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A truncated sequential procedure is constructed for estimating the drift coefficient at a given state point
based on discrete data of ergodic diffusion process. A nonasymptotic upper bound is obtained for a point-
wise absolute error risk. The optimal convergence rate and a sharp constant in the bounds are found for the
asymptotic pointwise minimax risk. As a consequence, the efficiency is obtained of the proposed sequential
procedure.
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1. Introduction

In this paper, we consider the following diffusion model:

dyt = S(yt )dt + σ(yt )dWt, 0 ≤ t ≤ T , (1.1)

where (Wt )t≥0 is a scalar standard Wiener process, S(·) and σ(·) are unknown functions. This
model appears in a number of applied problems of stochastic control, filtering, spectral analysis,
identification of dynamic system, financial mathematics and others (see [1,3,23,27,28] and others
for details).

The problem is to estimate the function S(·) at a point x0 basing on the discrete time observa-
tions

(ytj )1≤j≤N, tj = jδ, (1.2)

where N = [T/δ] and the frequency δ = δT ∈ (0,1) is a function of T that will be specified later.
The estimation problem of the function S was studied in a number of papers in the case of

complete observations, that is when a continuous trajectory (yt )0≤t≤T was observed. In the para-
metric case, this problem was considered apparently for the first time in the paper [2] for diffu-
sion model of the axis of the equator precession. In that paper, a nonasymptotic distribution of
the maximum likelihood estimator was found for a special Ornstein–Uhlenbeck process.
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It should be noted that investigating nonasymptotic properties of parametric estimators in the
models like to (1.1) comes to the analysis of nonlinear functionals of observations. At the most
cases, this analysis is unproductive in nonasymptotic setting. In order to overcome the technique
difficulties, the sequential analysis methods were used in [28] and [29] for estimating a scalar
parameter. In [25], these methods were extended to estimating a multi-dimensional parameter
as well. Moreover, in [26] truncated sequential procedures were developed that economizes the
observation time.

In [7] and [8], a sequential approach was proposed for the pointwise nonparametric estimation
in the ergodic models (1.1). Later in [10], the efficiency was studied of the proposed sequential
procedures.

A sufficiently complete survey one can find in [27] on the nonparametric estimation in the
ergodic model (1.1) when non sequential approaches are used.

In the cited papers, estimation problems were studied based on complete observations
(yt )0≤t≤T . In practice, usually one has at disposal discrete time observations even for contin-
uous time models.

A natural question arises about proprieties and the behavior of estimates based on discrete time
observations for such models. These problems were studied for several models. We cite some of
them.

In [24], asymptotically normal estimators are constructed for both parameters (θ, σ ), for a
parametric ergodic one-dimensional diffusion model observed at discrete times iδn,0 ≤ i ≤ n,
with drift b(x, θ) and diffusion coefficient a(x,σ ), when the observation frequency δn → 0 and
nδn → ∞. Estimating is based on the property of discrete observations to be locally Gaus-
sian. The author claims that asymptotic efficiency can be obtained under additional condition
nδ

p
n → 0, where p > 1.
Parametric estimations were studied in the papers [17,30] and [21] for drift and diffusion

coefficients in multidimensional diffusion processes when the observation frequency δn is as
follows: δn → 0, nδn → ∞. In [17] the LAN property is proved in the ergodic case. The proof
is based on the transformation of the log-likelihood ratio by the Malliavin calculus. Asymptotic
normality is studied in [30] for the joint distribution of the maximum likelihood estimator of
parameters in drift and diffusion coefficients. In [21] the tightness of estimators is proved without
ergodicity or even recurrence assumptions.

Nonparametric estimation setting for models of kind (1.1) was considered firstly for estimating
the unknown diffusion coefficient σ 2(·) based on discrete time observations on a fixed interval
[0, T ], when the observation frequency goes to zero (see, e.g., [6,15,19,20] and the references
therein).

Later, in [18] kernel estimates of drift and diffusion coefficients were studied for reflecting
ergodic processes (1.1) taking the values into the interval [0,1] in the case of fixed observation
frequency; the asymptotics are taken as the sample size goes to infinity. Minimax optimal conver-
gence rates are found for estimators of the drift and the diffusion coefficients. Upper and lower
bounds for L2-risk are given as well.

So far as concerning the estimation in ergodic case, it should be noted that a sequential proce-
dure was proposed in [19] for nonparametric estimating the drift coefficient of the process (1.1)
in the integral metric. Some upper and lower asymptotic bounds were found for the Lp-risks.
Later, in the paper [5] a nonasymptotic oracle inequality was proved for the drift coefficient es-
timation problem in a special empiric quadratic risk based on discrete time observations. In the
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asymptotic setting, when the observation frequency goes to zero and the length of the observation
time interval tends to infinity, the constructed estimators reach the minimax optimal convergence
rates.

This paper deals with the drift coefficient efficient nonparametric estimation at a given state
point based on discrete time observations (1.2) in the absolute error risk. The unknown diffusion
coefficient is a nuisance parameter. We find the minimax optimal convergence rate and we study
the lower bound normalized by this convergence rate in the case when the frequency δT → 0 and
T δT → 0 as T → ∞.

Our approach is based on the sequential analysis developed in the papers [7,8], and [10] for
the nonparametric estimation. This approach makes possible to replace the denominator by a
constant in a sequential Nadaraya–Watson estimator.

Let us recall that in the case of complete observations (i.e., when a whole trajectory is ob-
served) the sequential estimate efficiency was proved by making use of a uniform concentration
inequality (see [11]), besides an indicator kernel estimator and a weak Hölder space of functions
S were used.

As it turns out later in [14], the efficient kernel estimate in the above given sense provides to
construct a selection model adaptive procedure that appears efficient in the quadratic L2-metric.

Therefore, in order to realize this program (i.e., from efficient pointwise estimators to an effi-
cient L2-estimator) in the case of discrete time observations, one needs to obtain a suitable con-
centration inequality, that is done in [12]. It should be noted that in order to obtain nonasymptotic
concentration inequality we make use of nonasymptotic bounds uniform over functions S and σ

for the convergence rate in the ergodic theorem for the process (1.1). The latter result is proved
in [13] and it is based on a new approach using Lyapounov’s functions and the coupling method.

Further in this paper, we make use of the concentration inequality in order to find the explicit
constant in the upper bound for weak Hölder’s risk normalized by the optimal convergence rate
and we prove that this upper bound is best over all possible estimators. It means the procedure is
efficient.

