
Bernoulli 24(3), 2018, 1910–1941
https://doi.org/10.3150/16-BEJ915

Finite sample properties of the mean
occupancy counts and probabilities
GEOFFREY DECROUEZ1, MICHAEL GRABCHAK2 and QUENTIN PARIS3

1Higher School of Economics, National Research University, Moscow, Russia. E-mail: ggdecrouez@hse.ru
2Department of Mathematics and Statistics, University of North Carolina, Charlotte, NC, USA.
E-mail: mgrabcha@uncc.edu
3Higher School of Economics & Laboratory of Stochastic Analysis and its Applications, National Research
University, Moscow, Russia. E-mail: qparis@hse.ru

For a probability distribution P on an at most countable alphabet A, this article gives finite sample bounds
for the expected occupancy counts EKn,r and probabilities EMn,r . Both upper and lower bounds are given
in terms of the counting function ν of P . Special attention is given to the case where ν is bounded by a
regularly varying function. In this case, it is shown that our general results lead to an optimal-rate control
of the expected occupancy counts and probabilities with explicit constants. Our results are also put in
perspective with Turing’s formula and recent concentration bounds to deduce bounds in probability. At the
end of the paper, we discuss an extension of the occupancy problem to arbitrary distributions in a metric
space.
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1. Introduction

The occupancy problem

From a general point of view, the occupancy problem – also referred to as the urn scheme – is
to describe the spread of a random sample drawn from a probability distribution supported by an
at most countable alphabet. In the literature, this task is usually carried out by studying the so-
called occupancy counts and occupancy probabilities – also known as rare probabilities – defined
below. Interest for the occupancy problem arises in many practical situations such as Ecology
(Good and Toulmin [16], Chao [5]), Genomics (Mao and Lindsay [25]), Language Processing
(Chen and Goodman [9]), Authorship Attribution (Efron and Thisted [10], Thisted and Efron
[34], Zhang and Huang [38]), Information Theory (Orlitsky, Santhanam and Zhang [30]) and
Computer Science (Zhang [35]).

Consider an at most countable alphabet A with an associated probability distribution P =
{pa : a ∈ A}, where pa ∈ [0,1] and

∑
a∈A pa = 1. Let S = {a ∈ A : pa > 0} denote the support

of P , and let X1, . . . ,Xn be independent and identically distributed A-valued random variables,
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defined on some probability space (�,F,P), with distribution P . For all a ∈A, we set

ξn(a) =
n∑

i=1

1{Xi = a}, (1.1)

where the notation 1{· · · } stands for the indicator function of the event {· · · }. For all integers
0 ≤ r ≤ n, the occupancy counts Kn,r and occupancy probabilities Mn,r are defined, respectively,
by

Kn,r =
∑
a∈A

1
{
ξn(a) = r

}
and Mn,r =

∑
a∈A

pa1
{
ξn(a) = r

}
. (1.2)

For any integer 0 ≤ r ≤ n, the random variable Kn,r stands for the number of points in A repre-
sented exactly r times in the sample. A clear interpretation of the occupancy probabilities is given
by the following equivalent representation. Introducing a generic A-valued random variable X,
independent of the sample and distributed according to P , we have, almost surely,

Mn,r = P
(
ξn(X) = r|X1, . . . ,Xn

)
.

Hence, for any integer 0 ≤ r ≤ n, Mn,r stands for the (conditional) probability that, given the first
n observations, the next one will be of a letter that is already represented r times in the sample.
The quantity Mn,0 is particularly important. In the literature it is usually called the missing mass,
and has attracted a lot of attention due to its practical interpretation as the probability of novelty.
The goal of this paper is to understand the finite sample properties of EKn,r and EMn,r .

Related work

Following the pioneering work of Karlin [23], it is understood that the asymptotic behavior of the
occupancy counts Kn,r is strongly connected to the behavior of the tail of the counting measure
ν of P , which is defined on [0,1] by

ν(dx) =
∑
a∈A

δpa (dx). (1.3)

The function ν : [0,1] → N, defined by

ν(ε) = ν
([ε,1]), (1.4)

is usually referred to as the counting function of P . A short account of some of its basic properties
is given in Appendix A. We now illustrate the relationship between the behavior of ν and that of
Kn,r . Toward this end, we recall some terminology from Karlin [23]. We say that a function f :
[0,+∞) → R is regularly varying at x0 ∈ {0,∞} with exponent α ∈ R, and we write f ∈ rvα

x0
,

if

∀c > 0, lim
x→x0

f (cx)

f (x)
= cα.
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If α = 0, we say that f is slowly varying at x0. Note that f ∈ rvα
0 if and only if there exists

� ∈ rv0∞ such that, for all ε > 0,

f (ε) = ε−α�(1/ε). (1.5)

It is well known that the counting function ν, defined in (1.4), satisfies ν(ε) = ε−α�(1/ε), for
some α ∈ (0,1) and some � ∈ rv0∞, if and only if

∀r ≥ 1: Kn,r ∼
a.s.

EKn,r ∼ α	(r − α)

r! nα�(n), (1.6)

as n → +∞. (Here and throughout, for any two real-valued functions g and h and any
x0 ∈ [0,+∞], we write h(x) ∼ g(x) as x → x0 if and only if h(x)/g(x) → 1 as x → x0.) For
a detailed exposition and developments on this topic, we refer the reader to the classic text by
Johnson and Kotz [21] or the more recent, and very complete, survey by Gnedin, Hansen and Pit-
man [14], which, in particular, studies extensions of (1.6) to the case α ∈ {0,1} under additional
care.

In the same spirit, Ohannessian and Dahleh [29] extended (1.6) to the case of occupancy
probabilities proving that, if ν(ε) = ε−α�(1/ε) for some α ∈ (0,1) and some � ∈ rv0∞, then

∀r ≥ 0: Mn,r ∼
a.s.

EMn,r ∼ α	(1 + r − α)

r! nα−1�(n), (1.7)

as n → +∞. While the second asymptotic equivalence in (1.7) is, as mentioned by the authors,
easily derived from (1.6) and the relation

EMn,r =
(

1 + r

1 + n

)
EKn+1,r+1, (1.8)

the first asymptotic equivalence in (1.7) is established by Ohannessian and Dahleh [29] by prov-
ing more powerful concentration properties of Mn,r around its expectation.

Some of the first concentration properties in this context were established by McAllester and
Schapire [27] for the missing mass Mn,0. The concentration properties of the missing mass have
since been investigated by McAllester and Ortiz [26], Ohannessian and Dahleh [28], Berend and
Kontorovich [4] and Khanloo and Haffari [24]. Many extensions and new results concerning the
concentration properties of the occupancy counts Kn,r and occupancy probabilities Mn,r can be
found in Ohannessian and Dahleh [29] and Ben-Hamou, Boucheron and Ohannessian [2].

Establishing concentration properties is a fundamental step toward understanding the finite
sample behavior of the occupancy counts and probabilities. However, a full understanding of the
finite sample properties of Kn,r and Mn,r requires finite sample bounds for their expectations. We
are only aware of two contributions in this direction, namely Ohannessian and Dahleh [28] and
Berend and Kontorovich [3], which both focus on the missing mass. In particular, Ohannessian
and Dahleh [28] introduce the accrual function F(x) = P({a : pa ≤ x}), and show that

sup
0≤ε≤1

{
(1 − ε)nF (ε)

} ≤ EMn,0 ≤ inf
0≤ε≤1

{
(1 − ε)n + F(ε)

}
. (1.9)
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It should be noted that, as described in Appendix B, this result yields, in many cases, explicit
bounds with almost optimal rates of convergence. In Berend and Kontorovich [3], the authors
show that, in the finite support case,

∀n ≤ |S|: EMn,0 ≤ e−n/|S| and ∀n > |S|: EMn,0 ≤ |S|
ne

,

while in the infinite support case, there exists a universal constant c > 0 such that

EMn,0 ≤ L(P )

cn
, where L(P ) = sup

0<ε<1

{
ν(ε/2) − ν(ε)

}
.

In addition, the authors prove that, for any integer a > 1, there exists a distribution P for which
L(P ) = a and EMn,0 ≥ c′a/n, where c′ > 0 denotes a universal constant. Hence, their bound is
shown to be sharp for a certain class of probability distributions. Unfortunately, L(P ) = +∞ in
many interesting cases, including when A = {1,2, . . . } and, for some α ∈ (0,1), the distribution
P has masses pk = Ck−1/α, k ∈ A.

Concerning lower bounds, there are interesting results from a somewhat different perspective
given in Lemma 4.1 of Almudevar, Bhattacharya and Sastri [1] and Lemma 1 of Zhang [37].
These are discussed, in detail, in Appendix C.

