
Bernoulli 22(1), 2016, 143–192
DOI: 10.3150/14-BEJ626

Adaptive quantile estimation in
deconvolution with unknown
error distribution
ITAI DATTNER1, MARKUS REIß2,* and MATHIAS TRABS2,**

1Department of Statistics, University of Haifa, 199 Abba Khoushy Ave, Mount Carmel, Haifa 3498838,
Israel. E-mail: idattner@stat.haifa.ac.il
2Institut für Mathematik, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany.
E-mail: *mreiss@math.hu-berlin.de; **trabs@math.hu-berlin.de

Quantile estimation in deconvolution problems is studied comprehensively. In particular, the more realistic
setup of unknown error distributions is covered. Our plug-in method is based on a deconvolution density
estimator and is minimax optimal under minimal and natural conditions. This closes an important gap in the
literature. Optimal adaptive estimation is obtained by a data-driven bandwidth choice. As a side result, we
obtain optimal rates for the plug-in estimation of distribution functions with unknown error distributions.
The method is applied to a real data example.
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1. Introduction

Nonparametric deconvolution models are of high practical importance and lead to challenging
questions in statistical methodology. Let X1, . . . ,Xn be independent random variables with a
common Lebesgue density f :R →R. Suppose that we merely observe the random variables

Yj = Xj + εj , j = 1, . . . , n,

that is the original (Xj ) corrupted by i.i.d. error variables εj , independent of (Xj ) and with
Lebesgue density fε . For τ ∈ (0,1) the objective is to estimate the τ -quantile qτ of the population
X from the observations Y1, . . . , Yn. For practitioners estimated quantiles are very relevant, but
they depend in a nonlinear way on the underlying density such that their estimation is not always
obvious. Abstractly, quantile estimation in deconvolution is an example of nonlinear functional
estimation in ill-posed inverse problems.

Two natural strategies may be pursued. Either a distribution function estimator is inverted or
an M-estimation paradigm is applied using a density estimator of f . While the first possibility
was studied by Hall and Lahiri [12], the purpose of this paper is the analysis of the second in a
far more general setting. Assuming that the distribution of the measurement error is completely
known, Carroll and Hall [1] have constructed a kernel density estimator based on the empirical
characteristic function ϕn(u) := 1

n

∑n
j=1 eiuYj , u ∈ R. In practice, however, the distribution of
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the measurement error is usually not known. Instead, we assume that we have at hand a sample
from fε given by

ε∗
1, . . . , ε∗

m, m ∈N.

Motivated from applications, we will not assume that the observations (ε∗
k ) are independent

from (Yj ). In particular, our procedure applies to the experimental setup of repeated measure-
ments, as discussed below.

Let Fg(u) := ∫
R

eiuxg(x)dx, u ∈ R, denote the Fourier transform of g ∈ L1(R) ∪ L2(R).
Consequently, F−1[h(u)](x) = 1

2π

∫
e−iuxh(u)du,x ∈ R. Based on the classical kernel estima-

tor, Neumann [21] has proposed the following density estimator of f for the case of unknown
error distributions:

f̃b(x) := F−1
[
ϕn(u)ϕK(bu)

ϕε,m(u)
1{|ϕε,m(u)|≥m−1/2}

]
(x), x ∈R,

where ϕK is the Fourier transform of a kernel K , b > 0 is its bandwidth and the character-
istic function of the error distribution ϕε is estimated by its empirical counterpart ϕε,m(u) :=
1
m

∑m
k=1 eiuε∗

k , u ∈ R. Obviously, f̃b depends on the sample sizes n and m which are suppressed
in the notation. Applying a plug-in approach, our estimator for the quantile qτ is then given by
the minimum-contrast estimator

q̃τ,b := arg min
η∈[−Un,Un]

∣∣M̃b(η)
∣∣ with M̃b(η) =

∫ η

−∞
f̃b(x)dx − τ (1)

for some Un → ∞. We will show as the very first step that f̃b is indeed integrable with over-
whelming probability and when not, we define q̃τ to be the empirical τ -quantile of the obser-
vations Yj ’s. In this work we pursue the analysis for error distributions whose characteristic
function decays polynomially. As shown by Fan [8], these so-called ordinary smooth errors lead
to mildly ill-posed estimation problems. They are mathematically more challenging than the so-
called super-smooth errors, which we discuss briefly in Section 2.3.

Although the literature on deconvolution problems is extensive and very broad, the problem
of adaptive deconvolution with unknown measurement errors was addressed only recently, see
Comte and Lacour [3], Johannes and Schwarz [14] and Kappus [16] for adaptive density esti-
mation with unknown error distributions in the model selection framework. Minimax results and
other properties for nonadaptive methods are given by Neumann [21,22], Meister [20], Delaigle,
Hall and Meister [6], Johannes [13] among others. To the best of our knowledge, the problem of
quantile estimation in deconvolution was considered only in Hall and Lahiri [12]. They have con-
structed a quantile estimator for the case of known error distributions by inverting the distribution
function estimator, without proposing an adaptive bandwidth choice. As we shall establish, the
error of the quantile estimator (1) is directly related to that of the distribution function estimator
(cf. the error representation (4) below). Yet, the general analysis of the latter was not clear before.

Fan [8] has proposed an estimator for the distribution function by integrating the density de-
convolution estimator. In order to perform an exact analysis of its variance, a truncation of the
integral was required in the estimation procedure. This resulted in a nonoptimal (in the minimax
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sense) estimation method for the case of ordinary smooth errors and raised the conjecture that
‘plug-in does not work optimally’ for estimation of the distribution function in deconvolution.
Trying to circumvent this problem, Hall and Lahiri [12] as well as Dattner, Goldenshluger and
Juditsky [4] have constructed a distribution function estimator based on a direct inversion for-
mula. Applying the Fourier multiplier approach by Nickl and Reiß [24], Söhl and Trabs [26]
have shown that the integrated density estimator can indeed estimate the distribution function
with

√
n-rate under suitable conditions. Since they prove a Donsker theorem, the imposed con-

ditions are restrictive. In particular, a global Sobolev regularity of f is assumed there which is
not natural for pointwise loss. So even with a known error distribution, it remained an open and
intriguing question whether the canonical plug-in estimator for distribution or quantile function
estimation yields asymptotically optimal results under natural conditions.

In Section 2, we settle this question in the positive under local Hölder regularity of f by com-
bining an exact analysis like in Dattner, Goldenshluger and Juditsky [4] together with abstract
Fourier multiplier theory from Söhl and Trabs [26]. Moreover, we show that the optimal rates
continue to hold if the error distribution is unknown and has to be estimated, which is mathe-
matically nontrivial. Since the deconvolution operator F−1[1/ϕε] is not observable, we have to
study the estimated counterpart F−1[ ϕK(bu)

ϕε,m(u)
1{|ϕε,m(u)|≥m−1/2}]. As a random Fourier multiplier, it

preserves the mapping properties of the deterministic F−1[1/ϕε], but its operator norm turns out
to be (slightly) larger.

A lower bound result establishes that the rates under a local Hölder condition are indeed min-
imax optimal. Surprisingly, the dependence of the minimax rate on the error sample size m is
completely different from the case of global Sobolev restrictions like in Neumann [21]. The
proof enlightens this interplay between the decay of one characteristic function and estimation
error in the other sample for both, the (Yj ) and the (εj ).

An adaptive (data-driven) bandwidth choice is developed in Section 3. To this end, a variant of
Lepski’s method is applied, but because of the unknown and possibly dependent error distribution
a much more refined analysis is needed to establish that the resulting adaptive quantile estimator
is (up to log factors) still rate optimal.

In Section 4, we implement our estimation procedure and present simulation results which
show a good performance of the estimator. In a real data example, we consider multiple blood
pressure measurement data from different patients. Here, a measurement error is clearly present,
but of unknown distribution and we have to estimate it by taking patient-wise differences. The
completely data-driven method yields reasonable quantile estimates which differ from the sample
quantiles of the directly measured (Yj ). All proofs are postponed to Section 5.

2. Convergence rates

2.1. Setting and upper bounds

Let us introduce some notation. Denoting 〈α〉 as the largest integer which is strictly smaller than
α > 0, we define for some function g and any possibly unbounded interval I ⊆ R the Hölder
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norm

‖g‖Cα(I) :=
〈α〉∑
k=0

∥∥g(k)
∥∥

L∞(I )
+ sup

x,y∈I : x 
=y

|g〈α〉(x) − g〈α〉(y)|
|x − y|α−〈α〉 .

Let C0(I ) denote the space of all continuous and bounded functions on the interval I and

Cs(R) :=
⋃
R>0

Cs(R,R) with Cα(I,R) := {
g ∈ C0(I )|‖g‖Cα(I) ≤ R

}
,R > 0.

In the sequel, we use the Landau notation O and OP . For two sequences An(ϑ),Bn(ϑ) de-
pending on a parameter ϑ , An(ϑ) = OP (Bn(ϑ)) holds uniformly over a parameter set ϑ ∈ � if
there is for all c > 0 some C > 0 such that supϑ∈� Pϑ(An(ϑ) > CBn(ϑ)) < c. If An(ϑ)/Bn(ϑ)

converges in probability to zero, we write An(ϑ) = oP (Bn(ϑ)).

Assumption A. Let the kernel function K ∈ L1(R) with Fourier transform ϕK := FK satisfy

(i) suppϕK ⊆ [−1,1] and
(ii) K has order 	 ∈N, i.e., for k = 0, . . . , 	∫

R

∣∣K(x)
∣∣|x|	+1 dx < ∞ and

∫
R

xkK(x)dx =
{

1, if k = 0,
0, otherwise.

By construction the quantile estimator, q̃τ,b is the approximated solution of the estimating
equation

0 = M̃b(η) =
∫ η

−∞
f̃b(x)dx − τ. (2)

If a solution exists, it does not have to be unique since f̃b is not necessarily nonnegative. Never-
theless, any choice converges to the true quantile, assuming the latter is unique. Before, integra-
bility of f̃b was an open problem, which we shall settle now.

Lemma 2.1. Grant Assumption A with 	 = 0. On the event

Bε(b) :=
{

inf
u∈[−1/b,1/b]

∣∣ϕε,m(u)
∣∣≥ m−1/2| logb|3/2

}
(3)

we have f̃b ∈ L1(R) and estimating equation (2) has a solution.

Therefore, a truncation of the integral as used by Fan [8] is not necessary, implying that no
tail condition on f is required. Although ‖f̃b‖L1 is finite, it depends on the observations as well
as through b on n,m. To quantify the behavior of f̃b more precisely, our analysis relies on the
following much stronger result.

Lemma 2.2. Grant Assumption A with 	 = 0. For some β,R > 0 suppose E[(ε∗
k )

4] ≤ R and∣∣ϕε(u)
∣∣−1 ≤ R

(
1 + |u|)β and

∣∣ϕ′
ε(u)

∣∣≤ R
(
1 + |u|)−β−1
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as well as mb2β+1 → ∞. Then there exists a finite random variable Eb which is OP (1∨ 1
m1/2bβ+1 )

with the constant depending only on β and R, such that for any s > β+ > β on the event Bε(b)

from (3) ∥∥∥∥F−1
[

ϕK(bu)

ϕε,m(u)

]
∗ ψ

∥∥∥∥
Cs−β+

(R)

≤ Eb‖ψ‖Cs(R) for all ψ ∈ Cs(R).

The deterministic counterpart of this lemma was proved by Söhl and Trabs [26]. Here, we show
that the random Fourier multiplication operator Cs(R) � ψ �→ F−1[ϕK(bu)Fψ(u)

ϕε,m(u)
] ∈ Cs−β+

(R)

has a norm bound OP (1 ∨ 1
m1/2bβ+1 ) on the event Bε(b). The condition on the derivative ϕ′

ε is
natural in the context of Fourier multipliers and is usually satisfied for distributions with polyno-
mial decaying characteristic functions, for example, Gamma distributions with shape parameter
β > 0 satisfy it.

Remark 2.3. Depending only on the observations, condition (3) can be verified by the practi-
tioner for a given bandwidth b. Under the assumptions of Lemma 2.2 Talagrand’s inequality
yields P(Bε(b)) ≥ 1 − 2e−mb2β+1

(cf. Lemma 5.1 and (53) below). Therefore, with overwhelm-
ing probability Bε(b) holds true and the estimating equation (2) is rigorously defined.

Before we start with the error analysis, let us describe the class of densities we are interested
in. Let Q(R) denote the set of all probability densities on R which are uniformly bounded by
R > 0. Following the minimax paradigm, we consider for R, r, ζ,U > 0 and the smoothness
index α > 0 the classes

Cα(R, r, ζ ) :=
⋃
U∈N

Cα(R, r, ζ,U) and

Cα(R, r, ζ,U) := {
f ∈Q(R)|f has a τ -quantile qτ ∈ [−U,U ] such that

f ∈ Cα
([qτ − ζ, qτ + ζ ],R) and f (qτ ) ≥ r

}
.

In contrast to Dattner, Goldenshluger and Juditsky [4], the smoothness is measured locally in a
Hölder scale and not globally by decay conditions of the Fourier transform of f . The former is
more natural since both, the distribution function and the quantile function are estimated point-
wise. Note that the quantile qτ is unique given the assumption f (qτ ) > 0. Recalling that we write
ϕε := Ffε , the conditions in Lemma 2.2 motivate the definition of the class of error densities

Dβ(R,γ ) :=
{
fε ∈Q(∞)

∣∣∣ 1

R

(
1 + |u|)−β ≤ ∣∣Ffε(u)

∣∣≤ R
(
1 + |u|)−β

,

∣∣(Ffε)
′(u)

∣∣≤ R
(
1 + |u|)−1−β

,
∥∥xγ fε(x)

∥∥
L1 ≤ R

}
for some moment γ ≥ 0 and we use the same constant R as above for convenience.



148 I. Dattner, M. Reiß and M. Trabs

Remark 2.4. The upper and lower bounds for |ϕε(u)| in Dβ(R,γ ) are standard assumptions in
deconvolution and are used for deriving lower bounds for the estimation problem as well as upper
bounds for the risk of the estimators. Specifically, these bounds correspond to ordinary smooth
error distributions (Fan [8]), cf. Section 2.3 below for the super-smooth case.

Applying the plug-in approach, we need to integrate the density estimator over an unbounded
interval. As mentioned above, additional assumptions are necessary to control ‖f̃b‖L1 . We apply
Lemma 2.2 assuming γ ≥ 4, that is E[(ε∗

1)4] < ∞, and a polynomial decay of |ϕ′
ε|. The latter is

a natural Mihlin-type condition in the context of Fourier multipliers. Note that ϕ′
ε exists if fε , the

distribution of the measurement errors, has a first moment. In view of the analysis by Neumann
and Reiß [23], the moment assumption in particular implies uniform convergence of ϕε,m.

To control the estimation error of q̃τ,b , we follow the Z-estimator approach (cf. van der Vaart
[31]). Let M(η) be the deterministic counterpart of M̃b(η) defined in (1). The quantities q̃τ,b and
qτ are given by the (approximated) zeros of M̃b and M , respectively. From the Taylor expansion
0 ≈ M̃b(̃qτ,b) = M̃b(qτ ) + (̃qτ,b − qτ )M̃

′
b(q

∗
τ ) for some intermediate point q∗

τ between qτ and
q̃τ,b , we obtain

q̃τ,b − qτ ≈ −
∫ qτ

−∞(f̃b(x) − f (x))dx

f̃b(q∗
τ )

. (4)

The following two propositions deal separately with the numerator and the denominator in this
representation. The results are intrinsic to our analysis, but may also be of interest on their own.
The first proposition deals with the numerator in (4) and establishes minimax rates of conver-
gence for estimation of the distribution function with unknown error distributions. Note that the
quotient in (4) might explode if f̃b(q

∗
τ ) becomes very small for large stochastic error. Excluding

this event which has vanishing probability, we establish convergence rates as OP -results.

Proposition 2.5. Suppose that Assumption A holds with 	 = 〈α〉 + 1 and let b∗
n,m = (n ∧

m)−1/(2α+2(β∨1/2)+1). Then for any α ≥ 1/2, β,R, r, ζ > 0 and γ ≥ 4 we have uniformly over
f ∈ Cα(R, r, ζ ) and fε ∈Dβ(R,γ ) as n ∧ m → ∞,∣∣∣∣∫ qτ

−∞
(
f̃b∗

n,m
(x) − f (x)

)
dx

∣∣∣∣=OP

(
ψn∧m(α,β)

)
,

where for k ≥ 1

ψk(α,β) :=
⎧⎨⎩

k−1/2, for β ∈ (0,1/2),
(logk/k)1/2, for β = 1/2,

k−(α+1)/(2α+2β+1), for β > 1/2.

(5)

Since the techniques to obtain Proposition 2.5 differ significantly from previous results for
deconvolution with unknown error distribution, let us briefly sketch the proof: we apply a smooth
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truncation function as to decompose the error into∫ qτ

−∞
(
f̃b(x) − f (x)

)
dx

=
∫ qτ

−∞
(
Kb ∗ f (x) − f (x)

)
dx︸ ︷︷ ︸

deterministic error

+
∫ qτ

−∞
as(x + qτ )

(
f̃b(x) − Kb ∗ f (x)

)
dx︸ ︷︷ ︸

singular part of stochastic error

(6)

+
∫ qτ

−∞
(
1 − as(x + qτ )

)(
f̃b(x) − Kb ∗ f (x)

)
dx︸ ︷︷ ︸

continuous part of stochastic error

with the usual notation Kb(·) = b−1K(·/b). The function as can be chosen such that it has
compact support and satisfies (1(−∞,0] − as) ∈ C∞(R). Similar to the classical bias-variance
trade-off, the deterministic error and singular part of the stochastic error will determine the rate.
The continuous part, however, corresponds to the estimation error of a smooth (but not integrable)
functional of the density. If the error distribution were known, it would be of order n−1/2. For un-
known errors we use Lemma 2.2, where our estimate of the operator norm of the random Fourier
multiplier F−1[ϕK(bu)/ϕε,m(u)1{|ϕε,m(u)|≥m−1/2}] is of order OP (1 ∨ (m−1/2b−β−1)). This

might be larger than the operator norm of the unknown deconvolution operator F−1[1/ϕε(u)]
which is uniformly bounded. Yet, for α ≥ 1/2 the additional error that appears in the continuous
part of stochastic error in (6) is negligible.

