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Asymptotics of discrete Schrödinger bridges via
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Consider the problem of matching two independent i.i.d. samples of size N from two distributions P and Q in Rd .
For an arbitrary continuous cost function, the optimal assignment problem looks for the matching that minimizes
the total cost. We consider instead in this paper the problem where each matching is endowed with a Gibbs prob-
ability weight proportional to the exponential of the negative total cost of that matching. Viewing each matching
as a joint distribution with N atoms, we then take a convex combination with respect to the above Gibbs proba-
bility measure. We show that this resulting random joint distribution converges, as N →∞, to the solution of a
variational problem, introduced by Föllmer, called the Schrödinger problem. We also prove a limiting Gaussian
fluctuation for this convergence in the form of central limit theorems for integrated test functions. This establishes
a novel passage for the transition from discrete to continuum in Schrödinger’s lazy gas experiment.

Keywords: Chaos decomposition; contiguity; entropy regularization; Hoeffding decomposition; infinite-order
U-statistics; optimal matching; optimal transport; Schrödinger bridge

1. Introduction

Consider two probability distributions P and Q on Rd . Let {Xi}i∈[N ] and {Yi}i∈[N ] be two independent
i.i.d. samples from P and Q, respectively, where [N] := {1, . . . ,N}. Consider a continuous cost function
c : Rd ×Rd → [0,∞) such that c(x, y) = 0 if and only if x = y. Let SN be the set of permutations of the
set [N] := {1,2, . . . ,N}.

Every permutation can be viewed as a matching between the two sets of random variables. Choose
an ε > 0 whose significance will be made clear shortly. Suppose we weigh every permutation σ by the
(random) weight w(σ) := exp(−

∑N
i=1 c(Xi,Yσi )/ε). That is, define a Gibbs measure on SN ,

q∗ε (σ) :=
w(σ)∑

τ∈SN
w(τ) =

exp
(
−
∑N

i=1 c(Xi,Yσi )/ε
)

∑
τ∈SN

exp
(
−
∑N

i=1 c(Xi,Yτi )/ε
) , σ ∈ SN . (1)

Now mix all possible matchings with probabilities given by q∗ε by defining

μ̂Nε :=
∑

σ∈SN

q∗ε (σ)
1
N

N∑
i=1

δ(Xi ,Yσi
). (2)

The random measure μ̂Nε is a joint distribution with marginals given by the two empirical distribu-
tions P̂N = 1

N

∑N
i=1 δXi and Q̂N = 1

N

∑N
i=1 δYi . It is obtained by a convex combination of all possible

matchings of atoms. A high cost for a matching results in an exponentially small weight. This paper
deals with the limiting behavior of the sequence of random measures μ̂Nε as N → ∞ while ε > 0 is
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fixed. Concretely, we show that, as N →∞, μ̂Nε converges weakly to, and has Gaussian fluctuations
around, the solution με of the variational problem

Cε (P,Q) := min
ν∈Π(P,Q)

[∫
c(x, y)dν(x, y) + εKL(ν | P ⊗ Q)

]
, (3)

where Π(P,Q) is the set of couplings of (P,Q), i.e., all joint probability distributions over Rd ×Rd with
marginals given by P and Q, and KL(ν |P ⊗ Q) :=

∫
log dν

d(P⊗Q)dν if ν� P ⊗ Q and infinity otherwise
is the Kullback-Leibler divergence. Due to [12,58], the solution με satisfies the following equation:
there exist two measurable functions aε and bε such that

dμε
d(P ⊗ Q) (x, y) = ξ(x, y) := exp

[
−1
ε
(c(x, y) − aε (x) − bε (y))

]
. (4)

Schrödinger bridges. The measure με can be viewed as the (static) Schrödinger bridge [11,22,38,59]
connecting P to Q at temperature ε . Assume that the following Markov transition kernel density is
well-defined:

pε (y | x) ∝ exp
[
−1
ε

c(x, y)
]
.

This defines a Markov chain. Suppose (W0,W1) is distributed according to this Markov chain, condi-
tioned on “W0 ∼ P and W1 ∼ Q”. The joint law of (W0,W1) is called the Schrödinger bridge connecting
P to Q at temperature ε . The quoted statement is not an event and is non-trivial to make precise. In con-
tinuum, when both P and Q are densities, the Schrödinger bridge can be made precise as the solution
of the problem called the Schrödinger problem [22,38,59]

min
ν∈Π(P,Q)

[∫
c(x, y)dν(x, y) + εH(ν)

]
, (5)

where H is the entropy defined as H(ν) :=
∫
ν(x, y) log ν(x, y)dxdy if ν is a density and infinity other-

wise. We mention here two surveys [11,39] on this problem. Since this problem and the problem (3)
share the same solution, we call με the Schrödinger bridge.

In the same spirit, the random measure μ̂Nε can also be interpreted as the Schrödinger bridge con-
necting two empirical measures P̂N and Q̂N at temperature ε . In this interpretation μ̂Nε first appeared in
[49, Section 3.2] for a particular cost function. To see this, let Xi = xi and Yi = yi for i ∈ [N]. Then P̂N

and Q̂N are discrete distributions each supported on exactly N atoms. Imagine N independent Markov
chains (or particles) W(1), . . . ,W(N), starting from positions {W0(i) = xi}Ni=1, make jumps according
to the Markov kernel {pε (· | xi)}Ni=1, respectively. Let LN (1) := 1

N

∑N
i=1 W1(i) denote the empirical

distribution of their terminal values and let LN (0,1) = 1
N

∑N
i=1 δ(W0(i),W1(i)) denote the joint empirical

distribution at two time points. The law of LN (0,1), conditioned on LN (1) = Q̂N , is given by the mix-
ture formula μ̂Nε in (2) (given Xi = xi and Yi = yi for i ∈ [N]), which solves Schrödinger’s problem in
the discrete set-up. We refer to μ̂Nε as the discrete Schrödinger bridge.
Partition functions in quantum thermodynamics. Although weighted averages of symmetrized em-
pirical distributions (2) and their variations go way back to Feynman’s work [20], such quantities also
appeared recently in several different contexts. Motivated by the quantum thermodynamics of N non-
interacting Boson particles, a variation of (2) where Yi = Xi for every i has been considered [1–3]. In
this setting, the samples are obviously dependent and P = Q. One of the goals of these articles is to
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compute the trace of the exponential of an N particle Hamilton operator for Bose-Einstein statistics. In
their language, it can be described as the limit

lim
N→∞

1
N

log
⎡⎢⎢⎢⎢⎣

1
N!

∑
σ∈SN

exp

(
−1
ε

N∑
i=1

c(Xi,Yσi )
) ⎤⎥⎥⎥⎥⎦ = −

1
ε

Cε (P,Q). (6)

The term inside the log is called the partition function and is the denominator appearing in (1) scaled
by N!. The marginal measure P comes from a Feyman-Kac representation of the trace operator and is
taken to be either the uniform density over a compact box or the Lebesgue measure on the entire Rd in
which case it fails to be a probability measure. In a similar vein of work, Trashorras [63] considers the
case where Xi = Yi = xi , i ∈ [N], are deterministic points such that its empirical measure 1

N

∑N
i=1 δxi

converges weakly to P =Q as N →∞. If a random permutation σ is chosen uniformly from SN , one
gets a random measure 1

N

∑N
i=1 δ(xi ,xσi

) which is referred to as the symmetrized empirical measure. In
[63], a Large Deviation Principle for this sequence of random measures is derived, recovering the limit
in (6). One of our key results (Corollary 3) establishes the limit in (6) in the case of independent i.i.d.
samples. In fact, this result is obtained from a stronger result (Theorem 2) which gives the exact limit of
a scaled version of (N!)−1 ∑

σ∈SN
exp

(
−ε−1∑n

i=1 c(Xi,Yσi )
)

via a markedly different proof technique
as discussed in Section 1.1. This result can be of independent interest to the literature mentioned above.
Mallows models of random permutations. The Gibbs measure q∗ε itself appears in a more recent work
in an entirely different direction studying the limit of Mallows-type models of random permutations
[43]. This is done in [47] where the interest is in statistical estimation on Mallows models and in a very
recent paper [33] on scaling limits of large random permutations with fixed patterns. In [47, Theorem
1.5] the author obtained the limit (6) for P =Q = Unif(0,1) in the setting when Xi =Yi = i/N , i ∈ [N],
are deterministic. In this case, the empirical measure 1

N

∑N
i=1 δXi can be viewed as a deterministic

approximation of Unif(0,1).
Optimal transport and entropic regularization. As shown in [38], when ε → 0, the Schrödinger
problem recovers the Monge-Kantorovich optimal transport (OT) problem defined as

C(P,Q) = inf
ν∈Π(P,Q)

∫
c(x, y)ν(dxdy). (7)

Since the data points are sampled from densities, they are all distinct almost surely. In this case, the
empirical measures P̂N and Q̂N are discrete measures supported on N atoms. The plug-in estimator
C(P̂N ,Q̂N ) can then be formulated as the linear program

C(P̂N ,Q̂N ) = min
M ∈Π(N−11,N−11)

〈M,C〉, (8)

where Π(N−11,N−11) ⊂ RN×N is the set of matrices such that M1 = M
1 = N−11, i.e., N M is doubly
stochastic, and 〈M,C〉 :=

∑N
i=1

∑N
j=1 c(Xi,Yj )Mi j .

