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Introduced is the notion of minimality for spectral representations of sum- and max-infinitely divisible
processes and it is shown that the minimal spectral representation on a Borel space exists and is unique.
This fact is used to show that a stationary, stochastically continuous, sum- or max-i.d. random process on
Rd can be generated by a measure-preserving flow on a σ -finite Borel measure space and that this flow is
unique. This development makes it possible to extend the classification program of Rosiński (Ann. Probab.
23 (1995) 1163–1187) with a unified treatment of both sum- and max-infinitely divisible processes. As a
particular case, a characterization of stationary, stochastically continuous, union-infinitely divisible random
measurable subsets of Rd is obtained. Introduced and classified are several new max-i.d. random field
models including fields of Penrose type and fields associated to Poisson line processes.
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1. Introduction

A stochastic process X = {X(t), t ∈ T } is called infinitely divisible (i.d.) if for every n ∈ N

it can be represented (in distribution) as a sum of n independent identically distributed (i.i.d.)
processes. On the other hand, X is said to be max-infinitely divisible (max-i.d.) if for every
n ∈N it equals in distribution to the pointwise maximum of n i.i.d. processes. Infinitely divisible
distributions and random vectors have been extensively studied in the literature, while the max-
i.d. case is relatively less known. The important and widely studied classes of stable and max-
stable processes arise as special cases of i.d. and max-i.d. processes, respectively. Recall that
X is stable if for every n ∈ N, the sum of n independent copies of X equals (in distribution),
a rescaled and shifted version of the original process. The definition of max-stable processes is
similar, with the addition replaced by componentwise maximum.

For the class of stable processes, a particularly rich representation and classification theory
based on the notion of stochastic integral over a stable random measure was developed in the pi-
oneering works of Hardin [10] and Rosiński [31] (see also [16,27,28,32,38] and the book [39]). In
parallel with the stable case, the works [5,46] developed analogous classification theory for max-
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stable processes based on stochastic max-integrals [4,43]. In fact, the close connection between
the sum- and max-stable cases can be formalized through the notion of association [11,45].

In this paper, we develop a general structure and classification theory that applies to both i.d.
and max-i.d. processes in both discrete and continuous time. It is based on stochastic integrals
over Poisson random measures. Our main motivation is to extend the classification program for
sum-stable processes pioneered by Rosiński [31] to the infinitely divisible setting. We develop
tools for the representation and study a variety of i.d. and max-i.d. models from a unified per-
spective.

Stochastic integral representations of i.d. processes were developed in the seminal works of
Maruyama [21] and Rajput and Rosiński [29], while the max-i.d. case was addressed by Balkema
et al. [2]. To the best of our knowledge, the structure theory based on such stochastic integral rep-
resentations has not been much explored. A key problem in this context is to determine how two
spectral representations of the same i.d. or max-i.d. process are related. In the special stable case,
this problem is related to the structure of the isometries of Lα-spaces [9,10] and it was elegantly
resolved in terms of the notion of minimality. In the setting of i.d. processes, these methods are
not available. Instead, we prove a general result on the existence of conjugacy between equimea-
surable families of functions (Lemma 5.1, below) and based on this result we define a corre-
sponding notion of minimality. It turns out that two minimal spectral representations of the same
i.d. process defined on σ -finite Borel spaces are related through a unique measure space isomor-
phism between the two spaces. This result is then used to show that a stationary i.d. process can
be generated as a stochastic integral over a measure-preserving flow. This extends some classifi-
cation results of Rosiński [31,32] on the spectral representations of stationary stable processes.
The i.d. theory we develop here is in fact simpler (although more general) than the stable theory
of [31,32] since we deal with measure-preserving rather than non-singular flows. Our results can
be specialized to the stable case by using the Maharam construction from ergodic theory. This
sheds more light on the subtle concept of minimality in the stable case.

Recall that the law of a finite-dimensional i.d. random vector is characterized by its Lévy
triplet [40]. Here, we focus on the case where the i.d. random vectors have trivial Gaus-
sian component and their laws are determined by their Lévy measures along with constant
location vectors. In a pioneering work, Maruyama [21] considered the case of i.d. processes
X = {X(t), t ∈ T } and extended the concept of Lévy measure to the infinitely dimensional set-
ting as a measure on RT . This extension is especially non-trivial when the set T is not count-
able because in this case several measurability issues arise. The Lévy measure introduced by
Maruyama [21] could be used to establish some of the results of the present paper. Here, we
chose to develop classification theory based on spectral representations in order to draw parallels
with the abundant theory for stable processes.

