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Convergence properties of empirical risk minimizers can be conveniently expressed in terms of the associated
population risk. To derive bounds for the performance of the estimator under covariate shift, however, pointwise
convergence rates are required. Under weak assumptions on the design distribution, it is shown that least squares
estimators (LSE) over 1-Lipschitz functions are also minimax rate optimal with respect to a weighted uniform
norm, where the weighting accounts in a natural way for the non-uniformity of the design distribution. This implies
that although least squares is a global criterion, the LSE adapts locally to the size of the design density. We develop
a new indirect proof technique that establishes the local convergence behavior based on a carefully chosen local
perturbation of the LSE. The obtained local rates are then applied to analyze the LSE for transfer learning under
covariate shift.
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1. Introduction

Consider the nonparametric regression model with random design supported on [0,1], that is, we ob-
serve n i.i.d. pairs (X1,Y1), . . . ,(Xn,Yn) ∈ [0,1] ×R, with

Yi = f0(Xi) + εi, i = 1, . . . ,n (1)

and independent measurement noise variables ε1, . . . ,εn ∼ N(0,1). The design distribution is the
marginal distribution of X1 and is denoted by PX. Throughout this paper, we assume that PX has a
Lebesgue density p. The least squares estimator (LSE) for the nonparametric regression function f
taken over a function class F is given by

f̂n ∈ arg min
f ∈F

n∑
i=1

(
Yi − f (Xi)

) 2
.

In the case of non-uniqueness, the subsequent discussion and analysis applies to any minimizer f̂n.
If the class F is convex, computing the estimator f̂n results in a convex optimization problem, which
can also be written as a quadratic programming problem, see [3]. For a fixed function f , the law
of large numbers implies that the least squares objective

∑
i(Yi − f (Xi))2 is close to its expectation

n E[(Y1 − f (X1))2] = n+ n E[
∫ 1

0 ( f0(x) − f (x))2p(x) dx]. It is therefore natural that the standard analysis
of LSEs based on empirical process methods and metric entropy bounds for the function class F leads
to convergence rates with respect to the empirical L2-loss ‖ f̂ − f0‖2

n := 1
n

∑n
i=1( f̂n(Xi) − f0(Xi))2 and
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the associated population version E[
∫ 1

0 ( f̂n(x) − f0(x))2p(x) dx], see, for instance, [16,26,42,48]. The
latter risk is the expected squared loss if a new X is sampled from the design distribution PX and f0(X)
is estimated by f̂n(X).

A widely observed phenomenon is that the distribution of the new X is different from the design
distribution of the training data. For example, assume that we want to predict the response Y of a
patient to a drug based on a measurement X summarizing the patient’s health status. To learn such a
relationship, data are collected in one hospital resulting in an estimator f̂n. Later f̂n will be applied to
patients from a different hospital. It is conceivable that the distribution of X in the other hospital is
different. For instance, there could be a different age distribution, or patients have a different socio-
economic status due to variations in the imposed treatment costs.

Therefore, an important problem is to evaluate the estimator’s expected squared risk if a new obser-
vation X is sampled from a different design distribution QX with density q. The associated prediction
error under the new distribution is then∫ 1

0

(
f̂n(x) − f0(x)

) 2q(x) dx. (2)

If PX and QX are similar enough so that for some finite constant C and any x ∈ [0,1], q(x) ≤ Cp(x),
then, the prediction error under the design density q is of the same order as under p. However, in
machine learning applications, there are often subsets of the domain with very few data points. This
motivates the relevance of the problematic case, where the density q is large in a low-density region of
p. Differently speaking, we are more likely to see a covariate X in a region with few training data based
on the sample (X1,Y1), . . . ,(Xn,Yn). Since the lack of data in such a region means that the LSE will not
fit the true regression function f0 well, this could lead to a large prediction error under the new design
distribution.

An extension of this problem setting is transfer learning under covariate shift. Here we know the
least-squares estimator f̂n and the sample size n based on the sample (X1,Y1), . . . ,(Xn,Yn) with de-
sign density p. On top of that, we have a second, smaller dataset with m � n new i.i.d. data points
(X ′

1,Y
′

1 ), . . . ,(X
′
m,Y

′
m) where Y ′

i = f0(X ′
i ) + ε

′
i , i = 1, . . . ,m and X ′

1 ∼ QX. In the framework of the hospi-
tal data above, this means that we also have data from a small study with m patients from the second
hospital. In other words, the regression function f0 remains unchanged, but the design distribution
changes. Since the number of extra training data points m is small compared to the original sample size
n, we want to quantify how well an estimator combining f̂n and the new sample can predict under the
new design distribution with associated prediction error (2). Establishing convergence rates for the loss
in (2), given a sample with design density p, is, however, a hard problem. To our knowledge, no simple
modification of the standard least squares analysis allows to obtain optimal rates for this loss.

To address this problem, we study the case where the LSE is selected within the function class F
consisting of all 1-Lipschitz functions. For this setting, we prove under weak assumptions that for a
sufficiently large constant K and any 0 ≤ x ≤ 1,		 f̂n(x) − f0(x)

		 ≤ Ktn(x) (3)

with high probability, where the local convergence rate tn is the function that is, pointwise, the solution
to the equation

tn(x)2 PX([x ± tn(x)]) =
log n

n
.

The article [13] shows under slightly different assumptions on the design density that tn is locally the
optimal estimation rate and constructs a wavelet thresholding estimator that is specifically designed
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to attain this local convergence rate. We prove that the LSE achieves this optimal local rate without
any tuning. This is surprising since the LSE is based on minimization of the (global) empirical L2-
distance, and convergence in L2 is weaker than convergence in the weighted sup-norm loss underlying
the statement in (3).

To establish (3), we only assume a local doubling property of the design distribution. By imposing
more regularity on the design density, we can prove that tn(x) � (log n/(np(x))1/3. For this result, p
is also allowed to depend on the sample size n such that the p(x) in the denominator does not only
change the constant but also the local convergence rate. This quantifies how the local convergence rate
varies depending on the density p and how small-density regions increase the local convergence rate.
In Section 2, we argue that kernel smoothing with fixed bandwidth has a slower convergence rate than
the LSE. Therefore, the least squares fit can better recover the regression function if the values of the
density p range over different orders of magnitude. This property is particularly important for machine
learning applications.

Based on (3), we can then obtain a high-probability bound for the prediction error in (2) by

∫ 1

0

(
f̂n(x) − f0(x)

) 2q(x) dx ≤ K2
∫ 1

0
tn(x)2q(x) dx.

In many cases, simpler expressions for the convergence rate can be derived from the right-hand side. For
instance in the case tn(x) � (log n/(np(x))1/3, the convergence rate is (log n/n)2/3 if

∫ 1
0 q(x)/p(x)2/3 dx

is bounded by a finite constant.

A major contribution of this paper is the proof strategy to establish local convergence rates. For
that, we argue by contradiction, first assuming that the LSE has a slower local rate. Afterwards, we
construct a local perturbation with smaller least squares loss. This means that the original estimator
was not the LSE, leading to the desired contradiction. While a similar strategy has been followed for
shape-constrained estimation in [12,14], the construction of the local perturbation and the verification
of a smaller least squares loss for Lipschitz functions are both non-standard and involved. We believe
that these arguments can be generalized to various extensions beyond Lipschitz function classes.

The paper is structured as follows. In Section 2, we state the new upper and lower bounds on the
local convergence rate. This section precedes a discussion on the imposed doubling condition and
examples in Section 3. Section 4 gives a high-level overview of the new proof strategy to establish
local convergence rates. The full proof can be found in Section 7. Applications to transfer learning
are discussed in Section 5. Section 6 provides a brief literature review and an outlook. The remaining
proofs are deferred to the supplement [39].

Notation: For two real numbers a,b, we write a ∨ b =max(a,b) and a ∧ b =min(a,b). For any real
number x, we denote by �x� the smallest integer m such that m ≥ x and by �x� the greatest integer m
such that m ≤ x. Furthermore, for any set S, we denote by x �→ 1(x ∈ S) the indicator function of the
set S. To increase readability of the formulas, we define [a ± b] := [a − b,a + b]. For any two positive
sequences {an}n, {bn}n, we say that an � bn if there exists a constant 0 < c <∞, and a positive integer
N such that for all n ≥ N,an ≤ cbn. We write an � bn if an � bn and bn � an. Finally, if for all ε > 0,
there exists a positive integer N such that for all n ≥ N,an ≤ εbn, then we write an � bn. For a random
variable X and a (measurable) set A, PX(A) stands for P(X ∈ A). For any function h for which the
integral is finite, we set ‖h‖L2(P) :=

( ∫
h2(x)p(x) dx

) 1/2. We also write ‖h‖n :=
( 1
n

∑n
i=1 h2(Xi)

) 1/2.
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2. Main results

In this section, we state the local convergence results for the LSE. Set

M :=
{
probability measures that are both supported on [0,1] and admit a Lebesgue density

}
.

The local convergence rate tn turns out to be the functional solution to an equation that depends on the
design distribution PX.

Lemma 1. If PX ∈M, then, for any n > 1 and any x ∈ [0,1], there exists a unique solution tn(x) of the
equation

tn(x)2 PX
( [

x ± tn(x)
] )
=

log n
n

.

Therefore the function x �→ tn(x) is well defined on [0,1]. From now on, we refer to tn as the spread
function (associated to PX).

The spread function can be viewed as a measure for the local mass of the distribution PX around x.
The more mass PX has around x, the smaller tn(x) is. Whenever necessary, the spread function associ-
ated to a probability distribution P is denoted by tP

n .
To derive a local convergence rate of the least-squares estimator taken over Lipschitz functions, one

has to exclude the possibility that the design distribution PX is completely erratic. Interestingly, no
Hölder smoothness has to be imposed on the design density, and it is sufficient to consider design
distributions satisfying the following weak regularity assumption.

Definition 2. For n ≥ 3 and D ≥ 2, define Pn(D) as the class of all design distributions PX ∈M, such
that for any 0 < η ≤

√
log n supx∈[0,1] tn(x),

sup
x∈[0,1]

PX
(
[x − 2η, x + 2η]

)
PX

(
[x − η, x + η]

) ≤ D. (LDP)

We call (LDP) the local D-doubling property, or local doubling property when the constant D is irrel-
evant or unambiguous. A design distribution PX satisfies the (global) doubling property if (LDP) holds
for all η > 0. Denote by PG(D) the space of all globally doubling measures in M.

The restriction x ∈ [0,1] allows to include distributions with Lebesgue densities that are discon-
tinuous at 0 or 1. For instance the uniform distribution on [0,1] is 2-doubling, but since PX[−3η,η]/
PX[−2η,0] =∞, (LDP) does not hold if the supremum includes x = −η.

Since the uniform distribution on [0,1] is contained in Pn(2) ⊆ Pn(D) for D ≥ 2, we see that these
classes are non-empty. Inequality (LDP) states that doubling the size of a small interval cannot in-
flate its probability by more than a factor D. The next result shows that the maximum interval size√

log n supx∈[0,1] tn(x) tends to zero as n becomes large.

Lemma 3. Let PX ∈ Pn(D) with D ≥ 2. If ε > 0, then there exists an N = N(ε,D) such that for all
n ≥ N,

√
log n supx∈[0,1] tn(x) < ε.