Next, we like to understand the denominator of (4). Lounici and Nickl [18] have proved uni-
form risk bounds for the deconvolution wavelet estimator on the whole real line for a known error
distribution. On a bounded interval, which is sufficient for our purpose, uniform convergence of
the deconvolution estimator f̃b can be proved more elementarily. With bn = (logn/n)1/(2α+2β+1)

the following proposition yields the minimax rate (logn/n)α/(2α+2β+1) in L∞-loss (at least if
n

logn
≤ m).

Proposition 2.6. Grant Assumption A with 	 = 〈α〉. For any α,β,R, r, ζ > 0 and γ ≥ 0 we have
uniformly over f ∈ Cα(R, r, ζ ) and fε ∈Dβ(R,γ ) as n ∧ m → ∞,

sup
x∈(−ζ,ζ )

∣∣f̃b(x + qτ ) − f (x + qτ )
∣∣=OP

(
bα +

(
logn

n
∨ 1

m

)1/2

b−β−1/2
)

.

In particular, if b = bn,m → 0 and ( n
logn

∧ m)b
2β+1
n,m → ∞ as n ∧ m → ∞, f̃bn,m is a uniformly

consistent estimator.

The two propositions above are the building blocks for the first main result of this paper an-
nounced in the following theorem. The constant preceding the rate depends only on the class
parameters α,β, γ,R, r, ζ . The location parameter Un can grow logarithmically to infinity as
n → ∞.



150 I. Dattner, M. Reiß and M. Trabs

Theorem 2.7. Let α ≥ 1/2, β,R, r, ζ > 0 and γ ≥ 4 and grant Assumption A with 	 =
〈α〉 + 1. Let q̃τ,b∗

n,m
be the quantile estimator defined in (1) associated with b∗

n,m = (n ∧
m)−1/(2α+2(β∨1/2)+1) and with Un → ∞,Un = O(logn). Then we have uniformly over f ∈
Cα(R, r, ζ,Un) and fε ∈Dβ(R,γ ) as n ∧ m → ∞,

|̃qτ,b∗
n,m

− qτ | = OP

(
ψn∧m(α,β)

)
,

where ψ·(α,β) is given in (5).

Using the methods of the proof of Theorem 2.7 and an additional application of Bernstein’s
concentration inequality, convergence rates for the uniform loss can be obtained, assuming regu-
larity in a neighborhood of some interval of quantiles. For 0 < τ1 < τ2 < 1 and α,R, r, ζ,Un > 0,
define

Cα∞(τ1, τ2,R, r, ζ,Un)

:=
{
f ∈Q(R)

∣∣for all τ ∈ (τ1, τ2): f has a τ -quantile qτ ∈ [−Un,Un] and

f ∈ Cα
([qτ1 − ζ, qτ2 + ζ ],R), inf

τ∈(τ1,τ2)
f (qτ ) ≥ r

}
.

Theorem 2.8. Let α ≥ 1/2, β,R, r, ζ > 0 and γ ≥ 4 and grant Assumption A with 	 = 〈α〉 + 1.
For 0 < τ1 < τ2 < 1 and τ ∈ (τ1, τ2) let q̃τ,b∗

n,m
be the quantile estimator defined in (1) associ-

ated with b∗
n,m = (

logn
n

∨ 1
m

)1/(2α+2(β∨1/2)+1) and with Un → ∞,Un = O(logn). Then we have
uniformly over f ∈ Cα∞(τ1, τ2,R, r, ζ,Un) and fε ∈Dβ(R,γ ) as n ∧ m → ∞,

sup
τ∈(τ1,τ2)

|̃qτ,b∗
n,m

− qτ | =OP

(
ψ(n/ logn)∧m(α,β)

)
,

where ψ·(α,β) is given in (5).

We finish this subsection by providing the minimax rates for estimating the distribution func-
tion and the quantiles for the case of known error distributions, restricting to pointwise loss. As
above, the estimators are given by plugging in the classical density estimator

f̂b(x) := F−1
[
ϕn(u)ϕK(bu)

ϕε(u)

]
(x), x ∈R. (7)

Corollary 2.9. Let α,β,R, r, ζ > 0 and γ ≥ 0 and suppose that the error distribution is known
and fε ∈ Dβ(R,γ ). Let Assumption A hold with 	 = 〈α〉 + 1. Let q̂τ,b be the quantile estimator
based on the density deconvolution estimator (7) associated with b∗

n = n−1/(2α+2(β∨1/2)+1) and
Un → ∞,Un =O(logn). Then we obtain uniformly over f ∈ Cα(R, r, ζ,Un) as n → ∞,∣∣∣∣∫ qτ

−∞
(
f̂b∗

n
(x) − f (x)

)
dx

∣∣∣∣ = OP

(
ψn(α,β)

)
,

|̂qτ,b∗
n
− qτ | = OP

(
ψn(α,β)

)
,
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where ψ·(α,β) is given (5).

Here, we do not estimate the deconvolution operator and thus there is no additional error in
terms of m. Consequently, we do not need a moment assumption on the error distribution and the
convergence rates hold true for all α > 0.

2.2. Lower bounds

In view of the lower bounds stated by Fan [8], in case n ≤ m the rates in Proposition 2.5 are
optimal. Using the error representation (4), the result for distribution function estimation carries
over to quantile estimation. Therefore, we focus on the case m < n. To provide a clear proof of
the lower bound, we allow for a more general class of distributions of Xj , assuming only local
assumptions. Using point measures, the estimation error of ϕε does not profit from the decay of
the characteristic function of Xj . One could also consider the case of bounded densities f and
choose alternatives in the proof whose Fourier transforms decay arbitrarily slowly, but this would
require far more technical arguments.

We define for α,R, r, ζ > 0 and some interval I ⊆R

C̃α+1(R, r, I ) :=
{
F c.d.f.

∣∣F has on I a Lebesgue density f ∈ Cα(I,R) and inf
x∈I

f (x) ≥ r
}
,

C̃α+1(R, r, ζ ) := {
F c.d.f.|F has a τ -quantile qτ ∈ R and F ∈ C̃α+1(R, r, [qτ − ζ, qτ + ζ ])}.

Theorem 2.10. Suppose that Y1, . . . , Yn and ε∗
1, . . . , ε∗

m are independent. Let q ∈ R and
α,β,R, r, ζ > 0, γ ≥ 0. Then for any C > 0 there is some δ > 0 such that

inf
F̄n,m

sup
F∈C̃α+1(R,r,[q−ζ,q+ζ ])

sup
fε∈Dβ(R,γ )

P
(∣∣F̄n,m(q) − F(q)

∣∣
> C(n ∧ m)−(α+1)/(2α+(2β)∨1+1)

)≥ δ,

inf
q̄τ,n,m

sup
F∈C̃α+1(R,r,ζ )

sup
fε∈Dβ(R,γ )

P
(∣∣q̄τ,n,m − qτ

∣∣> C(n ∧ m)−(α+1)/(2α+(2β)∨1+1)
)≥ δ,

where the infima are taken over all estimators F̄n,m and q̄τ,n,m, respectively.

This lower bound implies that the rates in Proposition 2.5 and Theorem 2.7 are minimax
optimal, except for the case β = 1/2 where they deviate by a logarithmic factor.

2.3. Discussion and extension

The previous results show that estimating the distribution function by integrating a density de-
convolution estimator is a minimax optimal procedure and under the local Hölder condition the
rates are determined by n ∧ m. In that point our results differ completely from previous studies.
Assuming α-Sobolev regularity of f , the RMSE of the kernel density estimator by Neumann
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[21] is of order O(n−α/(2α+β+1) + m−((α/β)∧1)). Since the error in estimating ϕε is reduced by
the decay of the characteristic function ϕ of Xj , the risk is of much smaller order in m. Assuming
local regularity on f only, Ff can decay arbitrarily slowly such that this reduction effect may
not occur. Note that assuming global Sobolev regularity would improve also the convergence rate
of the plug-in estimator.

Interestingly, the dependence on n and m is not completely symmetric. As an intrinsic property
of the uniform loss, the convergence rates are typically by a logarithmic factor slower than for
pointwise loss. Yet, in Proposition 2.6 and Theorem 2.8 this payment for uniform convergence
affects only the estimation of ϕ and thus the rate is determined by logn

n
∨ 1

m
.

Although the focus of this paper is on ordinary smooth error distributions, a generalization to
supersmooth errors is worth mentioning. Let us sketch this case of exponentially decaying ϕε .
Supposing E[|ε∗

k |4] < ∞ and |ϕε(u)|−1 =O(eγ0|u|β ) as well as |ϕ′
ε(u)| =O(e−γ1|u|β ), u ∈R, for

some β > 0 and γ0 ≥ γ1 > 0, we obtain analogously to Lemma 2.2 for sufficiently small c, γ > 0
and for the bandwidth b∗

m = c(logm)−1/β∥∥∥∥F−1
[
ϕK(b∗

mu)

ϕε,m(u)

]
∗ ψ

∥∥∥∥
Cs(R)

1Bε(b∗
m) ≤ Eb∗

m
‖ψ‖Cs(R) where Eb =OP

(
1 ∨ eγ b−β )

for any s ≥ 0 and for any ψ ∈ Cs(R). In other words, ϕK(bu)/ϕε,m(u) is a random Fourier
multiplier on Hölder spaces with exponentially increasing operator norm on the event Bε(b).
Following the lines of the proof of Proposition 2.5, one sees that the singular as well as the
continuous part of the stochastic error in (6) are of the order OP ((n ∧ m)−1/2eγ b−β

). Combined
with the estimate for the deterministic error, the choice b∗

n,m = c(log(n ∧ m))−1/β yields for
f ∈ Cα(R, r, ζ ) ∣∣∣∣∫ qτ

−∞
(
f̃b∗

n
(x) − f (x)

)
dx

∣∣∣∣=OP

((
log(n ∧ m)

)−(α+1)/β)
.

Note that for n ≤ m this is the minimax rate for distribution function estimation as given in
Fan [8]. Therefore, also for supersmooth error distributions the integral domain does not need to
be truncated to estimate the distribution function via the plug-in approach.

3. Adaptive estimation

The choice of the bandwidth b is crucial in applications. Therefore, we develop a fully data-
driven procedure to determine a good bandwidth. We follow the approach initiated by Lepskiı̆
[17]. More precisely, we use the version proposed in Goldenshluger and Nemirovski [11]. For
simplicity, we suppose n = m and focus on the pointwise loss in this section.

Let us consider the family of estimators {̃qτ,b, b ∈ Bn} where q̃τ,b is defined in (1) and Bn is
a finite set of bandwidths. In view of the error representation (4), it is important that f̃b(̃qτ,b)

is a consistent estimator of f (qτ ) for all b ∈ Bn. Therefore, conditions on the bandwidth as in
Proposition 2.6 are necessary for the entire set Bn. These depend on the true but unknown degree
of ill-posedness β and on α. We keep to the assumption α > 1/2 such that the additional error
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due to bounding the random Fourier multiplier is negligible. Note that the lower bound for the
bandwidth is not determined by the variance of the quantile estimator itself but by the variance
of the density estimator and the minimal smoothing which results from α > 1/2.

Inspired by Comte and Lacour [3], we propose the following construction of a feasible set Bn:
for some L > 1 define

bn,j := n−1Lj for j = 0, . . . ,Nn where Nn ∈N satisfies n−1LNn ∼ (logn)−3.

Choosing

j̃n := Nn ∧min

{
j = 0, . . . ,Nn −1:

1

2
≤
(

logn

n

)1/2 ∫ 1/bn,j

−1/bn,j

1{|ϕε,m(u)|≥m−1/2}
|ϕε,m(u)| du ≤ 1

}
, (8)

the bandwidth set is given by

Bn := {bn,j̃n
, . . . , bn,Nn}. (9)

Note that by construction Bn is nonempty and it consists of a monotone increasing sequence
of bandwidths such that bn,j+1/bn,j is uniformly bounded in j = j̃n, . . . ,Nn and n ≥ 1. Also,
for n → ∞ we have Nn � logn and (logn)2bn,Nn → 0. The following lemma establishes two
additional properties. The latter one ensures that for any b ∈ Bn our estimators are consistent.

Lemma 3.1. Let (Yj ) and (ε∗
k ) be distributed according to f ∈ Cα(R, r, ζ ) and fε ∈ Dβ(R,γ )

with α ≥ 1/2, β > 0. Then with probability converging to one, j̃n < Nn and the optimal
bandwidth b∗

n = n−1/(2α+2(β∨1/2)+1) is contained in the interval [bn,j̃n
, bn,Nn] as well as

nb
2β+2
n,j̃n

→ ∞.

Given the bandwidth set, the adaptive estimator is obtained by selection from the family of
estimators {̃qτ,b, b ∈ Bn}. As proposed by Lepskiı̆ [17] the adaptive choice should mimic the
trade-off between deterministic error and stochastic error. The adaptive choice will be given
by the largest bandwidth such that the intersection of all confidence sets, which corresponds to
smaller bandwidths, is nonempty. As discussed above, it is sufficient to consider the singular part
of the stochastic error in (6) only. To estimate the variance of q̃τ,b corresponding to the latter, we
define for some δ > 0

�̃b := (2
√

2 + δ)
√

log lognmaxμ≥b σ̃μ,X + (δ logn)3 maxμ≥b σ̃μ,ε + (1 + δ)|M̃b(̃qτ,b)|
|f̃b(̃qτ,b)|

, (10)

with the truncation function as from decomposition (6) and

σ̃ 2
b,X = 1

n2

n∑
j=1

(∫ 0

−∞
as(x)F−1

[
ϕK(bu)eiuYj

ϕε,m(u)

]
(x + q̃τ,b)dx

)2

and (11)

σ̃ 2
b,ε = 1

4π2m

∫ 1/b

−1/b

∣∣ϕK(bu)
∣∣∣∣∣∣ ϕn(u)

ϕε,m(u)

∣∣∣∣2 du

∫ 1/b

−1/b

∣∣ϕK(bu)
∣∣∣∣∣∣Fas(u)

ϕε,m(u)

∣∣∣∣2 du. (12)
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The parameter δ has minor influence and should be chosen close to zero. Note that we apply
a monotonization in the numerator of �̃b by taking maxima of σ̃μ,X and σ̃μ,ε , respectively.
The correction term |M̃b(̃qτ,b)| appears only if q̃τ,b is not the exact solution of the estimating
equation (2). Define for any b ∈ Bn

Ub := [̃qτ,b − �̃b, q̃τ,b + �̃b].
The adaptive estimator is given by

q̃τ := q̃τ,̃b∗
n

with b̃∗
n := max

{
b ∈ Bn

∣∣∣ ⋂
μ≤b,μ∈Bn

Uμ 
=∅

}
. (13)

Note that b̃∗
n is well defined since the intersection in (13) is nonempty for b = bn,1. The following

theorem shows that this estimator achieves the minimax rate up to a logarithmic factor. The proof
relies on a comparison with an oracle-type choice of the bandwidth. All ingredients, though, have
to be estimated and the dependence between Yj and ε∗

k requires special attention.

Theorem 3.2. Let n = m and α ≥ 1/2, β,R, r, ζ > 0, γ ≥ 4 and grant Assumption A with 	 =
〈α〉 + 1. Then the estimator q̃τ as defined in (13) with Bn from (9) satisfies uniformly over f ∈
Cα(R, r, ζ,Un) and fε ∈Dβ(R,γ ) as n → ∞,

|̃qτ − qτ | =OP

(
ψn(δ logn)−6(α,β)

)
,

where ψ·(α,β) is given in (5).

As the theorem shows, the adaptive method achieves the minimax rate up to a logarithmic fac-
tor. This additional loss is dominated by the stochastic error which is due to the estimation of ϕε .
Since Yj and ε∗

k are not independent, we have to bound the stochastic error of q̃τ,b in a way that
separates the error terms coming from the estimation of ϕ and ϕε , respectively. Estimating the re-
maining parts, we lose the factor (δ logn)6, which appears not to be optimal. To improve the rate
slightly, δ = δn could be chosen as a null sequence provided δn(logn)1/2 → ∞. In the case where
the error density is known, we can achieve the better rate ψn/ log logn(α,β). The log logn-factor
is the additional payment for OP -adaptivity, which is known to be unavoidable for a bounded
loss function in standard regression, cf. Spokoiny [27]. For estimating the distribution function,
an analogous result can be obtained, but is omitted.

4. Numerical results

4.1. Simulation study

We illustrate the implementation of the adaptive estimation procedure of Section 3. Our small
simulation study serves as a proof of viability of the proposed method.

