We note that since for each n, Xn is finite, P1,n and P2,n admit a non-trivial right spectral gap
in L2

0,1(πn), whose variational expression is given by

λi(n) := inf
fn ∈L2

0,1(πn):‖ fn ‖πn>0

〈 fn,(In − Pi,n) fn 〉πn
‖ f ‖2

πn

, i ∈ {1,2}, (1)

where In is the identity on L2
0,1(πn). In particular, it can be proved that λi(n) ∈ (0,2). We anal-

ogously define the right spectral gaps of P̃i,n and denote them by λ̃i(n), i = 1,2, and we define
λ(n) := min{λ1(n),λ2(n), λ̃1(n), λ̃2(n)}. In the following, we refer to the right spectral gap of a kernel
simply as the spectral gap to simplify. Finally, we will use o for the little-o notation.

Consider that one wants to establish a Peskun-type ordering between two kernels, but one is only
able to establish a (suitable) order on the kernels on a subset of the state-space in the following sense:
P1,n(x,y) ≥ ω(n)P2,n(x,y) for all (x,y) ∈ X̃2

n with x � y where ω(n) is a (suitable) positive constant
which may depend on n. This ordering implies that P̃1,n(x,y) ≥ ω(n)P̃2,n(x,y) for all (x,y) ∈ X̃2

n with
x � y, which in turn implies that

var( fn, P̃1,n) ≤
1
ω(n)var( fn, P̃2,n) +

1
ω(n) − 1, (2)

by, as mentioned in Section 1.1, Andrieu, Lee and Vihola (2018) (Lemma 33).
Let us consider that πn concentrates on X̃◦

n. The notion of concentration of πn naturally implies
that we are interested by a certain asymptotic regime, which justifies that we consider a limit n →∞.
Under this regime, πn(X̃

◦
n) → 1, implying that πn(X̃n) → 1. One can imagine that, if the Markov chains

associated with P1,n and P2,n do not behave “too badly” outside of X̃n, meaning that when they reach
the complement X̃c

n they do not stay there for “too long”, then var( fn, P̃1,n) and var( fn, P̃2,n) should be
similar to var( fn,P1,n) and var( fn,P2,n). This is what we show in order to prove our theoretical result. In
fact, if we think of P1,n,P2,n, P̃1,n and P̃2,n as samplers, it is seen in the proof that in order to establish
a connection between the asymptotic variances, it simplifies to assume that the performance of the
worst of these samplers, measured through λ(n), is not “too poor”, which is a stronger assumption than
a performance assumption on P1,n and P2,n only. Under these assumptions, we are able to establish
that var( fn,Pi,n) is equal to var( fn, P̃i,n), up to an error term that depends on n and that vanishes
in the large n regime, i ∈ {1,2}, which essentially yields our result. The concentration assumption is
reasonable given that in practice the mass often concentrates on a subset of the state-space. This is
especially true in high dimensions or when the sample size is large in Bayesian statistics contexts (see,
e.g., van der Vaart (1998) and Kleijn and Van der Vaart (2012)).

In light of the above, it is understood that three assumptions are required: the order on the kernels on
the control subset, the concentration of πn and a performance guarantee on the samplers. We now state
formally the first two assumptions and then present a simplified version of the theoretical result with
a strong performance guarantee. We next present a more general version. To simplify the results, yet
keeping the focus on most important cases, we consider in the following that ω(n) ≤ 1, meaning that
we exclude cases where P1,n is overly dominant on X̃n.
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Assumption 1 (Kernel ordering). For each n, P1,n(x,y) ≥ ω(n)P2,n(x,y) for all (x,y) ∈ X̃2
n with x � y,

where ω(n) admits a limit, that is limn→∞ω(n) =: ω > 0.

Assumption 2 (Mass concentration). The mass concentrates on X̃◦
n: limn→∞ πn(X̃

◦
n) = 1.

Given that together Assumptions 1 and 2 correspond to the assumptions of a classic Peskun ordering
as in Andrieu, Lee and Vihola (2018) in the limit, one can only hope to establish, under Assumptions 1
and 2, a version of this ordering that holds in some limiting sense.

Theorem 2 (A simple asymptotic Peskun ordering). Suppose that Assumptions 1 and 2 hold. Assume
that the spectral gaps of Pi,n and P̃i,n are bounded away from zero for all n, i = 1,2. Assume also
that the sequence { fn} is such that fn ∈ L2

0,1(πn) for all n and such that there exist δ > 0 and γ ∈
(0, δ/(2 + δ)) with

‖ fn‖πn ,2+δ = o
����

1(
1 − πn(X̃

◦
n)

)γ �		
 . (3)

Then, for any ε ∈ (0,ω), there exists n∗ ∈ N, such that for any n > n∗

var( fn,P1,n) ≤
1
ω − ε var( fn,P2,n) +

1
2

(
1
ω − ε +

1
ω

)
− 1 +

ε

2
.

We now make a few remarks about Theorem 2. It allows to retrieve (2) in the limit with ε → 0 and
ω(n) → ω. Theorem 2 will be seen to be a special case of the next one in which the spectral gaps are
allowed to decrease with n, which is usually the case when n is the dimension of the state-space. As
mentioned, considering that the spectral gaps are bounded away from zero simplifies the assumptions,
at the price of requiring a strong performance guarantee.

In addition to the three assumptions mentioned earlier, another one is made in (3). This assumption
essentially states that the class of functions that satisfies (3) have a (2+ δ)-norm that is allowed to grow
with n, but not faster (in fact slightly slower) than 1/(1− πn(X̃

◦
n)). It is thus not all sequences { fn} that

are admissible. It could be tempting to consider a collection of large subsets X̃n to encourage a fast
concentration of πn on these sets, thus allowing for a large class of admissible sequences of functions
in Theorem 2; however, the larger are the subsets, the more difficult it becomes to obtain a suitable
order on the kernels (Assumption 1).

Different values of the limit of ω(n), that is ω, yield different interpretations of the result. The most
important case is when ω = 1 for which we can state that the sampler associated with P1,n asymp-
totically dominates that associated with P2,n (for the functions that are admissible). When ω < 1,
Theorem 2 allows to state that P1,n is asymptotically comparable to P2,n, in the sense that we have a
guarantee that the sampler associated with P1,n will asymptotically produce estimators with variances
that are at worst roughly 1/ω larger than the sampler associated with P2,n (again for the functions that
are admissible).

We now present the general asymptotic Peskun ordering.

Theorem 3 (A general asymptotic Peskun ordering). Suppose that Assumption 1 holds. Consider a
sequence { fn} such that fn ∈ L2

0,1(πn) for all n. Assume that there exist δ > 0 and γ ∈ (0, δ/(2 + δ))
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that satisfy

‖ fn‖πn ,2+δ = o
����

1(
1 − πn(X̃

◦
n)

)γ �		
 , (4)

and

1 − πn(X̃
◦
n) = o

(
λ(n)3/(δ̄−γ)

)
, (5)

where δ̄ := δ/(2 + δ). Then, for any ε ∈ (0,ω), there exists n∗ ∈ N, such that for any n > n∗

var( fn,P1,n) ≤
1
ω − ε var( fn,P2,n) +

1
2

(
1
ω − ε +

1
ω

)
− 1 +

ε

2
.

We see that the difference between Theorem 3 and Theorem 2 is that Assumption 2 is replaced by
(5), an assumption connecting πn(X̃

◦
n) to λ(n), where the latter is now allowed to decrease. After having

selected a sequence { fn} and then δ and γ that satisfy (4) (which is equivalent to (3) in Theorem 2),
one has to verify that the choice of δ and γ also allows to verify (5). This equation states that the
concentration of πn on X̃◦

n has to be faster than λ(n)3/(δ̄−γ). Note that when the spectral gaps are
bounded away from zero, (5) is equivalent to Assumption 2, showing that Theorem 2 is indeed a special
case of Theorem 3.