The limiting behavior of C(P̂N ,Q̂N ) towards C(P,Q) has been studied in combinatorics [4], proba-
bility and statistics [23,37,61,68], and applied to economics [24,36]. This problem also arises in non-
parametric statistical hypothesis testing [51] where one tests for the null hypothesis P =Q by checking
whether C(P̂N ,Q̂N ) ≈ 0. This, among other reasons, has spurred a recent interest in the study of asymp-
totic distributions of C(P̂N ,Q̂N ), properly scaled with respect to C(P,Q).

Early works on the large sample behavior of the OT cost were focused on the well-behaved quadratic
cost c(x, y) = |x − y |2 (

√
C(P,Q) is then called the Wasserstein-2 distance between P and Q) on the

real line R; see, e.g. [14,15,48]. These results were built upon the explicit characterization, given by



1948 Z. Harchaoui, L. Liu and S. Pal

quantile functions, of the Wasserstein distances on measures supported on R. Beyond one dimension,
similar results are rather challenging to obtain; see [4,17] for almost sure convergence results. In [56],
the authors obtained the limiting law of Wasserstein distances between Gaussian distributions with
parameters estimated from data by utilizing the d-form representation in this special case. Recently,
normal distributional results have been generalized to Rd for the quadratic cost [16] and for a general
cost on compact domains [32]. Wasserstein distances between discrete probability measures supported
on a finite [34,60] and countable [62] metric space have also been investigated.

An entropy-regularized formulation of (8) is particularly attractive both from a computational view-
point [13] and from a statistical viewpoint [55]. Cuturi [13] defined the following entropy-regularized
optimal transport (EOT) problem:

min
M ∈Π(N−11,N−11)

[〈M,C〉 + εEnt(M)] , (9)

where ε > 0 is the regularization parameter and Ent(M) =
∑N

i=1
∑N

j=1 Mi j log Mi j is the entropy of
M; see also [19]. The solution, although non-explicit, can be efficiently computed using the Sinkhorn
algorithm [50, Section 4.2]. Let MN

ε denote the (unique) optimal solution to (9), then the limit behavior
of MN

ε and, in particular, the regularized cost of transport
〈
C,MN

ε

〉
, both as N →∞ and ε either fixed

or decaying to zero, becomes important. In fact, MN
ε can be viewed as the plug-in estimator of με

since the minimizer of the problem (3) with P and Q replaced by P̂N and Q̂N is exactly, in its matrix
form, MN

ε . For finite state spaces and c(x, y) = ‖ x − y‖ p with p ≥ 1, this has been taken up in [35]. The
slightly different but related concept of Sinkhorn divergence has been studied in [9] and later extended
in [44] to Euclidean spaces for p = 2.

The discrete Schrödinger bridge μ̂Nε is, in fact, the solution of a different discrete EOT problem
which explains the surprising appearance of entropy in the limit (5). For a permutation σ ∈ SN , let Aσ

denote the permutation matrix corresponding to σ. By Birkhoff’s Theorem [6, Theorem 5.2], every
doubly stochastic matrix can be written as a convex combination of permutation matrices. Thus, every
coupling M can be expressed as M =

∑
σ∈SN

qM (σ) 1
N Aσ , where qM (σ) ∈ P(SN ) is a probability

distribution on SN . Such convex combinations are generally not unique. Nevertheless, for any q ∈
P(SN ), we can get an element in Π(N−11,N−11) by defining Mq :=

∑
σ∈SN

q(σ) 1
N Aσ . Moreover,

it holds that
〈
Mq,C

〉
= 1

N

∑
σ∈SN

q(σ)
∑N

i=1 c(Xi,Yσi ). For q ∈ P(SN ) we define the entropy of q as
Ent(q) :=

∑
σ∈SN

q(σ) log(q(σ)). Consider the problem

min
q∈P(SN )

[〈
Mq,C

〉
+
ε

N
Ent(q)

]
. (10)

This is a regularization of discrete OT with a different notion of entropy for a doubly stochastic matrix
M . We show in Appendix A of the Supplementary Material [30] that the solution to (10) is exactly q∗ε
in (1).

The relationship between MN
ε that solves (9) and the matrix Mq∗ε where q�ε solves (10) is not obvious.

However, they are connected through the lens of matrix balancing; see [7] and references therein. To
see this, we define an N × N matrix K with (i, j)-th element being Ki j := exp

(
− 1
ε c(Xi,Yj )

)
. Let |K |

denote the permanent of K , i.e.,

|K | =
∑

σ∈SN

N∏
i=1

Kiσi =
∑

σ∈SN

exp

(
−1
ε

N∑
i=1

c(Xi,Yσi )
)
,
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which is exactly the denominator in (1). Notice that

(
Mq∗ε

)
i, j
=

1
N

∑
σ:σi=j

q∗ε (σ) =
1
N

∑
σ:σi=j exp

(
−
∑N

i=1 c(Xi,Yσi )/ε
)

∑
σ∈SN

exp
(
−
∑N

i=1 c(Xi,Yσi )/ε
) .

The sum in the numerator is over all permutations σ ∈ SN such that σi = j. A little bit of algebra
omitted here shows that it is exactly given by N exp(−c(Xi,Yj )/ε)

��K i j
��, where K i j is the minor of K

obtained by deleting the ith row and the jth column of the matrix K . Therefore, we get the neat formula
(Mq∗ε )i, j = Ki j

��K i j
�� /|K | . The matrix Mq∗ε is referred to as the matrix balance of K [7, Section 3] while

the matrix MN
ε is called the Sinkhorn balance [7, Section 4]. It is shown in [7, Section 4.1] that the

Sinkhorn balance of a 0-1 matrix approximates the matrix balance of it. However, a more in-depth
investigation on the relationship of these two objects is needed.

1.1. Main results

We now state our main results regarding the limiting behavior of the discrete Schrödinger bridge where
both the dimension d and regularization parameter ε are kept fixed. Given a probability measure ν and
integer p ≥ 1, let Lp(ν) be the space of functions that have finite p-th norm under ν. We shall keep the
same notation for an absolutely continuous measure and its density.

We express our results in their full generality. Let μ ∈ Π(P,Q) be absolutely continuous w.r.t. P ⊗ Q
with density ξ ∈ L1(P ⊗ Q). Define the random measure

μ̂N :=
1
N !

∑
σ∈SN

1
N

∑N
i=1 δ(Xi ,Yσi

)ξ
⊗(X,Yσ)

1
N !

∑
σ∈SN

ξ⊗(X,Yσ)
, (11)

where ξ⊗(X,Yσ) :=
∏N

i=1 ξ(Xi,Yσi ). As a special case, recall from (4) that, if ξ(x, y) is chosen to be
exp

(
−(c(x, y)−aε (x)−bε (y))/ε

)
, then μ = με is the Schrödinger bridge connecting P to Q. Moreover,

μ̂N recovers the measure defined in (2). Our first result shows that the random measure μ̂N converges
weakly to its continuous counterpart μ. Let us start by defining two operators on L2(P) and L2(Q)
induced by μ.

Definition 1. Define linear operators A : L2(P) → L2(Q) and its adjoint A∗ : L2(Q) → L2(P) by

(A f )(y) =
∫

f (x)ξ(x, y)dP(x) and (A∗g)(x) =
∫

g(y)ξ(x, y)dQ(y). (12)

Call A : (x, y) �→ ξ(x, y) the kernel of A and A∗ : (y, x) �→ ξ(x, y) the kernel of A∗.

We show in Lemma 9 that A is a well-defined linear operator, and A∗A and AA∗ are two Markov
operators defined on L2(P) and L2(Q), respectively. Moreover, they can be rewritten as two conditional
expectations: (A f )(y) = E[ f (X) | Y ](y) and (A∗g)(x) = E[g(Y ) | X](x) where (X,Y ) ∼ μ.

Assumption 1. All the results stated below hold under the following assumptions.

1. ξ ∈ L2(P ⊗Q). As a consequence [8, Appendix A.4], the operator A is compact. Then the opera-
tors A∗A and AA∗ admit eigenvalue decomposition A∗Aαk = s2

k
αk and AA∗βk = s2

k
βk for all

k ≥ 0 with s0 = 1, α0 = β0 = 1 and 0 ≤ sk ≤ 1 for all k ≥ 0. Moreover, it holds that Aαk = sk βk
and A∗βk = skαk ; see [26, Chapter 6.1]. We call {sk }k≥0 the singular values of A and A∗, and
call {αk }k≥0 and {βk }k≥0 the singular functions.
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2. The operators A∗A and AA∗ have positive eigenvalue gap, i.e., sk ≤ s1 < 1 for all k ≥ 1. By
Jentzsch’s Theorem [57, Theorem 7.2], a sufficient condition is that ξ is bounded.

Theorem 1. As N →∞, μ̂N converges weakly to μ, in probability.

Towards the proof of Theorem 1, a critical result is the limit law of the denominator in (11) which is
denoted as DN . We state it here since it is of independent interest.

Theorem 2. As N →∞, the denominator in (11) has the following limiting distribution:

DN →d D :=
1√∏∞

k=1(1 − s2
k
)

exp

{
1
2

∞∑
k=1

[
−

s2
k

1 − s2
k

(U2
k +V2

k ) +
2sk

1 − s2
k

UkVk

] }
, (13)

where {Uk }k≥1 and {Vk }k≥1 are independent standard normal random variables.