The paper is organized as follows. In Section 2, we describe the functional classes. In Section 3
the sequential procedure is constructed. In Section 4, we obtain a nonasymptotic upper bound
for the absolute error pointwise risk of the sequential procedure. In Section 5, we show that the
proposed procedure is asymptotically efficient for the pointwise risk. All proofs are given in
Section 6. In the Appendix, we give all necessary technical results.

2. Functional class

We consider the pointwise estimation problem for the function S(·) at a fixed point x0 ∈ R for
the model (1.1) with unknown diffusion coefficient σ . It is clear that to obtain a good estimate
for the function S(·) at the point x0 it is necessary to impose some conditions on the function
ϑ = (S, σ ) which provide that the observed process (yt )0≤t≤T returns to any vicinity of the point
x0 infinitely many times.

In this section, we describe a weak Hölder functional class which guarantees the ergodicity
property for this model. First, for some x∗ ≥ |x0| + 1, M > 0 and L > 1 we denote by �L,M the
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class of functions S from C1(R) such that

sup
|x|≤x∗

(∣∣S(x)
∣∣ + ∣∣Ṡ(x)

∣∣) ≤ M

and

−L ≤ inf|x|≥x∗
Ṡ(x) ≤ sup

|x|≥x∗
Ṡ(x) ≤ −L−1.

Moreover, for some fixed parameters 0 < σmin ≤ σmax < ∞ we denote by V the class of the
functions σ from C2(R) such that

inf
x∈R

∣∣σ(x)
∣∣ ≥ σmin and sup

x∈R
max

(∣∣σ(x)
∣∣, ∣∣σ̇ (x)

∣∣, ∣∣σ̈ (x)
∣∣) ≤ σmax. (2.1)

In this paper, we make use of the weak Hölder functions introduced in [9].

Definition 2.1. We say that a function S satisfies the weak Hölder condition at the point x0 ∈ R

with the parameters h, ε > 0 and exponent β = 1 + α, α ∈ (0,1), if S ∈ C1(R) and its derivative
satisfies the following inequality∣∣∣∣∫ 1

−1
z

∫ 1

0

(
Ṡ(x0 + uzh) − Ṡ(x0)

)
dudz

∣∣∣∣ ≤ εhα. (2.2)

We will denote the set of all such functions by Hw
x0

(ε,β,h).

Note that ∫ 1

−1
z

∫ 1

0

(
Ṡ(x0 + uzh) − Ṡ(x0)

)
dudz = 
x0,h(S), (2.3)

where 
x0,h(S) = ∫ 1
−1(S(x0 + hz) − S(x0))dz. Therefore, the condition (2.2) for the functions

from Hw
x0

(ε,β,h) is equivalent to the following one

sup
S∈Hw

x0
(ε,β,h)

∣∣
x0,h(S)
∣∣ ≤ εhβ. (2.4)

Let us denote by Hw
x0,M

(ε,β,h) the set of all functions D from Hw
x0

(ε,β,h) such that

supx∈R(|D(x)| + |Ḋ(x)|) ≤ M/2 and D(x) = 0 for |x| ≥ x∗.
Let S0 be a function from �L,M/2 such that

lim
h→0

h−β
x0,h(S0) = 0. (2.5)

We define a vicinity UM(x0, β) of the function S0 as follows

UM(x0, β) = S0 +Hw
x0,M

(ε,β,h), (2.6)
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where h = T −1/(2β+1) and

ε = εT = 1

(lnT )1+γ
(2.7)

for some 0 < γ < 1. Obviously that UM(x0, β) ⊂ �L,M . Finally, we set

�β = UM(x0, β) × V . (2.8)

It should be noted that, for any ϑ ∈ �β , there exists an invariant density which is defined as

qϑ(x) =
(∫

R

σ−2(z)eS̃(z) dz

)−1

σ−2(x)eS̃(x), (2.9)

where S̃(x) = 2
∫ x

0 σ−2(v)S(v)dv (see, e.g., [16], Chapter 4.18, Theorem 2). It is easy to see
that this density is uniformly bounded in the class (2.8), that is,

q∗ = sup
x∈R

sup
ϑ∈�β

qϑ(x) < +∞ (2.10)

and bounded away from zero on the interval [x0 − 1, x0 + 1], that is,

q∗ = inf
x0−1≤x≤x0+1

inf
ϑ∈�β

qϑ(x) > 0. (2.11)

For any R→ R function f from L1(R), we set

mϑ(f ) =
∫
R

f (x)qϑ(x)dx. (2.12)

Assume that the frequency δ in the observations (1.2) is of the following asymptotic form (as
T → ∞)

δ = δT = O

(
εT

T

)
, (2.13)

where the function εT is introduced in (2.7).
Now, for any estimate (i.e., any (yt )0≤t≤T measurable function) S̃T (x0) of S(x0), we define

the pointwise risk as follows

Rϑ(S̃T ) = Eϑ

∣∣S̃T (x0) − S(x0)
∣∣. (2.14)

Remark 2.1. It should be noted that in the definition of the weak Hölder class Hw
x0

(ε,β,h)

in (2.2) the weak Hölder norm ε is chosen such that it goes to zero as T → ∞ (see (2.7)) in
contrast with the initial definition of this class given in [10], where the norm was fixed. But
there an additional limit passage with ε → 0 was done in the theorem about upper bound (see,
Theorem 5.2 in [10]). Therefore, in this paper we choose ε → 0 in the definition of the weak
Hölder class instead of the additional limit passage with ε → 0 in the theorem on the upper
bound. Technically it is nearly the same, but the sense of the upper bound is clearer without the
additional limit with ε → 0.
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3. Sequential procedure

In order to construct an efficient pointwise estimator of S, we begin with estimating the ergodic
density q = qϑ at the point x0 from first N0 observations. We choose

N0 = Nγ0 and 2/3 < γ0 < 1. (3.1)

We will make use of the following kernel estimator

q̂T (x0) = 1

2(N0 − 1)ς

N0−1∑
j=0

Q

(
ytj − x0

ς

)
, (3.2)

where Q(y) = 1(|y|≤1) and ς = ςT is a function of T such that

ςT = o
(
T −γ0/2) as T → ∞.