We run 1000 Monte Carlo simulations for four experimental setups. The sample size is set to
n = 1000 and the external sample of the directly observed error is set to m = 1000 as well (here
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Table 1. Empirical root mean square error (RMSE) of the adaptive deconvolution estimator and the em-
pirical quantiles of (Yj ) (in parenthesis) for estimating qτ based on 1000 Monte Carlo simulations with
n = m = 1000

RMSE k = 1, β = 1 k = 2, β = 1 k = 1, β = 2 k = 2, β = 2

τ = 0.1 0.532 (0.886) 0.252 (0.706) 0.378 (1.029) 0.191 (0.765)
τ = 0.2 0.265 (0.653) 0.114 (0.508) 0.175 (0.452) 0.091 (0.349)
τ = 0.3 0.111 (0.461) 0.070 (0.360) 0.077 (0.178) 0.090 (0.158)
τ = 0.4 0.067 (0.282) 0.080 (0.212) 0.112 (0.052) 0.105 (0.064)
τ = 0.5 0.123 (0.110) 0.092 (0.096) 0.171 (0.175) 0.116 (0.145)
τ = 0.6 0.162 (0.122) 0.094 (0.123) 0.200 (0.318) 0.109 (0.255)
τ = 0.7 0.154 (0.326) 0.098 (0.272) 0.189 (0.462) 0.098 (0.373)
τ = 0.8 0.107 (0.597) 0.150 (0.481) 0.115 (0.624) 0.141 (0.506)
τ = 0.9 0.232 (1.015) 0.312 (0.783) 0.226 (0.849) 0.293 (0.675)

the external sample is independent of the main one). We consider �(1,1) and �(2,1) for the dis-
tribution of X where �(k,η) denotes the gamma distribution with shape parameter k and scale η.
Note that the shape k of the gamma distribution determines the Sobolev smoothness of the den-
sity while the density is smooth away from the origin. For the error distribution, we consider
�(1,

√
2) centered around zero which corresponds to β = 1 and the standard Laplace distribu-

tion (scale equals 1) corresponding to β = 2. In both cases, the variance of the error equals 2.
The target quantiles of interest are qτ with τ = 0.1,0.2, . . . ,0.9. In the real data example in

the next subsection we compare the adaptive estimator to the “naive” quantile estimator given by
the sample quantiles of the observations Y . Therefore we have also applied the naive estimator
in the simulations. The results of this simulation study are given in Table 1. We can see that the
results support the theory – the empirical root mean squared error (RMSE) is higher in most
cases for β = 2 than for β = 1. Also, we can see that in most cases the RMSE is lower for
k = 2 than for k = 1 since the gamma distribution with larger shape parameter is smoother in our
context. At the tails, our estimation method is significantly better than the naive estimator. Near
the median the naive estimator behaves nice when the distribution of the error is Laplace. This is
not the case under the gamma error distribution which may suggest that the naive estimator profits
from the symmetry of the error distribution. Similar behavior was observed also in distribution
deconvolution with nonsymmetric error distributions, see Dattner and Reiser [5].

4.2. Real data example

High blood pressure is a direct cause of serious cardiovascular disease (Kannel et al. [15]) and
determining reference values for physicians is important. In particular, estimating percentiles of
systolic and diastolic blood pressure by sex, race or ethnicity, age, etc. is of substantial interest.
Blood pressure is known to be measured with additional error which needs to be addressed in its
analysis (see e.g., Frese, Fick and Sadowsky [9]). Therefore, measurement errors should be taken
into account, otherwise quantile estimates based on the observed blood pressure measurements
would be biased.
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We illustrate our method using data from the Framingham Heart Study (Carroll et al. [2]). This
study consists of a series of exams taken two years apart where systolic blood pressure (SBP)
measurements of 1615 men aged 31–65 were taken. These data were used as an illustration for
density deconvolution by Stirnemann, Comte and Samson [28] and for distribution deconvolution
by Dattner and Reiser [5]. We denote by Yj,1 and Yj,2 the two repeated measures of SBP for each
individual j at two different exams and denote by Xj the long-term average SBP of individual j .
Then we model that

Yj,1 = Xj + εj,1, Yj,2 = Xj + εj,2,

for individuals j = 1, . . . , n. Following Carroll et al. [2], we use the average of the two exams
Y ′

j = (Yj,1 + Yj,2)/2, so that the model in our case is

Y ′
j = Xj + ε′

j ,

where ε′
j = (εj,1 + εj,2)/2.

Taking advantage of the repeated measurements, we can avoid parametric assumptions re-
garding the distribution of the errors. The only assumption we will make is that the distri-
bution of the measurement error is symmetric around zero and does not vanish. We then set
ε∗
j = (Yj,1 −Yj,2)/2 and note that under the symmetry assumption it is distributed as ε′

j . We em-
phasize the fact that our theoretical results do not require that the sample ε∗

j must be independent
from that of the Y ′

j .
Histograms of Y ′ and ε∗ are presented in Figure 1. Although Figure 1 may suggest that the

error distribution does not entirely satisfy the symmetry assumption, it serves as working hypoth-
esis for our procedure and, indeed, it is supposed in previous works on the same data set as well.
The resulting adaptive and naive quantiles estimates are displayed in Figure 2. We can see certain
differences between the naive and adaptive estimates which might result in important implica-
tions for medical research, but here we do not aim at pursuing a more detailed statistical analysis.

Figure 1. Average systolic blood pressure Y ′ (left) and the errors ε∗ (right) over the two measurements
from the two visits of 1615 men aged 31–65 from the Framingham Heart Study.
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Figure 2. Quantiles estimates for systolic blood pressure of 1615 men aged 31–65 from the Framingham
Heart Study. Solid line for the adaptive deconvolution estimator and dashed line for the empirical quantiles
of (Yj ).

5. Proofs

5.1. Proofs for Section 2

For convenience, we will write An(ϑ) � Bn(ϑ) if An(ϑ) = O(Bn(ϑ)). For a better readability,
we assume throughout β 
= 1/2. In the special case, β = 1/2 the order of the stochastic error will
be (logn/n)1/2 which can be easily seen below in the bounds (24) and (26). The subscript n at
the bandwidth will be omitted.

Since 1/ϕε,m might explode for large stochastic errors we need the following lemma.

Lemma 5.1. Suppose E[|ε∗
k |δ] < ∞ for some δ > 0. Let Tm → ∞ be an increasing sequence

satisfying m1/2 infu∈[−Tm,Tm] |ϕε(u)| � (logTm)2, then for any p < 2

P
(

inf
u∈[−Tm,Tm]

∣∣ϕε,m(u)
∣∣< m−1/2(logTm)p

)
= o(1) as m → ∞.

Proof. The triangle inequality, the assumption on Tm and Markov’s inequality yield for m as
well as Tm large enough

P
(

inf
u∈[−Tm,Tm]

∣∣ϕε,m(u)
∣∣< m−1/2(logTm)p

)
≤ P

(
sup

u∈[−Tm,Tm]
∣∣ϕε(u) − ϕε,m(u)

∣∣> inf
u∈[−Tm,Tm]

∣∣ϕε(u)
∣∣− m−1/2(logTm)p

)
� 2

(logTm)2
E

[
sup

u∈[−Tm,Tm]
m1/2

∣∣ϕε(u) − ϕε,m(u)
∣∣].
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Noting 1[−Tm,Tm](u) ≤ w(u)/w(Tm) for w(u) := (log(e + |u|))−1/2−η for some η ∈ (0,1/2), the
above display can be bounded by

2

w(Tm)(logTm)2
E

[
sup
u∈R

m1/2w(u)
∣∣ϕε(u) − ϕε,m(u)

∣∣]� (logTm)−3/2+η, (14)

where the expectation is bounded by applying Theorem 4.1 in Neumann and Reiß [23]. �

To ensure consistency of the density estimator, the bandwidth satisfies usually (n∧m)b2β+1 →
∞ and is of polynomial order in n,m. This implies m1/2 infu∈[−1/b,1/b] |ϕε(u)| � | logb|2 for
f ∈ Dβ(R,γ ), γ > 0, and thus Lemma 5.1 can be applied to Tm = 1/b. Under this conditions
on b the probability of the event Bε(b), defined in (3), tends to one. In that case, it suffices to con-
trol terms on Bε(b), a strategy that will follow in the sequel. For instance, the OP -convergence in
Theorem 2.7 is equivalent to limC→∞ limn,m→∞ P(|̃qτ,b∗ − qτ | > Cψn∧m(α,β)) = 0 for which
we have

lim
C→∞ lim

n,m→∞P
(|̃qτ,b∗ − qτ | > Cψn∧m(α,β)

)
≤ lim

C→∞ lim
n,m→∞P

({|̃qτ,b∗ − qτ | > Cψn∧m(α,β)
}∩ Bε

(
b∗))+ lim

m→∞P
(
Bε

(
b∗)c),

where the second term converges to zero by Lemma 5.1 and it remains to bound the first one.
On Bε(b) the weaker estimate |ϕε,m(u)| ≥ m−1/2 for |u| ≤ 1/b will frequently be enough,

implying

ϕK(bu)

ϕε,m(u)
1{|ϕε,m(u)|≥m−1/2} = ϕK(bu)

ϕε,m(u)
on Bε(b).

5.1.1. Proof of Lemma 2.1

On Bε(b), we have by continuity of the characteristic functions and the properties of the kernel
that g(u) := ϕn(u)ϕK(bu)

ϕε,m(u)
satisfies g,g′ ∈ L2(R). Hence, (1 + x2)1/2F−1g(x) ∈ L2(R) and the

Cauchy–Schwarz inequality yields ‖f̃b‖L1 ≤ ‖(1 + x2)−1/2‖L2‖(1 + x2)1/2F−1g(x)‖L2 < ∞
on Bε(b). In particular, (2) is well defined on the event Bε(b).

On Bε(b), we have moreover limη→−∞
∫ η

−∞ f̃b(x)dx = 0, by integrability of f̃b , and∫∞
−∞ f̃b(x)dx = F [f̃b](0) = ϕn(0)ϕK(0)/ϕε,m(0) = 1. Applying ‖f̃b‖∞ ≤ ‖ϕK(bu)/

ϕεm(u)‖L1 < ∞, we conclude that η �→ ∫ η

−∞ f̃b(x)dx continuous and [0,1] is contained in
its range.

5.1.2. Proof of Lemma 2.2

Note that the assumption on ϕε imply |(ϕ−1
ε )′(u)| � (1 + |u|)β−1 as well as |ϕ−1

ε (u)| � (1 +
|u|)β, u ∈ R. We define the random Fourier multiplier

ψ(u) := (1 + iu)−β ϕK(bu)

ϕε,m(u)
, u ∈ R.
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On Bε(b), as defined in (3), we will check Hörmander type conditions and derive an upper bound
for the operator norm of ψ(u). Hence, we have to determine a suitable constant Aψ > 0 satisfying

max
l∈{0,1}

(∫
[−2,2]

∣∣ψ(l)(u)
∣∣2 du

)1/2

≤ Aψ and

(15)

max
l∈{0,1}

sup
T ∈[1,∞)

T l−1/2
(∫

T ≤|u|≤4T

∣∣ψ(l)(u)
∣∣2 du

)1/2

≤ Aψ.

To find Aψ , we note that

1

|ϕε,m(u)|p ≤ p

|ϕε(u)|p + p|ϕε,m(u) − ϕε(u)|p
|ϕε(u)ϕε,m(u)|p , for p ∈ {1,2} (16)

and thus on Bε(b)

1

|ϕε,m(u)| ≤ 1 + �m(u)

|ϕε(u)| , �m(u) := m1/2

| logb|3/2

∣∣ϕε,m(u) − ϕε(u)
∣∣.

By the assumptions on ϕε and K , we conclude

∣∣ψ(u)
∣∣≤ |ϕK(bu)|(1 + �m(u))

(1 + u2)β/2|ϕε(u)| �
(
1 + �m(u)

)
1[−1/b,1/b](u). (17)

Concerning the derivative, we estimate b ≤ 2(1 + |u|)−1 for |u| ≤ 1/b and b < 1/2 and conse-
quently by |ϕ′

ε(u)/ϕε(u)| � (1 + |u|)−1

∣∣ψ ′(u)
∣∣ ≤ (β + 1)

(
1 + u2)−(β+1)/2

∣∣∣∣ϕK(bu)

ϕε,m(u)

∣∣∣∣+ b
(
1 + u2)−β/2

∣∣∣∣ϕ′
K(bu)

ϕε,m(u)

∣∣∣∣
+ (

1 + u2)−β/2
∣∣∣∣ϕ′

ε,m(u)

ϕε,m(u)

ϕK(bu)

ϕε,m(u)

∣∣∣∣
� |ψ(u)|

1 + |u| + ∣∣ψ(u)
∣∣∣∣∣∣ϕ′

ε,m(u)

ϕε,m(u)

∣∣∣∣
�
(
1 + �m(u)

)( 1

1 + |u| + (
1 + �m(u)

)∣∣∣∣ϕ′
ε,m(u)

ϕε(u)

∣∣∣∣)1[−1/b,1/b](u) (18)

�
(
1 + �m(u)

)(2 + �m(u)

1 + |u| + (
1 + �m(u)

)(
1 + |u|)β ∣∣ϕ′

ε,m(u) − ϕ′
ε(u)

∣∣)
× 1[−1/b,1/b](u)

� (1 + �m(u))2

1 + |u|
(
1 + (

1 + |u|)β+1∣∣ϕ′
ε,m(u) − ϕ′

ε(u)
∣∣)1[−1/b,1/b](u).
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With these bounds at hand, we can show (15). For l = 0, the estimate (17) and 1/T � (1+|u|)−1

for |u| ≤ 4T yield ∫ 2

−2

∣∣ψ(u)
∣∣2 du �

∫ 2

−2

(
1 + �2

m(u)
)
1[−1/b,1/b](u)du,

1

T

∫
T ≤|u|≤4T

∣∣ψ(u)
∣∣2 du � 1

T

∫
T ≤|u|≤4T

(
1 + �2

m(u)
)
1[−1/b,1/b](u)du

� 1 +
∫ 1/b

−1/b

(
1 + |u|)−1

�2
m(u)du,

for b small enough. Hence, the conditions (15) for l = 0 are satisfied for Aψ of the order (1 +∫ 1/b

−1/b
(1 + |u|)−1�2

m(u)du)1/2. For l = 1, we verify by (18) and T ≤ (1 + |u|) for |u| > T∫ 2

−2

∣∣ψ ′(u)
∣∣2 du �

∫ 2

−2

(
1 + �4

m(u)
)(

1 + (
1 + |u|)2β+2∣∣ϕ′

ε,m(u) − ϕ′
ε(u)

∣∣2)du and

T

∫
T ≤|u|≤4T

∣∣ψ ′(u)
∣∣2 du

�
∫

T ≤|u|≤4T

T du

(1 + |u|)2

+
∫ 1/b

−1/b

(
�4

m(u)

1 + |u| + (
1 + �4

m(u)
)(

1 + |u|)2β+1∣∣ϕ′
ε,m(u) − ϕ′

ε(u)
∣∣2)du

� 1 +
∫ 1/b

−1/b

(
�4

m(u)

1 + |u| + (
1 + �4

m(u)
)(

1 + |u|)2β+1∣∣ϕ′
ε,m(u) − ϕ′

ε(u)
∣∣2)du.

Therefore, we find a constant A′ > 0, depending only on R,β , such that (15) holds for

Aψ := A′
(

1 +
∫ 1/b

−1/b

(
�2

m(u) + �4
m(u)

1 + |u|
(19)

+ (
1 + �4

m(u)
)(

1 + |u|)2β+1∣∣ϕ′
ε,m(u) − ϕ′

ε(u)
∣∣2)du

)1/2

.

The conditions (15) imply that ψ is indeed a Fourier multiplier on Bε(b) and thus by Theorem 4.8
and Corollary 4.13 by Girardi and Weis [10] with p = 2, l = 1 there is a universal constant C > 0
such that for all η > 0 and f ∈ Cs+β+η(R)∥∥∥∥F−1

[
ϕK(bu)

ϕε,m(u)

]
∗ f

∥∥∥∥
Cs

=
∥∥∥∥F−1

[
ϕK(bu)

ϕε,m(u)
Ff

]∥∥∥∥
Cs

≤ CAψ

∥∥F−1[(1 + iu)βFf
]∥∥

Cs+η .

Choosing η > 0 such that s + β + η, s + η /∈ N, the Fourier multiplier (1 + iu)β induces an
isomorphism from Cs+β+η(R) onto Cs+η(R) (Triebel [29], Thm. 2.3.8). Hence, there is another
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universal constant C′ > 0 such that the second assertion of the lemma follows:∥∥∥∥F−1
[

ϕK(bu)

ϕε,m(u)
Ff

]∥∥∥∥
Cs

≤ Eb‖f ‖Cs+β+η with Eb := C′Aψ.

To bound Eb , we apply Markov’s inequality on Aψ from (19). The inequality by Rosenthal [25]
yields

sup
u∈R

E
[
mp/2

∣∣ϕ(l)
ε,m(u) − ϕ(l)

ε (u)
∣∣p]< ∞

for l = 0 and p ∈ N as well as l = 1 and p ∈ {1, . . . ,4}. Combined with the Markov inequality
and Cauchy–Schwarz inequality, we obtain

P

(
Bε(b) ∩

{
Eb >

c1/2

m1/2bβ+1 ∧ 1

})
≤ c−1(mb2β+2 ∧ 1

)
E
[
E2

b1Bε(b)

]
� 1

c

(
mb2β+2 ∧ 1

)(
1 +

∫ 1/b

−1/b

((
1 + |u|)−1

E
[
�2

m(u) + �4
m(u)

]
(20)

+E
[(

1 + �4
m(u)

)(
1 + |u|)2β+1∣∣ϕ′

ε,m(u) − ϕ′
ε(u)

∣∣2])du

)
� mb2β+2 ∧ 1

c

(
1 + 1

| logb|3
∫ 1/b

−1/b

du

1 + |u| + 1

m

∫ 1/b

−1/b

(
1 + |u|)2β+1 du

)
� 1

c
,

which shows Eb =OP (m−1/2b−β−1 ∨ 1).