It is noteworthy that DN is a two-sample U-statistic of infinite order—a generalization of classical U-
statistics introduced by Halmos [29] and Hoeffding [31], where the kernel of the U-statistic depends on
the sample size. Infinite-order U-statistics were first considered in [28] as a special class of elementary
symmetric polynomials of random variables; see also [42,46,64,65] in this line of research. The limiting
distribution of general infinite-order U-statistics was obtained in [18, Theorem 1] using randomization
of the sample size and multiple Wiener integrals. Theorem 2 extends previous work on one-sample
infinite-order U-statistics to two-sample infinite-order U-statistics.

Another closely related topic is the asymptotics of random permanents; see the monograph [54] for
a review. An elementary symmetric polynomial is the permanent of a random matrix with identical
rows [53, Page 2]. The limiting behavior of general random permanents has been studied in the case
of i.i.d. entries [52] as well as independent columns [53], where the limit law is the exponential of
a Gaussian distribution. The denominator DN can be viewed as the permanent of the random matrix
(ξ(Xi,Yj ))N×N scaled by N!. Hence, Theorem 2 characterizes the asymptotic behavior of the permanent
of a random matrix induced by a bivariate function whose rows and columns are dependent—the limit
law is given by the exponential of a weighted sum of products of Gaussians.

If we set ξ(x, y) := exp(−(c(x, y) − aε (x) − bε (y))/ε), then Theorem 2 yields the limit in (6).

Corollary 3. As N →∞, the denominator in (1) has the following limit:

1
N

log
⎡⎢⎢⎢⎢⎣

1
N!

∑
σ∈SN

exp

(
−1
ε

N∑
i=1

c(Xi,Yσi )
) ⎤⎥⎥⎥⎥⎦ →p −1

ε
Cε (P,Q).

To conduct a more refined analysis of the convergence of μ̂N , we let η be any function on Rd × Rd
integrable under μ and consider the convergence of TN := TN (η) :=

∫
η(x, y)d μ̂N (x, y) towards θ :=∫

η(x, y)dμ(x, y). According to (11),

TN =

1
N !

∑
σ∈SN

1
N

∑N
i=1 η(Xi,Yσi )ξ⊗(X,Yσ)

1
N !

∑
σ∈SN

ξ⊗(X,Yσ)
. (14)

A particularly important example is when η = c is the cost function and μ is the Schrödinger bridge. In
this case θ is the optimal cost of transport for the regularized problem defined in (3), which is known as
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the Sinkhorn distance [13]. It can be viewed as an approximation to the unregularized optimal transport
cost with a convergence rate decaying exponentially in ε [41]. On the other hand, most of the previous
works consider the optimal value of the problem (3) since their analyses rely heavily on the duality.
Moreover, as demonstrated in [40, Chapter 4], the statistic TN can be used to statistically test for the
equality of distributions of two independent samples.

The statistic TN is a rather complicated function of the two empirical measures (P̂N ,Q̂N ). Our next
result shows that it can be well approximated by linear functions of the two measures in a way that is
similar to the first order term in a Taylor expansion of smooth functions.

Assumption 2. All the results stated below hold under the following additional assumptions: η2ξ ∈
L1(P ⊗ Q) and ηξ ∈ L2(P ⊗ Q).

We denote by Iν : L2(ν) → L2(ν) the identity operator on L2(ν), and, by convention, its kernel is
given by the Dirac delta function. When the context is clear, we will write I for short. Define

η1,0(x) :=
∫

[η(x, y) − θ]ξ(x, y)dQ(y) and η0,1(y) :=
∫

[η(x, y) − θ]ξ(x, y)dP(x). (15)

Theorem 4. As N →∞, it holds that TN − θ = L1 + op
(
1/
√

N
)
, where

L1 :=
1
N

N∑
i=1

[(I −A∗A)−1(η1,0 −A∗η0,1)(Xi) + (I −AA∗)−1(η0,1 −Aη1,0)(Yi)].

We call L1 the first order chaos of TN .

Corollary 5. As N →∞, the sequence
√

N(TN − θ) converges in law to N(0, ς2), where ς2 = ς2(η),
as a function of η, is given by

ς2 :=
∫ (

(I −A∗A)−1(η1,0 −A∗η0,1)(x)
) 2

dP(x) +
∫ (

(I −AA∗)−1(η0,1 −Aη1,0)(y)
) 2

dQ(y).

Remark 1. In the arXiv version of this paper (arXiv:2011.08963) we conjectured that the same CLT
holds for the solution of the EOT problem (9). This conjecture has been recently verified in [27].

Remark 2. It has been shown in [38,45] that the Schrödinger bridge problem recovers the Monge-
Kantorovich OT problem as ε→ 0. It is of great interest to verify if the limiting variance ς2 in Corol-
lary 5 converges to the limiting variance of the OT plan.

Remark 3. When the limiting variance ς2 = 0, we can also establish the second order chaos of TN and
the limiting distribution of N(TN − θ). We refer interested readers to [40, Appendix C.5].

The first order chaos L1 admits a more compact expression using the notion of tensor products.
Let A1 ∈ {A,A∗, IP, IQ} be an operator mapping from L2(ν1) to L2(γ1) with kernel A1. And define
A2,A2 similarly. The tensor product A1 ⊗ A2 : L2(ν1 ⊗ ν2) → L2(γ1 ⊗ γ2) is defined by

(A1 ⊗ A2) f (v1,v2) :=
∬

f (v′1,v
′
2)A1(v′1,v1)A2(v′2,v2)dν1(v′1)dν2(v

′
2), for all f ∈ L2(ν1 ⊗ ν2).

https://arxiv.org/abs/arXiv:2011.08963
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For instance, IP ⊗ A : L2(P ⊗ P) → L2(P ⊗ Q) is defined by

(IP ⊗ A) f (v1,v2) :=
∬

f (v′1,v
′
2)δv1(v

′
1)ξ(v

′
2,v2)dP(v′1)dP(v′2) =

∫
f (v1,v

′
2)ξ(v

′
2,v2)dP(v′2),

or as a conditional expectation: (IP ⊗ A) f (v1,v2) = E[ f (X ′,X) | X ′,Y ](v1,v2) where (X,Y ) ∼ μ is in-
dependent of X ′. In particular, when f := f1 ⊕ f2, we have (A1 ⊗ A2)( f1 ⊕ f2)(v1,v2) =A1 f1(v1) +
A2 f2(v2). Finally, define the swap operator T by T f (u,v) = f (v,u) for any f on Rd × Rd . It is clear
that T(A1 ⊗ A2) = (A2 ⊗ A1)T on L2(ν1 ⊗ ν2).

Definition 2. Define the operator B on the space L2(P ⊗ Q) as B := T(A ⊗ A∗) = (A∗ ⊗ A)T .

With this new operator B, the first order chaos L1 can be rewritten as (Corollary 12)

L1 =
1
N

N∑
i=1

(I +B)−1(η1,0 ⊕ η0,1)(Xi,Yi).

Both expressions of L1 come from the following system of linear equations. Assume the first order
chaos in Theorem 4 is given by 1

N

∑N
i=1[ f (Xi) + g(Yi)], then f and g are (almost surely) solutions to

η1,0 = f +A∗g and η0,1 =A f + g.

1.2. Outline of the paper

Section 2 is devoted to proving Theorem 1. We prove a novel contiguity result that allows us to change
the model to {(Xi,Yi)}Ni=1

i.i.d.∼ μ based on the limiting distribution of the denominator in Theorem 2.
This change of measure enables a more natural analysis for μ̂N and Theorem 1 then follows from the
reverse martingale convergence theorem.

In Section 3 we derive the first order approximation of TN and prove Theorem 4 by a variance
bound of the remainder. We show that this approximation is the first order chaos of TN under the
change of measure μ. Each term in the chaos expansion is a polynomial function of the empirical
distributions (P̂N ,Q̂N ), which are symmetric under permutations of Xi’s or Yi’s, separately. Thus, we
obtain symmetric projections on subspaces of L2(μN ) when Xi and Yi , under the change of measure,
are not independent. Essentially, we extend the classical Hoeffding projection to paired samples, which
can be of independent interest.

In Section 4 we derive the asymptotic distribution of the denominator and the variance bound of the
remainder used in the previous two sections. The method here is based on a Hoeffding-like decompo-
sition and new variance bounds for a type of U-statistic of increasing order under our original model
when Xi and Yi are independent. The tools developed in this section can also be of independent interest.
For readability, we give in Appendix C of the Supplementary Material [30] a table of notation.

2. Weak convergence and contiguity

In this section, we prove the weak convergence of μ̂N . By definition, it suffices to show the convergence
of TN :=

∫
ηd μ̂N to θ :=

∫
ηdμ for any continuous bounded function η. In fact, the convergence holds

for every function η that is integrable under μ.
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Recall from (14) that TN admits a complicated expression, i.e.,

TN =

1
N !

∑
σ∈SN

1
N

∑N
i=1 η(Xi,Yσi )ξ⊗(X,Yσ)

1
N !

∑
σ∈SN

ξ⊗(X,Yσ)
.

However, it has a rather simple structure under a change of measure—instead of assuming that
{(Xi,Yi)}Ni=1 is an i.i.d. sample from the product measure P ⊗ Q, we assume that {(Xi,Yi)}Ni=1 is an
i.i.d. sample from μ. As Proposition 7 below shows, under this change of measure, TN is a simple con-
ditional expectation and an unbiased estimator of θ. Hence, it is natural to ask if there is a way to do
analysis under the changed measure μ and carry the results over to the original measure P ⊗ Q. Conti-
guity [66, Chapter 6] is exactly a tool for such purposes. When ξ � 1 a.s. under P ⊗ Q, the laws of the
entire i.i.d. sequence {(Xi,Yi)}i≥1 under the two measures P ⊗ Q and μ are singular. But TN is a func-
tion of only (P̂N ,Q̂N ). Restricted to the σ-algebra generated by these marginal empirical distributions,
we show that the two measures are contiguous in Theorem 6 below.