For T ≥ 3, we set

q̃T (x0) =

⎧⎪⎨⎪⎩
(υT )1/2, if q̂T (x0) < (υT )1/2;

q̂T (x0), if (υT )1/2 ≤ q̂T (x0) ≤ (υT )−1/2;

(υT )−1/2, if q̂T (x0) > (υT )−1/2,

(3.3)

where

υT = 1

(lnT )a0
and a0 =

√
γ + 1 − 1

10
.

The properties of the estimates q̂T (x0) and q̃T (x0) are studied in the Appendix.
Let us define the following stopping time

� = �T = inf

{
j ≥ N0:

j∑
i=N0

φi ≥ HT

}
, (3.4)

where HT is a threshold, φi = χh,x0(yti−1)1{i≤N} + 1{i>N}, χh,x0(y) = Q((y − x0)/h) and h is a
positive bandwidth. We put � = ∞ if the set {·} is empty. Obviously, that in the our case � < ∞
a.s. since

∑
i≥N0

φi = +∞ a.s.
Now we have to choose the threshold HT . Note that in order to construct an efficient estima-

tor one should use all, that is, N observations. Therefore, the threshold HT should provide the
asymptotic relations �T ≈ N and

N∑
i=N0

φi =
N∑

i=N0

χh,x0(yti−1) as T → ∞.
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In order to obtain these relations, note that, due to the ergodic theorem,

N∑
i=N0

χh,x0(yti−1) ≈ 2h(N − N0)qϑ(x0).

Hence, replacing in the right-hand side term the ergodic density with its corrected estimate yields
the following definition of the threshold

H = HT = h(N − N0)
(
2q̃T (x0) − υT

)
. (3.5)

Note that in [7] it has been shown that the such form of the threshold HT provides the optimal
convergence rate. It is clear that

� ≤ N + HT < N + h(N − N0)/
√

υT ,

that is, the stopping time � is bounded. Now on the set �T = {� ≤ N} we define the correction
coefficient κ = κT as

κT = HT − ∑�−1
j=N0

χh,x0(ytj−1)

χh,x0(yt�−1)
,

that is, on the set �T

�−1∑
j=N0

χh,x0(ytj−1) +κχh,x0(yt�−1) = HT .

Moreover, on the �c
T we set κT = 1. Using this definition, we introduce the weight sequence

κ̃j = 1{j<� } +κ1{j=� }, j ≥ 1. (3.6)

One can check directly that, for any j ≥ 1, the coefficients κ̃j are Ftj−1 measurable, where
Ftj = σ(ytk ,0 ≤ k ≤ j). Now we define the sequential estimator for S(x0) as

S∗
h,T (x0) = 1

δHT

(
N∑

j=N0

κ̃jχh,x0(ytj−1)�ytj

)
1�T

. (3.7)

In the next section, we study nonasymptotic properties of this procedure.

Remark 3.1. Note that the correction coefficient of type (3.6) was used first in the paper [4] in
order to construct an unbiased estimator of a scalar parameter in autoregressive processes AR(1).
Here, we make use of the same idea for a nonparametric procedure.

Remark 3.2. In fact, our procedure uses only the observations belonging to the interval [x0 −
h,x0 + h], that results in the sample size asymptotically equals to 2Nhq̂T (x0). This is related
with the choice of the estimator kernel that is an indicator function. It is easy to verify (see [8])
that this kernel minimizes the variance of stochastic term in the kernel estimator. Ultimately, the
last result provides efficiency of the procedure.
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4. Nonasymptotic estimation

In this section, an upper bound for the absolute error risk will be given in the case, when S ∈
�L,M,σ is differentiable and σmin ≤ |σ(x)| ≤ σmax for any x. We will denote this case as ϑ ∈
�L,M × [σmin, σmax].

As we will see later in studying the estimator (3.7), the approximation term plays the crucial
role. In the our case, this term is of the following form

ϒ1,T = 1

δHT

N∑
j=N0

κ̃jχh,x0(ytj−1)�j , (4.1)

where �j = ∫ tj
tj−1

(S(yu) − S(ytj−1))du. One can show the following result.

Proposition 4.1. For any T ≥ 3,

sup
ϑ∈�L,M×[0,σmax]

Eϑϒ2
1,T ≤ L̃2L1δ, (4.2)

where L̃ = max(L,M) and L1 = 2(σ 2
max + 2δ(M2 + L3D∗ + L2x2∗)).

Further, we set

ϒ2,T = 1

δHT

N∑
j=N0

κ̃jχh,x0(ytj−1)�
∗
j , (4.3)

where �∗
j = ∫ tj

tj−1
(σ (yu) − σ(ytj−1))dWu.

Proposition 4.2. For any T ≥ 3 for which 0 < δ ≤ 1, one has

sup
ϑ∈�L,M×[0,σmax]

Eϑ(ϒ2,T )2 ≤ σ 2
maxL1

h(N − N0)
√

υT

. (4.4)

Proofs of Propositions 4.1 and 4.2 are given in the Appendix.
Now we introduce the approximative term, that is,

BT = 1

HT

N∑
j=N0

κ̃j fh(ytj−1) (4.5)

with fh(y) = χh,x0(y)(S(y) − S(x0)). Taking into account this formula, we can represent the
error of estimator (3.7) on the set �T as

S∗
h,T (x0) − S(x0) = ϒ1,T + BT + MT , (4.6)
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where

MT = 1

δHT

N∑
j=N0

κ̃jχh,x0(ytj−1)ηj

with ηj = ∫ tj
tj−1

σ(yu)dWu. Obviously, for any function S from �L,M , the term BT can be
bounded as

|BT | ≤ h max|x−x0|≤h

∣∣Ṡ(x)
∣∣ ≤ Mh. (4.7)

Proposition 4.3. For any T ≥ 3, one has

sup
ϑ∈�L,M×[0,σmax]

EϑM2
T ≤ σ 2

max

δh(N − N0)
√

υT

. (4.8)

Hence, we obtain the following upper bound.

Theorem 4.4. For any h > 0 and T ≥ 3 for which 0 < δ ≤ 1, one has

sup
ϑ∈�L,M×[σmin,σmax]

Eϑ

∣∣S∗
h,T (x0) − S(x0)

∣∣ ≤ U∗(δ, h,T ) + M�∗
T , (4.9)

where

U∗(δ, h,T ) = L̃
√

δL1 + Mh + σmax√
δh(N − N0)υ

1/4
T

and

�∗
T = sup

ϑ∈�L,M×[σmin,σmax]
Pϑ

(
�c

T

)
.

Let us study now the last term in (4.9).