5.1.3. Proof of Proposition 2.5

The following lemma establishes a bound for the bias term of the estimator for the distribution
function.

Lemma 5.2. Let Assumption A hold with 	 = 〈α〉 + 1, α > 0 and f (·+ qτ ) ∈ Cα([−ζ, ζ ],R).
Then we have

sup
f (·+qτ )∈Cα([−ζ,ζ ],R)

∣∣∣∣∫ qτ

−∞
Kb ∗ f (x)dx −

∫ qτ

−∞
f (x)dx

∣∣∣∣≤ Dbα+1,

where D = (R/(〈α〉 + 1)! + 2ζ−α−1)‖K(x)xα+1‖L1 .

Proof. Let F(x) := ∫ x

−∞ f (y)dy. Fubini’s theorem yields∫ qτ

−∞
Kb ∗ f (x)dx =

∫ ∞

−∞
Kb(x)F (qτ − x)dx,
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where Kb(x) := b−1K(x/b), x ∈ R. Therefore, the bias depends only locally on f . Note that
F(· + qτ ) ∈ Cα+1([−ζ, ζ ]) by assumption. A Taylor expansion of F around qτ yields for
|bz| < ζ

F(qτ − bz) − F(qτ ) = −bzF ′(qτ ) + · · · + (−bz)〈α〉+1 F (〈α〉+1)(qτ − κbz)

(〈α〉 + 1)! ,

where 0 ≤ κ ≤ 1. Using the fact that
∫

xkK(x)dx = 0 for k = 1, . . . , 〈α〉 + 1 and the properties
of the class, we obtain∣∣∣∣∫ qτ

−∞
(
Kb ∗ f (x) − f (x)

)
dx

∣∣∣∣
=
∣∣∣∣∫ ∞

−∞
K(z)

(
F(qτ − bz) − F(qτ )

)
dz

∣∣∣∣
≤
∣∣∣∣∫|z|<ζ/b

K(z)(−bz)〈α〉+1 F (〈α〉+1)(qτ − κbz) − F (〈α〉+1)(qτ )

(〈α〉 + 1)! dz

∣∣∣∣
+
∫

|z|≥ζ/b

∣∣K(z)
∣∣∣∣F(qτ − bz) − F(qτ )

∣∣dz

≤ b〈α〉+1R

(〈α〉 + 1)!
∫ ∞

−∞
∣∣K(z)

∣∣|z|〈α〉+1|κbz|α+1−(〈α〉+1) dz + 2
∫

|z|≥ζ/b

∣∣Kb(z)
∣∣dz

≤
(

bα+1R

(〈α〉 + 1)! + 2

(
b

ζ

)α+1)∫ ∞

−∞
∣∣K(z)

∣∣|z|α+1 dz,

and the statement follows. �

Proof of Proposition 2.5. We will show uniformly over f ∈ Cα(R, r, ζ ) and fε ∈ Dβ(R,γ ) for
any b such that (n ∧ m)b2β+1 → ∞∣∣∣∣∫ qτ

−∞
(
f̃b(x) − f (x)

)
dx

∣∣∣∣
=OP

(
bα+1 + 1√

(n ∧ m)(b2β−1 ∧ 1)
+ 1√

(n ∧ m)(mb2β+2 ∧ 1)

)
.

The third term on the right-hand side is of smaller or of the same order than the second one if
and only if (mb1∧2β+2)−1 � 1. Hence, when α ≥ 1/2 the asymptotically optimal choice b =
(n ∧ m)−1/(2α+2(β∨1/2)+1) yields∣∣∣∣∫ qτ

−∞
(
f̃b(x) − f (x)

)
dx

∣∣∣∣=OP

(
(n ∧ m)−(α+1)/(2α+2β+1) ∨ (n ∧ m)−1/2).
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Step 1: As usual, we decompose the error into a deterministic error term and a stochastic error
term, writing ϕX =Ff ,∣∣∣∣∫ qτ

−∞
(
f̃b(x) − f (x)

)
dx

∣∣∣∣
≤
∣∣∣∣∫ qτ

−∞
(
Kb ∗ f (x) − f (x)

)
dx

∣∣∣∣+ ∣∣∣∣∫ qτ

−∞
F−1

[
ϕn(u)ϕK(bu)

ϕε,m(u)
− ϕK(bu)ϕX(u)

]
(x)dx

∣∣∣∣.
The bias is of order O(bα+1) by Lemma 5.2. As discussed above, we decompose the stochastic
error into a singular part and a continuous one using a smooth truncation function. Let ac ∈
C∞(R) satisfy ac(x) = 1 for x ≤ −1 and ac(x) = 0 for x ≥ 0 and define as(x) := 1(−∞,0](x) −
ac(x). Then ∫ qτ

−∞
F−1

[
ϕK(bu)

(
ϕn(u)

ϕε,m(u)
− ϕX(u)

)]
(x)dx

=
∫
R

as(x)F−1
[
ϕK(bu)

(
ϕn(u)

ϕε,m(u)
− ϕX(u)

)]
(x + qτ )dx

(21)

+
∫
R

ac(x)F−1
[
ϕK(bu)

(
ϕn(u)

ϕε,m(u)
− ϕX(u)

)]
(x + qτ )dx

=: Ts + Tc.

The singular term Ts will be treated in the next step while we bound the continuous, but not
integrable term Tc in Step 3.

Step 2: Lemma 5.1 shows that the probability of the complement Bε(b)c of Bε(b) from (3)
converges to zero. We obtain for any c > 0 with Markov’s inequality

P

(
|Ts | > c√

(n ∧ m)(b2β−1 ∨ 1)

)
≤ P

(
Bε(b) ∩

{
|Ts | > c√

(n ∧ m)(b2β−1 ∨ 1)

})
+ P

(
Bε(b)c

)
≤ 1

c

√
(n ∧ m)

(
b2β−1 ∨ 1

)
E
[|Ts |1Bε(b)

]+ o(1).

To bound E[|Ts |1Bε(b)], we first note by Plancherel’s identity

Ts = 1

2π

∫
R

Fas(u)e−iuqτ ϕK(bu)

(
ϕn(u)

ϕε,m(u)
− ϕX(u)

)
du

= 1

2π

∫
R

Fas(u)e−iuqτ ϕK(bu)

(
ϕn(u)

ϕε(u)
− ϕX(u)

)
du

(22)

+ 1

2π

∫
R

Fas(u)e−iuqτ
ϕK(bu)ϕn(u)

ϕε(u)

(
ϕε(u)

ϕε,m(u)
− 1

)
du

=: 1

2π
(Ts,x + Ts,ε).
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The first term, Ts,x corresponds to the error due to the unknown density f while Ts,ε is dominated
by the error of the estimator ϕε,m. Since as is of bounded variation and has compact support, there
is a constant As ∈ (0,∞) such that |Fas(u)| ≤ As(1 + |u|)−1. Plancherel’s identity yields

Var(Ts,x) = E
[|Ts,x |2

]≤ 1

n
E

[∣∣∣∣∫
R

Fas(u)e−iuqτ
ϕK(bu)

ϕε(u)
eiuY1 du

∣∣∣∣2]

≤ 4π2

n
‖fY ‖∞

∥∥∥∥F−1
[
Fas(u)

ϕK(bu)

ϕε(u)

]∥∥∥∥2

L2
(23)

≤ 4π2

n
‖K‖2

L1‖fY ‖∞
∫ 1/b

−1/b

|Fas(u)|2
|ϕε(u)|2 du

≤ 4π2

n
‖K‖2

L1A
2
s‖fY ‖∞

∫ 1/b

−1/b

1

(1 + |u|)2|ϕε(u)|2 du.

Using the assumption ‖f ‖∞ < R and fε ∈ Dβ(R,γ ), we get

E
[|Ts,x |2

]
� 1

n

∫ 1/b

−1/b

(
1 + |u|)2β−2 du � 1

nb2β−1
∨ 1

n
. (24)

To bound Ts,ε , we will use the following version of a lemma by Neumann [21]: by the defini-
tion (3) of Bε(b) and applying (16) it holds

E

[∣∣∣∣ ϕε(u)

ϕε,m(u)
− 1

∣∣∣∣21Bε(b)

]

≤ 2E

[ |ϕε,m(u) − ϕε(u)|2
|ϕε(u)|2

]
+ 2E

[ |ϕε,m(u) − ϕε(u)|4
|ϕε(u)ϕε,m(u)|2 1Bε(b)

]
(25)

≤ 2E[|ϕε,m(u) − ϕε(u)|2]
|ϕε(u)|2 + 2mE[|ϕε,m(u) − ϕε(u)|4]

|ϕε(u)|2

≤ 18

m|ϕε(u)|2 .

We estimate with the Cauchy–Schwarz inequality

T 2
s,ε ≤ ‖K‖2

L1

∫ 1/b

−1/b

∣∣∣∣ϕn(u)

ϕε(u)

∣∣∣∣2 du

∫ 1/b

−1/b

∣∣Fas(u)
∣∣2∣∣∣∣ ϕε(u)

ϕε,m(u)
− 1

∣∣∣∣2 du

≤ 2‖K‖2
L1

(
‖ϕX‖2

L2 +
∫ 1/b

−1/b

|ϕn(u) − ϕY (u)|2
|ϕε(u)|2 du

)

×
∫ 1/b

−1/b

∣∣Fas(u)
∣∣2∣∣∣∣ ϕε(u)

ϕε,m(u)
− 1

∣∣∣∣2 du.
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Applying again the Cauchy–Schwarz inequality, Fubini’s theorem, the decay of Fas and (25),
we obtain

E
[|Ts,ε|1Bε(b)

]
≤ √

2‖K‖L1

(
‖ϕX‖2

L2 +
∫ 1/b

−1/b

E[|ϕn(u) − ϕY (u)|2]
|ϕε(u)|2 du

)1/2

(26)

×
(∫ 1/b

−1/b

A2
s

(1 + |u|)2
E

[∣∣∣∣ ϕε(u)

ϕε,m(u)
− 1

∣∣∣∣21Bε(b)

]
du

)1/2

≤
√

36‖K‖L1As√
m

(
‖ϕX‖2

L2 +
∫ 1/b

−1/b

du

n|ϕε(u)|2
)1/2(∫ 1/b

−1/b

du

(1 + |u|)2|ϕε(u)|2
)1/2

.

The assumptions ‖f ‖∞ � 1, |ϕε(u)| � (1 + |u|)−β and n−1b−2β−1 → 0 for the optimal b = b∗
yield

E
[|Ts,ε|1Bε(b)

]
�
(

1 + 1

nb2β+1

)1/2( 1√
mbβ−1/2

∨ 1√
m

)
� 1√

mbβ−1/2
∨ 1√

m
.

Together with (24) and (22) this implies the optimal order

E
[|Ts |1Bε(b)

]
�
(
(n ∧ m)

(
b2β−1 ∧ 1

))−1/2
.

Step 3: The empirical measures of (Yj ) and (εk) are given by μY,n := 1
n

∑n
j=1 δYj

and με,m :=
1
m

∑m
k=1 δεk

, respectively, with Dirac measure δx in x ∈ R. We can write

Tc =
∫
R

ac(x)F−1
[

ϕK(bu)

ϕε,m(u)

(
ϕn(u) − ϕε,m(u)ϕX(u)

)]
(x + qτ )dx

= F−1
[

ϕK(−bu)

ϕε,m(−u)

(
ϕn(−u) − ϕε,m(−u)ϕX(−u)

)] ∗ ac(−qτ )

= F−1
[

ϕK(bu)

ϕε,m(u)

]
∗ (μY,n ∗ ac(−·) − με,m ∗ f ∗ ac(−·))(qτ ).

Applying Lemma 2.2, we obtain on Bε(b) for any integer s > β

|Tc| ≤
∥∥∥∥F−1

[
ϕK(bu)

ϕε,m(u)

]
∗ (μY,n ∗ ac(−·) − με,m ∗ f ∗ ac(−·))∥∥∥∥∞

≤ Eb

∥∥μY,n ∗ ac(−·) − με,m ∗ f ∗ ac(−·)∥∥
Cs

� Eb

s∑
l=0

∥∥μY,n ∗ a(l)
c (−·) − με,m ∗ f ∗ a(l)

c (−·)∥∥∞.
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Therefore,

P

(
Bε(b) ∩

{
|Tc| > c√

(n ∧ m)(
√

mbβ+1 ∧ 1)

})
≤ P

(
Bε(b) ∩

{
Eb >

(
c

mb2β+2 ∧ 1

)1/2})
+ P

(
s∑

l=0

∥∥μY,n ∗ a(l)
c − με,m ∗ f ∗ a(l)

c

∥∥∞ >

(
c

n ∧ m

)1/2
)

=: P1 + P2.

By Lemma 2.2, more precisely estimate (20), the first probability is of the order 1/c. To
bound P2, it suffices to show ‖μY,n ∗ a

(l)
c − με,m ∗ f ∗ a

(l)
c ‖∞ = OP ((n ∧ m)−1/2) for all

l = 0, . . . , s. Denoting the density of Yj as fY = f ∗ fε , we decompose∥∥μY,n ∗ (a(l)
c (−·))− με,m ∗ f ∗ (a(l)

c (−·))∥∥∞
≤ ∥∥μY,n ∗ (a(l)

c (−·))− fY ∗ (a(l)
c (−·))∥∥∞

+ ∥∥fε ∗ (f ∗ (a(l)
c (−·)))− με,m ∗ (f ∗ (a(l)

c (−·)))∥∥∞

≤
∥∥∥∥∫ a(l)

c (y − ·)μY,n(dy) −E
[
a(l)
c (Y1 − ·)]∥∥∥∥∞

+
∥∥∥∥E[(f ∗ a(l)

c

)
(ε1 − ·)]−

∫ (
f ∗ a(l)

c

)
(z − ·)με,m(dz)

∥∥∥∥∞
.

By construction all a
(l)
c , l ≥ 1, have compact support and are bounded. Therefore, ‖a(l)

c ‖L1 <

∞,‖(ac ∗ f )(l)‖L1 ≤ ‖a(l)
c ‖L1‖f ‖L1 < ∞ and thus a

(l)
c (·− t) and a

(l)
c ∗ f (·− t), l ≥ 0, are of

bounded variation for all t ∈ R. Since the set of functions with bounded variation is a Donsker
class (cf. Theorem 2.1 by Dudley [7]), the two terms in the previous display converge in proba-
bility to a tight limit with

√
n-rate and

√
m-rate, respectively. Consequently,

√
n ∧ m

∥∥μY,n ∗ (a(l)
c (−·))− με,m ∗ f ∗ (a(l)

c (−·))∥∥∞ =OP (1)

for all 	 = 0, . . . , s and P2 is arbitrary small for c large. �

For the adaptive estimator, we will later need the following uniform version of Proposition 2.5.

Corollary 5.3. Suppose Assumption A holds with l = 〈α〉 + 1 and let the set B = Bn be given
by (9). For critical values (δb)b∈B satisfying δb > 3Dbα+1 and for any sequence (xn)n with
xn → ∞ arbitrarily slowly we obtain uniformly in Cα(R, r, ζ ) and Dβ(R,γ )

P

(
∃b ∈ B:

∣∣∣∣∫ qτ

−∞
(
f̃b(x) − f (x)

)
dx

∣∣∣∣> δb

)
=O

(∑
b∈B

(
1

δb

(
(n ∧ m)

(
b2β−1 ∧ 1

))−1/2 + 1

δ2
b

xn

(n ∧ m)(mb2β+2 ∧ 1)

))
+ o(1).
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In particular, if |B| � logn,maxb∈B b → 0 and minb∈B(n ∧ m)b2β+1 → ∞, then

sup
b∈B

∣∣∣∣∫ qτ

−∞
(
f̃b(x) − f (x)

)
dx

∣∣∣∣ P→ 0.

Proof. With the notation of the proof of Proposition 2.5 and applying Lemma 5.2, we obtain∣∣∣∣∫ qτ

−∞
(
f̃b(x) − f (x)

)
dx

∣∣∣∣ ≤
∣∣∣∣∫ qτ

−∞
(
Kb ∗ f (x) − f (x)

)
dx

∣∣∣∣+ |Ts | + |Tc|

≤ Dbα+1 + |Ts | + |Tc|,

where Ts and Tc are the stochastic errors of the singular part and of the continuous part, respec-
tively, as defined in (21). Since both terms depend on b let us write Ts(b) and Tc(b). By definition
b1 ≤ b implies Bε(b1) ⊆ Bε(b). Then, Step 2 in the previous proof shows

P(∃b ∈ B: Ts > δb/3) ≤
(∑

b∈B
P
({

Ts(b) > δb/3
}∩ Bε(b1)

))+ o(1)

≤
(∑

b∈B
δ−1
b E

[∣∣Ts(b)
∣∣1Bε(b1)

])+ o(1)

�
(∑

b∈B
δ−1
b

(
(n ∧ m)

(
b2β−1 ∧ 1

))−1/2
)

+ o(1).