We acknowledge the fact that estimating certain rates appearing in the conditions of Theorems 2 and
3, especially the rates of spectral quantities, may constitute a problem in itself. We also acknowledge
that our sets of assumptions are probably not optimal, but rather a consequence of our proof technique,
and may possibly be improved. However, as mentioned, it is understood that the important aspects
(the order on the kernels on the control subset, the mass concentration and performance guarantees)
together represent necessary conditions. Given the importance of Peskun-type orderings, we believe
it is scientifically interesting to understand under which conditions we can establish a result on the
asymptotic variances when an order between P1,n and P2,n holds only on a subset of the state-space.

One may be tempted to assume a (non-trivial) relationship between λ̃i(n) and λi(n) given that P̃i,n

is a restriction of Pi,n on a subset of the state-space Xn. It turns out that counterexamples show that
it is not possible to obtain an interesting result in the general case. In regular sampling contexts, we
expect the rates at which λ̃i(n) and λi(n) decrease to be in the same regime (i.e., both exponential,
both polynomial, etc.). For instance, our analysis in a specific context of graphical-model simulation
in Section 5 shows that the decay is polynomial for λ̃i(n) and λi(n), i = 1,2. The analysis also shows
that we can select {X̃n} such that the mass concentrates on X̃◦

n exponentially quickly, implying that
Theorem 3 applies, provided ‖ fn‖πn ,2+δ does not grow too rapidly.

3. Lifted samplers for partially-ordered discrete state-spaces

In this section, we start by providing a definition of partially-ordered state-spaces in Section 3.1.
We next present in Section 3.2 a generic lifted MCMC algorithm for sampling from distributions on
partially-ordered discrete sets. In that section, we make another contribution: we make clear that the
implementation of lifted samplers for discrete state-spaces is straightforward, as long as a partial order
can be established. We put in contrast this contribution with some of other authors by reviewing the
literature about sampling on discrete state-spaces in Section 3.3. Note that, in order to match the clas-
sical MCMC framework, we consider in this section the target distribution, state-space, and so on, to
be fixed, and will thus denote them without a subscript to simplify.
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3.1. Partially-ordered state-spaces

In set theory, a partial order on a set X is a binary relation defined through a set R ⊂ X2 which is
reflexive, anti-symmetric, and transitive. A set X on which a partial order can be defined, is called
partially ordered. For such a set, pairs (x,y) ∈ X2 with x � y are comparable when either (x,y) ∈ R or
(y,x) ∈ R and are said incomparable otherwise. This represents the difference with a totally-ordered
set such as N or R in which every pair of different elements is comparable. We denote x ≺ y whenever
(x,y) ∈ R and x � y, implying that x and y are comparable. Of course, this is not the only way to have
comparable x and y as we can instead have y ≺ x, that is (y,x) ∈ R and x � y.

An important example of such sets is when any x ∈ X can be written as a vector x = (x1, . . . , xn) for
which each component xi can be of two types, say Type A or Type B, denoted by xi ∈ {A,B}. In this
case, an inclusion-based partial order on X can be defined through

R = {(x,y) ∈ X ×X : {i : xi =A} ⊂ {i : yi =A}} . (6)

It can be readily checked that R is reflexive, anti-symmetric and transitive. Moreover, defining nA(x) to
be the number of Type A components in x, that is nA(x) =

∑n
i=1 1xi=A, we have that a pair (x,y) ∈ X2

such that x � y and nA(x) = nA(y) is incomparable.
Partially-ordered sets are encountered in many important areas of statistics including the modelling

of binary data using networks or graphs and in variable selection. Indeed, for the former, X can be
parameterized such that X = {−1,+1}n, where for example for an Ising model, xi ∈ {−1,+1} represents
the state of a spin. For variable selection, X = {0,1}n and xi ∈ {0,1} indicates whether or not the i-th
covariate is included in the model employed.

3.2. Generic algorithm

Let us assume that a neighbourhood structure {N(x) : x ∈ X} and a partial order R have been speci-
fied on X. The sampler that we present is a MCMC algorithm that relies on the lifting technique. The
state-space is thus extended: we add a direction variable ν ∈ {−1,+1} to which we assign a uniform
distribution U{−1,+1}. The target distribution becomes π ⊗ U{−1,+1}. The idea is to generate pro-
posals belonging to a specific subset of the neighbourhood N(x), where the subset is defined through
R and chosen according to the direction ν, when the current state of the chain is (x, ν). In particular,
the proposal belongs to N+1(x) := {y ∈ N(x) : x ≺ y} ⊂ N(x) when the current state of the direction
variable is ν = +1 and to N−1(x) := {y ∈ N(x) : y ≺ x} ⊂ N(x) when ν = −1. The partial order is thus
used to induce directions to follow in the state-space. We assume that N(x) is formed only of states that
are comparable to x so that N−1(x) ∪ N+1(x) = N(x). Note that N−1(x) ∩ N+1(x) =∅. The underlying
assumption x � N(x) implies that, strictly speaking, N is not a neighbourhood in a topological sense.
We nevertheless carry on with this abuse of terminology.

Recently, successful applications of the lifting technique have been carried out in contexts where the
state-space exhibits a one-dimensional discrete parameter which plays a central role in the sampling
scheme: the temperature variable in simulated tempering (Sakai and Hukushima, 2016a) and in paral-
lel tempering (Syed et al., 2022), and the model indicator in selection of nested models (Gagnon and
Doucet, 2021). When such a one-dimensional feature does not exist, there is no straightforward way of
lifting the state-space and inducing directions without facing issues of reducibility or the risk of ob-
taining inefficient samplers. Leveraging what can be regarded as a directional-neighbourhood structure
induced by the partial order on X allows to break free from the requirement of resorting to an existing
one-dimensional parameter to guide the chain.
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Algorithm 1 A lifted sampler for partially-ordered discrete state-spaces
1. Generate y ∼ qx,ν and u ∼U[0,1].
2. If

u ≤ αν(x,y) := 1 ∧
π(y) qy,−ν(x)
π(x) qx,ν(y)

, (7)

set the next state of the chain to (y, ν). Otherwise, set it to (x,−ν).
3. Go to Step 1.

In what follows, for each (x, ν) ∈ X × {−1,+1}, Nν(x) shall be referred to as the ν-directional neigh-
bourhood of state x. The proposal distribution, denoted by qx,ν , where (x, ν) represents the current
state of the Markov chain, is assumed to have its support restricted to Nν(x). It will be noticed that the
implementation of the generic algorithm is straightforward provided that a partial ordering has been
established. Indeed, the required inputs are:

(i) a neighbourhood structure {N(x) : x ∈ X},
(ii) a partial ordering R on X,

(iii) proposal distributions qx,ν ,

and there exist natural candidates for the proposal distributions, as will be explained in Section 3.3 and,
in most cases, for the neighbourhood structure as well.

The MCMC algorithm, which bares a strong resemblance with the guided walk (Gustafson, 1998), is
presented in Algorithm 1. We use x∧ y to denote min{x, y}. In Section 2 of the Supplementary Material
(Gagnon and Maire (2024)), we consider that X is a model space and propose a trans-dimensional
version of Algorithm 1 that can be used for, among others, variable selection when it is not possible to
integrate out the model parameters.

Given that X is finite, there exists a boundary, in the sense that, for some (x, ν), Nν(x) is the empty set
and there is thus no mass beyond state x when the direction followed is ν. This is for instance the case in
the context of variable selection when x = (1, . . . ,1), meaning that the current model is the full model,
and the direction is ν = +1. Algorithm 1 may thus seem incomplete: it does not explicitly specify how
the algorithm behaves on the boundary. We can consider that for any x ∈ X on the boundary, the support
of qx,ν is not Nν(x) (because this is the empty set), but instead given by a fictive state outside X. Given
that the support of π is X, then any state outside X has zero mass under π and such a fictive state is
automatically rejected at Step 2. As a consequence, when such a state is proposed, the chain remains
at x and the direction is reversed. Note that this is a technical requirement. In practice, one can simply
skip Step 1 when x is on the boundary and directly set the next state to (x,−ν).