Unlike the i.d. case, every one-dimensional distribution is max-i.d., but the situation changes
in higher dimensions. Max-infinitely divisible random vectors are characterized by the so called
exponent measure, which plays a role similar to that of the Lévy measure in the i.d. case (see,
e.g., Chapter 5 in [30]). Two-dimensional max-i.d. distributions were introduced by Balkema and
Resnick [3], the general d-dimensional case was considered by Gerritse [6] and Vatan [44] (the
latter work studies also max-i.d. vectors with values in RN). Representations in terms of suprema
over a Poisson point process were obtained by Giné et al. [7] for max-i.d. processes with continu-
ous sample paths and by Balkema et al. [2] for stochastically continuous processes. It seems that
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in the case of uncountable T , the general concept of exponent measure (parallel to [21]) has not
been studied. In this paper, we develop the representation theory of max-i.d. processes further,
for example, by proving existence and uniqueness of the minimal spectral representation and by
constructing a representation over a measure-preserving flow for stationary processes. We illus-
trate our theory by introducing and classifying several new examples of max-i.d. processes. As a
special case, we arrive at a representation result for stationary union infinitely divisible random
sets, which may be of independent interest. All our examples have direct analogs in the sum-i.d.
context.

The paper is organized as follows. In Section 2.1, we introduce minimal spectral represen-
tations for max-i.d. processes and show their existence and uniqueness under the general Con-
dition S of separability in probability. Section 2.2 contains parallel results for i.d. processes. In
Section 2.3, we discuss measurability of i.d. and max-i.d. processes. In Section 3, the devel-
oped theory is used to associate stationary i.d. and max-i.d. processes to measure preserving
flows leading to extensions of known classification results on stable processes. In Section 4, we
present several examples and applications. The connection between the new notion of minimal
spectral representations and the existing ones for stable processes is demonstrated in Section 4.1.
In Sections 4.2–4.5, we present new examples of stationary max-i.d. processes associated with
dissipative, conservative, or null flows. In Section 4.6, we characterize the stationary union in-
finitely divisible random sets by relating them to max-i.d. processes. The proofs are given in
Section 5.

2. Spectral representations of i.d. and max-i.d. processes

2.1. Spectral representations of max-i.d. processes

A stochastic process X = {X(t), t ∈ T } defined on an index set T and taking values in R is
called max-i.d., if for all n ∈ N, there exist independent identically distributed (i.i.d.) processes
{Xi,n(t), t ∈ T }, i = 1, . . . , n, such that{

X(t), t ∈ T
} d=

{
max

1≤i≤n
Xi,n(t), t ∈ T

}
. (2.1)

Here,
d= denotes the equality of finite-dimensional distributions. If {X(t), t ∈ T } is a max-i.d.

process, then for every collection of non-decreasing functions ϕt :R → R, t ∈ T , the process
{ϕt (X(t)), t ∈ T } is also max-i.d. By choosing

ϕt (x) =
{

ex, if essinfX(t) = −∞,
x − essinfX(t), if essinfX(t) > −∞

we can always achieve that essinfϕt (X(t)) = 0. In the sequel, we therefore assume without loss
of generality that essinfX(t) = 0 for every t ∈ T .

Balkema et al. [2] gave a representation of max-i.d. processes in terms of stochastic max-
integrals over a Poisson point process. This representation is, in general, non-unique; see Ex-
ample 2.12 below. We will introduce the notion of minimality for representations of max-i.d.
processes and prove that the minimal representation exists and is unique.
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We recall the construction of Balkema et al. [2] in a form which is suitable for our purposes.
Let (�,B,μ) be a σ -finite measure space. We denote by L∨ = L∨(�,B,μ) the space of all
measurable functions f :� → R such that f ≥ 0 μ-a.e. and μ{ω :f (ω) > a} is finite for all
a > 0. As usual, two functions are identified if they differ on a set of measure zero. Note that for
every f1, f2 ∈ L∨ and c1, c2 ≥ 0 we have max(c1f1, c2f2) ∈ L∨. Next let us recall the definition
of the max-integral from [2]. Let �μ = {Ui, i ∈ J } be a Poisson point process on the space
(�,B) with intensity μ. Here, J is at most countable index set. For f ∈ L∨ define the stochastic
max-integral