The local doubling condition allows us to consider sample size-dependent design distributions. See
Section 3 for a more in-depth discussion and some examples.
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We now show that the spread function is indeed the minimax rate. Denote by Lip(κ) the set of
functions f : [0,1] → R that are Lipschitz, with Lipschitz constant at most κ, that is, f ∈ Lip(κ) iff
| f (x) − f (y)| ≤ κ |x − y | for all x, y ∈ [0,1]. If f ∈ Lip(κ), then we also say that f is κ-Lipschitz. Recall
that Pf0 is the distribution of the data in the nonparametric regression model (1) if the true regression
function is f0 and that PX denotes the distribution of the design X .

Theorem 4. Consider the nonparametric regression model (1). Let 0 < δ < 1, and D ≥ 2. If f̂n denotes
the LSE taken over the class of 1-Lipschitz functions Lip(1), then, for a sufficiently large constant
K = K(D, δ),

sup
PX∈Pn(D)

sup
f0∈Lip(1−δ)

Pf0

(
sup

x∈[0,1]
tn(x)−1 | f̂n(x) − f0(x)| > K

)
→ 0 as n →∞.

The proof reveals that if the constant K is chosen as the value K∗ defined in (34), the right-
hand side of Theorem 4 converges to zero with a polynomial rate in the sample size n. For δ → 0,
K∗ � δ−1/2−3 log2(D)/4. Consequently, the constant K will become large for small δ and large doubling
constant D. We want to stress that no attempt has been made to optimize the constants and that further
refinements of the inequalities in the proof will likely improve the constant K considerably.

Since the previous result is uniform over design distributions PX ∈ Pn(D), we can also consider
sequences Pn

X. While, at first sight, it might appear unnatural to consider for every sample size n a
different design distribution, this constitutes a useful statistical concept to study the effect of low-
density regions on the convergence rate. Indeed, the influence of a small density region disappears in
the constant for a fixed density, while the dependence on the sample size makes the effect visible in
the convergence rate. Moreover, sample size-dependent quantities are widely studied in mathematical
statistics, most prominently in high-dimensional statistics, where the number of parameters typically
grows with the sample size.

One key question is to identify conditions for which the local convergence rate tn has a more explicit
expression. One such instance is the case of Hölder-smooth design densities. Let �β� denote the largest
integer that is strictly smaller than β. The Hölder-β semi-norm of a function g : R→ R is defined as

|g |β := sup
x,y∈R, x�y

|g( �β�)(x) − g( �β�)(y)|
|x − y |β−�β� . (4)

For β = 1, |g |β is the Lipschitz constant of g.

Corollary 5. Consider the nonparametric regression model (1). Let 0 < δ < 1 and f̂n be the LSE taken
over the class of 1-Lipschitz functions Lip(1). For β ∈ (0,2], let Pn

X be a sequence of distributions
with corresponding Lebesgue densities pn. If for any n, there exists a non-negative function hn with
pn(x) = hn(x) for all x ∈ [0,1], maxn |hn |β ≤ κ and minx∈[0,1] pn(x) ≥ n−β/(3+β) log n, then, for all
n ≥ exp(4κ) ∨ 9, ( log n

3npn(x)

) 1/3
≤ tn(x) ≤

( 2 log n
npn(x)

) 1/3
, (5)

Pn
X ∈ Pn(2 + 2β/33βκ + 21/33κ1/β), and there exists a finite constant K ′ independent of the sequence

Pn
X, such that

sup
f0∈Lip(1−δ)

Pf0

(
sup

x∈[0,1]
pn(x)1/3		 f̂n(x) − f0(x)

		 ≥ K ′
( log n

n

) 1/3
)
→ 0 as n →∞.
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In the previous result, the regression function is assumed to be Lipschitz, and β denotes the smooth-
ness index of the design densities pn. The convergence rate (log n/n)1/3 is known to be the optimal
nonparametric rate for Lipschitz regression functions, sup-norm loss and uniform fixed design, cf.
[44], Corollary 2.5.

The rate (log n/(npn(x))1/3 is natural, since npn(x) can be viewed as local effective sample size
around x.

For β ∈ (0,1], we can always choose hn(x) = pn(0) for x < 0, hn(x) = pn(x) for x ∈ [0,1], and hn(x) =
pn(1) for x > 1. While the rate is independent of the smoothness index β, we can allow faster decaying
low density regions if β gets larger. The fastest possible decay is n−2/5 log n if β = 2.

To extend the result to β > 2 and to allow for even smaller densities, it is widely believed that
imposing Hölder smoothness is insufficient. One way around this is to use Hölder smoothness plus
some extra flatness constraint. See [34,35] for more on this topic.

The lower bound on the small density regions in Corollary 5 ensures that the local doubling property
(LDP) is satisfied. A lower bound is also necessary, as otherwise pn(x) � log n/n would imply that the
rate tn(x) � (log n/(npn(x))1/3 diverges. The next lemma shows how the spread function behaves at a
point with vanishing Lebesgue density p.

Lemma 6. Let PX ∈ PG(D) with D ≥ 2 and density p. Suppose that p(x0) = 0 for some x0 ∈ [0,1].
If there exists some A,α > 0 and an open neighbourhood U of x0 such that for any x ∈ U, 1/A ≤
|p(x) − p(x0)|/|x − x0 |α ≤ A, then, there exists N > 0, depending only on U and D, such that for any
n > N, ( (α + 1) log n

An

) 1/(α+3)
≤ tn(x0) ≤

( (α + 1)A log n
n

) 1/(α+3)
.

An immediate consequence is that if p is k times differentiable, p(�)(x0) = 0 for all � < k, and
p(k)(x0) � 0, then tn(x0) � (log n/n)1/(k+3).

We complement Theorem 4 with a matching minimax lower bound. A closely related result is The-
orem 2 in [13].

Theorem 7. If C∞ is a positive constant, then there exists a positive constant c, such that for any
sufficiently large n, and any sequence of design distribution Pn

X ∈ M with corresponding Lebesgue
densities pn all upper bounded by C∞, we have

inf
f̂n

sup
f0∈Lip(1)

Pf0

(
sup

x∈[0,1]
tn(x)−1 | f̂n(x) − f0(x)| ≥

1
12

)
≥ c,

where the infimum is taken over all estimators.

The proof is deferred to Appendix D in the Supplement [39].
Corollary 5 states that tn(x) � (log n/(npn(x)))1/3. Combined with the lower bound, this shows that

the local minimax estimation rate in this framework is (log n/(npn(x)))1/3.
It is known that for Lipschitz functions and squared L2-loss, the LSE achieves the minimax estima-

tion rate n−2/3. Summarizing the statements on the convergence rates above shows that the LSE is also
minimax rate optimal with respect to the stronger weighted sup-norm loss.

Next, we discuss how the derived local rates imply several advantages of the LSE if compared to
kernel smoothing estimators. In the case of uniform design p(x) = 1(x ∈ [0,1]), the LSE achieves the
convergence rate n−2/3 with respect to squared L2-loss and Corollary 5 gives the rate (log n/n)1/3 with
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respect to sup-norm loss. To our knowledge, it is impossible to obtain these two rates simultaneously
for kernel smoothing estimators. The squared L2 rate n−2/3 can be achieved for a kernel bandwidth
h � n−1/3 and the sup-norm rate (log n/n)1/3 requires more smoothing in the sense that the bandwidth
should be of the order (log n/n)1/3, see Corollary 1.2 and Theorem 1.8 in [44]. Any bandwidth choice
in the range n−1/3 � h � (log n/n)1/3 will incur an additional log n-factor in at least one of these two
convergence rates of the kernel smoothing estimator. Although the suboptimality in the rate is only a
log n-factor, it is surprising that the LSE does not suffer from this issue.

Secondly, we argue that kernel smoothing estimators with fixed global bandwidth cannot achieve
the local convergence rate (log n/(npn(x))1/3 in the setting of Corollary 5. Denote the bandwidth by h
and the kernel smoothing estimator by f̂nh . The decomposition in stochastic error and bias leads to an
inequality of the form

		 f̂nh(x) − f0(x)
		 � √

log n
nhpn(x)︸�������︷︷�������︸

stochastic error

+ h︸︷︷︸
deterministic error

, for all x ∈ [0,1], (6)

with high probability. Since the dependence on the density pn(x) is typically ignored, we provide a
heuristic for this bound in Appendix B in the supplement [39]. To balance the two errors, one would
have to choose as a bandwidth h � (log n/(npn(x)))1/3. In this case, the local convergence rate would
also be (log n/(npn(x))1/3. But this requires choosing the bandwidth locally depending on x. From
that, one can deduce that any global choice for h in (6) leads to suboptimal local rates. It is, therefore,
surprising that although the LSE is based on a global criterion, it changes the amount of smoothing
locally to adapt to the amount of data points in each regime. This is a clear advantage of the least
squares method over smoothing procedures. This benefit seems particularly advantageous for machine
learning problems that typically have high- and low-density regions in the design distribution.

To draw uniform confidence bands, but also for the application to transfer learning discussed later, it
is important to estimate the spread function tn from data. For P̂

n

X(A) := 1
n

∑n
i=1 1(Xi ∈ A) the empirical

design distribution, a natural estimator is

t̂n(x) := inf
{
t : t2P̂

n

X([x ± t]) ≥ log n
n

}
. (7)

Theorem 8. If PX ∈ PG(D) for some D ≥ 2 and ‖p‖∞ <∞, then

max
n>1

sup
x∈[0,1]

√
log n

			 t̂n(x)
tn(x)

− 1
			 <∞, almost surely,

where tn(x) is the spread function associated to PX.

The result implies that for any ε > 0 and all sufficiently large n, we have (1 − ε)tn(x) ≤ t̂n(x) ≤
(1 + ε)tn(x) for all x ∈ [0,1].

3. Local doubling property and examples of local rates

By Definition 2, Pn(D) is the class of all locally doubling distributions, and PG(D) is the class of all
globally doubling distributions in M. It follows from the definitions that PG(D) ⊆ Pn(D). A converse
statement is
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Lemma 9. If PX ∈ Pn(D), then PX ∈ PG(Dn(PX)) for a finite number Dn(PX). In particular, if PX does
not depend on the sample size n, neither does Dn(PX).

This means that the distinction between local and global doubling is only relevant in the case where
we study sequences of design distributions, such as in the setup of Corollary 5. In Example 3, a
sequence Pn

X is constructed such that Pn
X ∈ Pn(D) for all n and Pn

X ∈ PG(Dn) necessarily requires
Dn →∞ as n →∞.

Doubling is known to be a weak regularity assumption and does not even imply that PX has a
Lebesgue density [8,21]. It can, moreover, be easily verified for a wide range of distributions. All
distributions with continuous Lebesgue density bounded away from zero and all densities of the form
p(x) ∝ xα for α ≥ 0 are doubling.

Examples of non-doubling measures are distributions PX with PX([a,b]) = 0 for some 0 ≤ a < b ≤ 1,
see Lemma 29 in Appendix C in the supplement [39]. If a density verifies p(x0) = 0 for some x0 ∈
[0,1] and behaves like an inverse exponential around x0, then it is not in Pn for any constant. The
density x �→ x−2e1−1/x1(x ∈ [0,1]) with corresponding cumulative distribution function (c.d.f.) x �→
e1−1/x1(x ∈ [0,1]) provides an example of such a behaviour. To see this, observe that P([−2η,2η]) =
e1−1/(2η) = e1/(2η)e1−1/η = e1/(2η)P([−η,η]). Since e1/(2η) →∞ as η→ 0, (LDP) cannot hold.