Proposition 4.5. Assume that the parameter δ is of the asymptotic form (2.13) and h ≥ T −1/2.
Then, for any a > 0,

lim
T →∞T a�∗

T = 0. (4.10)

Proof of this proposition is given in the Appendix.

Remark 4.1. It should be noted that the main destination of the bound (4.9) is to obtain a sharp
oracle inequality for a model selection procedure for the process (1.1) observed at discrete times.
Recall (see, [14]), that an efficient model selection procedure for diffusion processes is based on
estimators admitting on some set �T a nonasymptotic representation of kind (4.6) satisfying the
conditions (4.7) and (4.8) at estimation state points (xj ). In addition, the condition (4.10) must
hold true for the set �T . Moreover, the stochastic terms of kernel estimators, MT = MT (xj ),
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must be independent random variables for different points xj . The last condition is provided by
sequential approach since, for sequential kernel estimator, the term MT is a Gaussian random
variable on the set �T .

5. Asymptotic efficiency

First of all, we study a lower bound for the risk (2.14). To this end, we set

ς∗
ϑ(x0) = 2qϑ(x0)

σ 2(x0)
. (5.1)

This parameter provides a sharp asymptotic lower bound for the pointwise risk normalized by
the minimax rate ϕT = T β/(2β+1).

Theorem 5.1. The risk defined in (2.14) admits the following lower bound

lim
T →∞

ϕT inf
S̃T

sup
ϑ∈�β

√
ς∗

ϑ(x0)Rϑ(S̃T ) ≥ E|ξ |, (5.2)

where infimum is taken over all possible estimators S̃T , ξ is a (0,1) Gaussian random variable.

Theorem 5.2. The kernel estimator S∗
h,T defined in (3.7) with h = T −1/(2β+1) satisfies the fol-

lowing asymptotic inequality

lim
T →∞ϕT sup

ϑ∈�β

√
ς∗

ϑ(x0)Rϑ

(
S∗

h,T

) ≤ E|ξ |, (5.3)

where ξ is a (0,1) Gaussian random variable.

Remark 5.1. It should be noted that one cannot use the bound (4.9) in order to obtain the sharp
asymptotic upper bound (5.3) because the upper bound (4.9) is obtained for a wider function
class, that is, for ϑ ∈ �L,M × [σmin, σmax] and hence, it is not the best.

Notice that the Theorems 5.1 and 5.2 imply the following efficiency property.

Theorem 5.3. The sequential procedure (3.7) with h = T −1/(2β+1) is asymptotically efficient in
the following sense:

lim
T →∞ϕT sup

ϑ∈�β

√
ς∗

ϑ(x0)Rϑ

(
S∗

h,T

) = lim
T →∞

ϕT inf
S̃T

sup
ϑ∈�β

√
ς∗

ϑ(x0)Rϑ(S̃T ),

where infimum is taken over all possible estimators S̃T .
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Remark 5.2. The constant (5.1) provides the sharp asymptotic lower bound for the minimax
pointwise risk. The calculation of this constant is possible by making use of the weak Hölder
class. This functional class was introduced in [9] for regression models. For the first time, the
constant (5.1) was obtained in the paper [10] at the pointwise estimation problem of the drift
based on continuous time observations of the process (1.1) with the unit diffusion. Later this
constant was used in the paper [14] to obtain the Pinsker constant for a quadratic risk in the
adaptive estimation problem of the drift in the model (1.1) based on continuous time observa-
tions.

Remark 5.3. Note also that in this paper the efficient procedure is constructed when the regu-
larity is known of the function to be estimated. In the case of unknown regularity, we shall use
an approach based on the model selection similarly to that in the paper [14] which deals with
continuous time observations. The announced result will be published in the next paper which is
in the work.

Remark 5.4. In the paper, we studied only the case of Hölderian smoothness 1 + α with α ∈
(0,1). Efficiency is provided by the indicator kernel which minimizes the asymptotic variance of
the stochastic term (see, e.g., [8]). If in the pointwise estimation problem the unknown function
possesses a greater smoothness then, as known, one needs to make use of a kernel that should
be orthogonal to all polynomials of orders less than the integral part of the smoothness order. It
is clear that the kernel estimator is not efficient. Therefore, one needs to uses an other estimator,
in particular, a local polynomial estimator but again with an indicator kernel. This is a subject
of our future investigation in the pointwise setting for diffusion processes. It will based on ideas
and results of 1 + α-smoothness case but, due to extreme complication, the new case cannot be
considered in this paper.

6. Proofs

6.1. Lower bound

In this section, the Theorem 5.1 will be proved. Let us introduce the model (1.1) with σ = 1, that
is,

dyt = S(yt )dt + dWt. (6.1)

Now we define the risk corresponding to this model as follows

R∗
S(S̃T ) = ES

∣∣S̃T (x0) − S(x0)
∣∣, (6.2)

where ES denotes the expectation with respect to the distribution PS of the process (6.1) in the
space of continuous functions C[0, T ]. It is clear that

sup
ϑ∈�β

√
ς∗

ϑ(x0)Rϑ(S̃T ) ≥ sup
S∈UM(x0,β)

√
2qS(x0)R∗

S(S̃T ), (6.3)
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where qS is the invariant density for the process (6.1) which equals to qϑ with σ = 1. Let now g

be a continuously differentiable probability density on the interval [−1,1]. Then, for any u ∈ R

and 0 < ν < 1/4, we set

Su,ν(x) = S0(x) + u

ϕT

Vν

(
x − x0

h

)
,

where h = T −1/(2β+1) and

Vν(x) = 1

ν

∫ ∞

−∞
(1(|u|≤1−2ν) + 21(1−2ν≤|u|≤1−ν))g

(
u − x

ν

)
du.

It is easy to see directly that, for any 0 < ν < 1/4,

Vν(0) = 1 and
∫ 1

−1
Vν(x)dx = 2.

Therefore, denoting Du(x) = Su,ν(x) − S0(x), we obtain, for any u ∈R,


x0,h(Du) =
∫ 1

−1

(
Du(x0 + hz) − Du(x0)

)
dz = 0.