Contribution and organisation of the paper

Building on the previous work from Ohannessian and Dahleh [28] and Berend and Kontorovich
[3], this paper establishes finite sample upper and lower bounds for the expected occupancy
counts EKn,r and the expected occupancy probabilities EMn,r for arbitrary n ≥ 1 and arbitrary
0 ≤ r ≤ n. For simplicity of exposition, focus is put on the expected occupancy probabilities
EMn,r knowing that relation (1.8) immediately implies similar bounds for the expected occu-
pancy counts. Section 2 is devoted to our main results. We first give general bounds in terms of
the counting function ν, which make no assumptions about the underlying distribution. Addi-
tional assumptions on ν are used to derive more explicit bounds. In particular, when the counting
function is regularly varying, the bounds are shown to be consistent with (1.6) and (1.7), and are
thus rate optimal. Section 3 presents some applications and extensions. Specifically, Section 3.1
discusses the relationship between our results and Turing’s formula, while Section 3.2 shows how
we can combine our results with recent concentration bounds to derive bounds in probability for
Mn,r and Kn,r . Further, in Section 3.3, we present an extension to the case of a random number
of observations modelled by a non-homogeneous Poisson process, and in Section 3.4 we discuss
an interesting perspective for future research in the context of arbitrary probability measures –
i.e. not necessarily discrete – in a metric space. Proofs are postponed to Section 4. Finally, Ap-
pendix A collects a few basic properties of the counting function, Appendix B investigates the
performance of bounds given in terms of the accrual function, and Appendix C discusses the
lower bounds from Almudevar, Bhattacharya and Sastri [1] and Zhang [37].
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Notation

Throughout, the notation 1{· · · } stands for the indicator function of the event {· · · }. For any set
B , we write |B| to denote the number (possibly infinite) of elements in B . For any t > 0 and any
x ≥ 0, we denote by

γ (t, x) =
∫ x

0
ut−1e−u du (1.10)

the lower incomplete Gamma function. Note that the Gamma function is given by 	(t) =
γ (t,+∞).

2. Main results

In this section, we give upper and lower bounds for the expected occupancy probabilities EMn,r .
From (1.8) it follows that all of the results in this section can be immediately adapted to the
expected occupancy counts EKn,r . However, for ease of exposition, we only report results in
terms of the occupancy probabilities.

2.1. Upper bounds

Let P = {pa : a ∈A} be a probability measure on the countable alphabet A. Its counting function
ν defined in (1.4), can be equivalently written as

ν(ε) = ∣∣{a ∈A : pa ≥ ε}∣∣, 0 ≤ ε ≤ 1. (2.1)

A short account of the basic properties of ν is given in Appendix A. Our first result provides a
general upper bound in terms of ν. In the sequel, we denote

c(r) =
{

e−1 if r = 0,

e(1 + r)/
√

π if r ≥ 1.
(2.2)

Theorem 2.1. For any n ≥ 1 and any 0 ≤ r ≤ n − 1, we have

EMn,r ≤ inf
0≤ε≤1

{
ϕ+

n,r (ε) + ψ+
n,r (ε)

}
, (2.3)

where

ϕ+
n,r (ε) = c(r)ν(ε)

n
,

ψ+
n,r (ε) = 21+r

(
n

r

)∫ ε

0
ν

(
u

2

)
ur

(
1 − u

2

)n−r

du.
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Further, for any n ≥ 1,

EMn,n ≤ inf
0≤ε≤1

{
pn+1

� ν(ε) + εn
}
, (2.4)

where p� = max{pa : a ∈A} ∈ (0,1].

Remark 2.1. The proof of Theorem 2.1 consists in studying separately, and for all ε ∈ [0,1],
the contributions of large (i.e., larger then ε) and small (i.e., smaller then ε) probabilities. These
contributions are bounded, respectively, by ϕ+

n,r (ε) and ψ+
n,r (ε). Details in the proof reveal that

the term ψ+
n,r (ε) can in fact be replaced by the quantity

b1+r

b − 1

(
n

r

)∫ ε

0
ν

(
u

b

)
ur

(
1 − u

b

)n−r

du,

for any b > 1. In principle, the value of b may be optimized, but for the sake of simplicity, we
choose b = 2. Note that, since ν is bounded on intervals away from 0, this should not affect the
bound in a substantial way.

Observe that, in (2.3), the two terms ϕ+
n,r (ε) and ψ+

n,r (ε) have opposite monotonic behaviours
in ε. In full generality, the value of ε leading to the optimal tradeoff is not obvious. However, in
many interesting cases, a relevant choice of ε yields explicit and, as far as we know, new bounds.

Corollary 2.1. Suppose that S is finite. Then, for all n ≥ 1 and all 0 ≤ r ≤ n − 1,

EMn,r ≤ c(r)|S|
n

and EMn,n ≤ pn+1
� |S|,

where c(r) is as in (2.2).

The proof of Corollary 2.1 simply involves taking ε = 0 in Theorem 2.1 and is therefore
omitted. Note that, when we take r = 0 in Corollary 2.1, we recover the bound EMn,0 ≤ |S|/(ne)

for the expected missing mass provided by Berend and Kontorovich [3]. Next, we study several
situations, where P has an infinite support.

Corollary 2.2. Suppose that S is infinite. Assume that, for α ∈ [0,1] and � ∈ rv0∞, we have
ν(ε) ≤ ε−α�(1/ε) for all 0 < ε ≤ 1. Suppose, in addition, that � is non-increasing. Then, for all
n ≥ 2 and all 0 ≤ r ≤ n − 1, we have

EMn,r ≤ c1(α, r)nα−1�(n),

where

c1(α, r) = c(r) + 41+r

r! (1 + r)1+r−αγ

(
1 + r − α,

1

2

)
,

c(r) is as in (2.2), and γ (·, ·) denotes the lower incomplete Gamma function defined in (1.10).
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According to (1.7), the bound of Corollary 2.2 is rate optimal in terms of n. In order for the
bound to be even more explicit, note that for all t > 0 and all x ≥ 0, the constant γ (t, x) may
be roughly upper bounded by t−1xt . Observe, finally, that when α = 1 and r = 0 the bound in
Corollary 2.2 is trivial since γ (0, 1

2 ) = +∞.
The next corollary studies the case of an arbitrary � ∈ rv0∞. First, let � ∈ rv0∞ and denote, for

all β ∈ (0,1) and all x ≥ 1,

�◦
β(x) =

√∫ +∞

2x

�(u)2

u2−β
du. (2.5)

Then, one may deduce that �◦
β ∈ rv−(1−β)/2∞ and satisfies,

�◦
β(x) ∼ �(x)

(2x)
1−β

2
√

1 − β
, (2.6)

as x → +∞, by an application of Karamata’s theorem (Karamata [22]). We are now in position
to state our next result.

Corollary 2.3. Suppose that S is infinite. Assume that, for α ∈ [0,1] and � ∈ rv0∞, we have
ν(ε) ≤ ε−α�(1/ε) for all 0 < ε ≤ 1. Then, for all n ≥ 2, all 0 ≤ r ≤ n − 1 and all β ∈ (0,1) with
β > 2(α − r) − 1, we have

EMn,r ≤ c(r)nα−1�(n) + c2(α,β, r)nα− 1+β
2 �◦

β(n),

where

c2(α,β, r) = 41+r

r!
(

1 + r

2

) 1+β
2 +r−α√

γ
(
1 + β + 2(r − α),1

)
,

c(r) is as in (2.2), and γ (·, ·) denotes the lower incomplete Gamma function defined in (1.10).

Observe that, for every β ∈ (0,1) with β > 2(α − r) − 1, this bound is rate optimal according
to (1.7) since, using (2.6), we have

nα− 1+β
2 �◦

β(n) ∼ nα−1�(n)

2
1−β

2
√

1 − β
, (2.7)

as n → +∞. Hence, the result in Corollary 2.3 differs from that of Corollary 2.2 mainly at the
level of constants.

Next, we present an additional result in the spirit of Theorem 2.1, which will shed an inter-
esting light on the lower bounds presented further. This result is less explicit than Theorem 2.1,
but allows for tighter upper bounds in certain cases, including when the counting function is
regularly varying with exponent α ∈ (0,1]. First, we introduce the function κ+ defined, for all
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ε ∈ (0,1], by

κ+(ε) = sup
0<u≤ε

ν(u/2)

ν(u)
. (2.8)

Note that κ+ is non-decreasing by construction. Also, given that ν is non-increasing, we have
κ+(ε) ≥ 1 for all 0 < ε ≤ 1. For simplicity of notation, we write

κ0+ = lim
ε→0

κ+(ε). (2.9)

Theorem 2.2. For any n ≥ 1 and any 0 ≤ r ≤ n − 1, we have

EMn,r ≤ inf
0<ε≤1/2

{
ϕ+

n,r (ε) + θ+
n,r (ε)

}
,

where ϕ+
n,r (ε) is defined in Theorem 2.1 and

θ+
n,r (ε) = 21+r

(
n

r

)∫ ε

0

(
κ+(2u) − 1

)
ν(u)ur

(
1 − u

2

)n−r

du.