We now derive explicit expressions for the local convergence rates and verify the (LDP) for different
design distributions by proving that PX ∈ PG(D) or PX ∈ Pn(D).

Example 1. Assume that the design density p is bounded from below and above, in the sense that

0 < p := inf
x∈[0,1]

≤ p := sup
x∈[0,1]

p(x) <∞. (8)

The following result shows that in this case Theorem 4 is applicable and the local convergence rate is
tn(x) � (log n/n)1/3.

Lemma 10. Assume that the design distribution PX admits a Lebesgue density satisfying (8). Then,
PX ∈ PG(4p/p) and for any 0 ≤ x ≤ 1,( log n

2np

) 1/3
≤ tn(x) ≤

( log n
np

) 1/3
. (9)

As a second example, we consider densities that vanish at x = 0.

Example 2 (Density vanishing with polynomial speed at zero). Assume that, for some α > 0, the
design distribution PX has Lebesgue density

p(x) = (α + 1)xα+11(x ∈ [0,1]).

This means that there is a low-density regime near zero with rather few observed design points. In
this regime, it is more difficult to estimate the regression function, which is reflected in a slower local
convergence rate.

Lemma 11. If n > 9,α > 0 and an := (log n/n2α+1)1/(α+3), then, the distribution with density p : x �→
(α+1)xα1(x ∈ [0,1]) is in PG(D) for some D depending only on α. Thus, Theorem 4 is applicable and( log n

2α+1n

) 1/(α+3)
≤ tn(x) ≤

( log n
n

) 1/(α+3)
, for 0 ≤ x ≤ an, (10)
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Figure 1. The density pn.

and ( log n
2α+1(α + 1)nxα

) 1/3
≤ tn(x) ≤

( log n
nxα

) 1/3
, for an ≤ x ≤ 1. (11)

By rewriting the expression for the spread function, we find that the local convergence rate is tn(x) �
(log n/(n(x ∨ an)α))1/3. The behavior of tn(0) can also directly be deduced from Lemma 6.

As a last example, we consider a sequence of design distributions with decreasing densities on
[1/4,3/4].

Example 3 (Sequence of distributions with low-density region). For φn = 1 ∧ n−1/4 log n, consider
the sequence of distributions Pn

X with associated Lebesgue densities

pn(x) := φn + 16(1 − φn)max
( 1

4
− x,0, x − 3

4

)
. (12)

It is easy to check that this defines Lebesgue densities on [0,1]. See Figure 1 for a graph of pn.
According to Lemma 10, these distributions are globally doubling. Since Pn

X([0,1])/Pn
X([1/4,3/4]) =

1/φn, the doubling constants are ≥ 1/φn and hence tend to infinity as n grows. Therefore there is no
D > 0 such that pn ∈ PG(D) for all n. On the contrary, for all n, pn ∈ Lip(16) and since φn ≥ n−1/4 log n,
the assumptions of Corollary 5 are satisfied with β = 1 and κ = 16. Therefore, pn ∈ Pn(8) for all n large
enough and the local convergence rate is (log n/(npn(x)))1/3. In particular, in the regime [1/4,3/4], the
local convergence rate becomes n−1/4.

4. Proof strategy

As the new proof strategy to establish local rates for least squares estimation is the main mathematical
contribution of this work, we outline it here. Consider the LSE

f̂n ∈ arg min
f ∈Lip(1)

n∑
i=1

(Yi − f (Xi))2 .
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The definition of the estimator ensures that for any g ∈ Lip(1), the so called basic inequality
∑n

i=1(Yi −
f̂n(Xi))2 ≤

∑n
i=1(Yi − g(Xi))2 holds. Assume that the function g satisfies(

f̂n(Xi) − g(Xi)
) (
g(Xi) − f0(Xi)

)
≥ 0, for all i = 1, . . . ,n, (13)

which is the same as saying that at all data points g should lie between f̂n and the true regression
function f0. Together with the basic inequality and using Yi = f0(Xi) + εi , we obtain

n∑
i=1

(
f̂n(Xi) − g(Xi)

) 2 ≤
n∑
i=1

(
f̂n(Xi) − f0(Xi)

) 2 −
n∑
i=1

(
g(Xi) − f0(Xi)

) 2

≤ 2
n∑
i=1

εi
(

f̂n(Xi) − g(Xi)
)
.

(14)

We prove that tn(x) is a local convergence rate by contradiction. Assume that the LSE f̂n is more
than Ktn(x∗) away from the true regression function f0 for some x∗ ∈ [0,1] and a sufficiently large
constant K . Then, we choose g as a specific local perturbation of f̂n (in the sense that g differs from
f̂n only on a small interval) such that the previous inequality (14) is violated, resulting in the desired
contradiction.

Denote the space of all possible functions f̂n − g by F ∗. Since f̂n ∈ Lip(1) and g ∈ Lip(1), we have
f̂n − g ∈ Lip(2) and thus, F ∗ ⊆ Lip(2). In fact, by choosing g as a local perturbation of f̂n, the function
class F ∗ will be much smaller than Lip(2). Due to the small support of f̂ − g, we have f̂ (Xi) − g(Xi) =
0 for most Xi . It is conceivable that one can remove these indices from (14) and that the effective
sample size m = m(X1,Y1, . . . ,Xn,Yn) is the number of indices for which f̂n(Xi) − g(Xi) � 0. Denote by
N(r,F ∗, ‖ · ‖∞) the covering number of F ∗ with sup-norm balls of radius r and assume moreover that
F ∗ is star-shaped, that is, if h ∈ F ∗ and α ∈ [0,1], then also αh ∈ F ∗. We now argue similarly as in
[48]. Replacing f ∗ by g in their inequality (13.18, p. 452) and then following exactly the same steps
as in the proofs for their Theorem 13.1 and Corollary 13.1, one can now show that if there exists a
sequence ηn with 0 ≤ ηn ≤ 1 satisfying

16
√

m

∫ ηn

η2
n/4

√
log N

(
r,F ∗, ‖ · ‖∞

)
dr ≤

η2
n

4
, (15)

then,

P
( 1

m

n∑
i=1

(
f̂n(Xi) − g(Xi)

) 2 ≥ 16η2
n

)
≤ e−mη2

n/2. (16)

To derive a contradiction assume that there exists a point x∗ such that | f̂n(x∗) − f0(x∗)| > Ktn(x∗).
Suppose moreover, that for all K large enough, we can find a function g ∈ Lip(1) satisfying (13) and
| f̂n(x∗) − g(x∗)| > Ktn(x∗), and support of f̂n − g with length of the order Ktn(x∗). The assumed prop-
erties of such a function g are plausible due to f̂n − g ∈ Lip(2). Because we can also choose K ≥ 4,
another consequence of f̂n − g ∈ Lip(2) is that | f̂n(x) − g(x)| > Ktn(x∗)/2 for all x ∈ [x∗ ± tn(x∗)].
Thus,

n∑
i=1

(
f̂n(Xi) − g(Xi)

) 2 ≥ K2

4
tn(x∗)2

n∑
i=1

1
(
Xi ∈ [x∗ ± tn(x∗)]

)
.
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The right-hand side should be close to its expectation 1
4 K2tn(x∗)2nPX ([x∗± tn(x∗)]) = 1

4 K2 log n, where
we used the definition of tn(x∗). Thus, up to approximation errors, we obtain the lower bound

n∑
i=1

(
f̂n(Xi) − g(Xi)

) 2 ≥ K2

4
log n. (17)

We now explain the choice of ηn in (16) that leads to the upper bound for
∑n

i=1( f̂n(Xi) − g(Xi))2
in (14). Since the perturbation is supported on an interval with length of the order Ktn(x∗), one can
bound the metric entropy log N

(
r,F ∗, ‖ · ‖∞

)
� Ktn(x∗)/r , with proportionality constant independent

of K . Therefore, (15) holds for ηn ∝ (Ktn(x∗) log n/m)1/3. The additional log n-factor in ηn is necessary
to obtain uniform statements in x. For this choice of ηn, the probability in (16) converges to zero.
Consequently, on an event with large probability, we have that

n∑
i=1

(
f̂n(Xi) − g(Xi)

) 2 ≤ 16mη2
n �

(
mK2tn(x∗)2 log2 n

) 1/3
. (18)

Recall that the support of f̂n − g is contained in [x∗ ± CKtn(x∗)] for some constant C. Moreover, m is
the number of observations in the support of f̂n−g. Now m should be close to its expectation which can
be upper bounded by n PX([x∗ ± CKtn(x∗)]). Invoking the local doubling property (LDP), m can also
be upper bounded by CKn PX([x∗ ± tn(x∗)]), for a constant CK depending on K . Using the definition
of tn(x), (18) can be further bounded by

n∑
i=1

(
f̂n(Xi) − g(Xi)

) 2 �
(
CKK2ntn(x∗)2 PX([x∗ ± tn(x∗)]) log2 n

) 1/3
≤ (CKK2)1/3 log n.

Comparing this with the lower bound (17) and dividing both sides by log n, we conclude that on an event
with large probability, 1

4 K2 � (CKK2)1/3, where the proportionality constant does not depend on K .
A technical argument that links the upper and lower bound more tightly and that we omit here shows
that one can even avoid the dependence of CK on K , such that we finally obtain K2 � K2/3. Taking K
large and since the proportionality constant is independent of K , we finally obtain a contradiction. This
means that on an event with large probability and for all sufficiently large K , there cannot be a point x∗,
such that | f̂n(x∗) − f0(x∗)|/tn(x∗) > K , proving supx | f̂n(x) − f0(x)|/tn(x) ≤ K with large probability.

There is still a major technical obstacle in the proof strategy, namely the choice of the local pertur-
bation g. This construction appears to be one of the main difficulties of the proof. In fact, the empirical
risk minimizer over 1-Lipschitz functions will typically lie somehow on the boundary of the space
Lip(1) in the sense that on small neighbourhoods, the Lipschitz constant of the estimator is exactly
one.