Moreover, note that, for any fixed b > 0,

sup
|u|≤b

∣∣Ḋu(x)
∣∣ = sup

|u|≤b

(
|u|ϕ−1

T h−1
∣∣∣∣V̇ν

(
x − x0

h

)∣∣∣∣) ≤ bT −α/(2β+1)ν−2ġ∗,

where ġ∗ = supx |ġ(x)|. Therefore, supx∈R sup|u|≤b |Ḋu(x)| ≤ M/2 for sufficiently large T and,
in view of the equality (2.3), the functions (Su,ν)|u|≤b belong to the class UM(x0, β) for suffi-
ciently large T . It implies that, for any b > 0 and for sufficiently large T , we can estimate from
below the right-hand term in the inequality (6.3) as

sup
S∈UM(x0,β)

√
2qS(x0)R∗

S(S̃T ) ≥ sup
|u|≤b

√
2qSu,ν (x0)R∗

Su,ν
(S̃T )

= sup
|u|≤b

√
2qS0(x0)R∗

Su,ν
(S̃T ) + QT ,

where QT = sup|u|≤b

√
2qSu,ν (x0)R∗

Su,ν
(S̃T ) − sup|u|≤b

√
2qS0(x0)R∗

Su,ν
(S̃T ).

It is easy to see that

|QT | ≤ sup
|u|≤b

∣∣√2qSu,ν (x0) − √
2qS0(x0)

∣∣R∗
Su,ν

(S̃T )

≤ 1√
2q∗

sup
|u|≤b

∣∣qSu,ν (x0) − qS0(x0)
∣∣R∗

Su,ν
(S̃T ).
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Taking into account here that

lim
T →∞ sup

|u|≤b

∣∣qSu,ν (x0) − qS0(x0)
∣∣ = 0,

we obtain the inequality (5.2) by making use of the Theorem 4.1 from [10]. Thus, we obtain the
Theorem 5.1.

6.2. Upper bound

We begin with stating the following result for the term (4.5).

Proposition 6.1. The function BT defined in (4.5) satisfies the following asymptotic property

lim sup
T →∞

ϕT sup
ϑ∈�β

Eϑ |BT | = 0. (6.4)

The result is proved in the Appendix.
Now we prove Theorem 5.2. To this end, we set

φ̃(u) =
+∞∑

j=N0

φj 1{tj−1<u≤tj },

where the random variables (φi)i≥1 are defined in (3.4). Using this function, we introduce the
stopping time

τ = τT = inf

{
t ≥ T0:

∫ t

T0

φ̃(u)du ≥ δHT

}
,

where T0 = tN0 = δN0. As usually, we put τ = ∞ if the set {·} is empty. Obviously that

τ ≤ T + δHT ≤ T + δh(N − N0)/
√

υT .

Due to the equality
∫ ∞
T0

φ̃(u)du = ∞, one obtains immediately that the random variable

ξT = 1√
δHT

∫ τ

T0

φ̃(u)dWu (6.5)

is Gaussian N (0,1) (see, e.g., [28], Chapter 17). Now, using this property, we can rewrite the
deviation (4.6) on set �T as

S∗
h,T (x0) − S(x0) = B∗

T + M(1)
T + σ(x0)M

(2)
T + σ(x0)√

δHT

ξT , (6.6)

where B∗
T = ϒ1,T + ϒ2,T + BT ,

M(1)
T = 1

δHT

N∑
j=N0

κ̃jχh,x0(ytj−1)
(
σ(ytj−1) − σ(x0)

)
�Wtj
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and

M(2)
T = 1

δHT

(
N∑

j=N0

κ̃jφj�Wtj −
∫ τ

T0

φ̃(u)dWu

)
.

First, we note that the definition of the sequence (κ̃j )j≥1 in (3.6) implies

N∑
j=N0

κ̃jχh,x0(ytj−1) ≤ HT a.s. (6.7)

Therefore, through the condition (2.1)

Eϑ

(
M(1)

T

)2 = Eϑ

(
1

δH 2
T

N∑
j=N0

κ̃
2
j χh,x0(ytj−1)

(
σ(ytj−1) − σ(x0)

)2

)

≤ Eϑ

h2σ 2
max

δHT

.

Taking into account here that, for T ≥ 3,

HT ≥ h(N − N0)(2
√

υT − υT ) ≥ h(N − N0)
√

υT , (6.8)

we obtain

lim
T →∞ϕT sup

ϑ∈�β

Eϑ

∣∣M(1)
T

∣∣ = 0.

Now we study the term M(2)
T . To this end, note that t�−1 < τ ≤ t� . Therefore, we can represent

this term as

M(2)
T = 1

δHT

(
κφ� �Wt� − φ� (Wτ − Wt�−1)

)
.

Moreover, taking into account that the stopping times � and τ are bounded, one gets

E(�Wt� )2 = δ and E(Wτ − Wt�−1)
2 = E(τ − t�−1) ≤ δ.

Therefore, from here and (6.8), we get

Eϑ

(
M(2)

T

)2 ≤ 2Eϑ

1

δH 2
T

≤ 2

δh2υT (N − N0)2

and

lim
T →∞ϕT sup

ϑ∈�β

Eϑ

∣∣M(2)
T

∣∣ = 0.
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Due to (4.2) and (4.4), it is easy to see that

lim
T →∞ϕT sup

ϑ∈�β

Eϑ |ϒi,T | = 0, i = 1,2.

To put an end to the proof of this theorem, we present the last term on the right-hand side of (6.6)
as

σ(x0)√
δHT

ξT = σ(x0)√
δh(N − N0)

(
1√

2qϑ(x0)
ξT + KT ξT

)
,

where

KT = 1√
2q̃T (x0) − υT

− 1√
2qϑ(x0)

,

and we have to show that

lim
T →∞ sup

ϑ∈�β

Eϑ |KT ||ξT | = 0. (6.9)

It is easy to see that, for any T > 0, the random variable ξT is (0,1)-Gaussian conditionally with
respect to FT0 . Therefore,

Eϑ |KT ||ξT | =
√

2

π
Eϑ |KT |.

Taking into account here Lemma A.5, we come to the equality (6.9). Hence Theorem 5.2.

7. Conclusion

In the paper, we studied the estimation problem of the function S when its smoothness is known.
In the case of unknown smoothness, in order to construct an adaptive estimate based on dis-
crete time observations (1.2) in the model (1.1) we shall use the approach developed in [7] for
continuous time observations. The approach make use of Lepskii’s procedure and sequential es-
timating. Note that Lepskii’s procedure works here just thanks to sequential estimating since, for
the sequential estimate of the function S, the stochastic term in the deviation (6.6) is a Gaussian
random variable. This provides correct estimating the tail distribution of a kernel estimate and
adapting for the pointwise risk. Moreover, for adaptive estimating in the case of quadratic risk,
we shall apply the selection model developed in [14] to sequential kernel estimates (3.7). Note
once more, that Gaussianity of the stochastic term in (6.6) is a cornerstone result for obtaining
a sharp oracle inequality. It permits to find Pinsker’s constant like to [14] and then to study the
proposed procedure efficiency.