We first set-up a measure-theoretic framework. We use the term “under the measure γ” to indicate
that the sample {(Xi,Yi)}Ni=1

i.i.d.∼ γ and use Eγ to denote the expectation under this model. When
γ = P ⊗ Q, we write E for short. Let FN denote the σ-algebra generated by {(Xi,Yi)}Ni=1. Let GN

denote the sub-σ-algebra of FN generated by (P̂N ,Q̂N ). Let RN and SN be the law of (P̂N ,Q̂N ) under
P ⊗ Q and μ, respectively. It is clear that RN = (P ⊗ Q)N |GN and SN = μN |GN .

According to Le Cam’s first lemma [66, page 88], the contiguity holds true if the likelihood ratio
dSN/dRN converges weakly, under RN , to an a.s. positive random variable. Before we prove that, we
give an explicit expression for the likelihood ratio—it is exactly DN , i.e., the denominator of TN .

Fact 1. The likelihood ratio dSN/dRN admits the expression:

dSN

dRN
= DN :=

1
N!

∑
σ∈SN

ξ⊗(X,Yσ). (16)

Proof. Note that the likelihood ratio of μN and (P ⊗ Q)N is given by

fN :=
dμN

d(P ⊗ Q)N
=

N∏
i=1

ξ(Xi,Yi), on
(
R
d ×Rd

) N
. (17)

Hence, by the property of conditional expectation, it holds that dSN

dRN =
dμN |GN

d(P⊗Q)N |GN

= E [ fN | GN ],
where the conditional expectation is under P ⊗ Q. It follows from exchangeability under P ⊗ Q that
E[ fN | GN ] = E[ξ⊗(X,Yσ) | GN ] for each σ ∈ SN . Hence,

E [ fN | GN ] = E
⎡⎢⎢⎢⎢⎣

1
N!

∑
σ∈SN

ξ⊗(X,Yσ)
���GN

⎤⎥⎥⎥⎥⎦ =
1

N!

∑
σ∈SN

ξ⊗(X,Yσ), (18)

where the last equality follows from
∑

σ∈SN
ξ⊗(X,Yσ) is GN -measurable.

Recall from Theorem 2 that DN has a limiting distribution given by the exponential of a weighted
sum of products of Gaussians which is almost surely positive. Besides tools such as the Hoeffding
decomposition from the U-statistics theory, the proof of Theorem 2 involves a novel approach to control
the variance of DN . We defer it to Section 4. Now we are ready to prove the contiguity result.
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Theorem 6. Under Assumption 1, the sequences (RN )N ≥1 and (SN )N ≥1 are mutually contiguous,
i.e., RN � �SN . Explicitly, for a sequence of events (AN ∈ GN , N ≥ 1), we have limN→∞ SN (AN ) = 0
iff limN→∞ RN (AN ) = 0.

Proof. According to Le Cam’s first lemma [66, page 88], RN � SN , N ≥ 1, if and only if the follow-
ing statement holds true: if DN , under P ⊗ Q, converges weakly to D, along a sub-sequence, then
P(D > 0) = 1. This statement follows directly from Theorem 2, so we have RN � SN . By a standard
computation, it can be shown that E[D] = 1. Hence, it follows from Le Cam’s first lemma again that
SN � RN , that is, RN and SN are mutually contiguous.

With Theorem 6 at hand, we can work under the measure μ. The next result rewrites TN as a simple
conditional expectation and verifies its consistency.

Proposition 7. Assume that {(Xi,Yi)}Ni=1
i.i.d.∼ μ. It holds that TN = Eμ [η(X1,Y1) | GN ] for every η ∈

L1(μ). Moreover, TN is an unbiased and consistent estimator of θ. That is, Eμ[TN ] = θ for all N and
limN→∞TN = θ almost surely.

Proof. For notational simplicity, let η̄(X,Yσ) := 1
N

∑N
i=1 η(Xi,Yσi ) for each σ ∈ SN . By exchange-

ability of {(Xi,Yi)}Ni=1, it holds that Eμ[η(Xi,Yi) | FN ] = Eμ[η(Xj,Yj ) | FN ] for all 1 ≤ i, j ≤ N which
implies that Eμ[η(X1,Y1) | FN ] = Eμ[η̄(X,Yid) | FN ]. Since η̄(X,Yid) is FN -measurable, it follows that
Eμ [η(X1,Y1) | FN ] = η̄(X,Yid). By the tower property of conditional expectations,

hN := Eμ [η(X1,Y1) | GN ] = Eμ
[
Eμ [η(X1,Y1) | FN ] | GN

]
= Eμ [η̄(X,Yid) | GN ] .

By definition, the last expression is the a.s. unique GN -measurable function such that for any bounded
GN -measurable φ, it holds that Eμ[η̄(X,Yid)φ] = Eμ[hNφ]. By (17), Eμ [η̄(X,Yid)φ] equals

E [ fN η̄(X,Yid)φ] = E [E [ fN η̄(X,Yid) | GN ]φ] = Eμ
[

dRN

dSN
E [ fN η̄(X,Yid) | GN ]φ

]
,

which implies that hN =
dRN

dSN E [ fN η̄(X,Yid) | GN ]. Similar to (18), we have

E [ fN η̄(X,Yid) | GN ] =
1

N!

∑
σ∈SN

η̄(X,Yσ)ξ⊗(X,Yσ).

According to Fact 1, we get hN =
1

DN

1
N !

∑
σ∈SN

η̄(X,Yσ)ξ⊗(X,Yσ) = TN .
Hence, the unbiasedness of TN under μ follows by the tower property of conditional expectations.

Now consider the reverse σ-algebra GN = σ (GN ,(Xi,Yi), i ≥ N + 1). Since {(Xi,Yi)}i≥N+1 are inde-
pendent of {(Xi,Yi)}Ni=1, we have TN = Eμ

[
η(X1,Y1) | GN

]
. Consequently, (TN ,GN )N ≥1 is a reverse

martingale and TN converges almost surely to Eμ[η(X1,Y1)] = θ.

Proof of Theorem 1. As shown in Proposition 7, for any η ∈ L1(μ), TN = TN (η) →a.s. θ under μ.
In particular, Proposition 7 holds for any bounded continuous function η. Thus, except for a null set,
the convergence in Proposition 7 holds for a countable collection of bounded continuous functions.
By separability of Rd , almost sure weak convergence follows [67, Theorem 3.1] by choosing such a
countable collection judiciously. This shows almost sure weak convergence under μ. Weak convergence
in probability under P ⊗ Q now follows from Theorem 6.
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3. Limit law and chaos decomposition

This section is devoted to the limit law of TN in (14). Following the standard strategy, our goal is
to find the first order approximation L1 of TN in the form of a sum of i.i.d. terms. Now, provided
that the remainder TN − θ − L1 = op(N−1/2), it follows from the CLT that

√
N(TN − θ) converges

weakly to a normal distribution. However, there are two main challenges. First, the statistic TN has
a rather complicated expression involving a ratio of two infinite-order U-statistics. This prevents us
from utilizing the Hoeffding decomposition to derive the first order approximation. Second, due to its
complicated nature, it is extremely challenging to control the remainder—the variance computation for
classical U-statistics does not apply here.

To address the first challenge, the key observation is that TN admits a simple expression under μ as
shown in Proposition 7. This allows us to obtain a linear approximation of TN under μwhich we call the
first order chaos. Due to the contiguity result in Theorem 6, the first order chaos can be viewed as the
first order approximation of TN under P ⊗Q. As for the second challenge, we develop a novel approach
to control the remainder using the spectral gap of the operators A and A∗. Since this approach is also
used to establish the limit law of DN in Theorem 2, we discuss the treatment of DN and the remainder
together in Section 4.

In the remainder of this section, we first give a formal derivation of the first order approximation L1
and prove the asymptotic normality of TN in Section 3.1. We then derive, in Section 3.2, L1 rigorously
as the first order chaos of TN using orthogonal projections in L2(μN ).

3.1. First order approximation

Recall from Proposition 7 that TN = Eμ[η(X1,Y1) | GN ]. Hence, in order to obtain the first order approx-
imation of TN , it is natural to approximate η(X,Y )− θ by some linear term f (X)+g(Y ) under (X,Y ) ∼ μ
and then use Eμ[ f (X1) + g(Y1) | GN ] = 1

N

∑N
i=1[ f (Xi) + g(Yi)] as the first order approximation of TN ,

where the equality can be shown with an argument similar to the proof of Proposition 7. A good linear
approximation f (X) + g(Y ) should satisfy

Eμ[η(X,Y ) − θ | X] = Eμ[ f (X) + g(Y ) | X]

Eμ[η(X,Y ) − θ | Y ] = Eμ[ f (X) + g(Y ) | Y ].
(19)

Recall dμ
d(P⊗Q) (x, y) = ξ(x, y) and η1,0 from (15). It holds that

Eμ[η(X,Y ) − θ | X](x) =
∫

[η(x, y) − θ]ξ(x, y)dQ(y) = η1,0(x).