To see this, assume the statement would be false. Then we could build tiny perturbations around the
estimator that are 1-Lipschitz and lead to a smaller least squares loss, which contradicts the fact that
the original estimator is a least squares minimizer (see Figure 2). This makes it tricky to construct a
local perturbation g of f̂ that also lies in Lip(1) and satisfies the required conditions. To find a suitable
perturbation, our approach is to introduce first x∗ as above and then define another point x̃ in the
neighbourhood of x∗ with some specific properties. The full construction is explained in Figure 3 and
Lemma 22 in Section 7.
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5. Applications to transfer learning

Transfer Learning (TL) aims to exploit that an estimator achieving good performance on a certain task
should also work well on similar tasks. This allows to emulate a bigger dataset and to save computa-
tional time by relying on previously trained models. In the supervised learning framework, we have
access to training data generated from a distribution QX,Y. Observing X from a pair (X,Y ) ∼ QX,Y we
want to predict the corresponding value of Y . To do so, we compute an estimate based on observing m
i.i.d. copies sampled from QX,Y. Assume now that we also have access to n > m i.i.d. copies sampled
from another distribution PX,Y. The transfer learning paradigm states that, depending on some sim-
ilarity criterion between PX and QX, fitting an estimator using both samples improves the predictive
power. In other words, PX,Y contains information about QX,Y that can be transferred to improve the fit.
Two standard settings within TL are posterior drift and covariate shift. For posterior drift, one assumes
that the marginal distributions are the same, that is, PX =QX, but PY |X and QY |X may be different. On
the contrary, TL with covariate shift assumes that PY |X =QY |X, while PX and QX can differ. Here, we
address the covariate shift paradigm within the nonparametric regression framework. This means, we
observe n +m independent pairs (X1,Y1), . . . ,(Xn+m,Yn+m) ∈ [0,1] ×R with

Xi ∼ PX, for i = 1, . . . ,n,

Xi ∼ QX, for i = n + 1, . . . ,n +m, (19)

Yi = f0(Xi) + εi, for i = 1, . . . ,n +m,

and independent noise variables ε1, . . . ,εn+m ∼N(0,1).
We now discuss estimation in this model, treating the cases m = 0 and m > 0, separately. In both

cases, the risk is the prediction error under the target distribution. For readability, we omit the subscript
X and write P and Q for PX and QX, respectively. Throughout the section, we assume global doubling,
that is, P,Q ∈ PG(D) for some D ≥ 2.

5.1. Using LSE from source distribution to predict under target distribution

As before, let q denote the density of the target design distribution Q. Recall that we are considering the
covariate shift model (19) with m = 0 and Lipschitz continuous regression functions. If the n training

Figure 2. If the LSE f̂ would not have locally slope = 1, then one could construct a perturbed version f̃ that better
fits the data, implying that f̂ cannot be a least squares fit.
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data were generated from the target distribution QX,Y instead, the classical empirical risk theory would
lead to the standard nonparametric rate n−2β/(2β+1) with β = 1. More precisely, the statement would be
that with probability tending to one as n →∞,

∫ 1
0 ( f̂n(x) − f0(x))2q(x) dx � n−2/3.

For n training samples from the source distribution PX,Y, Theorem 4 shows that | f̂n(x) − f0(x)| ≤
KtP

n(x) for all x, with high probability, where tP
n denotes the spread function associated to the distribu-

tion P. This means that the prediction risk under the target marginal distribution QX with density q is
bounded by ∫ 1

0

(
f̂n(x) − f0(x)

) 2q(x) dx ≤ K2
∫ 1

0
tP
n(x)2q(x) dx, (20)

with probability converging to one as n → ∞. For a given source density p, the main question is
whether the right-hand side is of the order n−2/3, up to log n-factors. This would imply that there is
no loss in terms of convergence rate (ignoring log n-factors) due to the different sampling scheme.
To get at least close to the n−2/3-rate, some conditions on p are needed. If p is, for instance, zero on
[0,1/2], we have no information about the regression function f on this interval and any estimator will
be inconsistent on [0,1/2]. If we then try to predict with Q the uniform distribution, it is clear that∫ 1

0 ( f̂n(x) − f0(x))2 dx ≥
∫ 1/2

0 ( f̂n(x) − f0(x))2 dx � 1.
In the setting of sample size dependent densities pn, Corollary 5 shows that under the imposed

conditions, there exists a constant K ′ that does not depend on n, such that∫ 1

0

(
f̂n(x) − f0(x)

) 2q(x) dx ≤ (K ′)2
( log n

n

) 2/3
∫ 1

0

q(x)
pn(x)2/3

dx,

with probability tending to one as n →∞. For instance, for the sequence of densities pn(x) := φn(x) +
16(1− φn)max(1/4− x,0, x −3/4) with φn = 1∧n−1/4 log(n), as considered in (12), the right-hand side
in the previous display is of the order (log n/n)2/3φ

−2/3
n ≤ n−1/2.

For distributions satisfying the conditions of Theorem 4, we need to bound the more abstract integral∫ 1
0 tP

n(x)2q(x) dx. The next result provides a different, sometimes simpler formulation.

Lemma 12. In the same setting and for the same conditions as in Theorem 4, there exists a constant
K ′′, such that∫ 1

0

(
f̂n(x) − f0(x)

) 2q(x) dx ≤ K ′′ log n
n

∫ 1

0

Q([x ± tP
n(x)])

tP
n(x)P([x ± tP

n(x)])
dx

≤ 21/3K ′′
( log n

n

) 2/3
‖p‖1/3

∞

∫ 1

0

Q([x ± tP
n(x)])

P([x ± tP
n(x)])

dx,

with probability tending to one as n →∞.

In [25], a pair (P,Q) is said to have transfer exponent γ, if there exists a constant 0 < C ≤ 1, such
that for all 0 ≤ x ≤ 1 and 0 < η ≤ 1, we have P([x ± η]) ≥ Cηγ Q([x ± η]). Combined with the previous
lemma, we get for transfer exponent γ,∫ 1

0

(
f̂n(x) − f0(x)

) 2q(x) dx ≤ 21/3 K ′′

C

( log n
n

) 2/3
‖p‖1/3

∞

∫ 1

0
tP
n(x)−γ dx,
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with probability tending to one as n → ∞. Interestingly, the right-hand side does not depend on the
target distribution Q.

The next lemma provides an example of convergence rates.

Lemma 13. Work in the nonparametric covariate shift model (19) with m = 0. Let α > 0. For source
design density p(x) = (α + 1)xα1(x ∈ [0,1]) and uniform target design density q(x) = 1(x ∈ [0,1]), we
have that ∫ 1

0

(
f̂n(x) − f0(x)

) 2
q(x) dx � (log n)1(α=3/2)

[ ( log n
n

) 3/(3+α)
∨

( log n
n

) 2/3
]

(21)

with probability tending to one as n →∞.

The proof shows that the result follows for 0 < α ≤ 1 by a direct application of Lemma 12. For
general α > 0, we prove the lemma by a more sophisticated analysis based on the bounds derived in
Example 2.

The convergence rate is (log n/n)3/(α+3) if α > 3/2 and (log n/n)2/3 if α < 3/2. For α = 3/2 an
additional log n-factor appears. This result shows that the low-density region near zero causes a slower
convergence for α > 3/2.

5.2. Combining both samples to predict under the target distribution

We now consider the nonparametric regression model under covariate shift (19) with a second sample,
that is, m > 0.

In the first step, we construct an estimator combining the information from both samples. The main
idea is to consider the LSEs for the first and second part of the sample and, for a given x, pick the
LSE with the smallest estimated local rate. For a proper definition of the estimator, some notation is re-
quired. Restricting to the first and second part of the sample, let f̂ (1)n and f̂ (2)m denote the corresponding
LSEs taken over 1-Lipschitz functions. Because the spread function is the local convergence rate, it is
now natural to study f̃n,m(x) = f̂ (1)n (x)1(tP

n(x) ≤ tQ
m(x)) + f̂ (2)m (x)1(tP

n(x) > tQ
m(x)). Because the spread

functions are unknown, f̃n,m(x) is not yet an estimator. Replacing tP
n(x) and tQ

m(x) by the estimators

t̂ P
n(x) := inf

{
t : t2P̂

n([x ± t]) ≥ log n
n

}
, P̂

n([x ± t]) :=
1
n

n∑
i=1

1(Xi ∈ [x ± t]),

t̂ Q
m(x) := inf

{
t : t2Q̂

m([x ± t]) ≥ log m
m

}
, Q̂

m([x ± t]) :=
1
m

n+m∑
i=n+1

1(Xi ∈ [x ± t]),

(22)

leads to the definition of our nonparametric regression estimator under covariate shift,

f̂n,m(x) := f̂ (1)n (x)1
(̂
t P
n(x) ≤ t̂ Q

m(x)
)
+ f̂ (2)m (x)1(̂t P

n(x) > t̂ Q
m(x)). (23)

Let p and q be the respective Lebesgue densities of P and Q. We omit the dependence on n,m and
define by Pf the distribution of the data in model (19).

Theorem 14. Consider the nonparametric regression model under covariate shift (19). Let 0 < δ < 1
and D > 0. If P,Q ∈ PG(D) and the estimator f̂n,m is as in (23), then, for a sufficiently large constant
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K,

sup
f0∈Lip(1−δ)

Pf0

(
sup

x∈[0,1]

| f̂n,m(x) − f0(x)|
tP
n(x) ∧ tQ

m(x)
> K

)
→ 0 as n →∞ and m →∞.

The proof shows that to achieve the rate tP
n(x) ∧ tQ

m(x), it is actually enough to estimate tP
n(x) using N

data points X1, . . . ,XN ∼ P, where N is a sufficiently large number. Thus, instead of observing the full
first dataset (X1,Y1), . . . ,(Xn,Yn) ∼ P, the estimator only needs the LSE f̂ (1)n and N i.i.d. observations
from the design distribution P.

In the next step, we show that the rate tP
n(x)∧ tQ

m(x) is the local minimax rate. The design distributions
Pn

X,Q
n
X are allowed to depend on the sample size. The corresponding spread functions are denoted by

tP
n(x) and tQ

m(x).

Theorem 15. Consider the nonparametric regression model under covariate shift (19). If C∞ is a
positive constant, then there exists a positive constant c, such that for any sufficiently large n, and any
sequences of design distribution Pn

X,Q
n
X ∈ M with corresponding Lebesgue densities pn,qn all upper

bounded by C∞, we have

inf
f̂n ,m

sup
f0∈Lip(1)

Pf0

(
sup

x∈[0,1]

| f̂n,m(x) − f0(x)|
tP
n(x) ∧ tQ

m(x)
≥ 1

12

)
≥ c,

where the infimum is taken over all estimators and Pf0 is the distribution of the data in model (19).

Given the full dataset in model (19), an alternative procedure is to use the LSE over all data, that is,

f̂n+m ∈ arg min
f ∈Lip(1)

n+m∑
i=1

(
Yi − f (Xi)

) 2
.

Instead of analyzing this estimator in model (19), the risk can rather easily be controlled in the related
model, where we observe n + m i.i.d. observations (X1,Y1), . . . ,(Xn+m,Yn+m) with Xi drawn from the
mixture distribution P̃ := m

m+n Q+ n
m+n P and Yi = f0(Xi) + εi . In this model, we draw in average n

observations from P and m observations from Q. Since PG(D) is convex, Theorem 4 applies and,
consequently, tP̃

n+m(x) is a local convergence rate. The spread function can be bounded as follows.

Lemma 16. If P̃ := n
n+m P+ m

n+m Q, then,

tP̃
n+m(x) ≤ tP

n(x)
√

log(m+n)
logn ∧ tQ

m(x)
√

log(m+n)
logm .

If there are positive constants C, κ such that supx tP
n(x) ≤ Cn−κ for all n, then, there exists a constant

C′, such that

tP̃
n+m(x) ≤ C ′ (tP

n(x) ∧ tQ
m(x)

)
, for all n ≥ m > 2.

One can see that the rate is at most a log-factor larger than the local minimax rate tP
n(x) ∧ tQ

m(x).
Moreover, this additional log-factor can be avoided in the relevant regime where the local rate t PX

n (x)
decays with some polynomial rate uniformly over [0,1].
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We now return to our leading example with source density p(x) = (α+ 1)xα+11(x ∈ [0,1]) and target
density q(x) = 1(x ∈ [0,1]). Lemma 10 and Lemma 11 show that if α > 0, then, the assumptions of
Theorem 14 are satisfied and the local convergence rate of the combined estimator f̂n,m is tP

n(x)∧ tQ
m(x).