I (f ) ≡
∫ ∨

�

f d�μ := sup
i∈J

f (Ui). (2.2)

Here, the supremum is taken over all atoms Ui of the Poisson process �μ. If �μ is empty, which
can happen if μ(�) < ∞, then the supremum in the right-hand side is defined to be 0. From (2.2),
one readily derives a formula for the joint distribution of the stochastic max-integrals: for all
f1, . . . , fn ∈ L∨ and x1, . . . , xn ≥ 0 (not all of which are 0), we have

P
{
I (fj ) < xj ,1 ≤ j ≤ n

} = P

{
�μ

(
n⋃

j=1

{fj ≥ xj }
)

= 0

}
(2.3)

= exp

{
−μ

(
n⋃

j=1

{fj ≥ xj }
)}

.

Observe that for any collection of deterministic functions ft ∈ L∨, t ∈ T , the process
{I (ft ), t ∈ T }, is max-i.d. since the Xi,n’s in (2.1) can be defined by using independent copies of
the same stochastic max-integrals but with respect to a Poisson point process with intensity 1

n
μ.

Definition 2.1. Let X = {X(t), t ∈ T } be a max-i.d. process with essinfX(t) = 0 for all t ∈ T .
A collection of functions {ft , t ∈ T } ⊂ L∨(�,B,μ) is a spectral representation of the process X

if we have the following equality of laws:

{
X(t), t ∈ T

} d=
{∫ ∨

�

ft d�μ, t ∈ T

}
, (2.4)

where �μ is a Poisson point process on (�,B) with intensity μ.

Here, we focus on the general class of processes that are separable in probability in the sense
of the following definition.

Definition 2.2. A stochastic process {X(t), t ∈ T } satisfies Condition S if there is an at most
countable set T0 ⊂ T such that for all t ∈ T , there exists a sequence {tn}n∈N ⊂ T0, with X(tn) →
X(t) in probability.

As shown in Balkema et al. [2], the convergence in probability for max-i.d. random variables
is equivalent to convergence in measure of their spectral functions.
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Proposition 2.3 (Balkema et al. [2]). Let fn ∈ L∨(�,B,μ),n ∈ N. Then, there is a ran-
dom variable ξ such that I (fn) → ξ in probability as n → ∞, if and only if, there exists
f ∈ L∨(�,B,μ) such that fn → f in measure, as n → ∞. In this case, ξ = I (f ) a.s.

The proof follows from Theorems 4.4 and 4.5 in [2].

Remark 2.4. Observe that if fn ∈ L∨(�,B,μ) and fn → f , n → ∞, in measure, then necessar-
ily f ∈ L∨(�,B,μ). Indeed, since for all ε > 0, we have {f > ε} ⊂ {fn > ε/2} ∪ {|f − fn| >

ε/2}, it follows that μ{f > ε} < ∞, for all ε > 0. Thus, L∨(�,B,μ) is closed with respect to
convergence in measure, which in fact can be metrized by a version of the Ky Fan metric:

dμ(f,g) := inf
{
ε > 0 :μ

(|f − g| ≥ ε
) ≤ ε

}
. (2.5)

Note that μ(|f − g| ≥ ε) < ∞, for all ε > 0 and f,g ∈ L∨(�,B,μ). One can show that
L∨(�,B,μ) equipped with dμ becomes a complete metric space. Thus, Proposition 2.3 entails
that the stochastic max-integral operator is a homeomorphism of metric spaces. More precisely,
I : (L∨(�,B,μ), dμ) → (L0(P), dKF) is a continuous bijection onto its image with a continu-
ous inverse. Here, L0(P) is the space of random variables on the probability space (E,F ,P) on
which the Poisson process �μ is defined. The space L0(P) is endowed with the Ky Fan metric
dKF that metrizes the convergence in probability (see, e.g., (5.9) below).

Theorem 2.5 (Balkema et al. [2]). Let {X(t), t ∈ Rd} be a max-i.d. process satisfying Con-
dition S. There exists a spectral representation of X defined on R endowed with the Lebesgue
measure.

We will prove existence and uniqueness of the spectral representation under the following
condition of minimality.