Similarly, we have Eμ[η(X,Y ) − θ | Y ](y) = η0,1(y). It then follows from the tower property that

EP[η1,0(X)] = EP[Eμ[η(X,Y ) − θ | X]] = 0 and EQ[η0,1(Y )] = 0. (20)

Moreover, by Definition 1, we obtain

Eμ[g(Y ) | X](x) =
∫

g(y)ξ(x, y)dQ(y) = (A∗g)(x)

Eμ[ f (X) | Y ](y) =
∫

f (x)ξ(x, y)dP(x) = (A f )(y).
(21)
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As a result, the condition (19) becomes

η1,0(X) = f (X) +A∗g(X) and η0,1(Y ) =A f (Y ) + g(Y ). (22)

Formally, we can solve the linear system (22) to get

f = (I −A∗A)−1(η1,0 −A∗η0,1) and g = (I −AA∗)−1(η0,1 −Aη1,0).

We will make this rigorous later. This suggests the following first order approximation of TN :

1
N

N∑
i=1

[
(I −A∗A)−1(η1,0 −A∗η0,1)(Xi) + (I −AA∗)−1(η0,1 −Aη1,0)(Yi)

]
,

which is exactly the first order chaos L1 in Theorem 4. In fact, the next result shows that, after sub-
tracting L1 from TN − θ, the variance of the numerator is of order O(N−2).

It can be shown that the remainder TN − θ − L1 =UN/DN , where DN is defined in (16) and

UN :=
1

N!

∑
σ∈SN

1
N

N∑
i=1

η̃(Xi,Yσi )ξ⊗(X,Yσ) (23)

with η̃ defined as

η̃(x, y) := η(x, y) − θ − (I −A∗A)−1(η1,0 −A∗η0,1)(x) − (I −AA∗)−1(η0,1 −Aη1,0)(y). (24)

In fact, for all f and g, it holds that TN − θ − 1
N

∑N
i=1[ f (Xi) + g(Yi)] equals∑

σ∈SN

[ 1
N

∑N
i=1 η(Xi,Yσi ) − θ − 1

N

∑N
i=1[ f (Xi) + g(Yσi )]

]
ξ⊗(X,Yσ)∑

σ∈SN
ξ⊗(X,Yσ)

=

1
N !

∑
σ∈SN

1
N

∑N
i=1[η(Xi,Yσi ) − θ − f (Xi) − g(Yσi )]ξ⊗(X,Yσ)

1
N !

∑
σ∈SN

ξ⊗(X,Yσ)
.

Proposition 8. Under Assumptions 1 and 2, we have E[U2
N ] =O(N−2).

Similar to DN , the numerator UN is also a two-sample U-statistic of infinite order. We defer the
proof of Proposition 8 to Section 4. Let us prove the main results.

Proof of Theorem 4. According to Theorem 2 and Proposition 8, we have DN = Op(1) and UN =

op(N−1/2). By Slutsky’s Lemma, it holds that TN − θ − L1 =UN/DN = op(N−1/2). Now, Corollary 5
follows from the standard Lindeberg CLT [10, Section 27].

3.2. Chaos decomposition for paired samples

We derive the first order chaos L1 using orthogonal projections in L2(μN ). We change in this section
the measure so that {(Xi,Yi)}Ni=1

i.i.d.∼ μ.
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Definition 3. Let x[N ] and y[N ] be two sets of (random) vectors in Rd . Let T := T(x[N ], y[N ]). We say
T is permutation symmetric in x if T(xσ[N ], y[N ]) = T(x[N ], y[N ]) for every σ ∈ SN , where xσ[N ] :=
(xσi )i∈[N ]. We define permutation symmetry in y similarly. We say T is permutation symmetric if it is
permutation symmetric in both x and y.

Let H0 ⊂ L2(μN ) be the subspace of constant functions and H1 ⊂ L2(μN ) be the subspace spanned
by functions of the type

N∑
i=1

[ f (Xi) + g(Yi)] (25)

that is orthogonal to H0. By Proposition 7, the (orthogonal) projection of TN onto H0 is ProjH0
(TN ) = θ.

Moreover, we show in Appendix B of the Supplementary Material [30] that H1 is closed so that the
projection of TN onto H1 uniquely exists. We will compute this projection, which we refer to as the first
order chaos. Note that the elements in L2 spaces are only defined up to zero-measure sets (or equivalent
classes). For two elements f ,g ∈ L2, f = g means f equals g up to equivalent classes.

Given a measure ν on Rd , let L2
0(ν) be the subspace of L2(ν) consisting of mean-zero functions.

Recall A and A∗ in Definition 1. We first argue that (I −A∗A)−1 and (I −AA∗)−1 are well-defined
on L2

0(P) and L2
0(Q), respectively. The proof is deferred to the Supplementary Material [30].

Lemma 9. Let (X,Y ) ∼ μ. Under Assumption 1, the following statements hold true:

(a) For any f ∈ L2(P) and g ∈ L2(Q), it holds Eμ[ f (X) | Y ](y) = A f (y) and Eμ[g(Y ) | X](x) =
A∗g(x). In particular, A f ∈ L2(Q) and A∗g ∈ L2(P).

(b) The largest eigenvalue of A and A∗ is 1, and A1 =A∗1 = 1.
(c) The operator A maps L2

0(P) to L2
0(Q), and A∗ maps L2

0(Q) to L2
0(P).

(d) The operators (I − A∗A)−1 : L2
0(P) → L2

0(P) and (I − AA∗)−1 : L2
0(Q) → L2

0(Q) are well-
defined.

(e) It holds that A(I −A∗A)−1 = (I −AA∗)−1A and A∗(I −AA∗)−1 = (I −A∗A)−1A∗ on their
domains defined above. Moreover, for any f ∈ L2

0(P) and g ∈ L2
0(Q), we have

Eμ

[
(I −A∗A)−1( f −A∗g)(X) + (I −AA∗)−1(g −A f )(Y ) | X

]
= f (X)

Eμ

[
(I −A∗A)−1( f −A∗g)(X) + (I −AA∗)−1(g −A f )(Y ) | Y

]
= g(Y ).

(26)

Now we are ready to give the first order chaos of TN , i.e., ProjH1
(TN ).

Proposition 10. Under Assumptions 1 and 2, the first order chaos of the statistic TN is given by

L1 :=
1
N

N∑
i=1

[(I −A∗A)−1(η1,0 −A∗η0,1)(Xi) + (I −AA∗)−1(η0,1 −Aη1,0)(Yi)]. (27)

Proof. By the definition of orthogonal projection, it suffices to show that, for any i ∈ [N],

Eμ[TN − θ − L1 | Xi] = 0 and Eμ[TN − θ − L1 | Yi] = 0

almost surely. We will prove it for X1, and the rest of them can be proved similarly. Recall from (20) that
η1,0 ∈ L2

0(P) and η0,1 ∈ L2
0(Q). By (c) in Lemma 9, we know η1,0 −A∗η0,1 ∈ L2

0(P) and η0,1 −Aη1,0 ∈
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L2
0(Q). It then follows from (d) in Lemma 9 that, for every i ∈ [N],

Eμ

[
(I −A∗A)−1(η1,0 −A∗η0,1)(Xi) + (I −AA∗)−1(η0,1 −Aη1,0)(Yi)

]
= 0.

As a result, Eμ[L1 | X1] is equal to

1
N
Eμ

[
(I −A∗A)−1(η1,0 −A∗η0,1)(X1) + (I −AA∗)−1(η0,1 −Aη1,0)(Y1) | X1

]
=
η1,0(X1)

N
,

where the last equality follows from (26). We only need to show Eμ[TN − θ | X1] = 1
N η1,0(X1). Let

h(x) := Eμ[TN − θ | X1](x). We will prove that EP[h(X1)φ(X1)] = EP[η1,0(X1)φ(X1)]/N for all σ(X1)-
measurable φ. Fix an arbitrary σ(X1)-measurable φ. Since TN − θ is permutation symmetric in X (see
Definition 3), we get Eμ[TN − θ | Xi](x) ≡ h(x) for all i ∈ [N]. As a result, it holds that

Eμ

[
(TN − θ)

N∑
i=1

φ(Xi)
]
=

N∑
i=1

Eμ[(TN − θ)φ(Xi)] = N EP[h(X1)φ(X1)].

Recall from Proposition 7 that TN = Eμ[η(X1,Y1) | GN ]. Since
∑N

i=1 φ(Xi) is GN -measurable, by the
tower property of conditional expectation, we get

Eμ

[
(TN − θ)

N∑
i=1

φ(Xi)
]
= Eμ

[
(η(X1,Y1) − θ)

N∑
i=1

φ(Xi)
]
= EP[η1,0(X1)φ(X1)],

where the last equality follows from the independence of {(Xi,Yi)}Ni=1 and η1,0 ∈ L2
0(P). Hence, we have

EP[η1,0(X1)φ(X1)] = NEμ[h(X1)φ(X1)] which completes the proof.

We then derive a more compact expression of L1 using B in Definition 2. We start by providing
some properties of B in the next lemma. The proof is deferred to the Supplementary Material [30].

Lemma 11. Under Assumption 1, the following statements hold true:

(a) Let (X1,Y1),(X2,Y2)
i.i.d∼ μ. It holds that Eμ[ f (X1,Y2) | X2,Y1](x, y) = B f (x, y) for any f ∈ L2(P ⊗

Q). In particular, B f ∈ L2(P ⊗ Q).
(b) The operator B maps L2

0(P ⊗ Q) to L2
0(P ⊗ Q).

(c) For any f ⊕ g ∈ L2(P ⊗ Q), we have B( f ⊕ g) =A∗g ⊕ A f .
(d) The operator (I +B)−1 is well-defined on L2

0(P ⊗ Q).
(e) For any f ∈ L2

0(P) and g ∈ L2
0(Q), it holds that

(I +B)−1( f ⊕ g) = [(I −A∗A)−1( f −A∗g)] ⊕ [(I −AA∗)−1(g −A f )]. (28)

According to (28), the first order chaos L1 admits a more compact representation.