From (21), we see that as long as α < 3/2, the first sample is enough to achieve the rate (log n/n)2/3.
We therefore focus on the regime 3/2 < α.

Lemma 17. Consider the nonparametric regression model under covariate shift (19). For 3/2 < α,
let P be the distribution with Lebesgue density p(x) = (α + 1)xα+11(x ∈ [0,1]) and Q be the uniform
distribution on [0,1]. If n3/(3+α) logα/(3+α) n � m ≤ n, then, we have that for any f0 ∈ Lip(1 − δ),∫ 1

0

(
f̂n,m(x) − f0(x)

) 2q(x) dx �
( log n

m

) 2/3 ( m
n

) 1/α
, (24)

with probability converging to one as n →∞.

We have m � n3/(α+3)(log n)α/(α+3) if and only if (log n/m)2/3(m/n)1/α � (log n/n)3/(3+α). Since the
right-hand side is the rate obtained without a second sample in (21), the additional data (Xn+1,Yn+1), . . . ,
(Xn+m,Yn+m) improve the convergence rate if m � n3/(3+α)(log n)α/(3+α).

6. Discussion

6.1. A brief review of convergence results for the least squares estimator in
nonparametric regression

The standard strategy to derive convergence rates with respect to (empirical) L2-type losses is based on
empirical process theory and covering bounds. The field is well-developed, see e.g. [16,23,45,47,48].
At the same time, it remains a topic of active research. A recent advance is to establish convergence
rates of the LSE under heavy-tailed noise distributions [19,26].

Some convergence results are with respect to the squared Hellinger distance, see for instance [5,46].
This is slightly weaker but essentially the same as convergence with respect to the prediction risk
E[( f̂n(X) − f0(X))2]. To see this, recall that for two probability measures P,Q defined on the same
measurable space, the squared Hellinger distance is defined as H2(P,Q) = 1

2

∫
(
√

dP −
√

dQ)2 (some
authors do not use the factor 1/2). Denote by Q f the distribution of (X1,Y1) in the nonparametric
regression model (1) with regression function f . It can be shown that

H2(Q f ,Qg) = 1 −
∫

e−
1
8 ( f (x)−g(x))

2
p(x) dx.

In view of the formula 1− e−u ≤ u, it follows that H2(Q f ,Qg) ≤ 1
8 E[( f (X)−g(X))2]. Thus, the squared

Hellinger loss is weaker than the squared prediction loss.
Concerning estimation rates, the LSE achieves the rate n−2β/(2β+d) ∨ n−β/d over balls of β-smooth

Hölder functions. To see this, observe that if F denotes a Hölder ball and ‖g‖n := ( 1
n

∑n
i=1 g(Xi)2)1/2

is the empirical L2 norm, the metric entropy is log N
(
r,F , ‖ · ‖n

)
� r−d/β , see Corollary 2.7.2 in

[47]. Any solution δ2 of the inequality
∫ δ

δ2

√
log N

(
r,F , ‖ · ‖n

)
dr � δ2√n is then a rate for the LSE,

see Corollary 13.1 in [48]. It is now straightforward to check that this yields the convergence rate
δ2 � n−2β/(2β+d) ∨ n−β/d . While n−2β/(2β+d) is the optimal convergence rate, Theorem 4 in [5] shows
that for d = 1 and a specifically designed subset of the Hölder ball with index β < 1/2, the LSE cannot
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achieve a faster rate than n−β/2 (up to a possibly non-optimal logarithmic factor in n). The (sub)op-
timality of the LSE over Hölder balls in the non-Donsker regime β < d/2 remains an open problem.
Considering shape-constrained problems, [27] shows that for different classes of convex functions, the
LSE is suboptimal for dimensions d ≥ 5, while [17] proves that the LSE can still achieve near-optimal
convergence rates in the non-Donsker regime.

To the best of our knowledge, the only sup-norm rate result for the LSE is [37]. In this work, the LSE
is studied for F the linear space spanned by a nearly orthogonal function system. For this setting, the
LSE has an explicit representation that can be exploited to prove sup-norm rates.

For a number of other settings, a more explicit characterization of the LSE is available from which
local properties can be inferred. [30] shows this for least squares penalized regression with total varia-
tion penalties. In this case, the LSE can be linked to splines, and this is exploited in their Proposition 8
to provide a local characterization of the LSE.

More explicit characterizations of the LSE are also available for several shape-constrained estimation
problems. In isotonic regression, the regression function is non-decreasing, and the LSE admits an
explicit expression. Let (X(1),Y(1)), . . . ,(X(n),Y(n)) be a reordered version of the dataset such that X(1) ≤
X(2) ≤ · · · ≤ X(n) and for all 0 ≤ k ≤ n, define the k-th partial sum of Y as Sk :=

∑k
i=1 Y(i). Additionally,

for x ∈ [0,1], set k−(x) :=max{0 ≤ k ≤ n : X(k) < x} and k+(x) :=min{0 ≤ k ≤ n : X(k) ≥ x}. The LSE
for isotonic regression is then piecewise constant on [0,1] and is given by

f̂n(x) := min
k+(x)≤i≤n

max
0≤ j≤k−(x)

Si − Sj

i − j
,

see for instance [6,7,20,49] and Lemma 2.1 in [41]. Moreover, the pointwise limiting distributional
results are available for the isotonic LSE. For the purposes of this discussion, we provide the following,
adapted version of the main theorem in [49].

Theorem 18. Let A > 0,α > 1/2 and x0 ∈ [0,1] with p(x0) > 0. Suppose that there exists an open
neighbourhood U of 0 and a continuous function g : U �→ R such that limx→0 g(x)/xα = 0 and for all
x ∈ U, | f0(x) − f0(x0)| = A|x − x0 |α + g(x − x0). Then(α + 1

A

) 1/(2α+1) (
np(x0)

) α
2α+1

(
f̂n(x0) − f0(x0)

) d−→ Z,

with Z a random variable distributed as the slope at zero of the greatest convex minorant of Wt + |t |α+1

and (Wt )t a two-sided Brownian motion.

If f0 is Lipschitz continuous, then α = 1 and Z is known to follow Chernoff’s distribution. Assuming
moreover that p(x0) > 0, leads to | f̂n(x0)− f (x0)| � (np(x0))−1/3. This agrees with the local rate tn(x0) �
(log n/(np(x0)))1/3 obtained in Corollary 5 up to the log n-factor that emerges due to the uniformity of
the local rates.

For isotonic regression in d dimensions, the recent article [18] shows that the LSE achieves the mini-
max estimation rate n−min(2/(d+2),1/d) up to log n-factors. For d ≥ 3, is it known that log N(r,F , ‖ · ‖2) �
r−2(d−1). Since for uniform design, the norms ‖ · ‖2 and ‖ · ‖n are close, the standard approach to derive
convergence rates via the entropy integral is then expected to yield no convergence rate faster than
n−1/(2d−2). Since this rate is slower than the actual convergence rate of the LSE, this provides another
instance where the entropy integral approach is suboptimal. Interestingly, [18] proves, moreover, that if
the isotonic function is piecewise constant with k pieces, the LSE adapts to the number of pieces and
attains the optimal adaptive rate (k/n)min(1,2/d) up to log n-factors. More on adaptation and the point-
wise behaviour of the LSE in isotonic regression and other shape-constrained estimation problems can
be found in the survey article [15].
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For penalized LSEs, an alternative to the concentration bounds in empirical process methods is the
recently developed proof strategy based on the small ball method, [11,24,28,29,31].

6.2. Related work on transfer learning

From a theory perspective, the key problem in TL is to quantify the information that can be carried
over from one task to another [2,4,10,32]. Among the mathematical statistics articles, [43] proposes
unbiased model selection procedures and [40] considers re-weighting to improve the predictive power
of models based on likelihood maximization. The nonparametric TL literature mainly focuses on clas-
sification. Minimax rates are derived under posterior drift by [9], under covariate shift by [25], and in
a general setting by [36].

The closest related work is the recent preprint [33]. While we consider the LSE, this article proves
minimax convergence rates for the Nadaraya-Watson estimator in nonparametric regression under co-
variate shift. The proofs differ, as one can use the closed-form formula for the Nadaraya-Watson
estimator (NW). The rates are proven uniformly over two different sets of distribution pairs. Let
ρη(PX,QX) :=

∫ 1
0 PX([x ± η])−1 d QX(x), γ,C ≥ 1 and denote by S(γ,C) the set of all pairs (PX,QX),

such that supη∈(0,1] η
γρη(PX,QX) ≤ C.

To discuss the connection of this class to our approach, observe that, in our framework, bounding the
prediction risk of the LSE with regards to some target distribution amounts to bounding the quantity∫ 1

0 tPX
n (x)2 d QX(x). Using the definition of the spread function and assuming (PX,QX) ∈ S(γ,C), we

obtain ∫ 1

0
tPX
n (x)2 d QX(x) =

log n
n

∫ 1

0

d QX(x)
PX([x ± tPX

n (x)])
≤ log n

n

(
inf

x∈[0,1]
tPX
n (x)

) −γ
.

In some cases, faster rates for the prediction error can be obtained for the LSE using our results.
As an example, consider again the case that the source density is p(x) = (α + 1)xα1(x ∈ [0,1]) and
the target distribution is uniform on [0,1]. For the nonparametric regression model with covariate shift
(19), Lemma 13 shows that for the LSE f̂n,∫ 1

0

(
f̂n(x) − f0(x)

) 2
q(x) dx � (log n)1(α=3/2)

[ ( log n
n

) 3/(3+α)
∨

( log n
n

) 2/3
]

(25)

with probability tending to one as n →∞. For the Nadaraya-Watson estimator, Lemma 31 in Appendix
E of the supplement [39] shows that if α ≥ 1, there exists a C > 0, such that for any ε ∈ (0,α), (PX,QX) ∈
S(α,C) \ S(α − ε,C). According to Corollary 1 in [33], for f̂NW the Nadaraya-Watson estimator with
suitable bandwidth choice, we then have for any α ≥ 1,

E
[ ∫ 1

0

(
f̂NW (x) − f (x)

) 2q(x) dx
]

� n−2/(2+α).

This is a slower rate than (25). The convergence rate of the LSE becomes slower than (log n/n)2/3

for α > 3/2, while for the Nadaraya-Watson estimator, this happens already for α > 1. We believe that
the loss in the rate is due to the lack of local adaptivity of kernel smoothing with fixed bandwidth, as
discussed in Section 2.
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6.3. Extensions and open problems

For machine learning applications, we are, of course, interested in multivariate nonparametric regres-
sion with d-dimensional design vectors Xi and arbitrary Hölder smoothness β. To extend the result,
the definition of the spread function has to be adjusted. If β > d/2, the LSE converges with the rate
n−2β/(2β+d) (see the discussion above) and we believe that the local rate tn is now determined by the
solution of the equation

tn(x)2 PX
(
y : |x − y |∞ ≤ tn(x)1/β

)
=

log n
n

, (26)

where |v |∞ denotes the largest absolute value of the components of the vector v. In the case d = 1,
this coincides with the minimax rate found in [13]. Observe moreover that for the uniform design
distribution, PX(y : |x − y |∞ ≤ tn(x)1/β) � tn(x)d/β and we obtain tn(x) � (log n/n)β/(2β+d). To show
that tn is a lower bound on the local convergence rate, we believe that the lower bound in Theorem 7
can be generalized without too much additional effort. But the upper bound is considerably harder than
the case β = d = 1 we considered in this work. The main reason is that the local perturbation in the
proof also needs to be β > 1 smooth, thus a piecewise approach as in (31) does not work anymore, and
one needs to have tight control of the derivatives of the LSE.