The monotonicity of ν leads, immediately, to the fact that (κ+(2u) − 1)ν(u) ≤ (κ+(2u) −
1)ν(u/2), for all 0 < u ≤ 1. As a result, by monotonicity of κ+, θ+

n,r (ε) ≤ ψ+
n,r (ε) for 0 < ε ≤

1/2 provided κ+(2ε) ≤ 2. The next statement shows that when ν ∈ rvα
0 this condition is always

satisfied for ε small enough leading to a potentially tighter bound than Theorem 2.1.

Proposition 2.1. Suppose that ν ∈ rvα
0 , for α ∈ [0,1]. Then κ0+ = 2α .

The proof of Proposition 2.1 follows, almost immediately, from the definition of slowly vary-
ing functions at +∞, and is therefore omitted. We end this subsection by the following corollary.

Corollary 2.4. Suppose that S is infinite. Assume that κ0+ ∈ (1,2] and that, for α ∈ [0,1] and
� ∈ rv0∞, we have ν(ε) ≤ ε−α�(1/ε) for all 0 < ε ≤ 1. Then, for all n ≥ 2 large enough so that

κ+
(

2

n

)
≤ 2κ0+ − 1, (2.10)

all 0 ≤ r ≤ n − 1 and all β ∈ (0,1) with β > 2(α − r) − 1, we have

EMn,r ≤ c(r)nα−1�(n) + (
κ0+ − 1

)
c2(α,β, r)

(
n

2

)α− 1+β
2

�◦
β

(
n

2

)
,

where c(r) is as in (2.2), c2(α,β, r) is as given in Corollary 2.3, and γ (·, ·) denotes the lower
incomplete Gamma function defined in (1.10).

According to Proposition 2.1, the assumptions of Corollary 2.4 are satisfied when ν ∈ rvα
0 for

α ∈ (0,1], in which case (κ0+ − 1) ∈ (0,1] and therefore (κ0+ − 1)c2(α,β, r) ≤ c2(α,β, r). As in
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Corollary 2.3, note that the bound is rate optimal, for all β ∈ (0,1) with β > 2(α − r)−1, thanks
to (2.7). Lastly, observe that, with additional information on �, the range of n for which (2.10)
applies can be made explicit.

2.2. Lower bounds

In this subsection, we tackle the problem of finding non-asymptotic lower bounds for the expec-
tation of the occupancy probabilities. For this purpose, we introduce the function κ− defined, for
all ε ∈ (0,1], by

κ−(ε) = sup
0<u≤ε

ν(u)

ν(u/2)
. (2.11)

Note that κ− is non-decreasing and satisfies κ−(ε) ≤ 1. We further define

κ0− = lim
ε→0

κ−(ε). (2.12)

The following result is in the spirit of Theorem 2.2.

Theorem 2.3. For any n ≥ 1 and any 0 ≤ r ≤ n − 1, we have

EMn,r ≥ sup
0<ε≤1/2

{
ϕ−

n,r (ε) + θ−
n,r (ε)

}
,

where

ϕ−
n,r (ε) =

(
n

r

)
ν(ε)εr+1(1 − p�)

n−r ,

θ−
n,r (ε) = 2−r

(
n

r

)∫ ε

0

(
1 − κ−(2u)

)
ν(u)ur(1 − 2u)n−r du,

and p� = max{pa : a ∈ A}.

In order for the term θ−
n,r (ε) to be strictly positive, there needs to be at least one ε ∈ (0,1/2]

with κ−(2ε) < 1. The next proposition indicates that this requirement holds when ν ∈ rvα
0 with

α ∈ (0,1].

Proposition 2.2. Suppose that ν ∈ rvα
0 , for α ∈ [0,1]. Then κ0− = 2−α .

The proof of Proposition 2.2 follows, almost immediately, from the definition of slowly vary-
ing functions at +∞ and is thus omitted.

Given the monotonicity of κ− and the fact that κ−(ε) ≤ 1, Proposition 2.2 implies that, for
α = 0, κ− is identically equal to 1 and the second term of the bound is therefore equal to 0. The
reader may easily check that this last observation also holds when S is finite since, obviously,
κ−(ε) → 1 as ε → 0 in this case. Thus, the term θ−

n,r (ε) contributes to the bound when ν ∈ rvα
0



Finite sample properties of the mean occupancy counts and probabilities 1919

with α ∈ (0,1] and is identically 0 when the support S is finite or ν ∈ rv0
0. Note, however, that

the lower bound is attained for uniform distributions. Indeed, suppose that 2 ≤ |S| < +∞ and
that P is uniform. Setting ε0 = 1/|S|, we have ν(ε0) = |S|, κ−(ε0) = 1, and

EMn,r =
(

n

r

) |S|∑
k=1

(
1

|S|
)r+1(

1 − 1

|S|
)n−r

=
(

n

r

)
ν(ε0)ε

r+1
0 (1 − p�)

n−r = sup
0<ε≤1/2

ϕ−
n,r (ε).

We end this section with a corollary similar in nature to Corollary 2.4. First recall that, for any
t > 0 and any x ≥ 0, we have

(
1 − x

n

)n

→ e−x and
∫ x

0
ut−1

(
1 − u

n

)n

du → γ (t, x),

as n → +∞, where the second limit follows by dominated convergence.

Corollary 2.5. Suppose that κ0− < 1 and that, for α ∈ [0,1] and � ∈ rv0∞, we have ν(ε) ≥
ε−α�(1/ε) for all 0 < ε ≤ 1. Assume, in addition, that � is non-decreasing. Fix r ≥ 0 and let
n0 be the smallest n ≥ max{2,1 + r} satisfying the conditions

(a) κ−
(

2

n

)
≤ 1 + κ0−

2
,

(b)

(
1 − r

n

)n

≥ e−r

2
,

(c)
∫ 2

0
ur−α

(
1 − u

n

)n

du ≥ γ (1 + r − α,2)

2
.

Then, for all n ≥ n0, we have

EMn,r ≥ e−r

2r!
[
(1 − p�)

n + (1 − κ0−)γ (1 + r − α,2)

21−α41+r

]
�(n)

n1−α
,

where p� = max{pa : a ∈A}.

According to Proposition 2.2, all assumptions of Corollary 2.5 are satisfied if ν(ε) =
ε−α�(1/ε) with α ∈ (0,1] and � ∈ rv0∞ is non-decreasing. We do not know whether a similar
bound holds for arbitrary �. However, note that, for all � ∈ rv0∞, one may use the fact that, for
α > 0 and 0 < η < α, there exists 0 < εη < 1 and Cη > 0 such that ε−α�(1/ε) ≥ Cηε

η−α for
all 0 < ε ≤ εη . Unfortunately, this approach yields suboptimal rates of convergence. Finally note
that, for practical purposes, one can use the crude lower bound γ (t, x) ≥ (tex)−1xt .
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3. Applications and extensions

3.1. Turing’s formula

In many practical applications, one needs to estimate the occupancy probabilities, Mn,r . Perhaps
the most famous estimator of this quantity is Turing’s formula, which was introduced by Good
[15], where the ideas were primarily credited to Alan M. Turing. For this reason, the estimator
has come to be called Turing’s formula or the Good–Turing formula. It is given by

Tn,r = (1 + r)Kn,1+r

n
.

A heuristic justification for Turing’s formula may be obtained as follows. Denote p̂a = n−1ξn(a)

the natural estimator of pa , where ξn is defined by (1.1). Then one has

Tn,r = 1 + r

n

∑
a∈A

1
{
p̂a = 1 + r

n

}

=
∑
a∈A

p̂a1
{
p̂a = 1 + r

n

}

≈
∑
a∈A

pa1
{
p̂a = r

n

}
= Mn,r .

Many properties of this estimator, including bias, consistency, and asymptotic normality have
been studied, see, for example, Harris [18,19], Robbins [32], Starr [33], Holst [20], Esty [11],
Chao [6], Chao and Lee [7], McAllester and Schapire [27], Gandolfi and Sastri [13], Zhang
[35], Zhang and Huang [39], Zhang and Zhang [36], Ohannessian and Dahleh [28,29], Grabchak
and Cosme [17], and the references therein. Noting that ETn,r = EMn−1,r , the bias of Turing’s
formula is given by

E[Mn,r − Tn,r ] = EMn,r −EMn−1,r .