These both programs will be realized in the next paper.
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Appendix

A.1. Geometric ergodicity

First of all, we recall that in [13] we have proved the following result.

Theorem A.1. For any ε > 0, there exist constants R = R(ε) > 0 and κ = κ(ε) > 0 such that

sup
u≥0

eκu sup
‖g‖∗≤1

sup
x∈R

sup
ϑ∈�L,M×V

|Eϑ,xg(yu) − mϑ(g)|
(1 + x2)ε

≤ R,

where Eϑ,x(·) = Eϑ(·|y0 = x), ‖g‖∗ = supx |g(x)|.

A.2. Concentration inequality

For any R→ R function f belonging to L1(R), we set

Dn(f ) =
n∑

k=1

(
f (ytk ) − mϑ(f )

)
. (A.1)

Now we assume that the frequency δ in the observations (1.2) is of the following form

δ = δT = 1

(T + 1)lT
, (A.2)

where the function lT is such that,

lim
T →∞

lT

T 1/2
= 0 and lim

T →∞
lT

lnT
= +∞, (A.3)

in particular, the function lT = (lnT )1+γ from (2.7) is of this kind. Moreover, let κ∗ = κ
∗
T be a

positive function satisfying the following properties

lim
T →∞κ

∗
T = 0 and lim

T →∞
lT (κ∗

T )5

lnT
= +∞. (A.4)

Theorem A.2 ([12]). Assume that the frequency δ satisfies (A.2)–(A.3). Then, for any a > 0,

lim
T →∞T a sup

h≥T −1/2
sup

ϑ∈�β

Pϑ

(∣∣DN(χh,x0)
∣∣ ≥ κ

∗
T T

) = 0. (A.5)
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A.3. Proof of Proposition 4.1

First, we note that by the Bunyakovskii–Cauchy–Schwarz inequality

Eϑ

(
�2

j |Ftj−1

) ≤ δL̃2
∫ tj

tj−1

Eϑ

(
(yu − ytj−1)

2|Ftj−1

)
du,

where L̃ = max(L,M). Note now that, for tj−1 ≤ u ≤ tj ,

Eϑ

(
(yu − ytj−1)

2|Ftj−1

) ≤ 2δ

(∫ u

tj−1

Eϑ

(
S2(yv)|Ftj−1

)
dv + σ 2

max

)
≤ 2δ

(
2
∫ u

tj−1

(
M2 + L2Eϑ

(
y2
v |Ftj−1

))
dv + σ 2

max

)
.

Due to Proposition A.6, we can estimate the last conditional expectation as

sup
ϑ∈�L,M×[0,σmax]

sup
tj−1≤u≤tj

Eϑ

(
y2
u|Ftj−1

) ≤ D∗L + y2
tj−1

.

Therefore, taking into account that χh,x0(ytj−1)y
2
tj−1

≤ x2∗ , we obtain

sup
tj−1≤u≤tj

sup
ϑ∈�L,M×[0,σmax]

χh,x0(ytj−1)Eϑ

(
(yu − ytj−1)

2|Ftj−1

) ≤ L1δ. (A.6)

Therefore,

sup
j≥1

sup
ϑ∈�L,M×[0,σmax]

χh,x0(ytj−1)Eϑ

(
�2

j |Ftj−1

) ≤ L̃2L1δ
3.

Making use of the inequality (6.7) yields the following upper bound, through the Bunyakovskii–
Cauchy–Schwarz inequality,

Eϑϒ2
1,T ≤ Eϑ

1

δ2HT

N∑
j=N0

κ̃jχh,x0(ytj−1)�
2
j

= Eϑ

1

δ2HT

N∑
j=N0

κ̃jχh,x0(ytj−1)Eϑ

(
�2

j |Ftj−1

) ≤ L̃2L1δ.

Hence, Proposition 4.1.

A.4. Proof of Proposition 4.2

Note that by the condition (2.14)

Eϑ

((
�∗

j

)2|Ftj−1

) =
∫ tj

tj−1

Eϑ

((
σ(yu) − σ(ytj−1)

)2|Ftj−1

)
du

≤ σ 2
max

∫ tj

tj−1

Eϑ

(
(yu − ytj−1)

2|Ftj−1

)
du.
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Therefore, using the inequality (A.6) one has

sup
j≥1

sup
ϑ∈�L,M×[0,σmax]

χh,x0(ytj−1)Eϑ

((
�∗

j

)2|Ftj−1

) ≤ σ 2
maxL1δ

2.

From here and (6.7) and, taking into account that 0 < κ̃j ≤ 1, we obtain

Eϑϒ2
2,T = Eϑ

1

δ2H 2
T

N∑
j=N0

κ̃
2
j χh,x0(ytj−1)Eϑ

((
�∗

j

)2|Ftj−1

)
≤ σ 2

maxL1Eϑ

1

HT

.

Now the inequality (6.8) yields (4.4). Hence, Proposition 4.2.

A.5. Proof of Proposition 4.3

Taking into account the inequalities (6.7) and (6.8), we obtain that, for any T ≥ 3,

EϑM2
T = Eϑ

1

δ2H 2
T

N∑
j=N0

χh,x0(ytj−1)κ̃
2
j Eϑ

(
η2

j |Ftj−1

)

≤ Eϑ

1

δ2H 2
T

N∑
j=N0

κ̃jχh,x0(ytj−1)

∫ tj

tj−1

σ 2(yu)du

≤ σ 2
max

δh(N − N0)
√

υT

.

Hence, Proposition 4.3.

A.6. Proof of Proposition 6.1

We start with setting

rT = (2q̃T − υT )h

mϑ(χh,x0)
and N1 = N0 + rT (N − N0).