It is unclear what the local convergence rate is in the regime β < d/2.
Throughout this work, we assumed data from the nonparametric regression model Yi = f0(Xi) + εi

with independent noise variables εi ∼ N(0,1). If instead, we have εi ∼ N(0,σ2), the spread function
should be determined by

tn(x)2 PX
( [

x ± tn(x)
] )
=
σ2 log n

n
.

That this is the right scaling has already been observed in the article [13].
In Theorem 4, we assume that the regression function is (1 − δ)-Lipschitz for some positive δ. An-

other interesting question is whether the local convergence result can be extended to a regression func-
tion that is itself 1-Lipschitz. Again, the main complication arises in constructing the local perturbation
in Lemma 22. One might also wonder whether the same rates can be achieved if, instead of the global
minimizer, we take any estimator f̂ satisfying

n∑
i=1

(
Yi − f̂ (Xi)

) 2 ≤ inf
f ∈Lip(1−δ)

n∑
i=1

(
Yi − f (Xi)

) 2
+ τn

for a pre-defined rate τn. In particular, it is of interest to determine the largest τn such that the optimal
local rates can still be obtained.

The proposed approach might be used to derive theoretical guarantees for transfer learning based on
deep ReLU networks, extending the earlier analysis of the prediction risk [1,22,38]. Here we briefly
illustrate this using shallow ReLU networks of the form

f (x) =
N∑
i=1

ai(wi x − vi)+ with (u)+ :=max(u,0) and ai,wi,vi ∈ R.

Denote by ReLUN (1 − δ) the function class of all such shallow ReLU networks that are moreover
(1 − δ)-Lipschitz.
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Lemma 19. If N ≥ n − 1 ≥ 1, then,

f̂n ∈ arg min
f ∈ReLUN (1−δ)

n∑
i=1

(
Yi − f (Xi)

) 2
,

implies that f̂n is also a minimizer over all Lip(1 − δ) functions, that is,

f̂n ∈ arg min
f ∈Lip(1−δ)

n∑
i=1

(
Yi − f (Xi)

) 2
.

The result shows that a global minimizer over all ReLU networks in the class ReLU(1 − δ) is also
an empirical risk minimizer over all Lip(1 − δ)-functions. In particular, this means that all the results
derived in this paper can be immediately applied, leading to local convergence rates and theoretical
guarantees in the case of transfer learning.

Another possible future direction is to use the refined analysis and the local convergence of the LSE
to prove distributional properties similar to those established for the least squares procedure under
shape constraints. See also the discussion in Section 6.1.

7. Proof of the local convergence rate for the LSE
We now describe the construction of the local perturbation and give the proof of Theorem 4.

Preliminary: Concentration of histogram

For sufficiently large sample size n, we can find an integer sequence (Nn)n satisfying

1 ≤ Nn

16

√
log n

n
≤ 2.

For discretization step size

Δn :=
1

Nn
(27)

we show that n−1 ∑n
i=1 1(Xi ∈ [ jΔn, kΔn]) concentrates around its expectation

∫ kΔn
jΔn

p(u) du. For this
purpose, we first recall the classical Bernstein inequality for Bernoulli random variables.

Lemma 20 (Bernstein inequality). Let p ∈ [0,1] and V1, . . . ,Vn be n independent Bernoulli variables
with success probability p, then,

P
(

1
2

p ≤ 1
n

n∑
i=1

Vi ≤
3
2

p
)
≥ 1 − 2 exp

(
−np

10

)
.

Proof. Let Ui = Vi − p. We have, |Ui | ≤ 1, E[Ui] = 0 and E[U2
i ] = Var(Vi) = p(1 − p) ≤ p. By Bern-

stein’s inequality,

P

(			 n∑
i=1

Ui

			 ≥ n
2

p

)
≤ 2 exp

(
− n2p2/8

np + np/6

)
≤ 2 exp

(
− np

8 + 4/3

)
< 2 exp

(
−np

10

)
.
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Set pj ,k :=
∫
[jΔn ,kΔn] p(u) du and define Γn(α) as the event

Γn(α) :=
⋃

j ,k=1,...,Nn

p j ,k ≥α
log2 n

n

{
X1, . . . ,Xn :

			1
n

n∑
i=1

1(Xi ∈ [ jΔn, kΔn]) − pj ,k

			 > pj ,k

2

}
. (28)

Roughly speaking, this set consists of all samples for which the histogram does not concentrate well
around its expectation.

Lemma 21. If α > 0, then, the probability of the event Γn(α) vanishes as the sample size grows. More
precisely,

P (Γn(α)) ≤
1024n
log n

exp
(
−α log2 n

10

)
→ 0 as n →∞.

Proof. Use the union bound and apply Lemma 20. Since Nn ≤ 32
√

n/log n, we obtain the inequality.
The convergence to zero follows from α > 0.

The previous result allows us to work on the event Γn(α)c . On this event, the random quantity
n−1 ∑n

i=1 1(Xi ∈ [ jΔn, kΔn]) is the same as its expectation
∫ kΔn
jΔn

p(u) du up to a factor two. In particular,
we will apply this to random integers j, k depending on the sample (X1,Y1), . . . ,(Xn,Yn). We frequently
use that for an X that is independent of the data,

PX(X ∈ A) = P
(
X ∈ A | (X1,Y1), . . . ,(Xn,Yn)

)
. (29)

The proof outline in Section 4 assumes that there exists a function g lying at all data points between
f̂n and f0 in the sense that ( f̂n(Xi) − g(Xi))(g(Xi) − f0(Xi)) ≥ 0 for all i = 1, . . . ,n. The next lemma
guarantees the existence of a sufficiently large local perturbation g of f̂n with this property. This will
allow us later to carry out the proof strategy sketched in Section 4.

Lemma 22 (Construction of a local perturbation). Let ψ ∈ Lip(1) and f ∈ Lip(1 − δ). Define x∗ ∈
arg maxx∈[0,1](ψ(x) − f (x))/tn(x) and x̃ ∈ arg maxx∈[0,1] ψ(x) − f (x) − δ

2 |x − x∗ |. Assume the existence
of some K > 0, such that

ψ(x∗) − f (x∗)
tn(x∗)

≥ K,

and set

sn := 2Ktn(x̃) ∧
(
2Ktn(x∗) +

δ

2
|x∗ − x̃ |

)
. (30)

Then there exists a function gn and two real numbers 0 ≤ x� ≤ xu ≤ 1, such that

(i) gn ∈ Lip(1) and supp(ψ − gn) = [x�, xu].
(ii) f ≤ gn ≤ ψ on [x�, xu].
(iii) x̃ − sn/δ ≤ x� ≤

(
x̃ − sn/4

)
∨ 0 ≤

(
x̃ + sn/4

)
∧ 1 ≤ xu ≤ x̃ + sn/δ.

(iv) the inequality ψ(x) − gn(x) ≥ sn/4 holds for all x ∈ [x̃ ± sn/8] ∩ [0,1].
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Figure 3. (Construction of the local perturbation) The variables x∗ and x̃ are as in Lemma 22. From the con-
struction of x̃, we know that the function ψ − f (plotted in blue) cannot lie above the green dashed curve with
slope δ/2. The yellow function is hn − f . Since this function has slope δ, it will hit the green dashed curve in
a neighbourhood of x̃. This also implies that hn − f intersects for the first time with ψ − f (blue curve) in this
neighbourhood and provides us with control for the hitting points x� and xu . The (shifted) perturbation gn − f is
given by the red curve.

Proof. We construct a function gn satisfying all claimed properties. The construction requires
several steps and can be understood best through the visualization in Figure 3. Recall that x̃ ∈
arg maxx∈[0,1] ψ(x)− f (x)− δ

2 |x− x∗ |. Hence, ψ(x̃)− f (x̃)− δ
2 | x̃− x∗ | ≥ ψ(x∗)− f (x∗). By assumption,

we have ψ(x∗) − f (x∗) > tn(x∗)K and thus

ψ(x̃) − f (x̃) > tn(x∗)K +
δ

2
| x̃ − x∗ | ≥ sn

2
.

Define the function

hn(x) := ψ(x̃) − f (x̃) + δ |x − x̃ | + f (x) − sn
2
.

Since f ∈ Lip(1−δ) and δ | · | ∈ Lip(δ), we have that hn ∈ Lip(1). By construction, hn(x̃) = ψ(x̃)−sn/2 <
ψ(x̃). Denote by x� the largest x below x̃ satisfying hn(x) = ψ(x). If no such x exists, set x� := 0.
Similarly, define xu as the smallest x above x̃ satisfying hn(x) = ψ(x) and set xu := 1 if this does not
exist. Define

gn(x) := ψ(x)1(x ∈ [0,1] \ [x�, xu]) + hn(x)1(x ∈ [x�, xu]). (31)

By construction, gn ∈ Lip(1) and supp(ψ − gn) = [x�, xu]. Thus (i) holds. Also, (ii) follows directly
from the inequalities above.

We now prove (iii). Applying triangle inequality yields

hn(x) − f (x) = ψ(x̃) − f (x̃) − δ

2
| x̃ − x∗ | + δ

2
| x̃ − x∗ | + δ |x − x̃ | − 1

2
sn

≥ ψ(x) − f (x) − δ

2
|x − x∗ | + δ

2
| x̃ − x∗ | + δ |x − x̃ | − 1

2
sn

≥ ψ(x) − f (x) + δ
2
|x − x̃ | − 1

2
sn.
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From the last inequality, we deduce that for any x ∈ [0,1] with |x − x̃ | ≥ sn/δ, we have hn(x) − f (x) ≥
ψ(x) − f (x). Thus,

x̃ − sn
δ

≤ x� ≤ xu ≤ x̃ +
sn
δ
, (32)

proving the first and last inequality in (iii).
To prove the remaining inequalities in (iii), we use ψ − f ∈ Lip(2 − δ) to deduce ψ(x) − f (x) ≥

ψ(x̃)− f (x̃)−(2−δ)|x− x̃ |. By definition, we have moreover hn(x)− f (x) = ψ(x̃)− f (x̃)+δ |x− x̃ | − sn/2
and therefore ψ(x) − f (x) + 2|x − x̃ | ≥ hn(x) − f (x) + sn/2, which can be rewritten into

ψ(x) − hn(x) ≥
sn
2

− 2|x − x̃ |. (33)

The right-hand side of this inequality is > 0 for all x ∈ [x̃ ± sn/4] ∩ [0,1]. The definition of x� and xu
implies then that x� ≤ 0 ∨

(
x̃ − sn/4

)
≤ 1 ∧

(
x̃ + sn/4

)
≤ xu .

We now establish (iv). One can use the lower bound from Equation (33) to obtain that for any
x ∈ [x̃ ± sn/8] ∩ [0,1],

ψ(x) − f (x) ≥ sn
2

− 2|x − x̃ | + gn(x) − f (x) ≥ sn
4
+ gn(x) − f (x) ≥ sn

4
,

applying (ii) for the last inequality. This proves (iv).