Definition 2.6. A spectral representation {ft , t ∈ T } ⊂ L∨(�,B,μ) is called minimal if the
following two conditions hold:

(i) The σ -algebra generated by {ft , t ∈ T } coincides with B up to μ-zero sets. That is, for
every B ∈ B, exists an A ∈ σ {ft , t ∈ T }, such that μ(A
B) = 0.

(ii) There is no set B ∈ B such that μ(B) > 0 and for every t ∈ T , ft = 0 a.e. on B .

If just the second condition holds, we will say that the representation has full support.

Remark 2.7. The first condition does not imply the second one: consider � = {0,1} with count-
ing measure, T = {1}, and f1(ω) = ω.

Theorem 2.8. Let X = {X(t), t ∈ T } be a max-i.d. process satisfying Condition S. There exists
a minimal spectral representation of X defined on [0,1] endowed with a σ -finite Borel measure.

We recall next several notions of isomorphisms from measure theory. For more details, see,
for example, Chapter 22 in [41], page 167 in [8], or Chapter 15.4 in [37].
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Definition 2.9. (i) An isomorphism between two measurable spaces (�i,Bi ), i = 1,2, is a bijec-
tion � :�1 → �2 such that both � and �−1 are measurable.

(ii) A measurable space (�,B) is said to be a Borel space if it is isomorphic (in the sense of
part (i)) to a complete separable metric space endowed with its Borel σ -algebra.

(iii) A Borel space endowed with a σ -finite measure will be called a σ -finite Borel space.
(iv) An isomorphism (modulo null sets) between two measure spaces (�i,Bi ,μi), i = 1,2,

is a bijection � :�1 \ A1 → �2 \ A2, where A1 ∈ B1 and A1 ∈ B2 are null sets, such that
both � and �−1 are measurable and μ1(A) = μ2(�(A)), for all measurable A ⊂ �1 \ A1.
Two isomorphisms �,� are considered as equal modulo null sets if �(ω) = �(ω) for μ1-a.a.
ω ∈ �1.

Remark 2.10. Any Borel space is isomorphic to the interval [0,1] endowed with the Borel
σ -algebra or to an at most countable set endowed with the σ -algebra of all subsets. This result is
known as Kuratowski’s theorem (see, e.g., page 406 in [37]).

The next statement is the main result in this section. It establishes the uniqueness of the mini-
mal spectral representation.

Theorem 2.11. Let X = {X(t), t ∈ T } be a max-i.d. process. Let also {f (i)
t , t ∈ T } be two mini-

mal spectral representations of X defined on the spaces (�i,Bi ,μi), i = 1,2.

(i) If (�1,B1,μ1) is a σ -finite Borel space, then there is a measurable map � :�2 → �1
such that μ1 = μ2 ◦ �−1 and for all t ∈ T ,

f
(2)
t (ω) = f

(1)
t ◦ �(ω) for μ2-a.a. ω ∈ �2. (2.6)

(ii) If both (�i,Bi ,μi), i = 1,2 are σ -finite Borel spaces, then the mapping � in part (i) is a
measure space isomorphism and it is unique modulo null sets.

Example 2.12. Our definition of the space L∨ of integrands is more restrictive than that of
Balkema et al. [2], who allow measurable functions f :� → R with μ{f > a} < ∞, for some
a ∈ R (and do not assume that essinfXt = 0). With the definition used in [2] the uniqueness may
fail, even for minimal representations. Indeed, let �1 = �2 = Z be endowed with the counting
measure. Set T = Z∪ {∗} and define

f
(1)
t (ω) = f

(2)
t (ω) = 1{t}(ω) if t 
= ∗,

f (1)∗ (ω) = 1, f (2)∗ (ω) = 1{ω>0} + 1
21{ω≤0}.

One verifies readily that {f (i)
t , t ∈ T }, i = 1,2, are minimal representations of the same max-i.d.

process. However, there is no bijection � :�1 → �2 such that f
(1)∗ ◦ � = f

(2)∗ . Note that f
(2)∗ /∈

L∨ and hence Theorem 2.11 does not apply. The constant 1/2 in the definition of f
(2)∗ could in

fact be replaced by any 0 < c < 1. This example shows why it is important to require that the
max-integrands f in L∨ satisfy the condition μ{f > a} < ∞ for all a > 0.
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2.2. Spectral representations of i.d. processes

A process {X(t), t ∈ T } is said to be infinitely divisible (i.d. or sum-i.d.) if for all n ∈N it can be
represented (in distribution) as a sum of n independent and identically distributed processes.