Thus the results of this paper provide upper and lower bounds on the bias of Turing’s formula.
Further, they provide bounds for the bias of certain modifications of Turing’s formula. In

particular, for the important case r = 0, a class of modified Turing formulas was introduced in
Chao, Lee and Chen [8] (see also Zhang and Huang [38]). The motivation comes from the fact
that for all s = 1,2, . . . , n

EMn,0 =
∑
k≥1

pk(1 − pk)
n

=
s∑

i=1

(−1)i+1
∑
k≥1

pi
k(1 − pk)

n−i + (−1)s
∑
k≥1

ps+1
k (1 − pk)

n−s

=
s∑

i=1

(−1)i+1EKn,i(
n
i

) + (−1)s
EMn,s(

n
s

) .
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This suggests the family of estimators

T
(s)
n,0 =

s∑
i=1

(−1)i+1 Kn,i(
n
i

) , s = 1,2, . . . , n,

each with bias

E
[
Mn,0 − T

(s)
n,0

] = (−1)s
EMn,s(

n
s

) .

Note that T
(1)
n,0 = Tn,0 is just Turing’s formula. In Chao, Lee and Chen [8] it was shown that, so

long as p� < 0.5, we have

∣∣E[
Mn,0 − T

(1)
n,0

]∣∣ ≥ ∣∣E[
Mn,0 − T

(2)
n,0

]∣∣ ≥ · · · ≥ ∣∣E[
Mn,0 − T

(n)
n,0

]∣∣.
Thus, these modifications reduce the bias, and the amount of bias remaining can be bounded
using the results of this paper. Note, however, that controlling the bias of Turing’s formula can
only be of interest if this bias is shown to be of smaller order than the rate of decay of Mn,r itself.
The following subsection provides insights in this direction.

3.2. Bounds in probability

A natural application of the bounds provided in this article is to combine them with concentration
bounds for the occupancy counts and probabilities in order to derive bounds in probability. State
of the art concentration results for Kn,r and Mn,r may be found in Ohannessian and Dahleh [29]
and Ben-Hamou, Boucheron and Ohannessian [2]. For instance, defining

Kn,r̄ =
∑
s≥r

Kn,s

and setting

vn,r = 2 min
{
EKn,r̄ ,max

{
rEKn,r , (1 + r)EKn,1+r

}}
,

Proposition 3.5 in Ben-Hamou, Boucheron and Ohannessian [2] states that, for all t ≥ 0,

|Kn,r −EKn,r | <
√

4vn,r t + 2t

3
,

with probability at least 1 − 4e−t . The results of Section 2 may be applied to deduce explicit
lower and upper bounds for EKn,r , denoted, respectively, by k−

n,r and k+
n,r , as well as an explicit

upper bound v+
n,r for vn,r . Combining these bounds with the above results implies that, for all

t > 0,

max

{
0, k−

n,r −
√

4v+
n,r t − 2t

3

}
≤ Kn,r ≤ k+

n,r +
√

4v+
n,r t + 2t

3
,
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with probability at least 1 − 4e−t . For ease of exposition, we avoid explicit formulas in this case.
Instead, we present explicit bounds for the missing mass using the results of McAllester and
Ortiz [26], which states that, for all t > 0, the inequalities

Mn,0 ≤ EMn,0 +
√

t

n
and Mn,0 ≥ EMn,0 −

√
2t

ne
(3.1)

each hold with probability at least 1−e−t . The following upper bound follows immediately from
(3.1) and Corollary 2.2.

Corollary 3.1. Suppose that S is infinite. Assume that, for α ∈ [0,1] and a non-increasing func-
tion � ∈ rv0∞, we have ν(ε) ≤ ε−α�(1/ε), for all 0 < ε ≤ 1. Then, for all n ≥ 2 and all t > 0,

Mn,0 ≤
(

e−1 + 4γ

(
1 − α,

1

2

))
�(n)

n1−α
+

√
t

n
,

with probability at least 1 − e−t .

The reader may deduce a similar result by using Corollary 2.3 instead of Corollary 2.2.
Similarly, the reader may deduce a lower bound in probability by using Corollary 2.5. There
is an important case where we can combine Corollaries 2.2 and 2.5 to get upper and lower
bounds in probability that hold simultaneously. Specifically, assume that A= {1,2, . . . } and that
P = {pk : k ≥ 1} is such that, for some α ∈ (0,1),

pk = k−1/α

ζ(1/α)
,

where ζ(1/α) = ∑
k≥1 k−1/α is the Riemann zeta function at 1/α. In this case the counting

function is regularly varying and we can get the following.

Corollary 3.2. Let P be as above. If n ≥ max{2,21/αζ(1/α)} is such that

κ−
(

2

n

)
≤ 2α + 1

2α+1
and

∫ 2

0
u−α

(
1 − u

n

)n

du ≥ γ (1 − α,2)

2
,

then, for all t > 0,

P
(
m−

n,0(t, α) ≤ Mn,0 ≤ m+
n,0(t, α)

) ≥ 1 − 2e−t ,

where we have denoted

m−
n,0(t, α) = (2α − 1)γ (1 − α,2)

32

ζ(1/α)−α

n1−α
−

√
2t

ne
,

m+
n,0(t, α) =

(
e−1 + 4γ

(
1 − α,

1

2

))
ζ(1/α)−α

n1−α
+

√
t

n
.
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3.3. Random number of observations

In this subsection, we study extensions of our main results to the case where the number of
observations is random and modelled by a Poisson distribution. This case corresponds to the
practical situation in which the time, t , during which the observations are collected is fixed, but
the number of observations is not. For this purpose, let (nt )t≥0 be a non-homogeneous Poisson
process with intensity function λ : R+ → R+, independent of the observations (Xi)i≥1. Here, it
is understood that nt stands for the number of observations collected by time t . Defining

ξt (a) =
nt∑

i=1

1{Xi = a},

the occupancy counts and occupancy probabilities at time t are, respectively, defined, for all
r ≥ 0, by

Kr(t) =
∑
a∈A

1
{
ξt (a) = r

}
and Mr(t) =

∑
a∈A

pa1
{
ξt (a) = r

}
.

Then, provided

�t =
∫ t

0
λ(u)du → +∞,

as t → ∞, a slight modification of the proof of (1.7) reveals that, if ν(ε) = ε−α�(1/ε) with
α ∈ (0,1) and � ∈ rv0∞, then, for all r ≥ 1,

EMr(t) ∼ α	(1 + r − α)

r! �α−1
t �(�t ), (3.2)

as t → +∞. An analogous result for Kr(t) also holds, but, for simplicity, we focus on Mr(t).
As in the case of a fixed number of observations, this result sets a benchmark for finite sample
bounds. Based on the observation that

EMr(t) = �r
t

r!
∑
a∈A

p1+r
a e−�tpa ,

the proofs of Theorems 2.1, 2.2, and 2.3 may be easily adapted to this case. Modifying Theo-
rem 2.1, for instance, shows that for any t ≥ 0 and any r ≥ 0, we have

EMr(t) ≤ inf
0≤ε≤1

{
ϕ+

r (t, ε) + ψ+
r (t, ε)

}
, (3.3)

where

ϕ+
r (t, ε) = c̄(r)ν(ε)

�t

,

ψ+
r (t, ε) = 21+r�r

t

r!
∫ ε

0
ν

(
u

2

)
ure− �t u

2 du,
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and c̄(r) = (1 + r)1+r/(r!e1+r ) for all integers r ≥ 0. For the sake of brevity, we avoid explicitly
stating the respective analogs of Theorems 2.2 and 2.3 involving the functions κ+ and κ−. As with
the results of Section 2, these bounds lead to optimal-rate upper and lower bounds in terms of t .
For instance, following the lines of the proof of Corollary 2.2, and under the same assumptions
on the counting function, considering ε = �−1

t in (3.3) yields

EMr(t) ≤
[
c̄(r) + 41+rγ (1 + r − α, 1

2 )

r!
]
�α−1

t �(�t ), (3.4)

for any r ≥ 0 and any t > 0 with �−1
t ≤ 1. One may easily deduce bounds in the spirit of

Corollaries 2.3 and 2.4 under related assumptions on ν.

3.4. Arbitrary distributions in a metric space

So far in this article, the distribution, P , of our observations has been supported on an arbitrary
and at most countable alphabet A. In this subsection, we briefly investigate a generalization of
the notion of occupancy probabilities to the context of an arbitrary distribution, P , on a metric
space E.