Lemma 23. For given K > 1/2 and 0 < δ < 1, let sn and x̃ be as defined in Lemma 22. Moreover, let
PX ∈ Pn(D) for some D ≥ 2. If n ≥ exp(4K2 ∨ 36(1 ∨ log2 D))) and 0 < cδ ≤ 2 then,

(i) PX
(
[x̃ ± csn]

)
> D−�log2(1/(δc))�−1 log2 n

n ,
(ii) s2

n PX
(
[x̃ ± csn]

)
≥ D−�log2(1/(δc))�−14K2 logn

n .

Proof. Recall that sn = 2Ktn(x̃) ∧ (2Ktn(x∗) + δ |x∗ − x̃ |/2). Since n ≥ exp(4K2), sn ≤ 2Ktn(x̃) ≤√
log n tn(x̃) ≤

√
log n supx∈[0,1] tn(x). This allows to apply now the local doubling property of PX to

intervals of length up to sn.
By assumption K ≥ 1/4 and δ < 1. Hence 2Ktn(x̃) ≥ δtn(x̃)/2. Moreover, using the fact that tn

is 1-Lipschitz from Lemma 27 (Appendix A of the supplement [39]), 2Ktn(x∗) + δ |x∗ − x̃ |/2 ≥
δ
2 [tn(x∗) + |x∗ − x̃ |] ≥ δtn(x̃)/2. Combining the two previous bounds, we obtain csn ≥ δctn(x̃)/2. Us-
ing the latter and applying (LDP) in total �log2(1/(δc))� + 1 times to increase the constant δc/2 to
δc2 �log2(1/(δc))� ∈ [1,2], we find whenever δc ≤ 2,

PX
( [

x̃ ± csn
] )

≥ PX
( [

x̃ ± δctn(x̃)/2
] )

≥ D−�log2(1/(δc))�−1 PX
( [

x̃ ± δc2 �log2(1/(δc))� tn(x̃)
] )

≥ D−�log2(1/(δc))�−1 PX
( [

x̃ ± tn(x̃)
] )
.

Applying Remark 2 (Appendix A of the supplement [39]) completes the proof of (i). To prove the
second claim, we once again lower bound csn.
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We first consider the case sn = 2Ktn(x̃). If c ≥ 1, then, we get csn ≥ sn ≥ 2Ktn(x̃) ≥ tn(x̃) and

s2
n PX

( [
x̃ ± csn]

] )
≥ 4K2tn(x̃)2 PX

( [
x̃ ± tn(x̃)

] )
= 4K2 log n

n

≥
(
1 ∧ D−�log2(1/(δc))�−1) 4K2 log n

n
.

Otherwise, if c < 1, then, we can apply (LDP) in total k = �log2(1/c)� times, so that 2kc ≥ 1, and obtain

s2
n PX

( [
x̃ ± csn]

] )
≥ 4K2D−�log2(1/c)� tn(x̃)2 PX

( [
x̃ ± 2kctn(x̃)

] )
= 4K2D−�log2(1/c)� log n

n

≥
(
1 ∧ D−�log2(1/(δc))�−1) 4K2 log n

n
.

We now consider the case csn = 2Kctn(x∗) + δc |x∗ − x̃ |/2. Suppose without loss of generality that
x∗ ≤ x̃. If c ≥ 2/δ > 1, then we get[

x̃ ± csn
]
⊃

[
x̃ − |x∗ − x̃ | − 2Ktn(x∗), x̃ + |x∗ − x̃ | + 2Ktn(x∗)

]
⊃

[
x∗ − 2Ktn(x∗), x∗ + 2Ktn(x∗)

]
⊃

[
x∗ ± tn(x∗)

]
,

which implies

s2
n PX

( [
x̃ ± csn

] )
≥ 4K2tn(x∗)PX

( [
x∗ ± tn(x∗)

] )
= 4K2 log n

n

≥
(
1 ∧ D−�log2(1/(δc))�−1) 4K2 log n

n
.

Otherwise, if c < 2/δ, we can apply (LDP) in total k = �log2(1/(δc))� + 1 times, so that 2kδc/2 ≥ 1 to
obtain

s2
n PX

( [
x̃ ± csn]

] )
≥ 4K2D−�log2(1/(δc))�−1tn(x∗)2 PX

( [
x̃ ± 2kcsn

] )
.

Since 2kc ≥ 2/δ, we proceed as in the previous case and find

s2
n PX

( [
x̃ ± csn

] )
≥ 4K2D−�log2(1/(δc))�−1 log n

n
≥

(
1 ∧ D−�log2(1/(δc))�−1) 4K2 log n

n
.

Combining both cases, for any K > 1/2, any 0 < δ < 1 and any c > 0,

s2
n PX

( [
x̃ ± csn

] )
≥

(
1 ∧ D−�log2(1/(δc))�−1) 4K2 log n

n
.

Finally, if c < 4/δ, then �log2(1/(δc)� ≥ −1 and (ii) follows.
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Proof of the main theorem

Proof of Theorem 4. The proof follows the steps outlined in Section 4. Because of |z | = max(z,−z)
and since all arguments carry over to the other case, it is enough to show that

sup
PX∈Pn(D)

sup
f0∈Lip(1−δ)

Pf0

(
sup

x∈[0,1]

f̂n(x) − f0(x)
tn(x)

≥ K

)
→ 0 as n →∞.

We will derive a contradiction by considering

K > K∗ :=
1
2
∨ 3

(
1 ∨ log(D)

)
∨ 211/2D2

213 δ− log2(D)/2 ∨ (32χD5)3/4D1+ 1
2 log2(1/(2δ)) (34)

where

χ := 217/3 · 212D �log2(δ−1)�/3δ−2/3. (35)

The condition K > 3(1∨ log(D)) ensures that if n ≥ exp(4K2), then, n ≥ exp(4K2 ∨ (36(1∨ log2(D)))).
Therefore, we can apply Lemma 23 under the simplified condition n ≥ exp(4K2).

Inequality (14) states that if gn ∈ Lip(1) satisfies ( f̂n(Xi) − gn(Xi))(gn(Xi) − f0(Xi)) ≥ 0 for all i =
1, . . . ,n, then,

n∑
i=1

( f̂n(Xi) − gn(Xi))2 ≤ 2
n∑
i=1

εi( f̂n(Xi) − gn(Xi)). (36)

Let gn be the local perturbation constructed in Lemma 22 with ψ and f replaced by f̂n and f0, respec-
tively. In particular, Lemma 22 (ii) ensures that ( f̂n(x) − gn(x))(gn(x) − f0(x)) ≥ 0 for all x ∈ [0,1]. As
indicated in Section 4, we begin by lower bounding the left-hand side of inequality (36).

Lower bound for the left-hand side of (36): Work on the event Γn(D−4)c defined in (28). Let x∗, x̃ and sn
be defined as in Lemma 22, that is, x∗ ∈ arg maxx∈[0,1] tn(x)−1( f̂n(x)− f0(x)), x̃ ∈ arg maxx∈[0,1] f̂n(x)−
f0(x) − δ

2 |x − x∗ | and sn = 2Ktn(x̃) ∧ (2Ktn(x∗) + δ
2 |x

∗ − x̃ |). It is sufficient to show the result for all
sufficiently large n. In particular, it is enough to consider n ≥ exp(4K2/δ2), ensuring that

sn
δ

≤ 2K
δ

tn(x̃) ≤
√

log n sup
x∈[0,1]

tn(x). (37)

Lemma 22 (iii) shows existence of an interval I := [x̃ ± sn/8] ∩ [0,1] with length ≥ (sn/8) ∧ 1/2 such
that for all x ∈ I, f̂n(x) − gn(x) ≥ sn/4. By restriction of the sum to {i : Xi ∈ I} and using Lemma 22
(iv), we find

n∑
i=1

(
f̂n(Xi) − gn(Xi)

) 2 ≥
( sn

4

) 2 n∑
i=1

1(Xi ∈ I). (38)

We now relate the right-hand side of (38) to our discretization of [0,1] with step size Δn defined in (27).
By (34), K ≥ 1/2. Thus, by Lemma 27 (ii) (Appendix A of the supplement [39]), sn ≥ tn(x̃) ≥

√
log n/n

and

Δn ≤ 1
16

√
log n

n
≤ sn

16
. (39)
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Hence, there exist two random integers 0 ≤ �1 < k1 ≤ Nn satisfying(
x̃ − sn

8

)
∨ 0 ≤ �1Δn ≤

(
x̃ − sn

16

)
∨ 0 <

(
x̃ +

sn
16

)
∧ 1 ≤ k1Δn ≤

(
x̃ +

sn
8

)
∧ 1.

This implies (k1 − �1)Δn ≥ sn/16 > 0 and [�1Δn, k1Δn] ⊆ I = [x̃ ± sn/8] ∩ [0,1]. Applying the lower
bound (i) in Lemma 23, we find

PX
(
[�1Δn, k1Δn]

)
≥ PX

( [
x̃ ± sn

16

] )
≥ log2 n

D4n
,

with PX the conditional distribution defined in (29). By the definition of the event Γn(D−4)c in (28), we
have n−1 ∑n

i=1 1(Xi ∈ I) ≥ n−1 ∑n
i=1 1(Xi ∈ [�1Δn, k1Δn]) ≥ PX([�1Δn, k1Δn])/2. This and our choice of

�1, k1 means that, on Γn(D−4)c , inequality (38) implies

n∑
i=1

(
f̂n(Xi) − gn(Xi)

) 2
≥

( sn
4

) 2 n
2

PX
(
[�1Δn, k1Δn]

)
≥

s2
nn
32

PX

( [
x̃ ± sn

16

] )
.

By (37), sn ≤
√

log n supx∈[0,1] tn(x). This allows to apply (LDP) in total five times to obtain

n∑
i=1

(
f̂n(Xi) − gn(Xi)

) 2
≥

s2
nn

32D5 PX
( [

x̃ ± 2sn
] )
. (40)

Upper bound for the right-hand side of (36): We now derive an upper bound for 2
∑n

i=1 εi
(

f̂ (Xi) −
gn(Xi)

)
. Since f̂n − gn is supported on a small subset of [0,1], it is advantageous to study the sum over

Xi in the support. For 0 ≤ a < b ≤ 1, denote the class of 1-Lipschitz functions supported on the interval
[a,b] by

E[a,b] := {h ∈ Lip(1) : supp(h) ⊂ [a,b]}.

Define m(X) as the cardinality of the set {i ∈ {1, . . . n} : Xi ∈ [a,b]} and write Z1, . . . ,Zm(X) for the
m(X) variables Xi that fall into the interval [a,b]. For a function h ∈ E[a,b], we define the effective
empirical L2-norm,

‖h‖m(X) :=
(

1
m(X)

m(X)∑
i=1

h(Zi)2
) 1/2

.