Note that N1 − N0 ≤ (q∗
√

υT )−1N := N∗
1 , for sufficiently large T . Moreover, we set

GT = 1

HT

N1∑
j=N0

fh(ytj−1) and ĜT = GT − BT .
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Using (2.12), we can represent the term GT as

GT = N1 − N0

HT

mϑ(fh) + 1

HT

N1∑
j=N0

f̃h(ytj−1) := G1(T ) + G2(T ),

where f̃h(y) = fh(y) − mϑ(fh). Taking into account that mϑ(χh,x0) ≥ 2hq∗, we obtain

∣∣G1(T )
∣∣ = rT (N − N0)h

HT

∣∣m∗
ϑ(h)

∣∣ ≤ 1

2q∗
∣∣m∗

ϑ(h)
∣∣, m∗

ϑ(h) = mϑ(fh)

h
.

Let us represent the last term as

m∗
ϑ(h) = qϑ(x0)
x0,h(S) + m̃ϑ(h),

where m̃ϑ(h) = ∫ 1
−1(S(x0 + hz) − S(x0))(qϑ(x0 + hz) − qϑ(x0))dz. Further, by the defini-

tion (2.6), one has


x0,h(S) = 
x0,h(S0) + 
x0,h(D),

for some function D from Hw
x0

(ε,β,h). Therefore, the properties (2.4)–(2.5) and (2.7) yield

lim
h→0

ϕT sup
S∈UM(x0,β)

∣∣
x0,h(S)
∣∣ = 0.

Obviously, that

lim sup
h→0

h−2 sup
ϑ∈�β

∣∣m̃ϑ(h)
∣∣ < ∞.

Hence,

lim sup
T →∞

ϕT sup
ϑ∈�β

Eϑ

∣∣G1(T )
∣∣ = 0.

Now we note that,

EϑG2
2(T ) = Eϑ

1

H 2
T

(
N1−1∑
j=N0

�j + f̃ 2
h (ytN1−1)

)
,

where �j = f̃ 2
h (ytj−1)+2f̃h(ytj−1)

∑N1
l=j+1 Eϑ(f̃h(ytl−1)|Ftj−1) and Ft = σ {ys,0 ≤ s ≤ t}. Tak-

ing into account that (yt )t≥0 is a homogeneous Markov process and that |f̃h(y)| ≤ 2Mh, we
estimate from above the last conditional expectation, through the Theorem A.1 (for ε = 1/2), as∣∣Eϑ

(
f̃h(ytl−1)|Ftj−1

)∣∣ = ∣∣Eϑ,ytj−1
f̃h(ytl−j

)
∣∣ ≤ 2MhR

(
1 + y2

tj−1

)1/2e−κtl−j

≤ 2MhR
(
1 + |ytj−1 |

)
e−κδ(l−j).
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Therefore,

|�j | ≤ 4M2h2
(

1 + 2R(1 + |ytj−1 |)
eκδ − 1

)
.

From here, bounding eκδ − 1 by κδ, we get

EϑG2
2(T ) ≤ 8M2h2Eϑ

1

H 2
T

N1∑
j=N0

(
1 + R

κδ

(
1 + |ytj−1 |

))

≤ 8M2h2
(

1 + R

κδ

)
Eϑ

(N1 − N0)

H 2
T

+ 8M2h2 R

κδ
Eϑ

1

H 2
T

N1∑
j=N0

(
Eϑ

(
y2
tj−1

|FtN0−1

))1/2
.

By making use of Proposition A.6, one obtains

EϑG2
2(T ) ≤ 8M2h2

(
1 + R

κδ

)
Eϑ

N1 − N0

H 2
T

(
1 + √

D∗L + |ytN0−1 |
)
.

Now from (6.8) it follows that

N1 − N0

H 2
T

= 1

HT mϑ(χh,x0)
≤ 1

2h2√υT (N − N0)q∗
.

Thus,

sup
ϑ∈�β

EϑG2
2(T ) ≤ G∗

δ
√

υT (N − N0)
,

where G∗ = 4M2(κ +R)(1 + 2
√

D∗L+|y0|)/(κq∗). From this equality, we obtain immediately

lim
T →∞ϕT sup

ϑ∈�β

Eϑ

∣∣G2(T )
∣∣ = 0.

Let us estimate the term ĜT . Taking into account the lower bound (6.8), we get

|ĜT | ≤ Mh

HT

∣∣∣∣∣
N1∑

j=N0

χh,x0(ytj−1) − HT

∣∣∣∣∣ + 2Mh

HT

≤ M√
υT (N − N0)

N1∑
j=N0

∣∣χ̃h(ytj−1)
∣∣ + 2M√

υT (N − N0)
,
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where χ̃h(y) = χh,x0(y) − mϑ(χh,x0). By making use of the Theorem A.1 with ε = 1/2 one gets

∑
j≥N0

Eϑ,y0

∣∣χ̃h(ytj−1)
∣∣ ≤ Re−κδ(N0−1)

1 − e−κδ

(
1 + √

D∗L + |y0|
)
.

This inequality implies directly

lim
T →∞ϕT sup

ϑ∈�β

Eϑ |ĜT | = 0.

Hence, Proposition 6.1.

A.7. Properties of the estimate (3.3)

Lemma A.3. Assume that the parameter δ is of the form (2.13). Then, for any a > 0,

lim
T →∞T a sup

ϑ∈�β

Pϑ

(∣∣̂qT (x0) − qϑ(x0)
∣∣ > υT

) = 0.

Proof. Denoting ψς(y) = (1/ς)Q((y − x0)/ς) one has

q̂T (x0) − qϑ(x0) = 1

2

∫ 1

−1

(
qϑ(x0 + ςz) − qϑ(x0)

)
dz

+ 1

2(N0 − 1)
DN0−1(ψς).

Therefore

Pϑ

(∣∣̂qT (x0) − qϑ(x0)
∣∣ > υT

)
≤ Pϑ

(∣∣∣∣∫ 1

−1

(
qϑ(x0 + ςz) − qϑ(x0)

)
dz

∣∣∣∣ > υT

)
+ Pϑ

(
1

N0 − 1
DN0−1(ψς) > υT

)
.