It is possible to establish that the Markov chain defined by Algorithm 1 is π ⊗ U{−1,+1}-invariant
by casting it into a more general algorithm framework presented in Andrieu and Livingstone (2021). We
present below the associated generalization of Algorithm 1 which has interesting theoretical features.
Beforehand, we introduce necessary notation. Let ρν : X → [0,1], for ν ∈ {−1,+1}, be a user-defined
function for which we require that for all (x, ν) ∈ X × {−1,+1}:

0 ≤ ρν(x) ≤ 1 −Tν(x,X), (8)

ρν(x) − ρ−ν(x) = T−ν(x,X) −Tν(x,X), (9)
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Algorithm 2 A generalization of Algorithm 1
1. Generate u ∼U[0,1].

(i) If u ≤ Tν(x,X), generate y ∼ Qx,ν and set the next state of the chain to (y, ν);
(ii) if Tν(x,X) < u ≤ Tν(x,X) + ρν(x), set the next state of the chain to (x,−ν);

(iii) if u > Tν(x,X) + ρν(x), set the next state of the chain to (x, ν).
2. Go to Step 1.

where, for all (x, ν) ∈ X × {−1,+1},

Tν(x,X) :=
∑

x′ ∈X
qx,ν(x′)αν(x,x′) =

∑
x′ ∈Nν (x)

qx,ν(x′)αν(x,x′).

These conditions are considered satisfied in the sequel as they guarantee, as established in Proposition 1
below, that the Markov chain {(X, ν)k } is π ⊗ U{−1,+1}-invariant and thus that the marginal pro-
cess {Xk } is π-invariant. Let Qx,ν be the probability mass function (PMF) defined through Qx,ν(x′) ∝
qx,ν(x′)αν(x,x′). The generalization of Algorithm 1 is presented in Algorithm 2.

Proposition 1. The transition kernel of the Markov chain {(X, ν)k } simulated by Algorithm 2 admits
π ⊗U{−1,1} as invariant distribution.

One may notice that Tν(x,X) represents the probability to leave the current state (x, ν). In
Algorithm 2, we thus first decide if we move on from x, in which case, in Step 1.(i), we randomly
select the value of y, the state to move to (using the conditional distribution). It can be readily checked
that valid choices for ρν include ρν(x) = 1 − Tν(x,X) and ρν(x) = max{0,T−ν(x,X) − Tν(x,X)}. If
ρν(x) = 1−Tν(x,X), the condition for Case (iii) of Step 1 is never satisfied, and the algorithm either ac-
cepts the proposal and keeps the same direction, or the proposal is rejected and the direction is reversed.
In this case, one can show that Algorithm 2 corresponds to Algorithm 1, which is why Proposition 1 al-
lows ensuring the correctness of Algorithm 1 as well. Setting ρν(x) otherwise than ρν(x) = 1−Tν(x,X)
allows in Case (iii) of Step 1 to keep following the same direction, even when the proposal is rejected.
Intuitively, this is desirable when the rejection is due to “bad luck”, and not because there is low mass
in the direction followed. The function ρν(x) aims to incorporate this possibility in the sampler.

In a typical MCMC framework with continuous state-spaces, the function x �→ Tν(x,X) is intractable.
In such a case, it is therefore usually not possible to set ρν(x) otherwise than 1−Tν(x,X). This contrasts
with our discrete state-space framework in which it is often possible to directly compute Tν(x,X).
Theorem 6 in Andrieu and Livingstone (2021) states that the best choice of function ρν in terms of a
mathematical object related to the asymptotic variance is

ρ∗ν(x) :=max{0,T−ν(x,X) −Tν(x,X)}, (10)

and that the worst choice is ρw
ν (x) := 1−Tν(x,X). Corollary 1 below establishes an order on the asymp-

totic variances in the context of finite state-spaces of this paper. Denote by Pρ the transition kernel
corresponding to Algorithm 2 for a given function ρν : X→ [0,1].

Corollary 1. If X is finite, then for any function ρν satisfying (8)-(9) and for any function f : X ×
{−1,+1} → R such that f (x,−1) = f (x,+1), we have var( f ,Pρ∗ ) ≤ var( f ,Pρ) ≤ var( f ,Pρw ).

The price to pay for using ρ∗ν instead of ρw
ν is that the algorithm is more complicated to implement

because it is required to systematically compute Tν(x,X) at each iteration (it is also sometimes required
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to compute T−ν(x,X)). Using ρ∗ν thus also comes with an additional computational cost. We observed in
some numerical experiments that, if we account for this increased computational cost, there is no gain
in efficiency of using Algorithm 2 with ρ∗ν over Algorithm 2 with ρw

ν (corresponding to Algorithm 1).
One may thus opt for simplicity and implement Algorithm 1. Note that the latter and its MH counterpart
have essentially the same computational cost.

3.3. Related work about sampling on discrete state-spaces

Sampling on discrete state-spaces is typically performed using uniform proposal distributions in re-
versible samplers. If we consider for instance that x = (x1, . . . , xn) with x1, . . . , xn ∈ {A,B}, Glauber
dynamics for graphical models or the tie-no-tie sampler for network models selects uniformly at ran-
dom one of the coordinate, say xi , and proposes to change its value from A to B (B to A) when xi =A
(xi = B). Such moves are often rejected when the mass concentrates on a subset of the state-space. To
address this issue, Zanella (2020) recently proposed a locally-balanced generic approach for which the
probability to select the i-th coordinate depends on the relative mass of the resulting proposal, that is
π(y)/π(x), aiming to propose less “naive” moves. Zanella (2020) proves that the acceptance probabili-
ties converge to 1 in a high-dimensional regime. This property suggests that locally-balanced samplers
are efficient, at least in high dimensions. Indeed, samplers for discrete state-spaces typically use the
same neighbourhood structure {N(x) : x ∈ X}, implying that the range of the proposal distributions is
the same and that higher acceptance probabilities often translate into better mixing properties. Zanella
(2020) in fact empirically shows that locally-balanced samplers perform better than alternative solu-
tions to sample from PMFs, and that the difference is highly marked in the high-dimensional regime.
Yet, the samplers are reversible, implying that the chains may often go back to recently visited states,
or in other words, that the chains exhibit a random-walk behaviour.

In the presented generic algorithms in Section 3.2, there is no restriction on the proposal distribu-
tions qx,ν . In Section 4.2, we set them to locally-balanced proposal distributions, thus combining the
strengths of the lifting and locally-balanced approaches. An illustration showing the benefit of this
combination is provided in Figure 1 in which we measure the performance using the effective sam-
ple size (ESS) of a statistic, reported per iteration. ESS per iteration is defined as the inverse of the
integrated autocorrelation time. When the chains start in stationarity, integrated autocorrelation time
corresponds to the asymptotic variance of a standardized version of the statistic. A small asymptotic
variance thus corresponds to a high ESS (and vice versa).