Let (E,d) be a metric space and let P be any probability distribution on E equipped with
its Borel σ -field. Suppose that we are given independent and identically distributed E-valued
random variables X1, . . . ,Xn with common distribution P . Since P may not be discrete, a natural
analog of the occupancy probabilities Mn,r may be defined as follows. First, for δ > 0 and x ∈ E,
we let

ξ (δ)
n (x) =

n∑
i=1

1{x ∈ BXi,δ}, (3.5)

where, for u ∈ E, Bu,δ = {x ∈ E : d(x,u) < δ}. In other words, ξ
(δ)
n (x) is the numbers of sample

points from which x is at a distance strictly less than δ. Now, let X be an E-valued random
variable independent of the sample and having distribution P . For any integer 0 ≤ r ≤ n, we set

M(δ)
n,r = P

(
ξ (δ)
n (X) = r|X1, . . . ,Xn

) =
∫

E

1
{
ξ (δ)
n (x) = r

}
P(dx). (3.6)

The random variable M
(δ)
n,r represents the (conditional) probability that, given the first n observa-

tions, the next one will fall into the δ-neighbourhood of exactly r of them. A similar extension
of the missing mass was studied in Section 4 of Berend and Kontorovich [3]. In our context, a
slight generalisation of Theorem 8 in Berend and Kontorovich [3] can be written as follows. For
A ⊂ E, we denote N(A, δ) the δ-covering number of A, that is, the minimal number of balls
Bu,δ needed to cover A.

Theorem 3.1. For all x ∈ E and t > 0, let τx(t) = 1−P(Bx,t ) and Nx(t, �) = N(Bx,t , �). Then,
for all n ≥ 1,

EM
(δ)
n,0 ≤ inf

x,t,�

{
τx(t) + Nx(t, �)

ne

}
,
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where the infimum is taken over all x ∈ E, all t > 0 and all 0 < � ≤ δ/2.

This result involves, in an interesting way, the geometry of the support of P . Suppose, for
instance, that the support S of P is totally bounded. Then, as noted by Berend and Kontorovich
[3], taking x in S , t larger than the diameter of S and � = δ/2, leads to

EM
(δ)
n,0 ≤ Nx(t, δ/2)

ne
,

which is a natural analog of their result in the discrete case.
In the sequel, we develop an alternative approach. First, we introduce an analog of the counting

measure ν. For all δ > 0, let νδ be the measure on [0,1] defined by∫ 1

0
f (u)νδ(du) =

∫
E

f (P (Bx,δ))

P (Bx,δ)
P (dx), (3.7)

for all measurable f : [0,1] → R+. Then, denoting Lδ(ε) = {x ∈ E : P(Bx,δ) ≥ ε}, we introduce
the function νδ defined, for all ε ∈ [0,1], by

νδ(ε) = νδ

([ε,1]) =
∫
Lδ(ε)

P (Bx,δ)
−1P(dx). (3.8)

The function νδ is a natural analog of the counting function ν defined for discrete probability
measures. Indeed, an easy application of the Dominated Convergence theorem shows that, if P

is discrete and if for some c > 0 the distance between any two points in its support is lower
bounded by c, then for any ε ∈ (0,1]

lim
δ→0

νδ(ε) = ν(ε). (3.9)

The next result is in the spirit of (1.7). Using the notation introduced in Section 3.3, we denote

M(δ)
r (t) = M(δ)

nt ,r
,

where (nt ) stands for a non-homogeneous Poisson process with intensity function λ : R+ → R+.

Theorem 3.2. Fix δ > 0. Suppose that for some α ∈ [0,1] and some � ∈ rv0∞, possibly depending
on δ, we have νδ(ε) = ε−α�(1/ε). Then, for all r ≥ 0,

EM(δ)
r (t) ∼ α	(1 + r − α)

r! �α−1
t �(�t ), (3.10)

as t → +∞, provided �t → +∞ as t → +∞.

To keep the proof simple, we present this result in the context where the number of observa-
tions, n, follows a non-homogeneous Poisson process. However, this proof can be modified to
give an analogous result in the case where n is fixed. Finally, denoting

κ
(δ)
− (ε) = sup

0<u≤ε

νδ(u)

νδ(u/2)
and κ

(δ)
+ (ε) = sup

0<u≤ε

νδ(u/2)

νδ(u)
,
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for 0 < ε ≤ 1, the reader may easily check that, in the context of this subsection, Theorems 2.1,
2.2 and 2.3 hold exactly provided ν, κ−, κ+ and p� are replaced, respectively, by

νδ, κ
(δ)
− , κ

(δ)
+ and p(δ)

� = sup
{
P(Bx,δ) : x ∈ E

}
.

The results of this subsection could find interesting applications in the context of a continuous
time stochastic process X = (Xt )0≤t≤T , considering P to be the distribution of the whole path
X = (Xt )0≤t≤T or of Xt for some 0 ≤ t ≤ T . In order to have relevant information on the gen-
eralized counting function νδ , one needs explicit upper and lower bounds on the probabilities of
balls P(Bx,δ), x ∈ E. Results in this direction have been widely studied and may be related to
large deviations theory and density estimates for stochastic partial differential equations. Finally,
an interesting question is whether the work of Ben-Hamou, Boucheron and Ohannessian [2] on
concentration inequalities can be adapted to this general case. This is left for future research.

4. Proofs

Proof of Theorem 2.1. For all n ≥ 1 and all 0 ≤ r ≤ n,

EMn,r =
∑
a∈A

paP
(
ξn(a) = r

)
. (4.1)

For any a ∈ A, the variables 1{Xi = a}, i = 1, . . . , n, are independent and have the same
Bernoulli distribution with parameter pa . This implies that

P
(
ξn(a) = r

) =
(

n

r

)
pr

a(1 − pa)
n−r . (4.2)

As a result, we deduce from (4.1) and (4.2) that, for all n ≥ 1 and all 0 ≤ r ≤ n,

EMn,r =
(

n

r

) ∑
a∈A

pr+1
a (1 − pa)

n−r . (4.3)

Now, suppose that 0 ≤ ε ≤ 1, n ≥ 1 and 0 ≤ r ≤ n − 1 are fixed. Note that, from (4.3), we can
write

EMn,r =
(

n

r

) ∑
a∈A

pr+1
a (1 − pa)

n−r

=
(

n

r

) ∑
a:pa≥ε

pr+1
a (1 − pa)

n−r +
(

n

r

) ∑
a:pa<ε

pr+1
a (1 − pa)

n−r (4.4)

=:
(

n

r

)
(S1 + S2).
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To bound the first term observe that from the definition of the counting function ν introduced in
(1.4), we obtain (

n

r

)
S1 ≤

(
n

r

)
ν(ε) sup

u∈[0,1]
ur+1(1 − u)n−r

(4.5)

=
(

n

r

)
ν(ε)

(1 + r)1+r (n − r)n−r

(1 + n)1+n
.

In the case where r = 0, the upper bound (4.5) becomes(
n

r

)
S1 ≤ ν(ε)

nn

(1 + n)1+n

= ν(ε)

n

(
1 − 1

1 + n

)1+n

(4.6)

≤ ν(ε)

ne
,

where, in (4.6), we have used the fact that ∀u ∈ [0,1]: (1 − u) ≤ e−u. In the case 1 ≤ r ≤ n − 1,
developing the binomial coefficient in (4.5), we need to evaluate the term

n!
r!(n − r)!

(1 + r)1+r (n − r)n−r

(1 + n)1+n
. (4.7)

Using the Stirling type bound (see Robbins [31])

√
2πnn+ 1

2 e−n+ 1
12n+1 < n! < √

2πnn+ 1
2 e−n+ 1

12n ,

valid for all n ≥ 1, we deduce in particular that for all 1 ≤ r ≤ n − 1, we have the following
inequalities

n! < √
2πnn+ 1

2 e−n+ 1
12n

≤ √
2πnn+ 1

2 e
−n+ 1

12(1+r) (4.8)

<
√

2πnn+ 1
2 e−n+ 1

12r+1 ,

r! > √
2πrr+ 1

2 e−r+ 1
12r+1 , (4.9)

(n − r)! > √
2π(n − r)n−r+ 1

2 e−n+r . (4.10)

Using inequalities (4.8), (4.9) and (4.10), we obtain

n!
r!(n − r)! ≤ 1√

2π

nn+ 1
2

rr+ 1
2 (n − r)n−r+ 1

2

,
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implying that the expression in (4.7) can be upper bounded by

1√
2π

(1 + r)1+r

rr+ 1
2

nn+ 1
2

(1 + n)1+n

1

(n − r)
1
2

. (4.11)

Using the inequality 1/(n − r) ≤ (1 + r)/n, valid for all 0 ≤ r ≤ n − 1, we obtain

nn+ 1
2

(1 + n)1+n

1

(n − r)
1
2

≤ (1 + r)
1
2

(
n

1 + n

)1+n 1

n
≤ (1 + r)

1
2

n
. (4.12)