Corollary 12. Under Assumptions 1 and 2, the first order chaos of TN admits an alternative expression
L1 =

1
N

∑N
i=1(I +B)−1(η1,0 ⊕ η0,1)(Xi,Yi).

Remark 4. Note that the above expression of L1 is permutation symmetric, i.e.,
∑N

i=1(I +B)−1(η1,0 ⊕
η0,1)(Xi,Yi) =

∑N
i=1(I +B)−1(η1,0 ⊕ η0,1)(Xi,Yσi ) for all σ ∈ SN .

Remark 5. Another way to see this is: due to (22), η1,0 ⊕ η0,1 = f ⊕ g +A∗g ⊕ A f = (I +B)( f ⊕ g).
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4. Analysis of the denominator and the remainder
Recall from (23) that the first order remainder R1 := TN − θ − L1 =UN/DN , where

UN :=
1

N!

∑
σ∈SN

1
N

N∑
i=1

η̃(Xi,Yσi )ξ⊗(X,Yσ) and DN :=
1

N!

∑
σ∈SN

ξ⊗(X,Yσ), (29)

with η̃ defined in (24). We prove in this section the limit law of DN in Theorem 2 and the variance
bound of UN in Proposition 8. The strategy is to decompose DN and UN into orthogonal pieces using
the Hoeffding decomposition (Section 4.1), and then bound the higher order terms using the spectral
gap of A and A∗ (Section 4.2). Note that DN and UN are infinite-order two-sample U-statistics. Tech-
niques for fixed-order U-statistics and infinite-order one-sample U-statistics do not apply here. Hence,
this section develops new tools to handle two-sample U-statistics of infinite order. We work through-
out this section with the original model assuming that {(Xi,Yi)}Ni=1

i.i.d.∼ P ⊗ Q and use E to denote the
expectation. The proofs of some technical results are deferred to the Supplementary Material [30].

4.1. Hoeffding decomposition under the product measure

Definition 4. Given A,B ⊂ [N], we denote by HAB the subspace of L2((P⊗Q)N ) spanned by functions
of the form f (XA,YB) such that

E[ f (XA,YB) | XC,YD]
a.s.
= 0, for all C ⊂ A,D ⊂ B and |C | + |D | < |A| + |B| . (30)

We say such an f (XA,YB) is completely degenerate. In particular, when |A| = |B| = 1, we write f ∈
L2

0,0(P ⊗ Q). By definition, for distinct choices of the pair (A,B), the subspaces HAB are orthogonal.
Take an arbitrary mean-zero statistic T ∈ L2

0((P ⊗ Q)N ). If T can be decomposed as

T =
∑

A,B⊂[N ]
TAB, with TAB ∈ HAB, (31)

then we call it the Hoeffding decomposition of T [66, Chapter 11]. Its variance can then be computed
as E[T2] =

∑
A,B⊂[N ] E[T2

AB
].

For example, both ξ̃(X1,Y1) := ξ(X1,Y1) − 1 and h(X1,Y1) := η̃(X1,Y1)ξ(X1,Y1) are completely degen-
erate according to the following lemma.

Lemma 13. Assume that ξ,ηξ ∈ L2(P ⊗ Q), then ξ̃, η̃ξ ∈ L2
0,0(P ⊗ Q).

We then derive the Hoeffding decompositions of DN and UN as defined in (29).

Proposition 14. Assume that ξ,ηξ ∈ L2(P ⊗ Q), then the following Hoeffding decompositions hold:

DN = 1 +
∑

A,B⊂[N ]
|A |= |B |>0

1
N!

∑
σ∈SN :σA=B

∏
i∈A
ξ̃(Xi,Yσi )

UN =
∑

A,B⊂[N ]
|A |= |B |>0

1
N · N!

∑
σ∈SN :σA=B

∑
i∈A

h(Xi,Yσi )
∏

j∈A\{i }
ξ̃(Xj,Yσj ),

(32)
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where σA := {σi : i ∈ A}. Moreover,

E[D2
N ] = 1 +

N∑
r=1

∑
σ∈Sr

E

[ r∏
j=1

ξ̃(Xj,Yj )ξ̃(Xj,Yσj )
]

E[U2
N ] =

1
N2

N∑
r=1

r
r!

∑
σ∈Sr

r∑
i=1

E

[
h(X1,Y1)

r∏
j=2

ξ̃(Xj,Yj )h(Xi,Yσi )
∏

j∈[r]\{i }
ξ̃(Xj,Yσj )

]
.

4.2. Variance bounds

We then bound the variances of DN and UN using the spectral gap of the operators A and A∗. As-
sumption 1 guarantees that such a spectral gap does exist. We first prove a contraction property.

Lemma 15. Recall s1 from Assumption 1. For any f ∈ L2
0,0(P ⊗ P), we have (IP ⊗A) f ∈ L2

0,0(P ⊗ Q)
and ‖(IP ⊗ A) f ‖L2(P⊗Q) ≤ s1 ‖ f ‖L2(P⊗P). Similar results hold for IP ⊗ A∗, A ⊗ IQ and A∗ ⊗ IQ.

According to Proposition 14, the key quantity in the variances of DN and UN is

E

[
f (X1,Y1)

N∏
j=2

ξ̃(Xj,Yj ) f (Xi,Yσi )
∏

j∈[N ]\{i }
ξ̃(Xj,Yσj )

]
(33)

for some f ∈ L2
0,0(P ⊗ Q), where f = ξ̃ = ξ − 1 for DN and f = h = η̃ξ for UN . In order to control

it, we decompose a permutation into disjoint cycles. By independence, the expectation then equals the
product of expectations with respect to each cycle. We first give a simple example to illustrate the idea.

Example 1. Consider the case when r = 3, i = 3, and σ is given by σ1 = 2, σ2 = 1 and σ3 = 3. We are
interested in bounding the expectation

E[ f (X1,Y1)ξ̃(X2,Y2)ξ̃(X3,Y3) f (X3,Y3)ξ̃(X1,Y2)ξ̃(X2,Y1)]. (34)

By construction, σ contains two cycles, 1 → 2 → 1 and 3 → 3, and the above expectation reads

E[ f (X1,Y1)ξ̃(X2,Y2)ξ̃(X1,Y2)ξ̃(X2,Y1)] · E[ f (X3,Y3)ξ̃(X3,Y3)].

The second expectation is upper bounded by ‖ f ‖L2(P⊗Q) ‖ξ̃‖L2(P⊗Q) by the Cauchy-Schwarz inequal-
ity. It then suffices to bound the first expectation. We simplify this expectation by iteratively integrating
with respect to a single variable while keeping the rest being fixed. We first integrate with respect to
X1 given X2,Y1,Y2. This gives us

E[ f (X1,Y1)ξ̃(X1,Y2) | X2,Y1,Y2] · ξ̃(X2,Y2)ξ̃(X2,Y1) = (A ⊗ IQ) f (Y2,Y1) · ξ̃(X2,Y2)ξ̃(X2,Y1),

where we used E[ f (X1,Y1)ξ̃(X1,Y2) | X2,Y1,Y2] = E[ f (X1,Y1)ξ(X1,Y2) | Y1,Y2] = (A ⊗ IQ) f (Y2,Y1) since
f ∈ L2

0,0(P ⊗ Q) and ξ̃ = ξ − 1. We then integrate with respect to Y2 given X2 and Y1. This yields

E[(A ⊗ IQ) f (Y2,Y1)ξ̃(X2,Y2) | X2,Y1] · ξ̃(X2,Y1) = (A∗ ⊗ IQ)(A ⊗ IQ) f (X2,Y1) · ξ̃(X2,Y1).
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By the Cauchy-Schwarz inequality and Lemma 15, its expectation is upper bounded by%%(A∗ ⊗ IQ)(A ⊗ IQ) f
%%

L2(P⊗Q) ‖ξ̃‖L2(P⊗Q) ≤ s2
1 ‖ f ‖L2(P⊗Q) ‖ξ̃‖L2(P⊗Q).

Hence, the expectation in (34) is upper bounded by s2
1 ‖ f ‖2

L2(P⊗Q) ‖ξ̃‖
2
L2(P⊗Q).

The following lemma generalizes this example to an arbitrary cycle k1 → k2 → · · · → kl → k1.

Lemma 16. Suppose Assumption 1 holds and f ,g ∈ L2
0,0(P ⊗ Q). Define ς f := ‖ f ‖L2(P⊗Q) and ςg :=

‖g‖L2(P⊗Q). For any l > 0 and l distinct indices {k1, . . . , kl} ⊂ [N], we have, for all t, t ′ ∈ [l],

E

⎡⎢⎢⎢⎢⎣ f (Xkt ,Ykt )g(Xkt′ ,Ykt′+1 )
∏
i�t

ξ̃(Xki ,Yki )
∏
j�t′
ξ̃(Xk j ,Yk j+1)

⎤⎥⎥⎥⎥⎦ ≤ s2(l−1)
1 ς f ςg . (35)

Now we are ready to control the quantity in (33).