Other (somewhat) generic approaches to non-reversible sampling on discrete state-spaces are (to our
knowledge) all contemporary to ours: Bierkens (2016), Sakai and Hukushima (2016b), Power and Gold-
man (2019), Faizi, Deligiannidis and Rosta (2020) and Herschlag et al. (2020). They rely on the lifting
technique as well, except Bierkens (2016). Our work is most closely related to Power and Goldman
(2019) in which the approach of Zanella (2020) is also exploited. In fact, when x = (x1, . . . , xn) with
x1, . . . , xn ∈ {A,B}, Algorithm 1 corresponds to the discrete-time version of a specific sampler inde-
pendently developed in Power and Goldman (2019). Algorithm 1 can also be seen to be a special case
of a sampler presented in Sakai and Hukushima (2016b) in which a general extended transition matrix
is defined from lifting the MH one. A similar approach, described in Faizi, Deligiannidis and Rosta
(2020), explicitly incorporates the changes in the function f by moving from a state to another in the
transition matrix; this latter approach is closely related to ours when f (x) decreases or increases every
time we change x for y with x ≺ y. We consequently do not claim originality for the samplers presented
here. In those papers, however, the notion of partial ordering is not identified nor exploited; the focus
is rather on improving state-space exploration through the exploitation of any symmetric or algebraic
structure of X identified by users. The focus is the same in Bierkens (2016), but the non-reversibility is



2312 P. Gagnon and F. Maire

Figure 1. Trace plots for the statistic of number of covariates included in a model for a MH sampler with a locally-
balanced proposal distribution on the left panel and its lifted counterpart on the right panel, when applied to solve a
real variable-selection problem presented in Section 1 of the Supplementary Material (Gagnon and Maire (2024)).

achieved by directly modifying the acceptance probability in MH, using the notion of vorticity matrix;
this approach is valid in general state-space contexts. In Herschlag et al. (2020), the authors generalize
non-reversible lifted kernels to mixed skewed kernels by means of a series of involutions in a context of
undirected graph sampling. In their work, the main application is sampling of districting maps to eval-
uate the degree of partisan districting. The involutions are created by a series of user-specified vortices
that generate non-reversible flows on the state-space. Interestingly, this scheme can be seen as creating
directional neighbourhoods.

4. Two specific lifted samplers and their analysis

In this section, we specify two lifted samplers through two different choices of proposal distributions
qx,ν and provide a theoretical analysis using the asymptotic Peskun ordering. We first present and anal-
yse in Section 4.1 a lifted sampler using uniform proposal distributions. As explained in Section 3.3,
this sampler is often inefficient, especially in high dimensions, but it is simple enough to allow an
easy understanding of the reasons why lifted samplers are not expected to always dominate their MH
counterparts within our framework. We next turn in Section 4.2 to a more promising choice of proposal
distributions, namely the locally-balanced proposal distributions, and study the resulting lifted sampler.

As mentioned, the study here will be conducted in great generality. More precisely, the target distri-
bution will not be specified; we will thus not be in a position to explicitly estimate the rates appearing
in the conditions of our theoretical results presented in Section 2. We will make assumptions regarding
these rates, but this will not prevent us from defining the control subsets. Making assumptions regard-
ing the rates appearing in the conditions of our theoretical results and defining judiciously the control
subsets will allow to gain general insights into the situations in which the lifted samplers are expected
to outperform their MH counterparts, and also into those in which there is no guarantee. In Section 5,
we conduct a thorough study in a specific context of graphical-model simulation. This will allow to
have a concrete example of how the assumptions of our theoretical results can be verified in practice.
That study will also allow to improve the understanding of the behaviour of lifted samplers through
practical results.
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For ease of presentation, we consider in this section the setup where x = (x1, . . . , xn) and x1, . . . , xn ∈
{A,B} with the partial order on X defined in (6). We consider, additionally, but without loss of gen-
erality, a Ising model context where A = −1 and B = +1. Finally, we consider that the neighbour-
hood structure, used by all samplers, is the typical one, meaning that the neighbourhoods are set to
N(x) = {y ∈ Xn :

∑
i |xi − yi | = 2}, so that the algorithms propose to flip a single bit at each iteration.

Because of the nature of our analysis, we, as in Section 2, highlight a dependency on n of the target
distribution, the state-space, and so on, by denoting them by πn, Xn, etc.

4.1. Uniform proposal distributions

In the reversible MH sampler, it is common, as mentioned in Section 3.3, to set the proposal distribu-
tion, denoted by qx for this algorithm, to the uniform distribution over the neighbourhood of the current
state x ∈ Xn, that is qx =U{N(x)}. In the framework of Algorithms 1 and 2, the analogous proposal
distribution is naturally defined as qx,ν =U{Nν(x)}. In this case, the acceptance probability (7) of a
proposed move becomes

αν(x,y) = 1 ∧ aν(x,y) , aν(x,y) :=
πn(y) |Nν(x)|
πn(x) |N−ν(y)|

,

where we refer to aν as the acceptance ratio. The function | · | when applied to a set is the cardinality.
In the MH sampler, given that the neighbourhoods are set to N(x) = {y ∈ Xn :

∑
i |xi − yi | = 2}, the

uniform distribution chooses which bit to flip uniformly at random. Therefore, the size of the neigh-
bourhoods in this sampler is constant for any x and is given by n. This implies that the acceptance
probability in this sampler, denoted by α(x,y), reduces to

α(x,y) = 1 ∧ a(x,y) , a(x,y) :=
πn(y) qy(x)
πn(x) qx(y)

=
πn(y)
πn(x)

.

In the lifted case, we have that for any ν ∈ {−1,+1}, nν(x) =
∑n

i=1 1xi=ν and the acceptance proba-
bility can thus be rewritten as:

αν(x,y) = 1 ∧ aν(x,y) , aν(x,y) = a(x,y) n−ν(x)
nν(y)

. (11)

Indeed, Nν(x) = {y ∈ Xn : there exists one j such that yj = −xj = ν} implies that |Nν(x)| = n−ν(x). The
acceptance probability αν thus depends on an additional factor n−ν(x)/nν(y) compared to α in the MH
sampler. While the reversible sampler is allowed to backtrack, which makes the size of the neighbour-
hoods constant, the size of the neighbourhoods diminishes in the lifted sampler as the chain moves
further in a given direction (making the neighbourhoods in the reverse direction bigger and bigger). As
a consequence, the longer the acceptance streak, the smaller n−ν(x)/nν(y). On an acceptance streak,
this factor eventually becomes less than one and thus shrinks αν , relatively to the MH acceptance ratio,
until the lifted chain switches its direction. To summarize, the price to pay when considering a Markov
chain with persistent dynamic is a shrinking factor n−ν(x)/nν(y) in the acceptance ratio.

An ideal situation, which is incompatible with most statistical models, is one where

|N−1(x)| = |N+1(x)| = |N(x)|/2 = n/2, for πn-almost all x ∈ Xn. (12)

This implies that if the chain is at state (x, ν), a(x,y) = aν(x,y) for all y ∈ Nν(x). Qualitatively, the
persistent dynamic of the lifted chain is no longer counter-balanced by the shrinking factor and is thus
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expected to be more efficient than MH. This fact is made rigourous in Corollary 2 below, which follows
from Theorem 7 of Andrieu and Livingstone (2021). In the rest of this subsection, the transition kernel
corresponding to Algorithm 2 with qx,ν =U{Nν(x)} is denoted by Pρ,n and that of the MH sampler
with qx =U{N(x)} by PMH,n. Recall that Algorithm 2 with ρw

ν corresponds to Algorithm 1.

Corollary 2. Let n ∈ N. If Xn is finite and (12) holds, then for any function fn : X × {−1,+1} → R
such that fn(x,−1) = fn(x,+1), we have var( fn,Pρ,n) ≤ var( fn,PMH,n).