Combining (4.11) and (4.12), the term (4.7) is therefore upper bounded by

1

n
√

2π

(
1 + 1

r

)r+ 1
2

(1 + r) ≤ 1

n
√

π

(
1 + 1

r

)r

(1 + r)

(4.13)

≤ e(1 + r)

n
√

π
,

where we have used that (1 + 1/r)r ≤ e for all r ≥ 1. Combining (4.5) and (4.13) brings finally

(
n

r

)
S1 ≤ e(1 + r)√

π

ν(ε)

n
, (4.14)

for all 1 ≤ r ≤ n − 1. Combining (4.6) and (4.14), we have therefore established that

(
n

r

)
S1 ≤ c(r)ν(ε)

n
, (4.15)

for all 0 ≤ r ≤ n − 1 where c(r) is as in (2.2). We now focus on bounding the second term in
(4.4). Toward this end, we choose b > 1 and write

S2 =
+∞∑
j=0

∑
a:pa<ε

1
{

ε

bj+1
≤ pa <

ε

bj

}
pr+1

a (1 − pa)
n−r (4.16)

≤
+∞∑
j=0

[
ν

(
ε

bj+1

)
− ν

(
ε

bj

)](
ε

bj

)r+1(
1 − ε

bj+1

)n−r

≤
+∞∑
j=0

ν

(
ε

bj+1

)(
ε

bj

)r+1(
1 − ε

bj+1

)n−r

= b

b − 1

+∞∑
j=0

(
ε

bj
− ε

bj+1

)
ν

(
ε

bj+1

)(
ε

bj

)r(
1 − ε

bj+1

)n−r
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≤ b1+r

b − 1

+∞∑
j=0

∫ ε

bj

ε

bj+1

ν

(
u

b

)
ur

(
1 − u

b

)n−r

du (4.17)

= b1+r

b − 1

∫ ε

0
ν

(
u

b

)
ur

(
1 − u

b

)n−r

du. (4.18)

For inequality (4.17) we have used the fact that the functions u �→ ur and u �→ ν(u)(1 − u)n−r

are respectively, non-decreasing and non-increasing so that, for all u ∈ [εb−j−1, εb−j ], we have

ν

(
ε

bj+1

)(
ε

bj

)r(
1 − ε

bj+1

)n−r

≤ brν

(
u

b

)
ur

(
1 − u

b

)n−r

.

Hence, equation (4.18) implies that

(
n

r

)
S2 ≤ b1+r

b − 1

(
n

r

)∫ ε

0
ν

(
u

b

)
ur

(
1 − u

b

)n−r

du,

which, along which equation (4.14) and the choice of b = 2, proves the first claim in Theorem 2.1.
We next turn to the inequality (2.4). Again, suppose that ε ∈ [0,1] is fixed and note that, for r = n,
(4.4) becomes

EMn,n =
∑

a:pa≥ε

pn+1
a +

∑
k:pa<ε

pn+1
a . (4.19)

Bounding each pa by p� in the first sum and by ε in the second, we obtain

EMn,n ≤ pn+1
� ν(ε) + εn

∑
a:pa≤ε

pa ≤ pn+1
� ν(ε) + εn, (4.20)

which completes the proof. �

Proof of Corollary 2.2. Let n ≥ 1 and 0 ≤ r ≤ n−1 be fixed. Theorem 2.1 implies, in particular,
that EMn,r ≤ ϕ+

n,r (1/n) + ψ+
n,r (1/n). Given the assumption on the counting function, we have

ϕ+
n,r (1/n) ≤ c(r)�(n)

n1−α
. (4.21)

To bound the second term, note that

ψ+
n,r (1/n) = 21+r

(
n

r

)
In where In =

∫ 1
n

0
ν

(
u

2

)
ur

(
1 − u

2

)n−r

du.

Since ν(ε) ≤ ε−α�(1/ε), we deduce that

In ≤ 2α

∫ 1
n

0
�

(
2

u

)
ur−α

(
1 − u

2

)n−r

du
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= 21+r

∫ 1
2n

0
�

(
1

u

)
ur−α(1 − u)n−r du (4.22)

≤ 21+r�(n)

∫ 1
2n

0
ur−α(1 − u)n−r du, (4.23)

where (4.22) follows from a change of variables and (4.23) uses the fact that � is non-increasing.
Then, since (1 − u) ≤ e−u for 0 ≤ u ≤ 1, we have

In ≤ 21+r�(n)

∫ 1
2n

0
ur−αe−(n−r)u du

= 21+r�(n)

(n − r)1+r−α

∫ n−r
2n

0
ur−αe−u du

≤ 21+r�(n)

(n − r)1+r−α

∫ 1
2

0
ur−αe−u du

≤ 21+r�(n)(1 + r)1+r−α

n1+r−α

∫ 1
2

0
ur−αe−u du (4.24)

= 21+r�(n)(1 + r)1+r−α

n1+r−α
γ

(
1 + r − α,

1

2

)
,

where, in (4.24), we used the fact that 1/(n − r) ≤ (1 + r)/n for r ≤ n − 1. Finally, using the
fact that

(
n
r

) ≤ nr/r!, we obtain

ψ+
n,r (1/n) ≤ 41+r

r! (1 + r)1+r−αγ

(
1 + r − α,

1

2

)
�(n)

n1−α
. (4.25)

Combining (4.21) and (4.25) gives the result. �

Proof of Corollary 2.3. The proof of Corollary 2.3 follows along the same lines as the proof
of Corollary 2.2 up to (4.22). Then, applying Cauchy–Schwarz’s inequality, we obtain for all
β ∈ (0,1) such that β > 2(α − r) − 1,

In ≤ 21+r

∫ 1
2n

0
�

(
1

u

)
ur−α(1 − u)n−r du

= 21+r

∫ 1
2n

0
u− β

2 �

(
1

u

)
ur−α+ β

2 (1 − u)n−r du

(4.26)

≤ 21+r

√∫ 1
2n

0
u−β�

(
1

u

)2

du

√∫ 1
2n

0
u2(r−α)+β(1 − u)2(n−r) du
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≤ 21+r�◦
β(n)

√∫ 1
2n

0
u2(r−α)+β(1 − u)2(n−r) du,

where (4.26) follows from (2.5) and a change of variables. Then, from similar arguments as in
the proof of Corollary 2.2, we deduce

ψ+
n,r (1/n) = 21+r

(
n

r

)
In

≤ 41+r

r! nr�◦
β(n)

√∫ 1
2n

0
u2(r−α)+β(1 − u)2(n−r) du

≤ 41+r

r! nr�◦
β(n)

√∫ 1
2n

0
u2(r−α)+βe−2u(n−r) du

= 41+r

r! nr�◦
β(n)

√∫ 1− r
n

0
u2(r−α)+βe−u du

(
1

2(n − r)

)r−α+ β+1
2

≤ c2(α,β, r)nα− 1+β
2 �◦

β(n),

which completes the proof. �

Proof of Theorem 2.2. The proof of Theorem 2.2 follows the same lines as the proof of Theo-
rem 2.1 up to (4.16), where we take b = 2. Then, we write

S2 =
+∞∑
j=0

+∞∑
a:pa<ε

1
{

ε

2j+1
≤ pa <

ε

2j

}
pr+1

a (1 − pa)
n−r

≤
+∞∑
j=0

[
ν

(
ε

2j+1

)
− ν

(
ε

2j

)](
ε

2j

)r+1(
1 − ε

2j+1

)n−r

=
+∞∑
j=0

[
ν( ε

2j+1 )

ν( ε
2j )

− 1

]
ν

(
ε

2j

)(
ε

2j

)r+1(
1 − ε

2j+1

)n−r

≤
+∞∑
j=0

[
κ+

(
ε

2j

)
− 1

]
ν

(
ε

2j

)(
ε

2j

)r+1(
1 − ε

2j+1

)n−r

= 2
+∞∑
j=0

(
ε

2j
− ε

2j+1

)[
κ+

(
ε

2j

)
− 1

]
ν

(
ε

2j

)(
ε

2j

)r(
1 − ε

2j+1

)n−r

≤ 21+r

+∞∑
j=0

∫ ε

2j

ε

2j+1

(
κ+(2u) − 1

)
ν(u)ur

(
1 − u

2

)n−r

du (4.27)
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= 21+r

∫ ε

0

(
κ+(2u) − 1

)
ν(u)ur

(
1 − u

2

)n−r

du, (4.28)

where, in (4.27), we use the monotonicity of both u �→ (κ+(u) − 1)ur and u �→ ν(u)(1 − u)n−r .
This completes the proof. �

Proof of Corollary 2.4. Using the same arguments as in the beginning of the proof of Corol-
lary 2.2, but θ+

n,r (1/n) in place of ψ+
n,r (1/n), we obtain

EMn,r ≤ c(r)�(n)

n1−α
+ 21+r

(
n

r

)
Jn, (4.29)

where

Jn =
∫ 1

n

0

(
κ+(2u) − 1

)
ν(u)ur

(
1 − u

2

)n−r

du.