Lemma 17. Suppose the same assumptions in Lemma 16 hold true. Let ς0 := ‖ξ̃‖L2(P⊗Q) and ςh :=
‖h‖L2(P⊗Q). For any N ∈ N+, σ ∈ SN and i ∈ [N], we have

E

⎡⎢⎢⎢⎢⎣h(X1,Y1)
N∏
j=2

ξ̃(Xj,Yj )h(Xi,Yσi )
∏

j∈[N ]\{i }
ξ̃(Xj,Yσj )

⎤⎥⎥⎥⎥⎦ ≤ s2(N−#σ)
1 ς2

hς
2(#σ−1)
0 ,

where #σ is the number of cycles of the permutation σ.

Proof. We first consider the case when i � 1. It is well-known that every permutation can be decom-
posed as disjoint cycles. Take a cycle k1 → k2 → · · · → kl → k1 of σ. If it contains both 1 and i, then
we assume, w.l.o.g., k1 = 1 and k2 = i. Consequently, all the terms that involve Xk[l] and Yk[l] are

h(X1,Y1)h(Xi,Yσi )
l∏

j=2

ξ̃(Xk j ,Yk j )
∏

j∈[l]\{2}
ξ̃(Xk j ,Yk j+1).

Using Lemma 16 with f = h and g = h, it holds that

E

⎡⎢⎢⎢⎢⎣h(X1,Y1)h(Xi,Yσi )
l∏

j=2

ξ̃(Xk j ,Yk j )
∏

j∈[l]\{2}
ξ̃(Xk j ,Yk j+1)

⎤⎥⎥⎥⎥⎦ ≤ s2(l−1)
1 ς2

h .

If this cycle only contains 1, then a similar argument gives

E

⎡⎢⎢⎢⎢⎣h(X1,Y1)
l∏

j=2

ξ̃(Xk j ,Yk j )
l∏

j=1

ξ̃(Xk j ,Yk j+1)
⎤⎥⎥⎥⎥⎦ ≤ s2(l−1)

1 ςhς0.

If this cycle only contains i, with k1 = i, then we have

E

⎡⎢⎢⎢⎢⎣h(Xi,Yσi )
l∏

j=1

ξ̃(Xk j ,Yk j )
l∏

j=2

ξ̃(Xk j ,Yk j+1)
⎤⎥⎥⎥⎥⎦ ≤ s2(l−1)

1 ςhς0.



1962 Z. Harchaoui, L. Liu and S. Pal

Finally, if this cycle does not contain either 1 or i, then it holds E
[∏l

j=1 ξ̃(Xk j ,Yk j )ξ̃(Xk j ,Yk j+1)
]
≤

s2(l−1)
1 ς2

0 . Here we are invoking Lemma 16 with f = g = ξ̃. Putting all together, we obtain

E

⎡⎢⎢⎢⎢⎣h(X1,Y1)
N∏
j=2

ξ̃(Xj,Yj )h(Xi,Yσi )
∏

j∈[N ]\{i }
ξ̃(Xj,Yσj )

⎤⎥⎥⎥⎥⎦ ≤ s2(N−#σ)
1 ς2

hς
2(#σ−1)
0 .

When i = 1, we can invoke Lemma 16 to get the same bound, since we allow t = t ′ in this lemma.

Now we are ready to give an upper bound for the variance of UN and prove Proposition 8.

Proof of Proposition 8. Recall from Proposition 14 that E[U2
N ] is equal to

1
N2

N∑
r=1

r
r!

∑
σ∈Sr

r∑
i=1

E

⎡⎢⎢⎢⎢⎣h(X1,Y1)
r∏
j=2

ξ̃(Xj,Yj )h(Xi,Yσi )
∏

j∈[N ]\{i }
ξ̃(Xj,Yσj )

⎤⎥⎥⎥⎥⎦ . (36)

By Lemma 17, we know

E[U2
N ] ≤

1
N2

N∑
r=1

r
r!

∑
σ∈Sr

rs2(r−#σ)
1 ς

2(#σ−1)
0 ς2

h . (37)

If s1 = 0 or ς0 = 0, then ξ = 1 P ⊗ Q-a.s. It follows from (36) that E[U2
N ] = 0 which completes the

proof. Hence, we assume in the following that s1 > 0 and ς0 > 0.
Now, let σ∗ be a random permutation uniformly sampled from Sr . It is known [5, Chapter 1] that

the moment generating function of #σ∗ is given by E[u#σ∗ ] =
∏r

i=1(1 − 1
i +

u
i ). Thus,

r
r!

∑
σ∈Sr

rs2(r−#σ)
1 ς

2(#σ−1)
0 = r2

E

[
s2(r−#σ∗)

1 ς
2(#σ∗−1)
0

]
= r2s2r

1 ς
−2
0

r∏
i=1

(
1 − 1

i
+
ς2

0

s2
1i

)
.

Let m := �ς2
0/s2

1 − 1�. Then, for every r ≥ m,

r∏
i=1

(
1 − 1

i
+
ς2

0

s2
1i

)
≤

r∏
i=1

(
1 +

m
i

)
=

∏r
i=1(i +m)

r!
=

∏r
i=r−m+1(i +m)

m!
≤ (r +m)m

m!
,

and thus
∑N

r=m
r
r!
∑

σ∈Sr
rs2(r−#σ)

1 ς
2(#σ−1)
0 ≤

∑N
r=m r2s2r

1 ς
−2
0

(r+m)m
m! converges as N →∞ since s1 <

1. It follows from (37) that E[U2
N ] =O(N−2).

A similar result holds for DN . Recall from Proposition 14 that DN = 1 +
∑N

r=1 DN ,r where

DN ,r :=
1

N!

∑
|A |= |B |=r

∑
σ∈SN :σA=B

∏
i∈A
ξ̃(Xi,Yσi ). (38)

Proposition 18. Under Assumption 1, we have, for any integer R ∈ [0,N],

E

⎡⎢⎢⎢⎢⎣
(
DN − 1 −

R∑
r=1

DN ,r

) 2⎤⎥⎥⎥⎥⎦ ≤
N∑

r=R+1

1
r!

∑
σ∈Sr

s2(r−#σ)
1 ς2#σ

0 ,
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which can be arbitrarily small for sufficiently large R.

4.3. Limit law of the denominator

Finally, we prove Theorem 2 regarding the limiting distribution of DN . According to the singular value
decomposition in Assumption 1, it holds that

ξ(x, y) = 1 +
∞∑
k=1

skαk (x)βk(y), in L2(P ⊗ Q),

where 0 ≤ sk < 1 is decreasing in k. Hence, we start by considering a truncated version of ξ, i.e.,
ξK (x, y) := 1 +

∑K
k=1 skαk(x)βk (y) for some integer K and derive the limit law of

DK
N :=

1
N!

∑
σ∈SN

N∏
i=1

ξK (Xi,Yσi ).

Note that all the results for DN in Sections 4.1 and 4.2 hold for DK
N with ξ being replaced by ξK .

Proposition 19. Under Assumption 1, it holds that

DK
N →d DK :=

1√∏K
k=1(1 − s2

k
)

exp

{
1
2

K∑
k=1

[
−

s2
k

1 − s2
k

(U2
k +V2

k ) +
2sk

1 − s2
k

UkVk

] }
, (39)

where {Uk }Kk=1 and {Vk }Kk=1 are independent standard normal random variables.

Proof. We will prove the convergence using characteristic functions, i.e., E[eitDK
N ] → E[eitDK ].

Step 1. Truncation. Recall from (38) that DN = 1 +
∑N

r=1 DN ,r . Applying it to DK
N yields DK

N =

1 +
∑N

r=1 DK
N ,r where DK

N ,r is DN ,r with ξ being replaced by ξK . We further truncate DK
N so that it

becomes a two-sample U-statistic of fixed order R > 0, that is, we consider DK ,R
N := 1 +

∑R
r=1 DK

N ,r .
We then truncate the limit DK . By the multi-linear Mehler formula (see, e.g., [21]), we have

DK =
∑

p1 ,...,pK ≥0

K∏
k=1

spk
k

pk!
Hpk (Uk)Hpk (Vk ), (40)

where {Hp}p≥0 are the Hermite polynomials satisfying∫
Hp(x)Hq(x)e−x

2/2dx =
√

2πp!1{p = q}. (41)

Therefore, it is natural to define

DK ,R := 1 +
R∑

r=1

∑
p1+· · ·+pK=r

K∏
k=1

spk
k

pk!
Hpk (Uk )Hpk (Vk ).
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By the triangle inequality,
���E[eitDK

N ] − E[eitDK ]
��� ≤ C1 +C2 +C3 where

C1 :=
���E[eitDK

N − eitD
K ,R
N ]

��� , C2 :=
���E[eitDK ,R

N − eitD
K ,R ]

��� , C3 :=
���E[eitDK ,R − eitD

K ]
��� .

We fix some arbitrary δ > 0 and show that C1,C2,C3 ≤ δ for sufficiently large N and R.
Step 2. Control C1 and C3. Using the inequality

��eiz − 1
�� ≤ |z | , we get

C1 ≤ E
���eitDK

N − eitD
K ,R
N

��� ≤ |t | E
���DK

N − DK ,R
N

��� ≤ |t |
√
E(DK

N − DK ,R
N )2.

Invoking Proposition 18 for DK
N implies that, for sufficiently large R, we have C1 ≤ δ. Similarly, it holds

that C3 ≤ |t |
√
E(DK ,R − DK )2 where

E(DK ,R − DK )2 = E

�����
∞∑

r=R+1

∑
p1+· · ·+pK=r

K∏
k=1

spk
k

pk!
Hpk (Uk )Hpk (Vk )

�����
2

=

∞∑
r=R+1

∑
p1+· · ·+pK=r

K∏
k=1

s2pk
k

≤
∞∑

r=R+1

s2r
1 , since sk ≤ s1.