The proof of Corollary 2 is postponed to Section 3 of the Supplementary Material (Gagnon and
Maire (2024)) but its main steps are now presented as they highlight what is important to obtain
such an ordering. Central to the proof of Corollary 2 is the idea that once a lifted sampler is de-
fined, it is possible to identify a non-lifted counterpart which differs from Algorithm 2 in that the
direction is resampled ν ∼ U{−1,+1} at the beginning of each iteration. At each iteration, a choice
between qx,−1 and qx,+1 is thus first made uniformly at random, and the proposal is next sampled. Non-
lifted refers to the fact that, while operating on the extended state-space, the systematic resampling
of ν makes the marginal dynamic {Xk } Markov again, and reversible. This scheme, when looking
at functions fn with fn(x,−1) = fn(x,+1), makes the extension of state-space to include the direc-
tion variable superfluous, explaining how a comparison between var( fn,Pρ,n) and var( fn,PMH,n) is
possible. Let Prev.,n be the transition kernel of this non-lifted reversible Markov chain. As noted in
Andrieu and Livingstone (2021), Prev.,n can indeed be seen as an intermediate kernel through which
comparison of the asymptotic variance of Pρ,n and PMH,n is possible if one can establish, perhaps
independently, that var( f ,Pρ,n) ≤ var( f ,Prev.,n) and var( f ,Prev.,n) ≤ var( f ,PMH,n). While establish-
ing the former essentially follows from Theorem 7 of Andrieu and Livingstone (2021), the latter may
prove more difficult. However, under (12), it turns out that Prev.,n = PMH,n, trivially establishing that
var( f ,Prev.,n) = var( f ,PMH,n). Indeed, the sub-stochastic part of Prev.,n associated with accepted pro-
posals is

(1/2)qx,+1(y)α+1(x,y) + (1/2)qx,−1(y)α−1(x,y), (13)

and it can be readily checked that under (12), (13) indeed coincides with the sub-stochastic part of
PMH,n. These are the same mathematical arguments that allow to prove the dominance mentioned in
Section 1.3 of lifted samplers over their MH counterparts when the state-space is totally ordered.

The incompatibility of the condition (12) with most statistical models motivates us to take our anal-
ysis one step further, and this is where the asymptotic Peskun ordering presented in Section 2 proves
useful. Note that in order to find a model such that (12) is satisfied, one has to be quite creative; an
example is provided in Section 4 of the Supplementary Material (Gagnon and Maire (2024)). The
next step in our analysis is to establish if the order on the asymptotic variances still holds when (12)
is relaxed, and if not, we want to find conditions under which var( fn,Pρ,n) and var( fn,PMH,n) can be
compared. A modification of our example presented in the supplementary material shows that the order
on the asymptotic variances does not necessarily hold when (12) is relaxed. This should not come as
a surprise in the light of the aforementioned observations about the potentially shrinking factor in αν .
Comparing the efficiency of PMH,n and Pρ,n beyond the context of Corollary 2 is not an easy task for
several reasons:

• Pρ,n is not reversible and most techniques to establish domination results between Markov kernels
hold for reversible kernels, Andrieu and Livingstone (2021) being a noteworthy exception;

• the two kernels PMH,n and Pρ,n are not defined on the same state-space.

For these reasons, finding reasonable conditions under which var( fn,Prev.,n) and var( fn,PMH,n) can
be compared appears to be a suitable route to establish a comparison between Pρ,n et PMH,n (given
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that we already know that var( fn,Pρ,n) ≤ var( fn,Prev.,n) using similar arguments to those used to prove
Corollary 2). We thus employ Theorems 2 and 3.

Note that if one manages to design the distributions qx,ν such that qx(y) = (1/2)qx,−1(y) +
(1/2)qx,+1(y) for all x,y, then one directly has Prev.,n = PMH,n and thus a comparison between Pρ,n

and PMH,n; this is the approach proposed in Kamatani and Song (2023) for general state-spaces, but
it is one that cannot in general be applied in the case of discrete state-spaces. Note also that if one is
interested in comparing a lifted sampler using proposal distributions qx,ν with a MH sampler using
proposal distributions defined as qx(y) = (1/2)qx,−1(y)+ (1/2)qx,+1(y), then again Prev.,n = PMH,n and
a comparison between Pρ,n and PMH,n is direct. In the context of variable selection, the latter MH sam-
pler corresponds to one where it is first chosen to add a covariate or remove one already in the model,
and next which covariate to add or delete. In our paper, we focus on the common situation where, in the
MH sampler, a proposal is made uniformly at random from N(x) (or using a locally-balanced weight
function as described in Section 4.2), and we want to compare a lifted sampler with the MH one.

The idea that we now explore is to consider situations where the mass concentrates on an area where
we have a control over the factor n−ν(x)/nν(y) in αν (11), which translates into the existence of a
(non-trivial) relationship between the sub-stochastic part of Prev.,n and that of PMH,n on this area. To
simplify, we consider situations where the mass concentrates on the centre of the domain, i.e., on states
where n−1(x) and n+1(x) are not too far from n/2, and set

X̃n := {x ∈ Xn : n/2 − β(n) ≤ n−1(x),n+1(x) ≤ n/2 + β(n)}, (14)

by choosing a specific function β :N→ (0,∞). With this definition of X̃n and that of the neighbourhood
structure (mentioned at the beginning of Section 4), we are able to state that the interior of X̃n is as
follows: X̃◦

n = {x ∈ Xn : n/2− β(n)+1 ≤ n−1(x),n+1(x) ≤ n/2+ β(n) −1}. Note that the analysis can be
done by considering instead that the mass concentrates on states where the minimum between n−1(x)
and n+1(x) is not too far from n/κ with κ ≥ 2. The difference is that, with control subsets defined as in
(14), ω(n) will be seen to converge to ω = 1, whereas in the general framework, ω ≤ 1 and a function
of κ, and the results are more complicated to present. Constructing the control subsets {X̃n} as in (14)
implies that, remarkably, the analysis is parameterized by the sole function β.

Lemma 1. Consider the definition of X̃n in (14). Assume that β is such that β(n) = o(n). Then for a
large enough n, it holds that P̃rev.,n(x,y) ≥ ω(n)P̃MH,n(x,y), for all (x,y) ∈ X̃2

n with x � y, where

ω(n) =
(
1 − β(n)

n/2

) (
1 +
β(n)
n/2

) −2

→ ω = 1. (15)

Intuitively, if β(n) grows like n or faster, then for a large enough n we have Xn = X̃n which boils
down to the initial Peskun’s problem so the assumption β(n) = o(n) is sensible. If β(n) grows too slowly
then the control subsets X̃n may eventually fail to track the bulk of Xn, resulting in that the mass of
πn will not concentrate on X̃◦

n and that the restricted kernels will be too different from the original
ones to allow the machinery of Section 2 to work. The condition β(n) = o(n), together with (15), means
that Assumption 1 holds with ω = 1. If we assume that the spectral gaps are bounded away from zero,
which is realistic, for example, when β(n) is constant, and that πn concentrates on X̃◦

n defined above
(implying that Assumption 2 holds), then Theorem 2 can be applied and

var( fn,Pρ,n) ≤ var( fn,Prev.,n) ≤
1

1 − ε var( fn,PMH,n) +
ε

2(1 − ε) +
ε

2
,
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for any ε > 0, provided that n is large enough and that we consider functions fn ∈ L2
0,1(πn) satisfying (3)

and such that fn(x,−1) = fn(x,+1). The assumption on the spectral gaps can be relaxed and Theorem 3
can be instead applied if we are able to establish a connection between the rate at which πn concentrates
on X̃◦

n and that at which λ(n) decreases, i.e., if (5) can be verified.
To summarize, our analysis suggests that the lifted sampler with uniform proposal distributions dom-

inates its MH counterpart (at least for n large enough and a specific class of functions) when πn con-
centrates on states in the centre of the domain. If it concentrates elsewhere, then the lifted sampler is
expected to be comparable to its MH counterpart as long as πn does not concentrate on areas where the
neighbourhoods, and thus the additional factors n−ν(x)/nν(y) in (11), are very unbalanced.

When n is large, uniform proposal distributions, whether they are used in a lifted or MH sampler,
are likely to represent a poor strategy. We will thus not focus on samplers with uniform proposal dis-
tributions in our study in a context of graphical-model simulation in Section 5. We will rather focus on
studying locally-balanced samplers presented in the next subsection which represent efficient alterna-
tives.

4.2. Locally-balanced proposal distributions

In this section, we discuss and analyse samplers using locally-balanced proposal distributions. For
simplicity, we will use the same notation as in Section 4.1: qx and qx,ν are the proposal distributions
in the MH and lifted samplers, respectively, but in this section they are locally-balanced (a definition
follows), and Pρ,n, Prev.,n and PMH,n are the Markov kernels associated with Algorithm 2, and its non-
lifted and MH counterparts, respectively, which are all using locally-balanced proposal distributions.
Recall that Algorithm 1 is a special case of Algorithm 2 with ρν(x) = 1 −Tν(x,X).