Following Step 3 in the previous proof, we obtain with the random operator norm Eb , for some
integer s > β and for a diverging sequence (x(n∧m))

P (∃b ∈ B: Tc > δb/3)

≤ P
({∃b ∈ B: Eb > δb(n ∧ m)1/2/

(
3(x(n∧m))

1/2)}∩ Bε(b1)
)+ P

(
Bε(b1)

c
)

+ P

({
s∑

l=0

∥∥μY,n ∗ a(l)
c − με,m ∗ f ∗ a(l)

c

∥∥∞ >

(
x(n∧m)

(n ∧ m)

)1/2
})

≤
(∑

b∈B
P
({
Eb > δb(n ∧ m)1/2/

(
3(x(n∧m))

1/2)}∩ Bε(b1)
))+ o(1)

�
(∑

b∈B

x(n∧m)

δ2
b(n ∧ m)(mb2β+2 ∧ 1)

)
+ o(1),

where we have used (20) in the last estimate. �
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5.1.4. Proof of Proposition 2.6

Without loss of generality, we set qτ = 0. Recall definition (7) of the pseudo-estimator f̂b which
knows the error distribution. We estimate

sup
x∈(−ζ,ζ )

∣∣f̃b(x) − f (x)
∣∣ ≤ sup

x∈(−ζ,ζ )

∣∣f̂b(x) − f (x)
∣∣+ ‖f̃b − f̂b‖∞

≤ sup
x∈(−ζ,ζ )

∣∣f̂b(x) − f (x)
∣∣+ ∥∥∥∥ϕK(bu)ϕn(u)

ϕε(u)

(
ϕε(u)

ϕε,m(u)
− 1

)∥∥∥∥
L1

.

The analysis of the first term is very classical. However, we are not aware of any reference in the
given setup. Both terms will be treated separately in the following two steps. All estimates will
be uniform in f ∈ Cα(R, r, ζ ) and fε ∈Dβ(R,γ ).

Step 1: Let b ∈ (0,1). We will show that there are constants d,D > 0 such that for any t >

d(bα + (nb2β+1)−2)

P
(

sup
x∈(−ζ,ζ )

∣∣f̂b(x) − f (x)
∣∣> t

)
≤ 2 exp

(
2 logn − Dnb(2β+1)

(
t ∧ t2)). (27)

Then the result follows by choosing t ∼ bα + (
logn

nb2β+1 )1/2. Let us define xk := −ζ + kn−2 for

k = 1, . . . , �2ζn2� =: M as well as

χj (x) := F−1
[
ϕK(bu)

ϕε(u)
eiuYj

]
(x) −E

[
F−1

[
ϕK(bu)

ϕε(u)
eiuYj

]
(x)

]
= Kb ∗F−1

[
1[−b−1,b−1](u)

eiuYj

ϕε(u)

]
(x) − Kb ∗ f (x), x ∈ R.

Therefore, f̂b(x) −E[f̂b(x)] = 1
n

∑n
j=1 χj (x) and thus

sup
|x|<ζ

∣∣f̂b(x) − f (x)
∣∣ ≤ sup

|x|<ζ

∣∣E[f̂b(x)
]− f (x)

∣∣+ sup
|x|<ζ

∣∣f̂b(x) −E
[
f̂b(x)

]∣∣
≤ sup

|x|<ζ

∣∣E[f̂b(x)
]− f (x)

∣∣+ sup
|x|<ζ

min
k=1,...,M

∣∣∣∣∣1

n

n∑
j=1

(
χj (x) − χj (xk)

)∣∣∣∣∣
+ max

k=1,...,M

∣∣∣∣∣1

n

n∑
j=1

χj (xk)

∣∣∣∣∣
=: B + V1 + V2.

The bias term B can be bounded as in the classical density estimation setup (cf. also Fan [8],
Thms. 1 and 2), noting that the constant does not depend on x ∈ (−ζ, ζ ). Hence, |B| � bα .
Using a continuity argument and the properties of fε ∈ Dβ(R,γ ), the term V1 can be bounded
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by

|V1| ≤ 1

n2

∥∥∥∥∥1

n

n∑
j=1

χ ′
j

∥∥∥∥∥∞

= 1

n3

∥∥∥∥∥
n∑

j=1

(
K ′

b

) ∗
(
F−1

[
1[−b−1,b−1](u)

eiuYj

ϕε(u)

]
− f

)∥∥∥∥∥∞

≤ 1

n2b

∥∥K ′∥∥
L1

(∥∥1[−b−1,b−1]ϕ−1
ε

∥∥
L1 + ‖f ‖∞

)
� n−2b−(β+2) �

(
nb2β+1)−2

.

Therefore, |B + V1| ≤ D1(b
α + (nb2β+1)−2) for some constant D1 > 0. We obtain for all t >

d(bα + (nb2β+1)−2) with d := 2D1

P
(

sup
|x|<ζ

∣∣f̂b(x) − f (x)
∣∣> t

)
≤ P

(
max

k=1,...,M

∣∣∣∣∣1

n

n∑
j=1

χj (xk)

∣∣∣∣∣> t

2

)

≤
M∑

k=1

P

(∣∣∣∣∣1

n

n∑
j=1

χj (xk)

∣∣∣∣∣> t

2

)
.

Finally, we will apply Bernstein’s inequality. To this end, we estimate

max
j,k

∣∣χj (xk)
∣∣≤ 2‖Kb‖L1

∥∥1[−b−1,b−1]ϕ−1
ε

∥∥
L1 ≤ D2b

−(β+1),

with some constant D2 > 0. Using Plancherel’s identity, the variance can be estimated by

Var
(
χj (xk)

) = E

[
F−1

[
ϕK(bu)

ϕε(u)
eiuYj

]2

(xk)

]
− (Kb ∗ f )2(xk)

≤ 1

2π
‖f ‖∞

∥∥∥∥ϕK(−bu)

ϕε(−u)

∥∥∥∥2

L2
� D3b

−(2β+1),

for some D3 > 0. Then Bernstein’s inequality yields

P
(

sup
x∈(−ζ,ζ )

∣∣f̂b(x) − f (x)
∣∣> t

)
≤

M∑
k=1

P

(∣∣∣∣∣
n∑

j=1

χj (xk)

∣∣∣∣∣> nt/2

)

≤ 2 exp

(
logM − nb(2β+1)t2

8(D3 + D2t/3)

)
≤ 2 exp

(
2 logn − Dnb(2β+1)

(
t ∧ t2)),

with some constant D > 0.
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Step 2: By the Cauchy–Schwarz inequality, we have

E

[∥∥∥∥ϕK(bu)ϕn(u)

ϕε(u)

(
ϕε(u)

ϕε,m(u)
− 1

)∥∥∥∥
L1

1Bε(b)

]

�
(
E

[∥∥∥∥ϕn(u)

ϕε(u)
1[−1/b,1/b](u)

∥∥∥∥2

L2

]
E

[∥∥∥∥( ϕε(u)

ϕε,m(u)
− 1

)
1[−1/b,1/b](u)

∥∥∥∥2

L2
1Bε(b)

])1/2

≤
(

‖ϕX‖L2 +
(∫ 1/b

−1/b

E[|ϕn(u) − ϕY (u)|2]
|ϕε(u)|2 du

)1/2)

×
(∫ 1/b

−1/b

E

[∣∣∣∣ ϕε(u)

ϕε,m(u)
− 1

∣∣∣∣21Bε(b)

]
du

)1/2

�
(

‖ϕX‖L2 +
(

1

nb2β+1

)1/2)( 1

mb2β+1

)1/2

,

where we have used (25) for the last step. Therefore, the additional error due to the unknown
error distribution satisfies for any δ > 0 by Markov’s inequality and by Lemma 5.1

P

(∥∥∥∥ϕK(bu)ϕn(u)

ϕε(u)

(
ϕε(u)

ϕε,m(u)
− 1

)∥∥∥∥
L1

> δ

)
≤ 1

δ
E

[∥∥∥∥ϕK(bu)ϕn(u)

ϕε(u)

(
ϕε(u)

ϕε,m(u)
− 1

)∥∥∥∥
L1

1Bε(b)

]
+ P

(
inf|u|≤1/b

∣∣ϕε,m(u)
∣∣< m−1/2

)
(28)

� 1

δ

(
1

mb2β+1

)1/2

+ o(1)

and thus ‖f̃b − f̂b‖∞ =OP ((mb2β+1)−1/2). Note that the second term does not depend on δ and
thus o(1) is sufficient.

5.1.5. Proof of Theorems 2.7 and 2.8

We start with a lemma that establishes consistency of the quantile estimator and then prove the
theorems. To apply this lemma also for the adaptive result, we prove convergence uniformly over
a set of bandwidths.

Lemma 5.4. Grant Assumption A with 	 = 1. Let B be a set of bandwidths satisfying |B| �
logn,maxB → 0 and minb∈B(logn)2/((n ∧ m)b2β+1) → 0. Then

sup
f ∈Cα(R,r,ζ,Un)

sup
fε∈Dβ(R,γ )

P
(

sup
b∈B

|̃qτ,b − qτ | > δ
)

→ 0 for all δ > 0.

Proof. We follow the general strategy of the proof of Theorem 5.7 by van der Vaart [31] in
the classical M-estimation setting. Recall the definition of M̃b given in (2) and its deterministic
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counterpart M(η) = ∫ η

−∞ f (x)dx − τ . To this end, we first claim that

sup
b∈B

M̃b(̃qτ,b) = oP (1), (29)

Since q̃τ,b minimizes M̃b on the interval [−Un,Un] for Un � logn and M(qτ ) = 0 with qτ ∈
[−Un,Un], Corollary 5.3 implies for any δ > 0

P
(

sup
b∈B

∣∣M̃b(̃qτ,b)
∣∣> δ

)
≤ P

(
sup
b∈B

∣∣M̃b(qτ ) − M(qτ )
∣∣> δ

)
(30)

= P

(
sup
b∈B

∣∣∣∣∫ qτ

−∞
(
f̃b(x) − f (x)

)
dx

∣∣∣∣> δ

)
→ 0,

which gives (29).
Now, we show that f satisfies the uniqueness condition

inf
η : |η−qτ |≥δ

∣∣M(η)
∣∣> 0 for any δ > 0. (31)

By the Hölder regularity M ′(η) = f (η) ≥ f (qτ ) − |f (qτ ) − f (η)| ≥ r − R|qτ − η|1∧α ≥ r/2
for |qτ − η| ≤ ( r

2R
)1∨α−1

. Without loss of generality, we can assume δ ≤ ( r
2R

)1∨α−1
, otherwise

consider δ ∧ ( r
2R

)1∨α−1
. Recall that qτ is given by the root of M and that M is increasing. Hence,

we obtain

inf
η : |η−qτ |≥δ

∣∣M(η)
∣∣ = inf

η∈{−δ,δ}
∣∣M(qτ − η) − M(qτ )

∣∣≥ δ inf
η : |η−qτ |≥δ

M ′(η) ≥ δr

2
.

Applying (29) and (31) yield

P
(

sup
b∈B

|̃qτ,b − qτ | > δ
)

≤ P
(

sup
b∈B

∣∣M(̃qτ,b)
∣∣≥ δr/2

)
= P

(
sup
b∈B

∣∣M(̃qτ,b) − M̃b(̃qτ,b)
∣∣≥ δr/3

)
+ o(1)

(32)
≤ P

(
sup
b∈B

sup
η∈[−Un,Un]

∣∣M(η) − M̃b(η)
∣∣≥ δr/3

)
+ o(1)

= P

(
sup
b∈B

sup
η∈[−Un,Un]

∣∣∣∣∫ η

−∞
(
f̃b(x) − f (x)

)
dx

∣∣∣∣≥ δr/3

)
+ o(1).

Hence, it remains to show uniform consistency of
∫ η

−∞ f̃b(x)dx. Write∣∣∣∣∫ η

−∞
(
f̃b(x) − f (x)

)
dx

∣∣∣∣ ≤
∣∣∣∣∫ η

−∞
(
Kb ∗ f (x) − f (x)

)
dx

∣∣∣∣+ ∣∣∣∣∫ η

−∞
(
f̃b(x) − Kb ∗ f (x)

)
dx

∣∣∣∣
= ∣∣Kb ∗ F(η) − F(η)

∣∣+ ∣∣∣∣∫ η

−∞
(
f̃b(x) − Kb ∗ f (x)

)
dx

∣∣∣∣.
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We have |Kb ∗ F(η) − F(η)| = | ∫ Kb(z)(F (η − z) − F(η))dz| ≤ b‖f ‖∞‖zK(z)‖L1 by the
boundedness of f . Further note for η ∈ [−Un,Un]∣∣∣∣∫ η

−∞
(
f̃b(x) − Kb ∗ f (x)

)
dx

∣∣∣∣
≤
∣∣∣∣∫ qτ

−∞
(
f̃b(x) − Kb ∗ f (x)

)
dx

∣∣∣∣+ ∣∣∣∣∫ qτ ∨η

qτ ∧η

(
f̃b(x) − Kb ∗ f (x)

)
dx

∣∣∣∣
≤
∣∣∣∣∫ qτ

−∞
(
f̃b(x) − Kb ∗ f (x)

)
dx

∣∣∣∣+√
2Un

(∫ ∞

−∞
(
f̃b(x) − Kb ∗ f (x)

)2 dx

)1/2

,

where we have used the Cauchy–Schwarz inequality for the last step. Hence, together with (32)
we obtain for all δ > 6‖f ‖∞‖zK(z)‖L1/r supb∈B b

P
(

sup
b∈B

|̃qτ,b − qτ | > δ
)

≤ P

(
sup
b∈B

sup
η∈[−Un,Un]

∣∣∣∣∫ η

−∞
(
f̃b(x) − f (x)

)
dx

∣∣∣∣≥ δr/3

)
+ o(1)

≤ P

(
sup
b∈B

∣∣∣∣∫ qτ

−∞
(
f̃b(x) − Kb ∗ f (x)

)
dx

∣∣∣∣≥ δr

9

)

+ P

(
sup
b∈B

∫
R

(
f̃b(x) − Kb ∗ f (x)

)2 dx ≥ δ2r2

162Un

)
.

Corollary 5.3 shows under the conditions on B that

P

(
sup
b∈B

∣∣∣∣∫ qτ

−∞
(
f̃b(x) − Kb ∗ f (x)

)
dx

∣∣∣∣> δr/9

)
→ 0.

Hence, it remains to show

P

(
sup
b∈B

∫
R

(
f̃b(x) − Kb ∗ f (x)

)2 dx > δ2r2/(162Un)

)
→ 0. (33)

On the event Bε(b), (33) follows basically from the work of Neumann [21]. More precisely,
Plancherel’s equality, (25) and the Cauchy–Schwarz inequality yield for any b ∈ B

E

[∫
R

(
f̃b(x) − Kb ∗ f (x)

)2 dx1Bε(b)

]

= 1

2π

∫
R

∣∣ϕK(bu)
∣∣2E[∣∣∣∣ ϕn(u)

ϕε,m(u)
− ϕY (u)

ϕε(u)

∣∣∣∣21Bε(b)

]
du

�
∫ 1/b

−1/b

(
E

[ |ϕn(u) − ϕY (u)|2
|ϕε,m(u)|2 1Bε(b)

]
+ ∣∣ϕY (u)

∣∣2E[∣∣∣∣ 1

ϕε,m(u)
− 1

ϕε(u)

∣∣∣∣21Bε(b)

])
du
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�
∫ 1/b

−1/b

(
E

[ |ϕn(u) − ϕY (u)|2
|ϕε(u)|2

(
1 + m

∣∣ϕε,m(u) − ϕε(u)
∣∣2)]+ |ϕY (u)|2

m|ϕε(u)|4
)

du

≤
∫ 1/b

−1/b

1

|ϕε(u)|2

×
((

E
[∣∣ϕn(u) − ϕY (u)

∣∣4]E[2 + 2m2
∣∣ϕε,m(u) − ϕε(u)

∣∣4])1/2 + |ϕX(u)|2
m

)
du

�
∫ 1/b

−1/b

∣∣ϕε(u)
∣∣−2(

n−1 + m−1)du � 1

(n ∧ m)b2β+1
.

Using Bε(minB) ⊆ Bε(b) and Lemma 5.1, (33) follows from Markov’s inequality

P

(
sup
b∈B

∫
R

(
f̃b(x) − Kb ∗ f (x)

)2 dx > δ2r2/(162Un)

)
� Un

δ2

∑
b∈B

E

[∫
R

(
f̃b(x) − Kb ∗ f (x)

)2 dx1Bε(minB)

]
+ P

((
Bε(minB)

)c)
� (logn)2

δ2(n ∧ m)b2β+1
+ o(1). �

Proof of Theorem 2.7. A Taylor expansion yields

q̃τ,b − qτ = M̃b(̃qτ,b) − M̃b(qτ )

M̃ ′
b(q

∗
τ )

= M̃b(̃qτ,b) − ∫ qτ

−∞ f̃b(x)dx + τ

f̃b(q∗
τ )

(34)

= M̃b(̃qτ,b) − ∫ qτ

−∞(f̃b(x) − f (x))dx

f̃b(q∗
τ )

,

for some intermediate point q∗
τ between qτ and q̃τ,b . By Proposition 2.5 and (30), the numerator

in the above display is of order OP (n−(α+1)/(2α+2β+1)) for the optimal bandwidth b∗. For the
denominator, we will show f̃b(q

∗
τ ) = f (qτ ) + op(1) which completes the proof. Since f (· +

qτ ) ∈ Cα([−ζ, ζ ],R), we obtain |f (x + qτ ) − f (qτ )| < t/2 for all |x| ≤ ( t
2R

)1∨α−1 ∧ ζ =: δ for
any t > 0. Therefore,

P
(∣∣f̃b

(
q∗
τ

)− f (qτ )
∣∣> t

)
≤ P

(
sup

x∈[−δ,δ]
∣∣f̃b(x + qτ ) − f (qτ )

∣∣> t
)

+ P
(|̃qτ,b − qτ | > δ

)
(35)

≤ P
(

sup
x∈[−δ,δ]

∣∣f̃b(x + qτ ) − f (x + qτ )
∣∣> t/2

)
+ P

(|̃qτ,b − qτ | > δ
)
.
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Checking that the bandwidth satisfies b → 0 and log(n)/(nb2β+1) → 0 for n → ∞, the first
term on the right-hand side above converges to zero by the uniform consistency proved in Propo-
sition 2.6. The second one vanishes asymptotically by Lemma 5.4. �

Proof of Theorem 2.8. Under the smoothness condition the interval (τ1, τ2) coincides with a
bounded interval of quantiles (qτ1 , qτ2). Noting that all our estimates are independent of the
quantile, Theorem 2.8 can be proved along the same lines as Theorem 2.7 with only minor
adaptation to supτ∈(τ1,τ2)

given a uniform version of Proposition 2.5: uniformly over f in the
class defined in the theorem and fε ∈Dβ(R,γ ) for any b such that (n ∧ m)b2β+1 → ∞ it holds

sup
τ∈(τ1,τ2)

∣∣∣∣∫ qτ

−∞
(
f̃b(x) − f (x)

)
dx

∣∣∣∣
(36)

=OP

(
bα+1 +

(
logn

n
∨ 1

m

)1/2(
b−β+1/2 ∨ 1

)+
(

1

n
∨ 1

m

)1/2(
m−1/2b−β−1 ∨ 1

))
.