Note that

Jn ≤
∫ 1

n

0

(
κ+(2u) − 1

)
�

(
1

u

)
ur−α

(
1 − u

2

)n−r

du.

Given assumption (2.10), and the fact that κ+ is non-decreasing, we deduce that

Jn ≤ (
κ+(2/n) − 1

)∫ 1
n

0
�

(
1

u

)
ur−α

(
1 − u

2

)n−r

du

(4.30)

≤ 2
(
κ0+ − 1

)∫ 1
n

0
�

(
1

u

)
ur−α

(
1 − u

2

)n−r

du.

Proceeding now as in the proof of Corollary 2.3 and applying Cauchy–Schwarz’s inequality in
(4.30) leads, for all β > 2(α − r) − 1, to

Jn ≤ 2
(
κ0+ − 1

)∫ 1
n

0
u− β

2 �

(
1

u

)
ur−α+ β

2

(
1 − u

2

)n−r

du

≤ 2
(
κ0+ − 1

)√∫ 1
n

0
u−β�

(
1

u

)2

du

√∫ 1
n

0
u2(r−α)+β

(
1 − u

2

)2(n−r)

du (4.31)

= 2
(
κ0+ − 1

)
�◦
β

(
n

2

)√∫ 1
n

0
u2(r−α)+β

(
1 − u

2

)2(n−r)

du,

where (4.31) follows from (2.5) and a change of variables. Using, as in the proofs of Corollary 2.2
and Corollary 2.3, the fact that (1 − u) ≤ e−u for 0 ≤ u ≤ 1 and the observation that 1/(n − r) ≤
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(1 + r)/n for r ≤ n − 1, the reader may easily check that the square root term in (4.31) is upper
bounded by

(
1 + r

n

) 1+β
2 +r−α√

γ
(
1 + β + 2(r − α),1

)
.

Finally, combining this last observation with (4.31), and the fact that
(
n
r

) ≤ nr/r!, we deduce that
the second term on the right-hand side of (4.29) is at most

22+r

(
n

r

)(
κ0+ − 1

)
�◦
β

(
n

2

)(
1 + r

n

) 1+β
2 +r−α√

γ
(
1 + β + 2(r − α),1

)

≤ 22+r

r!
(
κ0+ − 1

)
�◦
β

(
n

2

)
nα− 1+β

2 (1 + r)
1+β

2 +r−α
√

γ
(
1 + β + 2(r − α),1

)

= (
κ0+ − 1

)
c2(α,β, r)

(
n

2

)α− 1+β
2

�◦
β

(
n

2

)
,

where c2(α,β, r) is as in Corollary 2.3. This completes the proof. �

Proof of Theorem 2.3. Fix n ≥ 1, 0 ≤ r ≤ n − 1 and ε ∈ (0,1/2]. As in the proof of Theo-
rem 2.1, we write

EMn,r =
(

n

r

) ∑
a:pa≥ε

pr+1
a (1 − pa)

n−r +
(

n

r

) ∑
a:pa<ε

pr+1
a (1 − pa)

n−r

=:
(

n

r

)
(S1 + S2).

From the definition of ν, it is clear that

S1 ≥ ν(ε)εr+1(1 − p�)
n−r .

To bound S2, we write

S2 =
∞∑

j=0

∑
a:pa<ε

1
{

ε

2j+1
≤ pa <

ε

2j

}
pr+1

a (1 − pa)
n−r

≥
∞∑

j=0

[
ν

(
ε

2j+1

)
− ν

(
ε

2j

)](
ε

2j+1

)r+1(
1 − ε

2j

)n−r

=
∞∑

j=0

(
ε

2j
− ε

2j+1

)[
1 − ν( ε

2j )

ν( ε

2j+1 )

]
ν

(
ε

2j+1

)(
ε

2j+1

)r(
1 − ε

2j

)n−r
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≥
∞∑

j=0

(
ε

2j
− ε

2j+1

)[
1 − κ−

(
ε

2j

)]
ν

(
ε

2j+1

)(
ε

2j+1

)r(
1 − ε

2j

)n−r

≥ 2−r
∞∑

j=0

∫ ε

2j

ε

2j+1

(
1 − κ−(2u)

)
ν(u)ur(1 − 2u)n−r du (4.32)

= 2−r

∫ ε

0

(
1 − κ−(2u)

)
ν(u)ur(1 − 2u)n−r du

where in (4.32), we used the monotonicity of both u �→ ur and u �→ (1 − κ−(2u))ν(u)(1 −
2u)n−r . This completes the proof. �

Proof of Corollary 2.5. Fix n ≥ n0. The bound in Corollary 2.5 is obtained by taking ε = n−1

in Theorem 2.3. First, using the assumption on ν, note that

ϕ−
n,r (1/n) ≥

(
n
r

)
nr

(1 − p�)
n �(n)

n1−α

≥ 1

r!
(

1 − r

n

)n

(1 − p�)
n �(n)

n1−α
(4.33)

≥ e−r

2r! (1 − p�)
n �(n)

n1−α
, (4.34)

where (4.33) is due to the fact that(
n
r

)
nr

≥ 1

r!
(

1 − r

n

)r

≥ 1

r!
(

1 − r

n

)n

, (4.35)

and (4.34) follows from condition (b). Next, denote

Jn =
∫ 1

n

0

(
1 − κ−(2u)

)
ν(u)ur(1 − 2u)n−r du.

Using condition (a) and the assumption on ν, it may be easily checked that

Jn ≥ (1 − κ0−)�(n)

2

∫ 1
n

0
ur−α(1 − 2u)n−r du

= (1 − κ0−)�(n)

2(2n)1+r−α

∫ 2

0
ur−α

(
1 − u

n

)n−r

du

≥ (1 − κ0−)�(n)

2(2n)1+r−α

∫ 2

0
ur−α

(
1 − u

n

)n

du

≥ (1 − κ0−)�(n)

4(2n)1+r−α
γ (1 + r − α,2),

(4.36)
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where (4.36) follows from condition (c). By rearranging the terms and using (4.35) once again
along with condition (b), we finally deduce that

θ−
n,r (1/n) = 2−r

(
n

r

)
Jn ≥ e−r

2r!
(
1 − κ0−

)γ (1 + r − α,2)

21−α41+r

�(n)

n1−α
. (4.37)

The result follows from (4.34) and (4.37). �

Proof of Corollary 3.2. Let us denote z = ζ(1/α) for brevity. First, it may be easily verified
that the counting function ν of the distribution considered satisfies, for all 0 < ε < 1, ν(ε) =
�(zε)−α�, where �·� is the floor function. As a result, εαν(ε) → z−α as ε → 0, and thus ν ∈ rvα

0 .
From here, Proposition 2.2 implies that κ0− = 2−α . Noticing that p� = z−1 and that, for ε ≤
(21/αz)−1, we have ν(ε) ≥ (zε)−α −1 ≥ (zε)−α/2 (i.e. for x ≥ 21/αz we can take �(x) = z−α/2),
Corollary 2.5 implies that, provided n ≥ max{2,21/αz} and the conditions

κ−
(

2

n

)
≤ 2α + 1

2α+1
and

∫ 2

0
u−α

(
1 − u

n

)n

du ≥ γ (1 − α,2)

2

are satisfied (since r = 0, condition (b) in Corollary 2.5 automatically holds), we obtain

EMn,0 ≥ 1

4

[(
1 − z−1)n + (1 − 2−α)γ (1 − α,2)

21−α4

]
z−α

n1−α

= 1

4

[(
1 − z−1)n + (2α − 1)γ (1 − α,2)

8

]
z−α

n1−α

≥ (2α − 1)γ (1 − α,2)

32

z−α

n1−α
,

where the last inequality follows from the fact that z > 1. Now note that ν(ε) = �(zε)−α� ≤
(zε)−α . Thus applying Corollary 2.2 with � constant and equal to z−α gives an upper bound on
EMn,0. Combining the upper and lower bounds with the concentration bound in (3.1) yields the
desired result. �

Proof of Theorem 3.1. Fix x ∈ E, t > 0 and 0 < � ≤ δ/2. Then, observe that,

EM
(δ)
n,0 =

∫
E

P
(
ξ (δ)
n (u) = 0

)
P(du)

=
∫

E

(
1 − P(Bu,δ)

)n
P (du) (4.38)

≤ τx(t) +
∫

Bx,t

(
1 − P(Bu,δ)

)n
P (du). (4.39)

Here, (4.38) follows from the fact that, for all u ∈ E, ξ
(δ)
n (u) has a Binomial distribution with

parameters n and P(Bu,δ), and (4.39) follows from the fact that (1 − P(Bu,δ))
n ≤ 1. Next, let
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N = N(Bx,t , �) and let B1, . . . ,BN ⊂ E be balls with radius � satisfying Bx,t ⊂ B1 ∪ · · · ∪ BN .
Then, we obtain

∫
Bx,t

(
1 − P(Bu,δ)

)n
P (du) ≤

N∑
i=1

∫
Bi

(
1 − P(Bu,δ)

)n
P (du)

(4.40)

≤
N∑

i=1

P(Bi)
(
1 − P(Bi)

)n
,

where (4.40) follows from the fact that, since � ≤ δ/2, if u ∈ Bi then necessarily Bi ⊂ Bu,δ . Now
exactly as in (4.6), one may deduce that

N∑
i=1

P(Bi)
(
1 − P(Bi)

)n ≤ N sup
0≤p≤1

p(1 − p)n

(4.41)

≤ N

ne
.