As defined in Zanella (2020) in the MH framework, a proposal distribution is locally-balanced if

qx(y) = g
(
πn(y)
πn(x)

) /
cn(x), y ∈ N(x),

where cn(x) is the normalizing constant, that is cn(x) =
∑

x′ ∈N(x) g(πn(x′)/πn(x)), and g is a positive
continuous function such that g(x)/g(1/x) = x for x > 0. Such a function g implies that the acceptance
probability in the MH algorithm is given by

α(x,y) = 1 ∧
πn(y) qy(x)
πn(x) qx(y)

= 1 ∧ cn(x)
cn(y)

. (16)

The name locally-balanced comes from the fact that, in the limit, when the state-space becomes larger
and larger (but the neighbourhoods have a fixed size and proposed moves are thus local), there is no
need for an accept-reject step anymore; the proposal distributions leave the distribution πn invariant.
Indeed, as shown in Zanella (2020), sup(x,y)∈Xn : y∈N(x) cn(x)/cn(y) → 1 as n →∞ under some assump-
tions. The author more precisely considers that x = (x1, . . . , xn) and that at any given iteration, only a
small fraction of the n components is proposed to change values. The result holds when there exists a
uniform bound which does not depend on n on πn(y)/πn(x) for all pairs of neighbouring states (x,y) and
the random variables X1, . . . ,Xn exhibit a structure of conditional independence, the latter implying that
the normalizing constants cn(x) and cn(y) share a lot of terms. Note that cn(x) and cn(y) are both sums
over the same number of terms, which is crucial in showing that sup(x,y)∈Xn : y∈N(x) cn(x)/cn(y) → 1.

Two valid choices for g are g(x) =
√

x and g(x) = x/(1 + x), the latter yielding what is referred to
as the Barker proposal distribution in reference to Barker (1965)’s acceptance probability choice. The
advantage of the latter choice is that it is a bounded function of x, which stabilizes the normalizing
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constants and thus the acceptance probability, see Zanella (2020), and Livingstone and Zanella (2022)
for the continuous-random-variable case.

A locally-balanced proposal distribution in the lifted-sampler framework is naturally defined as

qx,ν(y) = g
(
πn(y)
πn(x)

) /
cn,ν(x), y ∈ Nν(x),

where cn,ν(x) is the normalizing constant and g is as above. In this case,

αν(x,y) = 1 ∧
πn(y) qy,−ν(x)
πn(x) qx,ν(y)

= 1 ∧
cn,ν(x)
cn,−ν(y)

= 1 ∧ cn(x)
cn(y)

cn,ν(x)/cn(x)
cn,−ν(y)/cn(y)

. (17)

As with the uniform proposal distributions in Section 4.1, we see that the acceptance probability in
the lifted sampler (17) differs from that in MH (16). There is thus again a price to pay to use a lifted
sampler: there is no guarantee that cn,ν(x)/cn,−ν(y) → 1 for y ∈ N(x), even when cn(x)/cn(y) → 1. A
reason is because the sums cn,ν(x) and cn,−ν(y) are in this case not over the same number of terms, a
consequence of the nature of the lifted sampler.

As previously, the reversible counterpart to the lifted algorithm chooses at each iteration uniformly
at random a proposal distribution between qx,−1 and qx,+1 from which a proposal is sampled. Imagine
that cn(x)/cn(y) = 1 for all x,y, then one can notice from (17) that the stability of ratios cn,ν(x)/cn,−ν(y)
is crucial to establish a connection between the sub-stochastic parts of Prev.,n and PMH,n (recall (13)).
In fact, in an ideal situation, which is again incompatible with most statistical models, one can establish
that Prev.,n = PMH,n, guaranteeing a dominance of the lifted sampler.

Corollary 3. Let n ∈ N. If Xn is finite and cn,−1(x) = cn,+1(x), for all x ∈ Xn, then for any function
fn : X × {−1,+1} → R such that fn(x,−1) = fn(x,+1), we have var( fn,Pρ,n) ≤ var( fn,PMH,n).

Locally-balanced proposal distributions allow to explore the state-space by often proposing points
that belong to the subset on which the mass concentrates. Corollary 3 tells us that, in order to compare
Prev.,n to PMH,n (and thus Pρ,n to PMH,n), the directional neighbourhoods to which these points belong
must have similar mass, implying similar normalizing constants cn,−1(x) and cn,+1(x) over the subset.
The analysis can be pushed beyond Corollary 3 by making use of our asymptotic framework. To sim-
plify, we consider, as in Zanella (2020), the situation where sup cn(x)/cn(y) → 1 where the supremum
is over all neighbouring states x,y, and ω = 1.

We now turn to the definition of the control subset:

X̃n = {x ∈ Xn : 1 − β(n)/(cn(x)/2) ≤ cn,ν(x)/(cn(x)/2) ≤ 1 + β(n)/(cn(x)/2)} (18)

= {x ∈ Xn : |cn,−1(x) − cn,+1(x)| ≤ 2β(n)},

which again is defined through a function β : N→ (0,∞). The equivalence between the sets follows
from the fact that cn(x) = cn,−1(x)+ cn,+1(x). Under assumptions on the target such as those in Zanella
(2020), the normalizing constants cn(x) scale linearly with n and below we show that lifted and MH
samplers can be compared in terms of asymptotic variances when β(n) = o(n), because in this case for
states in X̃n, β(n)/(cn(x)/2) vanishes and the acceptance probabilities in the lifted sampler are close
to 1, as those in MH. Notice that in the case of locally-balanced samplers, we cannot state explicitly
what the interior of X̃n is without specifying πn. With the current level of generality, we cannot go
beyond the definition presented in Section 2, which in the framework of this section is X̃◦

n := {x ∈ X̃n :
qx(X̃

c
n) = 0}.



2318 P. Gagnon and F. Maire

As in the previous section, the analysis can be done by considering instead that the mass concentrates
on states where the minimum between cn,−1(x) and cn,+1(x) is not too far from cn(x)/κ with κ ≥ 2. In
this case, ω ≤ 1 and a function of κ, and the definition of the control subset and results are more
complex. From the definition of X̃n in (18), we are able to establish a result analogous to Lemma 1.

Lemma 2. Consider the definition of X̃n in (18) and let Rn := {(x,y) ∈ X̃2
n : y ∈ N(x)}. Assume that

inf
(x,y)∈Rn

g

(
πn(y)
πn(x)

)
≥ m , τn := sup

(x,y)∈Rn

cn(x)
cn(y)

→ 1 , β(n) = o(n) ,

with m independent of n. Then, for a large enough n, it holds that P̃rev.,n(x,y) ≥ ω(n)P̃MH,n(x,y), for
all (x,y) ∈ X̃2

n with x � y, where

ω(n) =
(
1 +
β(n)

nm/2

) −1 (
1 − 2β(n)/nm

1 + 2τnβ(n)/nm

)
→ ω = 1 .

Clearly, under the assumptions of Lemma 2 and that πn concentrates on X̃◦
n, Assumptions 1 and 2

are satisfied and we can apply Theorem 2 or Theorem 3 with ω = 1, depending on whether the spectral
gaps are bounded away from 0 or not. This gives an asymptotic ordering between PMH,n and Prev.,n,
and thus between PMH,n and Pρ,n.

It is expected that lifted samplers only have an advantage when there is room for persistent move-
ment, meaning that they can explore the state-space by using paths of considerable lengths. The analysis
conducted in the current section shows that lifted samplers using locally-balanced proposal distribu-
tions are expected to have an advantage when, additionally, the mass does not vary much from a direc-
tional neighbourhood to another on the subset on which πn concentrates. These samplers are expected
to be comparable to their MH counterparts when, on the subset, the normalizing constants cn,−1(x) and
cn,+1(x) are bounded by cn(x)/κ ± β(n) with κ > 2.