Hence, when α ≥ 1/2 the asymptotically optimal choice b = (
logn

n
∧ 1

m
)1/(2α+2(β∨1/2)+1) yields∣∣∣∣∫ qτ

−∞
(
f̃b(x) − f (x)

)
dx

∣∣∣∣=OP

((
logn

n
∨ 1

m

)(α+1)/(2α+2β+1)

∨
(

logn

n
∨ 1

m

)1/2)
.

The result (36) can be obtained as Proposition 2.5 except for the term Ts,x = Ts,x(qτ ), defined
in (22), which will be treated in the following. Defining the grid τ1 = σ0 ≤ · · · ≤ σM = τ2 such
that qσk+1 − qσk

≤ (qτ2 − qτ1)/M for k = 1, . . . ,M and M ∈ N, we decompose for any c > 0

P
(

sup
τ∈(τ1,τ2)

∣∣Ts,x(qτ )
∣∣> c

)
≤ P

(
max

k=1,...,M

∣∣Ts,x(qσk
)
∣∣> c/2

)
(37)

+ P
(

sup
q1,q2∈(qτ1 ,qτ2 ) :

|q1−q2|≤(qτ2 −qτ1 )/(2M)

∣∣Ts,x(q1) − Ts,x(q2)
∣∣> c/2

)
.

For the first term, we deduce a concentration inequality. We write

1

2π
Ts,x = 1

2π
Ts,x(qτ ) = 1

n

n∑
j=1

(
ξj,b(qτ ) −E

[
ξj,b(qτ )

])
with

ξj,b(qτ ) =
∫ 0

−∞
as(x)F−1

[
ϕK(bu)eiuYj

ϕε(u)

]
(x + qτ )dx =F−1

[
Fas(−u)

ϕK(bu)eiuYj

ϕε(u)

]
(qτ ).

Uniformly in qτ we have the deterministic bound

∣∣ξj,b(qτ )
∣∣≤ 1

2π

∫ 1/b

−1/b

∣∣Fas(−u)
∣∣∣∣∣∣ϕK(bu)

ϕε(u)

∣∣∣∣du �
∫ 1/b

−1/b

1

(1 + |u|)|ϕε(u)| du � b−β. (38)
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Hence, |ξj,b(qτ ) −E[ξj,b(qτ )]| � b−β . Since the variance of Ts,x(qτ ) is bounded by (23), Bern-
stein’s inequality (e.g., Massart [19], Prop. 2.9) yields for some constant C > 0 independent
of qτ

P
(∣∣Ts,x(qτ )

∣∣≥ κ
(
n−1/2b−β+1/2 ∨ n−1/2))≤ 2 exp

(
− Cκ2

1 + κ(nb)−1/2

)
.

For the second term on the right-hand side of (37), we estimate

∣∣Ts,x(q1) − Ts,x(q2)
∣∣ ≤

∥∥∥∥(F−1
[
Fas(u)

ϕK(bu)

ϕε(u)

(
ϕn(u) − ϕY (u)

)])′∥∥∥∥∞
|q1 − q2|

≤ |q1 − q2|
2π

∫
R

|u|∣∣Fas(u)
∣∣ |ϕK(bu)|

|ϕε(u)|
∣∣ϕn(u) − ϕY (u)

∣∣du

� |q1 − q2|
∫ 1/b

−1/b

(
1 + |u|)β ∣∣ϕn(u) − ϕY (u)

∣∣du.

Using Markov’s inequality, we thus estimate (37) by

P
(

sup
τ∈(τ1,τ2)

∣∣Ts,x(qτ )
∣∣> κ

(
n−1/2b−β+1/2 ∨ n−1/2))

� M exp

(
− Cκ2

4 + 2κ(nb)−1/2

)
+ (qτ2 − qτ1)n

1/2(bβ−1/2 ∧ 1)

Mκ
E

[∫ 1/b

−1/b

(
1 + |u|)β ∣∣ϕn(u) − ϕY (u)

∣∣du

]

� M exp

(
− Cκ2

4 + 2κ(nb)−1/2

)
+ (qτ2 − qτ1)(b

−3/2 ∧ (b−β−1))

Mκ
.

Choosing M = n2 and κ = ( 9
C

logn)1/2, we have κ(nb)−1/2 = o(1) and the previous display
converges to zero. Hence,

sup
τ∈(τ1,τ2)

∣∣Ts,x(qτ )
∣∣=OP

((
logn

n

)1/2

b−β+1/2 ∨
(

logn

n

)1/2)
.

�

5.1.6. Proof of Theorem 2.10

To prove the lower bound for the estimation of the distribution function, we can assume without
loss of generality q = 0. For n ≤ m the estimation error of F̄n,m(0) is bounded from below by
the estimation error with known error distribution. A lower bound for the latter is proved by Fan
[8] whose construction can be used in our setting, too.

To prove the lower bound for m < n, we will apply Theorem 2.1 in Tsybakov [30]. To this
end, we construct two alternatives (Fi, fε,i) ∈ C̃α+1(R, r, [−ζ, ζ ]) × Dβ(R,γ ), i = 1,2, such
that the χ2-distance of the corresponding laws of (Y1, . . . , Yn, ε

∗
1, . . . , ε∗

m) is bounded by some



176 I. Dattner, M. Reiß and M. Trabs

small constant and such that |F1(0) − F2(0)| is bounded from below with the right rate. Recall
that the convolution of a c.d.f. F with a function g is defined as F ∗ g(x) = ∫

g(x − y)dF(y).
Following the idea by Neumann [21] our construction will satisfy F1 ∗ fε,1 = F2 ∗ fε,2 and is
thus independent of n.

Step 1: For the construction of the alternatives, we need the following: let f0 be a bounded
density whose corresponding distribution is in Cα+1(R, r, ζ ) satisfying qτ = 0. Let fε,0 be an
inner point of Dβ(R,γ ) with

fε,0(x) �
(
1 + |x|)−γ−2

,
∣∣(Ffε,0)

(k)(u)
∣∣� (

1 + |u|)−β
, k = 0, . . . ,K (39)

for x,u ∈R and an integer K > γ/2 + 1. Let the perturbation g ∈ C∞(R) ∩ L1(R) satisfy∫
R

g(x)dx = 0,

∫ 0

−∞
g(x)dx 
= 0,∥∥(1 ∨ xγ∨1)g(x)

∥∥
L1 < ∞, suppFg ⊆ [−2,−1] ∪ [1,2].

Define gb := b−1g(·/b) for b > 0 and for some a ∈ (0,1), c > 0

F1(x) := a

∫ x

−∞
f0(y)dy + (1 − a)1[2ζ,∞)(x),

fε,1(x) := fε,0 + cbα+1(fε,0 ∗ gb(·+ 2ζ )
)
(x),

(40)

F2(x) := F1(x) + cbα+1
∫ x

−∞
gb(·+ 2ζ ) ∗ F1(y)dy,

fε,2(x) := fε,0(x).

Owing to
∫

gb = 0, Fi are distribution functions admitting Lebesgue densities on [−ζ, ζ ] which
are at least α-Hölder continuous. Estimating ‖f0 ∗ gb‖Cα(R) � ‖f0‖L1‖gb‖Cα(R) � b−α−1,
we infer that dF2 is contained in a closed Hölder ball. Hence, Fi ∈ C̃α+1(R, r, [−ζ, ζ ]) for
c > 0 sufficiently small. fεi

∈ Dβ(R,γ ) can be verified, using
∫

g = 0,‖Fg‖∞ ≤ ‖g‖L1 and
‖(Fg)′(u)(1 + |u|)‖∞ < ∞.

Step 2: To bound the distance |F1(0) − F2(0)| from below we note, using Fubini’s theorem,∫
g = 0 and ‖f0‖∞ < ∞,

F2(0) − F1(0) = bα+1
(

ac

∫
R

∫ −y+2ζ

2ζ

f0(x)gb(y)dx dy + (1 − a)c

∫ 0

−∞
gb(x)dx

)

= bα+1
(

(1 − a)c

∫ 0

−∞
g(x)dx +O

(∥∥ygb(y)
∥∥

L1

))
(41)

= bα+1
(

(1 − a)c

∫ 0

−∞
g(x)dx +O(b)

)
,

for b small enough. Therefore, |F1(0) − F2(0)| � bα+1.
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Step 3: Using the independence of the observations, the sample (Y1, . . . , Yn, ε
∗
1, . . . , ε∗

m) is
distributed according to (Fi ∗ fε,i)

⊗n ⊗ f ⊗m
ε,i under the hypotheses i = 1,2. By construction

F1 ∗ fε,1 = F2 ∗ fε,2 such that the χ2-distance of the laws of the observations equals

χ2(f ⊗m
ε,1 , f ⊗m

ε,2

)=
(

1 +
∫
R

(fε,1 − fε,2)
2(x)

fε,2(x)
dx

)m

− 1. (42)

We decompose∫
R

(fε,1 − fε,2)
2(x)

fε,2(x)
dx

= c2b2α+2
(∫

|x|≤1

(fε,0 ∗ gb(·+ 2ζ ))2(x)

fε,0(x)
dx +

∫
|x|>1

(fε,0 ∗ gb(·+ 2ζ ))2(x)

fε,0(x)
dx

)
=: c2b2α+2(I1 + I2).

For the first integral, we use inf|x|≤1 fε,0(x) > 0, Plancherel’s identity, fε,0 ∈ Dβ(R,γ ) and the
support of Fg to estimate

|I1| �
∫
R

∣∣Ffε,0(u)Fg(bu)e−i2ζu
∣∣2 du �

∫
1/b≤|u|≤2/b

(
1 + |u|)−2β du � b2β−1.

Using (39), I2 can be estimated similarly

|I2| �
∫

|x|>1

(
1 + |x|)γ+2|x|−2K

∣∣F−1[(Ffε,0Fgbe−i2ζ ·)(K)]∣∣2(x)dx

∼
∫

1/b≤|u|≤2/b

∣∣(Ffε,0(u)Fg(bu)e−i2ζu
)(K)∣∣2 du � b2β−1.

We conclude from (42) for some constant C > 0 that

χ2(f ⊗m
ε,1 , f ⊗m

ε,2

)≤ (
1 + Cc2b2α+2β+1)m − 1 ≤ exp

(
Cc2mb2α+2β+1)− 1,

which can be bounded by an arbitrarily small constant if c is chosen sufficiently small and b =
m−1/(2α+2β+1). We obtain from Step 2 that |F1(0) − F2(0)| ≥ Cm−(α+1)/(2α+2β+1), for some
positive constant C.

Step 4: Replacing in (40) the factor bα+1 in F2 and fε,1 by cm−1/2 for some sufficiently small
constant c > 0 and choosing b = 1, the previous steps yield the lower bound m−1/2.

Let us finally conclude the lower bound for the estimation error of the quantiles. We use the
construction from Step 1, denoting the τ -quantile of Fi by qτ,i . We note |qτ,1| < δ for any δ > 0
if we choose a close enough to one and thus F1 is regular in an interval around qτ,1. Moreover,
it holds

‖F1 − F2‖∞ ≤ c
(
m−1/2 ∨ bα+1)∥∥(af0 + (1 − a)δ−2ζ

) ∗ gb(·+ 2ζ )
∥∥

L1

≤ c
(
m−1/2 ∨ bα+1)‖g‖L1 → 0.
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We infer analogously to (32) that |qτ,1 −qτ,2| < δ for any δ > 0 and m sufficiently large implying
Fi ∈ C̃α+1(R, r, ζ ). Applying a Taylor expansion similar to (4), we obtain

qτ,2 − qτ,1 = −F2(qτ,1) − F1(qτ,1)

F ′
2(q

∗
τ )

for some intermediate point between qτ,1 and qτ,2. The denominator F ′
2(q

∗
τ ) is bounded from

above and below owing to sup|x|≤ζ |F ′
2(x)−af0(x)| → 0, |qτ,2| ≤ |qτ,2 −qτ,1|+ |qτ,1| < 2δ and

f0(0) > 0. (41) yields |qτ,2 − qτ,1| � m−1/2 ∨ bα+1. The assertion follows from Steps 3 and 4
above.

5.2. Proofs for Section 3

We start with Lemma 3.1 concerning the bandwidth set Bn from (9).

5.2.1. Proof of Lemma 3.1

By Lemma 5.1, we can argue on the event Bε(b) from (3). The deterministic counterpart of j̃n,
defined in (8), is given by

j0,n := min

{
j = 0, . . . ,Nn: 2 ≤

(
logn

n

)1/2 ∫ 1/bj

−1/bj

∣∣ϕε(u)
∣∣−1 du ≤ 4

}
. (43)

Noting that for fε ∈ Dβ(R,γ )

4 ≥
(

logn

n

)1/2 ∫ 1/bj0,n

−1/bj0,n

∣∣ϕε(u)
∣∣−1 du �

(
logn

nb
2β+2
j0,n

)1/2

we obtain nb
2β+2
j0,n

→ ∞ and thus it is sufficient to prove

inf
f ∈Cα(R,r,ζ )

inf
fε∈Dβ(R,γ )

P
({

bj0,n
≤ bj̃n

≤ b∗}∩ Bε(bj0,n
)
)→ 1 as n → ∞, (44)

for the optimal bandwidth b∗ = n−1/(2α+2(β∨1/2)+1). For convenience, we define

In(b) :=
(

logn

n

)1/2 ∫ 1/b

−1/b

du

|ϕε(u)| , Ĩn(b) :=
(

logn

n

)1/2 ∫ 1/b

−1/b

du

|ϕε,m(u)| .

Assume bj̃n
< bj0,n

, then monotonicity implies Ĩn(bj0,n
) ≤ Ĩn(bj̃n

) ≤ 1. Combined with

In(j0,n) ≥ 2, we obtain In(bj0,n
) − Ĩn(bj0,n

) ≥ 1. Hence,

{bj̃n
< bj0,n

} ⊆ {∣∣In(bj0,n
) − Ĩn(bj0,n

)
∣∣≥ 1

}
. (45)
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On the other hand, if b∗ < bj̃n
, we get Ĩn(b

∗) ≥ Ĩn(bj̃n
) ≥ 1/2. Since In(b

∗) � (
logn

n(b∗)2β+2 )1/2

converges to zero, In(b
∗) ≤ 1/4 for n large enough. Thus,{

bj̃n
> b∗}⊆ {∣∣In

(
b∗)− Ĩn

(
b∗)∣∣≥ 1/4

}
. (46)

To show that the probabilities of the right-hand sides of (45) and (46) converge to zero, we first
apply the Cauchy–Schwarz inequality

∣∣In(b) − Ĩn(b)
∣∣2 ≤ logn

n

∫ 1/b

−1/b

du

|ϕε(u)|2
∫ 1/b

−1/b

∣∣∣∣ ϕε(u)

ϕε,m(u)
− 1

∣∣∣∣2 du

� logn

nb2β+1

∫ 1/b

−1/b

∣∣∣∣ ϕε(u)

ϕε,m(u)
− 1

∣∣∣∣2 du.

Markov’s inequality and (25) yield for b ∈ {bmin, b
∗}

P

({∣∣In(b) − Ĩn(b)
∣∣≥ 1

4

}
∩ Bε(bj0,n

)

)
� logn

nb2β+1

∫ 1/b

−1/b

E

[∣∣∣∣ ϕε(u)

ϕε,m(u)
− 1

∣∣∣∣21Bε(bj0,n
)

]
du

� logn

nmb4β+2

which converges to zero. Therefore, (44) holds true.