The result follows by combining (4.39), (4.40), (4.41) and taking the infimum over x ∈ E, t > 0
and � ≤ δ/2. �

Proof of Theorem 3.2. First, note that

EM(δ)
r (t) =

∫
E

P
(
ξ (δ)
nt

(x) = r
)
P(dx). (4.42)

For all x ∈ E, the variable ξ
(δ)
nt

(x) follows a Poisson distribution with parameter �tP (Bx,δ).
Combining this with (3.7) gives

EM(δ)
r (t) = �r

t

r!
∫

E

P (Bx,δ)
re−�tP (Bx,δ)P (dx)

= �r
t

r!
∫ 1

0
u1+re−�tuνδ(du) (4.43)

= �r
t

r! L
(δ)
1+r (�t ),

where L
(δ)
1+r (·) stands for the Laplace transform of the measure ν1+r

δ (du) = u1+rνδ(du). Now
according to equality (A.1) of Proposition A.1 from Appendix A, we know that for all 0 < ε < 1,

ν1+r
δ

([0, ε]) = −ε1+rνδ(ε) + (1 + r)

∫ ε

0
urνδ(u)du. (4.44)

The assumption on the function νδ implies that

ε1+rνδ(ε) = ε1+r−α�(1/ε) (4.45)
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and ∫ ε

0
urνδ(u)du =

∫ ε

0
ur−α�(1/u)du ∼ ε1+r−α�(1/ε)

1 + r − α
, (4.46)

as ε → 0, where the equivalent follows from Karamata’s theorem (Karamata [22]). Combining
(4.44), (4.45) and (4.46) leads to

ν1+r
δ

([0, ε]) ∼ α

1 + r − α
ε1+r−α�(1/ε), (4.47)

as ε → 0. Finally, applying the Tauberian theorem (see, e.g., Theorem 2, Section 5, Chapter 13
in Feller [12]) and using the fact that 	(2 + r − α) = (1 + r − α)	(1 + r − α), we deduce that

L
(δ)
1+r (t) ∼ α	(1 + r − α)t−(1+r−α)�(t),

as t → +∞. From here, the result follows from the fact that �t → +∞ as t → +∞ and identity
(4.43). �

Appendix A: Basic properties of ν

The counting function ν, defined in (1.4), is non-increasing by definition. As ε tends to 0, ν(ε)

increases towards |S|, the cardinality of the support of P , which may, of course, be infinite. Since
the masses pa sum to 1, it may be easily observed that, for all 0 < ε ≤ 1,

ν(ε) ≤ ε−1.

Next, we recall general integration by parts formulas from which we will deduce additional
properties of ν.

Proposition A.1. Let μ be any positive measure on [0,1]. Then, for all τ ≥ 1 and all 0 < ε < 1,
we have the two identities∫

[0,ε]
xτμ(dx) = −ετμ

([ε,1]) + τ

∫
[0,ε]

xτ−1μ
([x,1])dx, (A.1)

∫
[ε,1]

xτμ(dx) = +ετμ
([ε,1]) + τ

∫
[ε,1]

xτ−1μ
([x,1])dx. (A.2)

The proof is a standard application of Fubini’s theorem and is thus omitted. Note that, in the
above, we did not assume finiteness of the integrals. When an integral on one side is infinite, the
above should be interpreted to mean that the integral on the other side is infinite as well. We now
reproduce an argument presented at the end of Section 3 in Gnedin, Hansen and Pitman [14].
Letting ν be the counting measure defined in (1.3), it may be easily seen that, for all τ ≥ 1 and
all 0 < ε < 1, by (A.2) we have

ετ ν(ε) + τ

∫
[ε,1]

xτ−1ν(x)dx =
∫

[ε,1]
xτ ν(dx) =

∑
a:pa≥ε

pτ
a ≤ 1.
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Taking the limit as ε → 0 and applying dominated convergence gives

lim
ε→0

(
ετ ν(ε) + τ

∫
[ε,1]

xτ−1ν(x)dx

)
= lim

ε→0

∑
a:pa≥ε

pτ
a =

∑
a

pτ
a ≤ 1, (A.3)

with equality holding if and only if τ = 1. Monotonicity guarantees the convergence of the inte-
gral in (A.3), which, together with the result of (A.3), implies that ετ ν(ε) has a limit as ε → 0.
Finally, if this limit was c > 0, this would contradict the convergence of the integral in (A.3)
since we would have xτ−1ν(x) ∼ c/x as x → 0, which, in turn, would imply the integrability of
1/x at 0. Taking τ = 1 gives the following.

Corollary A.1. ∫ 1

0
ν(x)dx = 1 and lim

ε→0
εν(ε) = 0.

Appendix B: On the accrual function

In this appendix, we briefly discuss some properties of the accrual function F , which is defined
for all 0 ≤ ε ≤ 1 by

F(ε) =
∫

[0,ε]
xν(dx),

and of the bound (1.9) provided by Ohannessian and Dahleh [28]. First, note that (A.1) estab-
lishes that the counting and accrual functions are related through the formula

F(ε) = −εν(ε) +
∫

[0,ε]
ν(x)dx, (B.1)

for all 0 < ε < 1. The next result shows that a straight-forward application of (1.9) provides, at
least in the pure power setting, rate optimal bounds up to a log term. Recall that, in the regularly
varying setting, rate optimal bounds are ones that, asymptotically, behave as in (1.7).

Proposition B.1. Suppose that, for some constants 0 < C− < C+ < +∞ and some α ∈ (0,1),
the counting function ν satisfies C−ε−α ≤ ν(ε) ≤ C+ε−α , for all 0 < ε < 1. Then, for all n ≥ 1,
the expected missing mass satisfies(

1 − 1

n

)n
C−

α

n1−α
≤ EMn,0 ≤ 1 + C+

α (logn)1−α

n1−α
,

where C−
α = max{0,C−/(1 − α) − C+} and C+

α = (1 − α)1−α{C+/(1 − α) − C−}.

The lower bound follows easily from (B.1), the bounds on ν, and the choice ε = 1/n in the
lower bound of (1.9). Similarly, the upper bound follows easily from (B.1), the fact that (1 −
ε)n ≤ e−nε , the bounds on ν, and the choice ε = (1 − α)(logn)/n in the upper bound of (1.9).
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Supposing that the constant C−
α > 0, it follows that, since (1 − n−1)n ≥ e−1/2 for large enough

n, the lower bound in Proposition B.1 is rate optimal.

Appendix C: On lower bounds

This appendix gives an interesting and known result, versions of which can be found in for
example, Lemma 4.1 of Almudevar, Bhattacharya and Sastri [1] or Lemma 1 of Zhang [37].

Theorem C.1. Suppose that |S| = ∞. Then there exists a sequence (kn) of positive integers,
with kn → ∞ as n → ∞, such that, for any r ≥ 0,

lim inf
n→∞

kr+1
n(
n
r

) EMn,r ≥ e−1

and

lim inf
n→∞

kr+1
n(
kn

r

) EMkn,r ≥ e−1.

Proof. We only prove the first inequality as the proof of the second is similar. Let an be an
element of A with n ≤ 1/pan and let kn = �1/pan�, where �·� denotes the floor function. Note
that n ≤ kn, (1 − pan) ≤ knpan ≤ 1, and pan → 0 as n → ∞. For n > r we therefore have

kr+1
n(
n
r

) EMn,r ≥ kr+1
n pr+1

an
(1 − pan)

n−r

≥ (1 − pan)
n+1

≥ (1 − pan)

(
1 − 1

kn

)n

≥ (1 − pan)

(
1 − 1

kn

)kn

.

The result follows by observing that, for a fixed r , the term on the right-hand side of the last
inequality tends to e−1 as n → ∞. �
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