5. Simulation of a simple Ising model: A case study

The sampling method developed in Section 3 and results presented in Section 4 are illustrated through
several examples. In this section, we proceed by studying a simple Ising model that allows for an explicit
definition of X̃n and X̃◦

n when using locally-balanced samplers, and a verification of the assumptions of
Theorem 3. As mentioned in Section 1.4, we study in Section 1 of the Supplementary Material (Gagnon
and Maire (2024)) more complex problems (including the simulation of a Ising model which is more
complex) for which an explicit definition of X̃n and X̃◦

n and a verification of the assumptions is beyond
the scope of the manuscript.

The model that we study here is the following:

πn(x) =
1

Zn
exp

(
n∑
i=1

αi xi

)
, x = (x1, . . . , xn) ∈ {−1,+1}n, (19)

where Zn is the normalizing constant and αi ∈ R. This model can be thought of as an Ising model with
a single parameter αn := (α1, . . . ,αn) which is often referred to as the external field. This parameter
essentially tends to polarize each spin. The difference with classical Ising models like that in Section 1
of the Supplementary Material (Gagnon and Maire (2024)) is that the model defined in (19) does not
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possess a spatial-correlation parameter. We can think of this model as being defined on a square lattice
(with x1, . . . , xη being the values of the components on the first line, xη+1, . . . , x2η being the values
of the components on the second line, and so on), but by omitting the spatial correlation, the form
on which the model is defined is actually not important. As mentioned in Section 1.4, this simplified
model can be seen as an approximation to the high temperature model. A common problem in statistical
physics is to estimate the average magnetisation of an Ising model, the magnetisation being defined as
the mapping x �→

∑n
i=1 xi .

For the study conducted here, we consider the following simplified situation: n is even, αi = ±c with
c a positive constant, and |{i : αi = −c}| = |{i : αi = c}| = n/2, implying that the number of elements in
the external field with the value −c is the same as the number of elements with the value c. In our study,
we focus on locally-balanced samplers and consider to simplify that g is a monotonically increasing
function, which is the case for the two functions mentioned in Section 4.2, namely g(x) =

√
x and

g(x) = x/(1 + x).
In the simplified situation described above, we have that

πn(x) ∝ exp ���
∑

{i:αi xi=+c }
c +

∑
{i:αi xi=−c }

−c�	
 = exp (c(|{i : αi xi = +c}| − |{i : αi xi = −c}|))

= exp (c(n − 2|{i : αi xi = −c}|))

∝ exp (−2c |{i : αi xi = −c}|) . (20)

From the expression in (20), we easily deduce that the mode, denoted by x∗, is such that |{i : αi x∗i =
−c}| = 0, and that all the other values of πn are characterized by |{i : αi xi = −c}|. Let us define d(x) :=
|{i : αi xi = −c}| ∈ {0, . . . ,n}, which can be seen as a distance from the mode. We make the dependence
on n implicit to simplify. With the expression in (20), we have a better understanding of the model and
how to compute probabilities of different events.

To motivate the use of our weak Peskun ordering for a comparison between the lifted and MH
samplers, we provide a result about an inequality on the transition probabilities when considering the
whole state-space.

Proposition 2. Within the framework described in this section, we have the following lower bound:

Prev.,n(x,y) ≥ (1/2)PMH,n(x,y),

for all (x,y) ∈ X2
n with x � y, and for all n. Also, we have the following upper bound:

Prev.,n(x,y) ≤ (1/2)PMH,n(x,y)
(
1 − g(exp(2c)) − g(exp(−2c))

ng(exp(−2c))

) −1

,

for certain (x,y) ∈ X2
n with x � y, when n > exp(2c) − 1. It is thus essentially not possible to obtain a

better lower bound than that above.

Proposition 2 implies that the ordering based on Lemma 33 of Andrieu, Lee and Vihola (2018) is the
following:

var( fn,Pρ,n) ≤ var( fn,Prev.,n) ≤ 2 var( fn,PMH,n) + 1, (21)

for any fn ∈ L2
0,1(πn).
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We now turn to an analysis with an objective of applying our weak Peskun ordering. Our analysis
allows to show that we can obtain tighter bounds on asymptotic variances when focusing on a subset of
the state-space. The first step of such an analysis is to define X̃n and understand which states belong to
X̃◦

n. We thus start with a result which will motivate a simple and explicit definition of X̃n that we will
connect to that in (18), and from which an explicit characterization of X̃◦

n will be easily deduced.

Proposition 3. Within the framework described in this section, we have that for any x and n,

1 − (g(exp(2c)) + g(exp(−2c))) d(x)/2
cn(x)/2

≤
cn,ν(x)
cn(x)/2

≤ 1 +
(g(exp(2c)) + g(exp(−2c))) d(x)/2

cn(x)/2
.

Proposition 3 indicates that setting X̃n := {x : d(x) ≤ �φ(n)�} with φ a monotonically increasing
function allows to have a control on the ratio of normalizing constants of qx and qx,ν , and thus on
the difference between Prev.,n and PMH,n. In particular, it allows to verify the inequality in (18) with
β(n) = (g(exp(2c)) + g(exp(−2c))) �φ(n)�/2, even though X̃n is not defined as in (18). This is because

X̃n ⊂ {x ∈ Xn : 1 − β(n)/(cn(x)/2) ≤ cn,ν(x)/(cn(x)/2) ≤ 1 + β(n)/(cn(x)/2)}.

From our definition of X̃n, we can deduce that X̃◦
n = {x : d(x) ≤ �φ(n)� − 1}. With those characteriza-

tions of X̃n and X̃◦
n, we easily understand which states belong to those subsets (comparatively to the

definition of X̃n in (18) and that of X̃◦
n that follows from it), and thus how to compute probabilities like

1 − πn(X̃
◦
n).

Now that we have define the subsets {X̃n}, from which {X̃◦
n} are deduced, the next step is to verify

whether the mass concentrates on X̃◦
n (Assumption 2). In our framework, X̃◦

n depends on the definition
of φ(n). We present a result which indicates how to set φ(n) to obtain a mass concentration on X̃◦

n.

Proposition 4. Within the framework described in this section, if �φ(n)� ≤ n exp(−2c)
1+exp(−2c) , then 1−πn(X̃

◦
n)

does not converge to 0. If n > �φ(n)� > n exp(−2c)
1+exp(−2c) with �φ(n)�/n − exp(−2c)

1+exp(−2c) converging towards a

positive constant, then 1 − πn(X̃
◦
n) converges to 0 at an exponential rate.

Proposition 4 indicates that setting φ(n) = o(n) does not allow for a mass concentration on X̃◦
n.

The result is thus somewhat negative as it prevents us to apply the results of Section 4, in particu-
lar Lemma 2, and forces us to exploit the structure of the current problem to establish a refined or-
der between Prev.,n and PMH,n (Assumption 1). Proposition 4 indicates that, to obtain a mass con-
centration (at an exponential rate), we have to enlarge X̃n and include states that are further away
from the mode. We now establish a refined order between Prev.,n and PMH,n on X̃n, when setting
φ(n) = n exp(−2c)

1+exp(−2c) (1 + ε) + 1 with ε > 0 arbitrarily small (which is essentially the best choice of φ(n)
that ensures that �φ(n)� > n exp(−2c)

1+exp(−2c) with �φ(n)�/n − exp(−2c)
1+exp(−2c) converging towards a positive con-

stant).

Proposition 5. Within the framework described in this section and with φ(n) = n exp(−2c)
1+exp(−2c) (1 + ε) + 1,

we have that

Prev.,n(x,y) ≥ ω(n)PMH,n(x,y),
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Figure 2. ω as a function of c, without the factors 1 + ε.

with

ω(n) → 1
2
+

1
2

1 − 2 exp(−2c)(1+ε)
1+exp(−2c)

1 + 2 1+ε
1+exp(−2c)

= ω,

for all (x,y) ∈ X̃2
n with x � y.