The first term on the right-hand side equals to zero for sufficiently large T since∣∣∣∣∫ 1

−1

(
qϑ(x0 + ςz) − qϑ(x0)

)
dz

∣∣∣∣ ≤ ς2q̈∗ < υT ,

for sufficiently large T , where q̈∗ = supx supϑ |q̈ϑ (x)| < ∞. Applying Theorem A.2, to the sec-
ond term on the right-hand side of the same inequality yields the Lemma A.3. �

Lemma A.4. Assume that the parameter δ is of the form (2.13). Then, for any a > 0,

lim
T →∞T a sup

ϑ∈�β

Pϑ

(∣∣̃qT (x0) − qϑ(x0)
∣∣ > υT

) = 0.
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Proof. Note, that for sufficiently large T (for that lnT ≥ max(q∗2,1/q2∗)),∣∣̃qT (x0) − qϑ(x0)
∣∣ ≤ ∣∣̂qT (x0) − qϑ(x0)

∣∣.
The lemma follows immediately from Lemma A.3. �

Lemma A.5. Assume that the parameter δ is of the form (2.13). Then,

lim sup
T →∞

1

υ
1/2
T

sup
ϑ∈�β

Eϑ

∣∣∣∣ 1

q̃T (x0) − υT

− 1

qϑ(x0)

∣∣∣∣ ≤ 4

q∗ < ∞. (A.7)

Proof. Indeed, for sufficiently large T for which

υT ≤ min
(
1/

(
q∗)2

,1/4
)
,

we obtain

Eϑ

∣∣∣∣ 1

q̃T (x0) − υT

− 1

qϑ(x0)

∣∣∣∣ ≤ 2υ
1/2
T

q∗
+ 2

q∗υ1/2
T

Eϑ

∣∣̃qT (x0) − qϑ(x0)
∣∣

≤ 4υ
1/2
T

q∗
+ 2

q∗υT

Pϑ

(∣∣̃qT (x0) − qϑ(x0)
∣∣ > υT

)
.

Now Lemma A.4 implies the equality (A.7). Hence, Lemma A.5. �

A.8. Moment inequality for the process (1.1)

We state the moment bound from [13].

Proposition A.6. Let (yt )t≥0 be a solution of the equation (1.1). Then, for any z ∈R and m ≥ 1,

sup
u≥0

sup
ϑ∈�L,M×[0,σmax]

Eϑ,z(yu)
2m ≤ (2m − 1)!!(D∗L + z2)m

, (A.8)

where Eϑ,z(·) = Eϑ(·|y0 = z) and D∗ = (M + Lx∗ + 2x∗)2(L + M) + σ 2
max.

Proof. To obtain this inequality, we make use of the method proposed in [22], page 20, for linear
stochastic equations. First of all, note that thanks to Theorem 4.7 from [28], for any T > 0, there
exists some ε > 0 such that, for each ϑ ∈ �β and z ∈ R,

sup
0≤t≤T

Eϑ,zeεy2
t < ∞. (A.9)

Let us denote Dϑ(y) = 2yS(y)+σ 2(y)+ Ľy2 and Ľ = L−1. Taking into account that 0 < Ľ < 1
and x∗ ≥ 1, we obtain that, for |y| ≤ x∗,∣∣Dϑ(y)

∣∣ ≤ x2∗(2M + 1) + σ 2
max.
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Let now |y| ≥ x∗. Denoting by y∗ the projection of y onto the interval [−x∗, x∗] we obtain that

2yS(y) = 2yS(y∗) + 2y∗
(
S(y) − S(y∗)

) + 2(y − y∗)
(
S(y) − S(y∗)

)
≤ 2|y|M + 2Lx∗|y − y∗| − 2Ľ|y − y∗|2
≤ 2(M + Lx∗ + 2x∗)|y| − 2Ľy2.

Therefore,

sup
ϑ∈�L,M×[0,σmax]

sup
y∈R

Dϑ(y) ≤ D∗.

By the Itô formula, we obtain

dy2m
u = −mĽy2m

u dt + my2(m−1)
u

(
Dϑ(yu) + 2(m − 1)σ 2(yu)

)
dt

+ 2my2m−1
u σ (yu)dWt.

Moreover, the property (A.9) yields that, for any m ≥ 1,

Eϑ

∫ t

0
e−mĽ(t−s)y2m−1

s σ (ys)dWs = 0.

Therefore, Eϑy2m
t ≤ z2m +m(2m− 1)D∗

∫ t

0 e−mĽ(t−s)Eϑy
2(m−1)
s ds. Now the induction implies

directly the bound (A.8). Hence, Proposition A.6. �

Proposition A.7. Let (yt )t≥0 be a solution of the equation (1.1). Then, for any z ∈ R and m ≥ 1,
and for any stopping time τ taking values in [0, T ], one has

sup
ϑ∈�L,M×[0,σmax]

Eϑ,z(yτ )
2m ≤ B∗(m, z)T (A.10)

and

sup
ϑ∈�L,M×[0,σmax]

Eϑ,z sup
0≤u≤T

(yu)
2m ≤ B∗

1 (m, z)T , (A.11)

where B∗(m, z) = (2m − 1)!!(D∗L + z2)m(D∗ + 2(m − 1)σ 2
max) and B∗

1 (m, z) = 1 + mB∗(m +
1, z).

The proof of this proposition follows immediately from Proposition 1.1.5 in [22].

A.9. Proof of Proposition 4.5

It is clear, that to show (3.7) it suffices to check that, for any a > 0,

lim
T →∞T a sup

ϑ∈�L,M×[σmin,σmax]
Pϑ

(
�c

T

) = 0. (A.12)
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Indeed, by the definition of �

Pϑ

(
�c

T

) = Pϑ

(
N∑

j=N0

χh,x0(ytj−1) < HT

)

= Pϑ

(
DN0,N−1(χh,x0) <

(
2q̃T − υT − m∗

ϑ(χh,x0)
)
(N − N0)h

)
,

where Dk,n(f ) = Dn(f ) − Dk(f ) and

m∗
ϑ(χh,x0) = mϑ(χh,x0)

h
=

∫ 1

−1
qϑ(x0 + hz)dz.

Taking into account the definition of υT in (3.3) we obtain that, for sufficiently large T ,

sup
ϑ∈�β

∫ 1

−1

∣∣qϑ(x0 + hz) − qϑ(x0)
∣∣dz ≤ υT /4.

Therefore, for such T ,

Pϑ(� > N) ≤ Pϑ

(∣∣̃qT (x0) − qϑ(x0)
∣∣ > υT /8

)
+ Pϑ

(∣∣DN0,N−1(χh,x0)
∣∣ > NhυT /2

)
.

Now we estimate the last term as

Pϑ

(∣∣DN0,N−1(χh,x0)
∣∣ > NhυT /2

) ≤ Pϑ

(∣∣DN−1(χh,x0)
∣∣ > NhυT /4

)
+ Pϑ

(∣∣DN0(χh,x0)
∣∣ > NhυT /4

)
.

By applying Lemma A.3 and the inequality (A.5), we obtain (A.12).
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