5.2.2. Preparations to the Proof of Theorem 3.2

Before we can prove Theorem 3.2, some preparations are needed. By Lemma 5.2 there is a con-
stant D > 0 such that the bias can be bounded by Bb := Dbα+1. By the error representation (34),
we have for any b ∈ B

|̃qτ,b − qτ | =
∣∣∣∣
∫ qτ

−∞(f̃b(x) − f (x))dx − M̃b(̃qτ,b)

f̃b(̃q∗)

∣∣∣∣
(47)

≤ Bb + |Vb,X + Vb,ε + Vb,c| + |M̃b(̃qτ,b)|
|f̃b(q∗)|

with some q∗ ∈ [(qτ ∧ q̃τ,b), (qτ ∨ q̃τ,b)] and where the stochastic error is decomposed in

Vb,X := 1

n

n∑
j=1

(
ξj (b) −E

[
ξj (b)

])
with

ξj (b) :=
∫ 0

−∞
as(x)F−1

[
ϕK(bu)eiuYj

ϕε(u)

]
(x + qτ )dx,

(48)

Vb,ε :=
∫ 0

−∞
as(x)F−1

[
ϕK(bu)ϕn(u)

ϕε(u)

(
ϕε(u)

ϕε,m(u)
− 1

)]
(x + qτ )dx,
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Vb,c :=
∫ 0

−∞
ac(x)F−1

[
ϕK(bu)

(
ϕn(u)

ϕε,m(u)
− ϕX(u)

)]
(x + qτ )dx.

In view of the analysis in Section 5.1.3, the part of the stochastic error which is due to the
continuous part ac will be negligible. Hence, we concentrate on Vb,X and Vb,ε . By independence
of (ξj (b))j , we obtain

Var(Vb,X) ≤ 1

n
E
[
ξj (b)2]= 1

n
E

[(∫ 0

−∞
as(x)F−1

[
ϕK(bu)eiuYj

ϕε(u)

]
(x + qτ )dx

)2]
(49)

=: σ 2
b,X.

We will determine the variance of Vb,ε on the event Bε(b), defined in (3). We apply Plancherel’s
identity and the Cauchy–Schwarz inequality to separate Yi and εi from each other:

E
[|Vb,ε|1Bε(b)

]
= 1

2π
E

[∣∣∣∣∫
R

Fas(−u)e−iuqτ
ϕK(bu)ϕn(u)

ϕε(u)

(
ϕε(u)

ϕε,m(u)
− 1

)
du

∣∣∣∣1Bε(b)

]

≤ 1

2π
E

[(∫
R

∣∣ϕK(bu)
∣∣∣∣∣∣ϕn(u)

ϕε(u)

∣∣∣∣2 du

)1/2

(50)

×
(∫

R

∣∣ϕK(bu)
∣∣∣∣Fas(−u)

∣∣2∣∣∣∣ ϕε(u)

ϕε,m(u)
− 1

∣∣∣∣2 du

)1/2

1Bε(b)

]

≤ 1

2π
E

[(∫
R

∣∣ϕK(bu)
∣∣∣∣∣∣ϕn(u)

ϕε(u)

∣∣∣∣2 du

)1/2(∫
R

∣∣ϕK(bu)
∣∣∣∣∣∣Fas(−u)

ϕε,m(u)

∣∣∣∣2 du1Bε(b)

)1/2

× sup
|u|≤1/b

∣∣ϕε,m(u) − ϕε(u)
∣∣].

Let us define

σb,ε := 1

2π
m−1/2σb,ε,1σb,ε,2 (51)

with

σb,ε,1 := E

[(∫
R

∣∣ϕK(bu)
∣∣∣∣∣∣ϕn(u)

ϕε(u)

∣∣∣∣2 du

)1/2]
,

σb,ε,2 := E

[(∫
R

∣∣ϕK(bu)
∣∣∣∣∣∣Fas(−u)

ϕε,m(u)

∣∣∣∣2 du

)1/2

1Bε(b)

]
.

With the bounds σb,X and σb,ε at hand, we obtain the following concentration results.
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Lemma 5.5. Let B be a set satisfying |B| � logn, (log logn)/nb1 → 0 for b1 = minB as well
as | logb1| � logn. Then we obtain uniformly over f ∈ Cα(R, r, ζ ) and fε ∈ Dβ(R,γ ) for any
δ > 0:

(i) P(∃b ∈ B: |Vb,X| ≥ (1 + δ)
√

log logn(
√

2σb,X + o(n−1/2(b−β+1/2 ∨ 1)))) → 0.

(ii) P(∃b ∈ B: |Vb,ε| ≥ δ(logn)3σb,ε) → 0.

(iii) Assuming further mb
(2β∧1)+2
1 � 1,

P(∃b ∈ B: |Vb,c| ≥ (logn)3/2n−1/2(b−β+1/2 ∨ 1)) → 0.

Proof. (i) Using the deterministic bound (38), we obtain |ξj (b) − E[ξj (b)]| ≤ Cb−β for some
constant C > 0. Since the variance is bounded by (49), Bernstein’s inequality (e.g., Massart [19],
Prop. 2.9) yields for any positive κn = o(nb)

P

(
|Vb,X| ≥

√
2σ 2

b,Xκn + Cκn

3nbβ

)
≤ 2e−κn .

Hence,
√

κn(nbβ)−1 � (n(b2β−1 ∧ 1))−1/2(κn/(nb))1/2 yields uniformly in Cα(R, r, ζ ) and
Dβ(R,γ )

P
(|Vb,X| ≥ √

κn

(√
2σb,X + o

(
n−1/2(b−β+1/2 ∨ 1

))))≤ 2e−κn .

The result follows from choosing κ = (1 + δ)2 log logn and using |B| � logn.
(ii) Using an estimate as in (50), we obtain

|Vb,ε| ≤ 1

2π

(∫
R

∣∣ϕK(bu)
∣∣∣∣∣∣ϕn(u)

ϕε(u)

∣∣∣∣2 du

)1/2(∫
R

∣∣ϕK(bu)
∣∣∣∣Fas(−u)

∣∣2∣∣∣∣ϕε(u) − ϕε,m(u)

ϕε,m(u)

∣∣∣∣2 du

)1/2

≤ 1

2π

(∫
R

∣∣ϕK(bu)
∣∣∣∣∣∣ϕn(u)

ϕε(u)

∣∣∣∣2 du

)1/2

︸ ︷︷ ︸
=:Vb,ε,1

×
(∫

R

∣∣ϕK(bu)
∣∣∣∣∣∣Fas(−u)

ϕε,m(u)

∣∣∣∣2 du

)1/2

︸ ︷︷ ︸
=:Vb,ε,2

sup
|u|≤1/b

∣∣ϕε(u) − ϕε,m(u)
∣∣.

Hence, for any c ∈ (0,1/4)

P
({|Vb,ε| ≥ δ(logn)3σb,ε

}∩ Bε(b)
)

≤ P
(|Vb,ε,1| ≥ (logn)1+cσb,ε,1

)+ P
({|Vb,ε,2| ≥ (logn)1+cσb,ε,2

}∩ Bε(b)
)

+ P
(

sup
|u|≤1/b

∣∣ϕε(u) − ϕε,m(u)
∣∣≥ δ(logn)1−2cm−1/2

)
=: Pb,1 + Pb,2 + Pb,3.
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The first two probabilities can be bounded by Markov’s inequality:

Pb,1 ≤ (logn)−1−cσ−1
b,ε,1E[Vb,ε,1] = (logn)−1−c,

Pb,2 ≤ (logn)−1−cσ−1
b,ε,2E[Vb,ε,21Bε(b)] = (logn)−1−c.

For Pb,3 we will apply the following version of Talagrand’s inequality (cf. Massart [19], (5.50)):
let T be a countable index and for all t ∈ T let Z1,t , . . . ,Zn,t be an i.i.d. sample of centered,
complex valued random variables satisfying ‖Zk,t‖∞ ≤ b, for all t ∈ T , k = 1, . . . , n, as well as
supt∈T Var(

∑n
k=1 Zk,t ) ≤ v < ∞. Then for all κ > 0

P

(
sup
t∈T

∣∣∣∣∣
n∑

k=1

Zk,t

∣∣∣∣∣≥ 4E

[
sup
t∈T

∣∣∣∣∣
n∑

k=1

Zk,t

∣∣∣∣∣
]

+ √
2vκ + 2

3
bκ

)
≤ 2e−κ . (52)

Choosing the rational numbers T =Q∩[− 1
b
, 1

b
] and Zk,t := eitε∗

k −ϕε(t), Talagrand’s inequality
applies with b = 2 and v = n. As in (14), we use Theorem 4.1 by Neumann and Reiß [23] to
obtain for any η ∈ (0,1/2)

m1/2E

[
sup

|u|≤1/b

∣∣ϕε,m(t) − ϕε(t)
∣∣]� | logb|1/2+η.

Therefore on the assumptions κ−1
n (logn)1+2η → 0 and κn/m → 0

4E
[

sup
|u|≤1/b,u∈Q

∣∣ϕε,m(u) − ϕε(u)
∣∣]+

√
2κn

m
+ 4

3m
κn =

√
κn

m

(√
2 + o(1)

)
and thus continuity of ϕε,m and (52) yield

Pb,3 = P
(

sup
|u|≤1/b,u∈Q

∣∣ϕε,m(u) − ϕε(u)
∣∣≥ (√

2 + o(1)
)√

κn/m
)

≤ 2e−κn . (53)

With κn = δ
2 (logn)2−4c for c < 1/4 − η/2, we obtain P3 ≤ 2n−δ/2. Using b1 = minB, |B| �

logn and Lemma 5.1, we finally get

P
(

sup
b∈B

|Vb,ε| ≥ (
√

2 + δ)(logn)3σb,ε

)
≤
∑
b∈B

(Pb,1 + Pb,2 + Pb,3) + P
(
Bε(b1)

c
)= o(1).

(iii) Corollary 5.3 shows for δb > 0 and for any sequence (xn)n that tends to infinity

P
(∃b ∈ B: |Vb,c| ≥ δb

)
�
∑
b∈B

xn

δ2
bn(mb2β+2 ∧ 1)

+ o(1).

Choosing δb = (logn)3/2n−1/2(b−β+1/2 ∨ 1) and xn = o((logn)1/2) yields

P
(∃b ∈ B: |Vb,c| ≥ (logn)3/2n−1/2(b−β+1/2 ∨ 1

))
�
∑
b∈B

xn

(logn)3(mb(2β∧1)+2 ∧ 1)
+ o(1) � xn

(logn)2(mb(2β∧1)+2 ∧ 1)
+ o(1) = o(1).
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�

For the denominator in the error representation (47) we need uniform consistency. A uniform
result on the error |̃qτ,b − qτ | follows immediately.

Lemma 5.6. Let B be a finite set satisfying |B| � logn, supb∈B b log(n) → 0 as well as
supb∈B(logn)2/(nb2β+1) → 0. Then we obtain for n → ∞ and η ∈ (0,1)

sup
f ∈Cα(R,r,ζ,Un)

sup
fε∈Dβ(R,γ )

P
(

sup
b∈B

sup
q∗
τ ∈[qτ ∧q̃τ,b,qτ ∨q̃τ,b]

∣∣f̃b

(
q∗
τ

)− f (qτ )
∣∣> ηf (qτ )

)
→ 0. (54)

Moreover, supposing minb∈B nb(2β∧1)+2 � 1, we obtain uniformly in f ∈ Cα(R, r, ζ ) and fε ∈
Dβ(R,γ ) for any sequence of critical values (δb)b∈B satisfying infB δb → ∞

P
(∃b ∈ B: |̃qτ,b − qτ | > δb

(
3Dbα+1 + n−1/2(b−β+1/2 ∨ 1

)))
�
∑
b∈B

1

δb

+ o(1). (55)

Proof. Since f (qτ ) ≥ r and f ∈ Cα([qτ − ζ, qτ + ζ ],R), decomposition (35) implies with κ =
(

ηr
2R

)1∨α−1 ∧ ζ

P
(

sup
b∈B

sup
q∗
τ ∈[qτ ∧q̃τ,b,qτ ∨q̃τ,b]

∣∣f̃b

(
q∗
τ

)− f (qτ )
∣∣> ηf (qτ )

)
(56)

≤ P
(

sup
b∈B

sup
x∈[−κ,κ]

∣∣f̃b(x + qτ ) − f (x + qτ )
∣∣> ηr/2

)
+ P

(
sup
b∈B

|̃qτ,b − qτ | > κ
)
.

Using b1 = minB, the first probability can be bounded by∑
b∈B

P
({

sup
x∈[−κ,κ]

∣∣f̃b(x + qτ ) − f (x + qτ )
∣∣> ηr/2

}
∩ Bε(b1)

)
+ P

(
Bε(b1)

c
)

� logn sup
b∈B

P
({

sup
x∈[−κ,κ]

∣∣f̃b(x + qτ ) − f (x + qτ )
∣∣> ηr/2

}
∩ Bε(b1)

)
+ o(1) = o(1),

since for all b the probability in the last line converges faster to zero than 1/ logn owing to
the concentration inequalities (27) and (28) and the conditions on b. To estimate the second term
in (56), we apply Lemma 5.4. Therefore, the conditions b log(n) → 0 and (logn)2/(nb2β+1) → 0
yield the first assertion.

The estimate (55) follows from the error decomposition (4), (54) and Corollary 5.3 with xn =
o(infB δb):

P
(∃b ∈ B: |̃qτ,b − qτ | > δb

(
3Dbα+1 + n−1/2(b−β+1/2 ∨ 1

)))
≤ P

(
∃b ∈ B:

∣∣∣∣∫ qτ

−∞
f̃b(x) − f (x)dx

∣∣∣∣> 1

2
f (qτ )δb

(
3Dbα+1 + n−1/2(b−β+1/2 ∨ 1

)))
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+ P

(
sup
b∈B

sup
q∗
τ ∈[qτ ∧q̃τ,b,qτ ∨q̃τ,b]

∣∣f̃b

(
q∗
τ

)− f (qτ )
∣∣> 1

2
f (qτ )

)

�
∑
b∈B

(
1

δb

+ 1

δ2
b

xn

mb1∧2β+2 ∧ 1

)
+ o(1) �

∑
b∈B

1

δb

+ o(1).
�

The variances σb,X and σb,ε , defined in (49) and (51) can be estimated by σ̃b,X and σ̃b,ε from
(11) and (12), respectively. The latter can be decomposed into σ̃ 2

b,ε = 1
4π−2m−1σ̃ 2

b,ε,1σ̃
2
b,ε,2 with

σ̃ 2
b,ε,1 =

∫ 1/b

−1/b

∣∣ϕK(bu)
∣∣∣∣∣∣ ϕn(u)

ϕε,m(u)

∣∣∣∣2 du,

σ̃ 2
b,ε,2 =

∫ 1/b

−1/b

∣∣ϕK(bu)
∣∣ |Fas(u)|2

|ϕε,m|2 du.

The following two lemmas show that these estimators are indeed reasonable.

Lemma 5.7. Let B be a finite set satisfying |B| � logn, maxb∈B bα logn → 0 as well as
minb∈B nb2β+2 → ∞. Let σ̃b,X and σb,X be given in (11) and (49), respectively. Then we ob-
tain for all η > 0 as n → ∞

sup
f ∈Cα(R,r,ζ )

sup
fε∈Dβ(R,γ )

P
(∃b ∈ B: |̃σb,X − σb,X| > ηm−1/2(b−β+1/2 ∨ 1

))→ 0.

Proof. Note that

σ̃ 2
b,X = 1

n2

n∑
j=1

ξ2
j,1(b) + 1

n2

n∑
j=1

ξ2
j,2(b) + 1

n2

n∑
j=1

ξ2
j,3(b)

(57)

+ 2

n2

n∑
j=1

ξj,1(b)ξj,2(b) + 2

n2

n∑
j=1

ξj,1(b)ξj,3(b) + 2

n2

n∑
j=1

ξj,2(b)ξj,3(b),

where we have defined

ξj,1(b) :=
∫ 0

−∞
as(x)F−1

[
ϕK(bu)eiuYj

(
1

ϕε,m(u)
− 1

ϕε(u)

)]
(x + q̃τ,b)dx,

ξj,2(b) :=
∫ 0

−∞
as(x)F−1

[
ϕK(bu)eiuYj

ϕε(u)

]
(x + qτ )dx,

ξj,3(b) :=
∫ 0

−∞
as(x)F−1

[
ϕK(bu)eiuYj (e−iuq̃τ,b − e−iuqτ )

ϕε(u)

]
(x)dx.

We will first study these three terms separately. Applying Plancherel’s identity, the Cauchy–
Schwarz inequality, the Neumann type bound (25) as well as |Fas(u)| ≤ As(1 + |u|)−1, the
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decay of ϕε and the upper bound on f , we obtain

E
[∣∣ξj,1(b)

∣∣21Bε(b)

] ≤ 9

2π2

∫ 1/b

−1/b

|Fas(u)|2
|ϕε(u)|2 du

∫ 1/b

−1/b

|ϕK(bu)|2
m|ϕε(u)|2 du

(58)

� 1

(b2β−1 ∧ 1)mb2β+1
,

E
[∣∣ξj,2(b)

∣∣2] = E

[∣∣∣∣ 1

2π

∫
R

Fas(u)e−iuqτ
ϕK(bu)

ϕε(u)
eiuYj du

∣∣∣∣2]
(59)

≤ ‖K‖2
L1A

2
sR

3

4π2

∫ 1/b

−1/b

(
1 + |u|)2β−2 du =: S2

b

as well as the deterministic bound

∣∣ξj,2(b)
∣∣2 =

∣∣∣∣ 1

2π

∫
R

Fas(u)e−iuqτ
ϕK(bu)

ϕε(u)
eiuYj du

∣∣∣∣2 ≤ ‖K‖2
L1

A2
s

4π2

∫ 1/b

−1/b

(
1 + |u|)2β du =: d2

b .

Hence, Var[ξj,2(b)2] ≤ E[ξj,2(b)4] ≤ d2
bS2

b and |ξ2
j,2(b) − E[ξ2

j,2(b)]| ≤ 2d2
b , so that an applica-

tion of Bernstein’s inequality yields for any b > 0 and z > 0

P

(∣∣∣∣∣1

n

n∑
j=1

(
ξ2
j,2(b) −E

[
ξ2
j,2(b)

])∣∣∣∣∣≥ z

)
≤ 2 exp

(
− z2n

2S2
bd2

b + (4/3)d2
b z

)
.