Proposition 5 highlights a dependence of ω on the value of c: a smaller value of c yields a larger
φ(n) which results in a larger subset X̃n and a possibility of more unbalanced ratios of normalizing
constants of qx and qx,ν , and vice versa. We present in Figure 2 ω as a function of c, without the factors
1 + ε that can be made arbitrarily close to 1.

Provided that the spectral gaps of Prev.,n, P̃rev.,n, PMH,n and P̃MH,n do not decrease too quickly as n
increases (a result about that follows), Proposition 4 together with Proposition 5 ensure that Theorem 3
can be applied for a class of functions, yielding

var( fn,Pρ,n) ≤ var( fn,Prev.,n) ≤
1
ω − ε var( fn,PMH,n) +

1
2

(
1
ω − ε +

1
ω

)
− 1 +

ε

2
,

for any ε ∈ (0,ω), provided that n is large enough. When c is large enough, we essentially have an upper
bound of (3/2)var( fn,PMH,n) + 1/2, comparatively to what is obtained in (21).

The advantage of this example is that it is standard, easy to understand, and simple enough to prove
mass-concentration results, precise orderings between Prev.,n and PMH,n, and spectral-gap bounds. This
simplicity follows from an independence between the components of x and the steady decrease in mass
by a factor of exp(−2c) as getting away from the mode, regardless of which components of x are flipped
and become misaligned with the external field. This steady, but relatively slow, decrease in mass forces
us to set φ to be (essentially) proportional to n. This in turn leads to large subsets X̃n and thus an
improvement in terms of orderings between Prev.,n and PMH,n which is not optimal, i.e., with ω < 1. In
Section 4 of the Supplementary Material (Gagnon and Maire (2024)), we construct an example (thus
an example that is less standard and simple) in which we are able to achieve ω = 1 by applying the
results of Section 4, in particular Lemma 2.

We now present the last piece of evidence that Theorem 3 can be applied. More specifically, we
present a result about lower bounds on the spectral gaps of Prev.,n and PMH,n.

Proposition 6. Within the framework described in this section, Prev.,n and PMH,n have spectral gaps
with lower bounds that decrease to 0 as n increases at a rate of n log n.
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While we do not prove a result about the spectral gaps of P̃rev.,n and P̃MH,n, there is no reason to
believe that these decrease in another regime (for instance, with an exponential rate) given the definition
of the sequence of subsets {X̃n}. For small values of n, we computed the spectral gaps through a
spectral decomposition of P̃rev.,n and P̃MH,n and the observed rate was polynomial.

To summarize, the analysis in this section shows that Theorem 3 can be applied for any δ > 0 and γ ∈
(0, δ/(2 + δ)), when considering the class of functions fn with a (2 + δ)-norm that grows polynomially
with n or slower. An example of functions which satisfies this condition is the standardized version of
the magnetisation x �→

∑n
i=1 xi , as indicated by Proposition 7 below.

Proposition 7. Let fn be the standardized version of the mapping x �→
∑n

i=1 xi . Within the framework
described in this section, ‖ fn‖πn ,4 → 31/4 as n →∞.

6. Discussion

In this paper, we have introduced a weaker version of the celebrated Peskun ordering (Peskun, 1973)
and have used it to analyse a class of lifted samplers designed to sample from distributions whose
supports are partially-ordered discrete state-spaces. The weaker ordering does not require to establish
a relationship between the Markov kernels on the whole state-space; it is only required to establish
a relationship on a subset of the state-space, but the order between the asymptotic variances holds
asymptotically, as a varying parameter grows without bound, as long as the mass concentrates on the
subset (and provided that performance guarantees hold). This weaker requirement turned out to be
useful to analyse some aspects of the lifted samplers and in particular how they compare to their MH
counterparts. We have also shown that these lifted samplers can be straightforwardly implemented, at
no additional computational cost and complexity, whenever a partial ordering on Xn can be established.

The main contribution of our analysis of the lifted samplers in Section 4 is to provide insights into
the situations in which they are expected to outperform their MH counterparts, and also into those in
which there is no guarantee. The analysis conducted shows that lifted samplers are expected to have an
advantage when the mass does not vary much from a directional neighbourhood to another on the subset
on which πn concentrates and when that subset allows the samplers to experience constant-momentum
excursions. It is when they experience constant-momentum excursions of considerable lengths that the
lifted samplers shine. While this point was reasonably well understood by the MCMC community,
the merit of that part of our research presented in Section 4 has been to provide a rigorous analysis
framework, which, de facto, can be used to study similar problems, perhaps some for which one does
not have a clear intuition. Our analysis was conducted under a general framework, without focusing
on specific statistical models or systems, explaining why we were not in a position to explicitly verify
the assumptions of Theorems 2 and 3. We dug deeper and provided a thorough analysis in a context
of simulation of a simple Ising model in Section 5, where the normalizing constants cn,ν(x) and cn(x)
have simple expressions, to take the study of lifted samplers one step further and to provide a concrete
example of verification of the assumptions of Theorem 3.

One of the shortcomings of the application of our theoretical results to lifted samplers is that it
does not give any quantitative measurement of the improvement offered by a lifted sampler over
its MH counterpart when estimating πn fn, meaning that they are not such that var( fn,Pρ,n) ≤
(1/ωn)var( fn,PMH,n) + error for some ωn > 1. Indeed, our analysis only allows to establish an in-
equality, but in the case where (essentially) ωn ≤ 1. This a consequence of the route we followed to
compare the asymptotic variances of the lifted and MH samplers:

var( fn,Pρ,n) ≤ var( fn,Prev.,n) ≤
1
ωn

var( fn,PMH,n) +
1
ωn

− 1 + error.
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In particular, no quantitative reduction factor is provided in the first inequality, which is expected given
that this inequality holds in great generality (for any fn and any πn). Given that Prev.,n and PMH,n are,
at best, similar and in fact, as mentioned in Section 2, ωn is usually larger than one, a way to have a
quantitative variance improvement factor is to obtain a different inequality between var( fn,Pρ,n) and
var( fn,Prev.,n) by leveraging an advantageous structure of the target distribution when it exists. We
believe that this is possible, yet difficult, as the analysis needs to take into account the time duration of
constant-momentum excursions conducted by the lifted sampler. This typically involves an analysis of
k-step transition kernels with k > 1 because it is only after k transitions starting from a state x that we
start to see a significant difference between lifted samplers and their non-lifted and MH counterparts.

Our work can also be extended in another direction: the theoretical result can be generalized to
general state-spaces and the lifted samplers can be applied in cases where there exist partial orders on
these general state-spaces. However, our proofs implicitly assume that the Markov kernels are uniformly
ergodic and it would be interesting to see how this assumption can be relaxed.

A methodological question which has been unaddressed in the paper is that of the choice of the
partial order. If a specific state-space admits a partial order, it needs not be unique and its choice
may significantly impact the sampler. Indeed, some choices may guarantee more than others those
aforementioned constant-momentum excursions. If specifically interested in the estimation of πn fn for
a particular fn, one could also design the partial order based on fn, in the spirit of Faizi, Deligiannidis
and Rosta (2020).

Finally, in terms of applications of the theoretical work on the weak Peskun ordering, it would be
interesting to consider the particular case of Bayesian models where a Bernstein von-Mises theorem
holds. Comparing two MCMC methods sampling from the corresponding posterior distribution, our re-
sult suggests that one only needs to compare those samplers locally around a realization of a consistent
parameter estimator. A question that naturally arises in this context is: is it possible to have a precise
estimate of the sample size beyond which the approximate asymptotic-variance ordering holds? From
a methodological standpoint this would motivate the design of samplers that are particularly efficient
near the parameter estimate, perhaps at the expense of their behaviour in the tails of the distribution.
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