Here the two equations follow from (40) and (41), respectively. Since s1 < 1, we have C3 ≤ δ for
sufficiently large R.

Step 3. Control C2. It suffices to show that DK ,R
N →d DK ,R as N →∞ for any R > 0. Note that

DK
N ,r =

1
N!

∑
|A |= |B |=r

∑
σA=B

∏
i∈A
ξ̃K (Xi,Yσi ) =

(N − r)!
N!

∑
1≤i1< · · ·<ir ≤N
1≤ j1< · · ·< jr ≤N

∑
σ∈Sr

r∏
t=1

ξ̃K (Xit ,Yjσt
)

=
(N − r)!

N!

∑
1≤i1< · · ·<ir ≤N

j1�· · ·�jr

r∏
t=1

ξ̃K (Xit ,Yjt ) =
(N − r)!

r!N!

∑
i1�· · ·�ir
j1�· · ·�jr

r∏
t=1

ξ̃K (Xit ,Yjt )

=
(N − r)!

r!N!

∑
i1�· · ·�ir
j1�· · ·�jr

r∏
t=1

[
K∑
k=1

skαk(Xit )βk(Yjt )
]

=
(N − r)!

r!N!

∑
i1�· · ·�ir
j1�· · ·�jr

K∑
k1 ,...,kr=1

r∏
t=1

sktαkt (Xit )βkt (Yjt )

=
1
r!

K∑
k1 ,...,kr=1

(
r∏
t=1

skt

)
(N − r)!

N!

[ ∑
i1�· · ·�ir

r∏
t=1

αkt (Xit )
] ⎡⎢⎢⎢⎢⎣

∑
j1�· · ·�jr

r∏
t=1

βkt (Xjt )
⎤⎥⎥⎥⎥⎦ .

The last term above can be rewritten as follows. Take an arbitrary sequence k := (kt )rt=1 ⊂ [K]r . For
each k ∈ [K], let pk(k) be the number of times k appears among (kt )rt=1. By [66, Theorem 12.10],√

(N − r)!
N!

∑
i1�· · ·�ir

r∏
t=1

αkt (Xit ) =
K∏
k=1

Hpk (k)(G
(X)
N αk) + op(1)
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(N − r)!

N!

∑
j1�· · ·�jr

r∏
t=1

βkt (Yjt ) =
K∏
k=1

Hpk (k)(G
(Y)
N βk) + op(1),

where G(X)
N
α := 1√

n

∑n
i=1 α(Xi) and G(Y)

N
β is defined similarly. Consequently, we have

DK
N ,r =

1
r!

K∑
k1 ,...,kr=1

K∏
k=1

spk (k)
k

Hpk (k)(G
(X)
N αk)Hpk (k)(G

(Y)
N βk) + op(1).

Moreover, for any permutation symmetric f : [K]r → R, we have

1
r!

K∑
k1 ,...,kr=1

f (k1, . . . , kr ) =
∑

p1+· · ·+pK=r

1
p1! . . . pK !

f (l1, . . . , lr ),

where l1, . . . , lr is any sequence such that k appears exactly pk times for all k ∈ [K]. As a result,

DK
N ,r =

∑
p1+· · ·+pK=r

K∏
k=1

spk
k

pk!
Hpk (G

(X)
N αk )Hpk (G

(Y)
N βk) + op(1),

and thus DK ,R
N = 1+

∑R
r=1

∑
p1+· · ·+pK=r

∏K
k=1

s
pk
k
pk ! Hpk (G

(X)
N αk)Hpk (G

(Y)
N βk)+ op(1). Due to the mul-

tivariate CLT [10, Section 29], the random vector (G(X)
N αk,G

(Y)
N βk)

K
k=1 converges weakly to N2K (0, I2K )

by the orthonormality of {αk }Kk=1 and {βk }Kk=1. By the continuous mapping theorem,

DK ,R
N

→d 1 +
R∑

r=1

∑
p1+· · ·+pK=r

K∏
k=1

spk
k

pk!
Hpk (Uk )Hpk (Vk ) = DK ,R,

which completes the proof.

Proof of Theorem 2. We again prove the convergence using the characteristic functions. Step 0. Verify
the validity of the limit. We first show 1/

∏∞
k=1(1 − s2

k
) <∞. In fact,

1∏∞
k=1(1 − s2

k
)
= exp

{ ∞∑
k=1

log
1

1 − s2
k

}
≤ exp

{ ∞∑
k=1

s2
k

1 − s2
k

}
≤ exp

{∑∞
k=1 s2

k

1 − s2
1

}
<∞, (42)

where the first inequality follows from log (1 + x) ≥ x
1+x for all x > −1 and the last inequality follows

from the square summability of {sk }k≥1. It suffices to show that D ∈ L2(P ⊗ Q). For any k ≥ 1, let

Zk :=
1√

1 − s2
k

exp

{
−

s2
k

2(1 − s2
k
)
(U2

k +V2
k ) +

sk
1 − s2

k

UkVk

}
. (43)

Then {Zk}k≥1 are mutually independent and D =
∏∞

k=1 Zk . By a standard computation, we get E[Z2
k
] =

1/(1 − s2
k
). Therefore, by (42), E[D2] =

∏∞
k=1 E[Z

2
k
] = 1/

∏∞
k=1(1 − s2

k
) <∞.
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Step 1. Control the difference between the characteristic functions. Recall DK
N and DK from Propo-

sition 19. By the triangle inequality, we have
��E[eitDN ] − E[eitD]

�� ≤ C1 +C2 +C3 where

C1 :=
���E[eitDN ] − E[eitDK

N ]
��� , C2 :=

���E[eitDK
N ] − E[eitDK ]

��� , C3 :=
���E[eitDK ] − E[eitD]

��� .
Fix δ > 0. By Proposition 19, C2 ≤ δ for sufficiently large N . It then remains to control C1 and C3.

Step 2. Control C1. By construction, it holds that

DN − DK
N =

N∑
r=1

1
N!

∑
|A |= |B |=r

∑
σA=B

∏
i∈A
ξ−K (Xi,Yσi ),

where ξ−K := ξ − ξK ∈ L2
0,0(P ⊗ Q) and ς2

K := EP⊗Q[(ξ−K (X,Y ))2] =
∑

k≥K+1 s2
k
. Invoking Proposi-

tion 18 for ξ−K , we obtain E[(DN − DK
N )

2] ≤
∑N

r=1
1
r!
∑

σ∈Sr
s2(r−#σ)

1 ς2#σ
K . As shown in the proof of

Proposition 8, the sum
∑N

r=1
1
r!
∑

σ∈Sr
s2(r−#σ)

1 converges. Moreover, for sufficiently large K , since ς2
K

can be arbitrarily small, we have C1 ≤ |t | E[(DN − DK
N )

2] ≤ δ.
Step 3. Control C3. Again, it suffices to control E[(DK − D)2]. Recall Zk in (43). By independence,

E[(DK − D)2] = E
⎡⎢⎢⎢⎢⎣
(

K∏
k=1

Zk −
∞∏
k=1

Zk

) 2⎤⎥⎥⎥⎥⎦ = E
[

K∏
k=1

Z2
k

]
E

⎡⎢⎢⎢⎢⎣
(
1 −

∏
k≥K+1

Zk

) 2⎤⎥⎥⎥⎥⎦
=

1∏K
k=1(1 − s2

k
)

[
1∏

k≥K+1(1 − s2
k
)
− 1

]
, since E[Zk] = 1.

It follows from (42) that
∏K

k=1(1 − s2
k
)−1 <∞ and

1 ≤ 1∏
k≥K+1(1 − s2

k
)
≤ exp

{
1

1 − s2
1

∑
k≥K+1

s2
k

}
→ 1, as K →∞.

Hence, we have E[(DK − D)2] → 0 as K →∞, which completes the proof.

Proof of Corollary 3. Recall from (4) that the Schrödinger bridge με which solves (3) is given by
με (x, y) = ξ(x, y)P(x)Q(y) where ξ(x, y) = exp(−(c(x, y) − aε (x) − bε (y))/ε). Moreover, it follows from
the strong duality that [25, Proposition 2.1] (aε ,bε ) solve the dual problem

max
a,b∈C(Rd )

[∫
a(x)dP(x) +

∫
b(y)dQ(y) + ε − ε

∫
exp

(
−c(x, y) − a(x) − b(y)

ε

)
dP(x)dQ(y)

]
,

where C(Rd) is the set of continuous functions on Rd . Consequently, Cε (P,Q) =
∫

aε (x)dP(x) +∫
bε (y)dQ(y). By some algebra, we have

1
N

log
⎡⎢⎢⎢⎢⎣

1
N!

∑
σ∈SN

exp

(
−
∑N

i=1 c(Xi,Yσi )
ε

) ⎤⎥⎥⎥⎥⎦
=

1
N

log

⎡⎢⎢⎢⎢⎢⎣
1

N!

∑
σ∈SN

∏N
i=1 ξ(Xi,Yσi )

exp
(∑N

i=1(aε (Xi) + bε (Yσi ))/ε
) ⎤⎥⎥⎥⎥⎥⎦
= − 1
εN

N∑
i=1

[aε (Xi) + bε (Yi)] +
1
N

log DN .
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Now the claim follows from the facts that 1
N

∑N
i=1 [aε (Xi) + bε (Yi)] →p Cε (P,Q) (by LLN) and

1
N log DN = op(1) (by Theorem 2) as N →∞.
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