Setting z = S2
b and noting S2

b � (b−2β+1 ∨ 1), d2
b � b−2β , we see that

P

(∣∣∣∣∣1

n

n∑
j=1

(
ξ2
j,2(b) −E

[
ξ2
j,2(b)

])∣∣∣∣∣≥ S2
b

)
≤ 2 exp

(
−S2

bn

4d2
b

)
≤ 2 exp

(−Cnb2β∧1) (60)

for some C > 0. The right-hand side of (60) tends to zero with polynomial rate since nb2β∧1 �
logn.

We use suppas ⊆ [−1,0] to write ξj,3 as

ξj,3(b) =
∫
R

(
as(x − q̃τ,b) − as(x − qτ )

)
F−1

[
ϕK(bu)eiuYj

ϕε(u)

]
(x)dx

≤ sup
t∈(−1,0)

∣∣a′
s(t)

∣∣|̃qτ,b − qτ |
∫ q̃τ,b∨qτ

(̃qτ,b∧qτ )−1

∣∣∣∣F−1
[

ϕK(bu)eiuYj

ϕε(u)

]
(x)

∣∣∣∣dx.

The Cauchy–Schwarz inequality and Plancherel’s identity yield∣∣ξj,3(b)
∣∣2 ≤ ∥∥a′

s1(−1,0)

∥∥2
∞|̃qτ,b − qτ |2

(
1 + |̃qτ,b − qτ |

)
×
∫ q̃τ,b∨qτ

(̃qτ,b∧qτ )−1

∣∣∣∣F−1
[
ϕK(bu)eiuYj

ϕε(u)

]
(x)

∣∣∣∣2 dx
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≤ ‖a′
s1(−1,0)‖2∞

2π
|̃qτ,b − qτ |2

(
1 + |̃qτ,b − qτ |

)∫
R

∣∣∣∣ϕK(bu)

ϕε(u)

∣∣∣∣2 du

� |̃qτ,b − qτ |2
(
1 + |̃qτ,b − qτ |

)
b−2β−1.

By Lemma 5.4 supb∈B |̃qτ,b −qτ | = oP (1). Applying (55), we conclude for some constant C > 0,
for δb = (bα+(1/2−β)+ + n−1/2b−β−1/2))−1 and for any η > 0

P
(∃b ∈ B:

∣∣ξj,3(b)
∣∣> η

(
b−β+1/2 ∨ 1

))
≤ P

(∃b ∈ B: |̃qτ,b − qτ | > ηCb(β∧1/2)+1/2)+ o(1)
(61)

≤ P
(∃b ∈ B: |̃qτ,b − qτ | > ηCδb

(
bα+1 + n−1/2(b−β+1/2 ∨ 1

)))+ o(1)

�
(∑

b∈B
(δb)

−1
)

+ o(1) � sup
b∈B

bα logn + sup
b∈B

logn√
nbβ+1/2

+ o(1) = o(1).

Combining the variance bounds (58), (59) and (61), we apply Markov’s inequality, the Cauchy–
Schwarz inequality and the concentration result (60) on the decomposition (57) to obtain

sup
b∈B

(
n
(
b2β−1 ∧ 1

)∣∣̃σ 2
b,X − σ 2

b,X

∣∣)
= sup

b∈B

(
b2β−1 ∧ 1

n

n∑
j=1

(
ξ2
j,2(b) −E

[
ξ2
j,2(b)

]))+ oP (1) = oP (1).
�

Lemma 5.8. Let B be a finite set satisfying |B| � logn as well as supb∈B 1/(nb2β+1) → 0.
Let σ̃b,ε and σb,ε be given in (12) and (51), respectively. Then we obtain uniformly over f ∈
Cα(R, r, ζ ) and fε ∈ Dβ(R,γ ) for all η > 0 as n → ∞

P
(∃b ∈ B: |̃σb,ε − σb,ε| > η(logn)m−1/2(b−β+1/2 ∨ 1

))→ 0.

Proof. We start by showing for b1 = minB that

sup
|u|≤1/b1

∣∣∣∣ ϕε(u)

ϕε,m(u)

∣∣∣∣= 1 + oP (1). (62)

To this end, recall w(u) = (log(e + |u|))−1/2−η for some η ∈ (0,1/2). Markov’s inequality,
Lemma 5.1 and Theorem 4.1 by Neumann and Reiß [23] yield for any δ > 0

P

(
sup

|u|≤1/b1

∣∣∣∣ ϕε(u)

ϕε,m(u)
− 1

∣∣∣∣≥ δ

)
≤ P

(
sup

|u|≤1/b1

m1/2
∣∣ϕε(u) − ϕε,m(u)

∣∣≥ δ| logb1|
)

+ P
(

inf|u|≤1/b1

∣∣ϕε,m(u)
∣∣≤ m−1/2| logb1|

)
≤ (

δ| logb1|
)−1

E

[
sup

|u|≤1/b1

m1/2
∣∣ϕε(u) − ϕε,m(u)

∣∣]+ o(1)
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≤ 1

δ| logb1|w(1/b1)
E

[
sup
u∈R

m1/2w(u)
∣∣ϕε(u) − ϕε,m(u)

∣∣]+ o(1) = o(1),

which implies (62) holding uniformly in B since [−1/b1,1/b1] is the maximal interval for all
b ∈ B.

Now, we consider σ̃b,ε,1. The uniform consistency (62) implies

σ̃ 2
b,ε,1 = (

1 + oP (1)
) ∫

R

∣∣ϕK(bu)
∣∣∣∣∣∣ϕn(u)

ϕε(u)

∣∣∣∣2 du.

Chebyshev’s inequality yields for all η > 0

P

(
sup
b∈B

∣∣∣∣(∫
R

∣∣ϕK(bu)
∣∣ |ϕn(u)|2
|ϕε(u)|2 du

)1/2

−E

[(∫
R

∣∣ϕK(bu)
∣∣ |ϕn(u)|2
|ϕε(u)|2 du

)1/2]∣∣∣∣> η logn

)

≤ (η logn)−2
∑
b∈B

E

[∫
R

∣∣ϕK(bu)
∣∣ |ϕn(u)|2
|ϕε(u)|2 du

]

�
(
η2 logn

)−1
∫ 1/b1

−1/b1

E[|ϕn(u)|2]
|ϕε(u)|2 du �

(
η2 logn

)−1
,

where the last estimate follows from E[|ϕn(u)|2] � |ϕY (u)|2 +E[|ϕn(u)−ϕY (u)|2] � |ϕY (u)|2 +
1/n, fε ∈Dβ(R,γ ),‖f ‖∞ � 1 and nb

2β+1
1 → ∞. Hence, we obtain uniformly in B

σ̃b,ε,1 = (
1 + oP (1)

)(
σb,ε,1 + oP (logn)

)= σb,ε,1 + oP (logn). (63)

Concerning σ̃b,ε,2, we write with use of (62)

σ̃ 2
b,ε,2 =

∫ 1/b

−1/b

∣∣ϕK(bu)
∣∣ |Fas(u)|2
|ϕε,m(u)|2 du = (

1 + op(1)
) ∫ 1/b

−1/b

∣∣ϕK(bu)
∣∣ |Fas(u)|2

|ϕε(u)|2 du.

Moreover, the triangle inequality for the L2-norm and Lemma 5.1, applied on Bε(b1) yield∣∣∣∣(∫ 1/b

−1/b

∣∣ϕK(bu)
∣∣ |Fas(u)|2

|ϕε(u)|2 du

)1/2

− σb,ε,2

∣∣∣∣2
≤ 2

∣∣∣∣E[((∫ 1/b

−1/b

∣∣ϕK(bu)
∣∣ |Fas(u)|2

|ϕε(u)|2 du

)1/2

−
(∫ 1/b

−1/b

∣∣ϕK(bu)
∣∣ |Fas(u)|2
|ϕε,m(u)|2 du

)1/2)
1Bε(b1)

]∣∣∣∣2
+ 2P

((
Bε(b1)

)c)∫ 1/b

−1/b

∣∣ϕK(bu)
∣∣ |Fas(u)|2

|ϕε(u)|2 du

≤ 2E

[(∫ 1/b

−1/b

∣∣ϕK(bu)
∣∣∣∣Fas(u)

∣∣2 |ϕε,m(u) − ϕε(u)|2
|ϕε(u)ϕε,m(u)|2 du

)
1Bε(b1)

]
+ o(1)

∫ 1/b

−1/b

|Fas(u)|2
|ϕε(u)|2 du
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≤ 2

| logb1|3/2
E

[∫ 1/b

−1/b

|Fas(u)|2
|ϕε(u)|2 m

∣∣ϕε,m(u) − ϕε(u)
∣∣2 du

]
+ o(1)

(
b−2β+1 ∨ 1

)
= o(1)

(
b−2β+1 ∨ 1

)
,

where o(1) is a null sequence which does not depend on b. Consequently,

sup
b∈B

∣∣∣∣(∫ 1/b

−1/b

∣∣ϕK(bu)
∣∣ |Fas(u)|2

|ϕε(u)|2 du

)1/2

− σb,ε,2

∣∣∣∣(bβ−1/2 ∧ 1
)= o(1).

Using σ 2
b,ε,2 � b−2β+1 ∨ 1 by the analysis of the convergence rates, we get

σ̃b,ε,2 = (
1 + op(1)

)(
σb,ε,2 + o

(
b−β+1/2 ∨ 1

))= σb,ε,2 + oP

(
b−β+1/2 ∨ 1

)
. (64)

Since σb,ε,1 � 1, σb,ε,2 � b−β+1/2 ∨ 1, it remains to combine (63) and (64) to obtain uniformly
in B

σ̃b,ε = 1

2π
m−1/2σ̃b,ε,1σ̃b,ε,2 = 1

2π
m−1/2(σb,ε,1 + oP (logn)

)(
σb,ε,2 + oP

(
b−β+1/2 ∨ 1

))
= σb,ε + oP

(
(logn)m−1/2(b−β+1/2 ∨ 1

))
. �

5.2.3. Proof of Theorem 3.2

Applying Lemma 5.1 and (44), it suffices to consider the event

A0 := {
bj0,n

≤ bj̃n
≤ n−1/(2α+2(β∨1/2)+1)

}∩ Bε(bj0,n
)

with j0,n defined in (43). Therefore we can set B := {bj0,n
, . . . , bMn} in the following.

As seen in error decomposition (47), there are three stochastic errors Vb,X,Vb,ε and Vb,c which
were treated in Lemma 5.5. This motivates the following definition. For δ1 > 0, let

Sb,X := (1 + δ1)
√

2 log logn max
μ∈B : μ≥b

σμ,X, Sb,ε := (δ1 logn)3 max
μ∈B : μ≥b

σμ,ε.

On the assumption |ϕε(u)| � (1 + |u|)−β we obtain for σb,ε = 1
2π

m−1/2σb,ε,1σb,ε,2 from (51)
that

σ 2
b,ε,2 �

∫ 1/b

−1/b

∣∣Fas(−u)
∣∣2(1 + |u|)2β du �

∫ 1/b

−1/b

(
1 + |u|)2β−2 du ∼ b−2β+1 ∨ 1.

Also, we have σb,ε,1 = ‖ϕX‖L2 +o(1) ≥ ‖ϕX‖L2/2 for b small enough and n large enough. Thus,
σb,ε � m−1/2(b−β+1/2 ∨ 1). Therefore, Lemma 5.5 yields

P
(∃b ∈ B: |Vb,X + Vb,ε + Vb,c| ≥ Sb,X + Sb,ε

)
≤ P

(
∃b ∈ B: |Vb,X| ≥ Sb,X + 1

3
Sb,ε

)
+ P

(
∃b ∈ B: |Vb,ε| ≥ Sb,ε

3

)
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+ P

(
∃b ∈ B: |Vb,c| ≥ Sb,ε

3

)
= o(1).

Hence, the probability of the event

A1 := {∀b ∈ B: |Vb,X + Vb,ε + Vb,c| ≤ Sb,X + Sb,ε

}
converges to one. The variances Sb,X and Sb,ε can be estimated by

S̃b,X := (1 + δ1)
√

2 log logn max
μ∈B : μ≥b

σ̃μ,X, S̃b,ε := (δ1 logn)3 max
μ∈B : μ≥b

σ̃μ,ε.

Applying Lemmas 5.7 and 5.8, the triangle inequality of the 	∞-norm yields uniformly in b ∈ B∣∣∣max
μ≥b

σ̃μ,X − max
μ≥b

σμ,X

∣∣∣ ≤ max
μ≥b

|̃σμ,X − σμ,X| = oP

(
1

m1/2(bβ−1/2 ∧ 1)

)
,

∣∣∣max
μ≥b

σ̃μ,ε − max
μ≥b

σμ,ε

∣∣∣ ≤ max
μ≥b

|̃σμ,ε − σμ,ε| = oP

(
logn

m1/2(bβ−1/2 ∧ 1)

)
.

Using again σb,ε � m−1/2(b−β+1/2 ∨ 1), we thus obtain for all η > 0 that the event

A2 := {∀b ∈ B:
∣∣(S̃b,X + S̃b,ε) − (Sb,X + Sb,ε)

∣∣≤ η(Sb,X + Sb,ε)
}

fulfills P(A2) → 1. The same holds true for the events

A3 :=
{
∀b ∈ B: sup

q∗∈[(qτ ∧q̃τ,b)∨(qτ ∧q̃τ,b)]

∣∣f̃b

(
q∗)− f (qτ )

∣∣≤ ηf (qτ )
}
,

A4 :=
{
∀b ∈ B: sup

q∗∈[(qτ ∧q̃τ,b)∨(qτ ∧q̃τ,b)]

∣∣f̃b

(
q∗)− f̃b(̃qτ,b)

∣∣≤ η
∣∣f̃b(̃qτ,b)

∣∣}
by (54). Therefore, it is sufficient to work in the following on the event

A := A0 ∩ A1 ∩ A2 ∩ A3 ∩ A4.

We show that the adaptive estimator q̃τ mimics the oracle estimator defined as follows. Recalling
the estimate of the bias Bb = Dbα+1, let the oracle bandwidth be defined by

b∗ := max{b ∈ B: Bb ≤ Sb,X + Sb,ε}. (65)

Note that b∗ is well-defined and unique since Bb is monoton increasing in b while (Sb,X + Sb,ε)

is monton decreasing. We get the oracle estimator q̃τ,b∗ .
Since on A4 for all b ∈ B and q∗ ∈ [(qτ ∧ q̃τ,b) ∨ (qτ ∧ q̃τ,b)]∣∣f̃b

(
q∗)∣∣≥ ∣∣f̃b(̃qτ,b)

∣∣− ∣∣f̃b

(
q∗)− f̃b(̃qτ,b)

∣∣≥ (1 − η)
∣∣f̃b(̃qτ,b)

∣∣,
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we have for any b ∈ B on the event A1 ∩ A4 by (47)

|̃qτ,b − qτ | ≤ Bb + |Vb,X + Vb,ε + Vb,c|+|M̃b(̃qτ,b)|
|f̃b(q∗)| ≤ Bb + Sb,X + Sb,ε+|M̃b(̃qτ,b)|

(1 − η)|f̃b(̃qτ,b)|
.

Furthermore, by the definition of b∗ we have on the event A for any b ≤ b∗

|̃qτ,b − qτ | ≤ 2(Sb,X + Sb,ε) + |M̃b(̃qτ,b)|
(1 − η)|f̃b(̃qτ,b)|

.

On A2 we estimate S̃b,X + S̃b,ε ≥ (1 − η)(Sb,X + Sb,ε) and thus we have on A for any b ≤ b∗

|̃qτ,b − qτ | ≤ 2(S̃b,X + S̃b,ε)

(1 − η)2|f̃b(̃qτ,b)|
+ |M̃b(̃qτ,b)|

(1 − η)|f̃b(̃qτ,b)|
.

Since for any δ > 0 we find δ1, η > 0 such that ((1−η)−2(2
√

2+ δ1)−2
√

2)∨ (2(1−η)−2δ1)∨
η

1−η
< δ, we obtain |̃qτ,b − qτ | ≤ �̃b with �̃b as defined in (10). As a result one has qτ ∈ Ub and

qτ ∈ Uμ for all b ≤ b∗ and μ ≤ b∗, implying Uμ ∩ Ub 
= ∅. By the definition of the procedure,
b̃∗ ≥ b∗ and Ub̃∗ ∩ Ub∗ 
=∅ on the event A. This leads to

|̃qτ,̃b∗ − qτ | ≤ |̃qτ,b∗ − qτ | + |̃qτ,̃b∗ − q̃τ,b∗ | ≤ �̃b∗ + (�̃b∗ + �̃b̃∗).

On A2 ∩A3 we have �̃b � Sb,X +Sb,ε since f (qτ ) ≥ r and |M̃b(̃qτ,b)| ≤ |M̃b(qτ )| = | ∫ qτ

−∞(f̃b −
f )|. Using additionally the monotonicity of (Sb,X + Sb,ε) as well as b̃∗ ≥ b∗, this implies

|̃qτ,̃b∗ − qτ | � (Sb∗,X + Sb∗,ε) �
(√

log logn + (
lognδ

)3)(
b

−β+1/2∗ ∨ 1
)
n−1/2.

It remains to note by the definition (65) of the oracle b∗ and by the assumption bj+1/bj � 1 that
b∗ ∼ ((lognδ)6/n)−1/(2α+2(β∨1/2)+1) as n → ∞.
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