Here, effective refers to the fact that the semi-norm is computed based on the ‘effective’ sample
Z1, . . . ,Zm(X). The normalization is chosen such that n‖h‖2

n = m(X)‖h‖2
m(X) for all h ∈ E[a,b]. From

now on, we follow the same steps as in Chapter 13 from [48] with the sample size n replaced by the
effective sample size m(X). The so-called critical inequality with σ = 1 is

Gn(η,E[a,b])
η

≤ η

2
, (41)

with G(η,E[a,b]) the Gaussian complexity of the set E[a,b], that is,

Gn(η,E[a,b]) := Eε

[
sup

h∈E[a ,b], ‖h ‖m(X) ≤η

1
m(X)

				m(X)∑
i=1

εih(Zi)
				
]
.
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Recall that a function class F is called star-shaped if f ∈ F implies α f ∈ F for all 0 ≤ α ≤ 1. Ob-
serving that E[a,b] is star-shaped, one can derive the following modified version of Theorem 13.1 in
[48].

Theorem 24. If η is a solution of the critical inequality (41), then for any t ≥ η,

P
({
‖ f̂n − gn‖2

m(X) ≥ 16tη
}
∩

{
supp( f̂n − gn) ⊂ [a,b]

} 			 X1, . . . ,Xn

)
≤ e−

m(X)tη
2 .

The covering number of F ∗ with sup-norm balls of radius r is denoted by N(r,F ∗, ‖ · ‖∞). Along
with Theorem 24 comes a modified version of Corollary 13.1 in [48] stating a sufficient condition for
η to solve the critical inequality.

Corollary 25. Set Bn(η,E[a,b]) := {h ∈ E[a,b] : ‖h‖m(X) ≤ η}. Under the conditions of Theorem 24,
any η ∈ (0,1] satisfying

16√
m(X)

∫ η

η2
4

√
log N

(
t,Bn(η,E[a,b], ‖ · ‖∞)

)
dt ≤ η2

4
(42)

also satisfies the critical inequality and can be used in the conclusion of Theorem 24.

We now derive a bound for the covering number of the class E[a,b] by slightly refining the proof
of classical results such as Corollary 2.7.10 in [47], see Appendix B of the supplement [39] for a full
proof.

Lemma 26. Given two real numbers a < b, let E[a,b] := {u ∈ Lip(1) : supp(u) ⊂ [a,b]}. Then, for any
positive r,

log N
(
r,E[a,b], ‖.‖∞

)
≤ b− a

r
log 3.

This allows us to upper bound the left-hand side of (42) by 32
√

m(X)−1η(b− a) log 3 and, for n ≥ 9,
by 32

√
m(X)−1η(b− a) log(n)/2. Hence, if η satisfies(

213 (b− a) log(n)
m(X)

) 1/3
≤ η,

then it also satisfies (42). The latter inequality holds for η = 21
( (b−a) logn

m(X)
) 1/3.

We further work on the classes E[�Δn ,kΔn] with 0 ≤ � < k ≤ Nn and adapt the notation by defining
mk ,�(X) as the cardinality of the set {i ∈ {1, . . . ,n} : Xi ∈ [�Δn, kΔn]}, and

ηn,k ,� := 21
(
(k−�)Δn logn

mk ,� (X)

) 1/3
.

Set

Sk ,� :=
{
(X1,Y1), . . . ,(Xn,Yn) : supp( f̂n − gn) ⊆ [�Δn, kΔn]

}
.
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On Sk ,� , we have by Lemma 22 (iii), that [x̃ ± sn/4] ⊆ [x�, xu] = supp( f̂n − gn) ⊆ [�Δn, kΔn]. Using the
first claim of Lemma 23 and the fact that D ≥ 2, we find that

PX
(
[�Δn, kΔn]

)
>

log2 n
D4n

. (43)

The second claim of Lemma 23 combined with P([x̃ ± a]) = 1 for a ≥ 1, yields

PX([�Δn, kΔn])(k − �)2Δ2
n ≥ PX

( [
x̃ ± sn

4

] ) ( sn
4

∧ 1
2

) 2

≥ 1
4

PX

( [
x̃ ± sn

4

] ) ( sn
4

∧ 1
) 2

≥ 1
4
∧

(
s2
n

64
PX

( [
x̃ ± sn

4

] ) )
≥ 1

4
∧ K2

16
log n

n
Dlog2(δ)−4.

(44)

Define the set T = {(k,�) : PX([�Δn, kΔn]) > log2 n/(D4n)} and note that by (43), (k,�) � T implies
that Sk ,� is the empty set. Applying Corollary 25, we obtain

P
({ 1

mk ,�(X)

n∑
i=1

(
f̂n(Xi) − gn(Xi)

) 2
≥ 16tηn,k ,�

}
∩Sk ,�

			X1, . . . ,Xn

)
≤ e−

mk ,� (X)tηn ,k ,�
2 1

(
(k,�) ∈ T

)
.

(45)

Recall that we work on the event Γ(D−4)c . For any pair (k,�) ∈ T , we have by (43), n
2 PX([�Δn, kΔn])

≤ mk ,�(X) ≤ 2n PX([�Δn, kΔn]). Multiplying by η2
n,k ,�

and rearranging the terms yields

1
21/3

≤
mk ,�(X)η2

n,k ,�

212P1/3
k ,�

≤ 21/3, with Pk ,� := n PX([�Δn, kΔn])(k − �)2Δ2
n log2 n. (46)

Consider the event

Dk ,� :=
{ n∑
i=1

(
f̂ (Xi) − g(Xi)

) 2
≥ 16 · 212(2Pk ,�)1/3

}
︸�����������������������������������������������������︷︷�����������������������������������������������������︸

:=A

∩Sk ,� ∩ Γn(D−4)c

⊆
{ 1

mk ,�(X)

n∑
i=1

(
f̂ (Xi) − g(Xi)

) 2
≥ 16η2

n,k ,�

}
∩Sk ,� ∩ Γn(D−4)c .

Let A,B be measurable sets and assume that P(A|X) ≤ a(X). If B only depends on X , then, we have that
P(A ∩ B) = E[P(A ∩ B|X)] = E[P(A|X)1(X ∈ B)] ≤ E[a(X)1(X ∈ B)]. Below we apply this inequality
for X the sample (X1,Y1), . . . ,(Xn,Yn), A the event defined in the previous display, B = Sk ,� ∩ Γn(D−4)c
and a(X) = exp(− 1

2 mk ,�(X)η2
n,k ,�

). By (34), K > 211/221−3D2δ− log2(D)/2. Choosing t = ηn,k ,� and us-
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ing (45) as well as (44), we find for any (k,�) ∈ T ,

P(Dk ,�) ≤ E
[
e−

mk ,� (X)η2
n ,k ,�

2 1
(
X ∈ Sk ,� ∩ Γn(D−4)c

) ]
≤ E

[
exp

(
− 212

24/3

(
n log2 n PX

(
[�Δn, kΔn]

)
(k − �)2Δ2

n

) 1/3) ]

≤ exp
(
− 212

24/3

[ ( n log2 n
4

) 1/3
∧

( K2

16
Dlog2(δ)−4 log3 n

) 1/3
] )

≤ exp
(
− 212

24/3

( n log2 n
4

) 1/3
)
∨ n−2,

(47)

using exp(−a log n) = n−a for the last step. (Choosing the lower bound K∗ in (34) large enough, one can
modify the previous argument and achieve polynomial decay in n of any order.) If (k,�) � T , then (45)
implies P(Dk ,�) = 0.

Define the random variables 0 ≤ �̂ < k̂ ≤ Nn such that

(k̂, �̂) ∈ arg min
(k ,�):0≤�<k≤Nn

{
(k − �)Δn : supp( f̂n − gn) ⊂ [�Δn, kΔn]

}
.

With Dk ,� as defined above, applying (47), Nn ≤ 32
√

n/log n and the union bound yields

P(D
k̂ ,�̂

) ≤
∑

0≤�<k≤Nn

P(Dk ,�)

≤
∑

(k ,�)∈T
P(Dk ,�)

≤ 1024n
log n

(
exp

(
− 212

24/3

(
n log2 n/4

) 1/3
)
∨ n−2

)
→ 0 as n →∞.

(48)

The convergence is uniform over f0 ∈ Lip(1) and PX ∈ Pn(D).
In a next step of the proof, we provide a simple upper bound of the least squares distance on the set

D
k̂ ,�̂

. Inequality (39) shows Δn ≤ sn/16 ≤ sn/δ and Lemma 22 (iii) yields

x̃ − 2
sn
δ

≤ x̃ − sn
δ

− Δn ≤ �̂Δn ≤ x� < xu ≤ k̂Δn ≤ x̃ +
sn
δ
+ Δn ≤ x̃ + 2

sn
δ
,

implying PX([�̂Δn, k̂Δn]) ≤ PX([x̃ ± 2sn/δ]) and (k̂ − �̂)Δn ≤ 4sn/δ. This allows to further upper bound
P
k̂,�̂

by n PX([x̃±2sn/δ])(4sn/δ)2. Using this, rearranging the rightmost inequality in (46) and applying

the local doubling property (LDP) �log2(δ−1)� times recalling the inequality sn/δ ≤
√

log n supx tn(x)
derived in (37), shows that, on Dc

k̂ ,�̂
∩ Γn(D−4)c ,

n∑
i=1

(
f̂n(Xi) − gn(Xi)

) 2 ≤ 16 · 212
(
2n PX

(
[x̃ ± 2sn/δ]

) ( 4sn
δ

) 2
log2 n

) 1/3

≤ 217/3 · 212δ−2/3
(
nD �log2(δ−1)� PX

(
[x̃ ± 2sn]

)
s2
n log2 n

) 1/3
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≤ χ
(
n PX

(
[x̃ ± 2sn]

)
s2
n log2 n

) 1/3
,

with χ = 217/3 · 212D �log2(δ−1)�/3δ−2/3 as defined in (35).

Combining the bounds for (36): Using the lower bound (40) and the upper bound derived above, (36)
implies that on the event Dc

k̂ ,�̂
∩ Γn(D−4)c ,

s2
nn

32D5 PX
( [

x̃ ± 2sn
] )

≤ χ
(
n PX

(
[x̃ ± 2sn]

)
s2
n log2 n

) 1/3
. (49)

Rearranging the terms in (49), and raising both sides to the power 3/2 gives

Bs2
nn PX

(
[x̃ ± 2sn]

)
≤ log n,

with B := (32χD5)−3/2. Since χ is an absolute constant independent of K , B is also independent of K .
Using the second claim of Lemma 23 and dividing by log n on both sides, we obtain on the event
Dc

k̂ ,�̂
∩ Γn(D−4)c ,

4K2BD−�log2(1/(2δ))�−1 ≤ 1.

But since by (34), K > B−1/2D1+ 1
2 log2(1/(2δ)), we have derived a contradiction. Because K was chosen

to be any number larger than K∗, we must have, on the event Dc

k̂ ,�̂
∩ Γn(D−4)c ,

sup
x∈[0,1]

f̂n(x) − f0(x)
tn(x)

≤ K∗.

The probability of the exceptional set tends to zero because by (48) and Lemma 21,

P
(
(Dc

k̂ ,�̂
∩ Γn(D−4)c)c

)
≤ P(D

k̂ ,�̂
) + P

(
Γn(D−4)

)
→ 0 as n →∞.

The convergence can be checked to be uniform over f0 ∈ Lip(1 − δ) and PX ∈ Pn(D). The proof is
complete.
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Supplement to “Local convergence rates of the nonparametric least squares estimator with appli-
cations to transfer learning” (DOI: 10.3150/23-BEJ1655SUPP; .pdf). Additional proofs and technical
lemmas.
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