There is already a lot of literature on the spectral representations of i.d. processes (see, e.g., [21,
29,33]). Our aim here is to study the minimality and the uniqueness of the spectral representation.
This is a key step which allows us to extend the classification program pioneered by Rosiński
[31] in the stable case to the general i.d. context.

Let (�,B,μ) be a σ -finite measure space. The space of integrands L+ consists of all measur-
able f :� → R such that ∫

�

min
{
ε,

∣∣f (ω)
∣∣2}

μ(dω) < +∞ (2.7)

for some (or, equivalently, any) ε > 0. Functions differing on a set of measure 0 are identi-
fied. Observe that L+ is a linear space since 1 ∧ (f + g)2 ≤ 2(1 ∧ f 2 + 1 ∧ g2). Following
Maruyama [21], for f ∈ L+ define the stochastic integral

I (f ) ≡
∫ +

�

f d�μ := lim
ε→0+

{∑
i∈J

f (Ui)1{|f (Ui)|>ε} −
∫

{|f |>ε}
a(f )dμ

}
, (2.8)

where �μ = {Ui, i ∈ J } is a Poisson point process on (�,B) with intensity μ and

a(u) =
{

u, |u| ≤ 1,
1, u > 1,
−1, u < −1.

(2.9)

Note that the limit in (2.8) exists in the a.s. sense by the convergence theorem for L2-bounded
martingales. For f1, . . . , fn ∈ L+ the joint distribution of the I (fj )’s is characterized as follows.
For all θ1, . . . , θn ∈R we have

Eei
∑n

j=1 θj I (fj ) = exp

{∫
�

(
ei

∑n
j=1 θj fj (ω) − 1 − i

n∑
j=1

θja
(
fj (ω)

))
μ(dω)

}
, (2.10)

where i stands for the imaginary unit. In particular, it is easy to verify that for all f,g ∈ L+
and c ∈ R we have I (f + g) = I (f ) + I (g) + const and I (cf ) = cI (f ) + const, that is, the
functional I is essentially linear up to additive constants (see also (5.8) below).

Definition 2.13. Let X = {X(t), t ∈ T } be an i.d. process with trivial Gaussian component de-
fined on some index set T .

(i) A collection of functions {ft , t ∈ T } ⊂ L+(�,B,μ) is a spectral representation of the
process X if we have the following equality of laws:

{
X(t), t ∈ T

} d=
{∫ +

�

ft d�μ + c(t), t ∈ T

}
, (2.11)
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where �μ is a Poisson point process on (�,B,μ) and c :T → R is some function.
(ii) The spectral representation is called minimal if {ft , t ∈ T } satisfy both conditions of Def-

inition 2.6.

Theorem 2.14. Let {X(t), t ∈ T } be an i.d. process which has a trivial Gaussian component
and satisfies Condition S. There exists a minimal spectral representation of X defined on [0,1]
endowed with a σ -finite Borel measure.

The proof of the above result (given in Section 5 below) utilizes the following truncated
L2-metric on the space L+:

d(f,g) ≡ d(f − g) :=
(∫

�

1 ∧ (f − g)2 dμ

)1/2

, f, g ∈ L+. (2.12)

Note that the triangle inequality follows from 1 ∧ |f + g| ≤ 1 ∧ |f | + 1 ∧ |g| and the triangle
inequality in L2(�).

Proposition 2.15. For any σ -finite Borel space (�,B,μ), the space (L+, d) is separable and
complete.

The next proposition shows that the metric d on the space L+ corresponds to convergence in
probability on the space of stochastic integrals {I (f ), f ∈ L+}.

Proposition 2.16. For fn ∈ L+ and cn ∈ R, we have that I (fn) + cn converges to a random
variable ξ in probability, as n → ∞, if and only if, there exists some f ∈ L+ and c ∈ R, such
that d(fn − f ) + |cn − c| → 0, as n → ∞. In this case, ξ = I (f ) + c a.s.

The next theorem, which is analogous to Theorem 2.11, shows the uniqueness of the minimal
spectral representation for i.d. processes.

Theorem 2.17. Let X = {X(t), t ∈ T } be an i.d. process. Let also {f (i)
t , t ∈ T } be two minimal

spectral representations of X defined on the spaces (�i,Bi ,μi), i = 1,2.

(i) If (�1,B1,μ1) is a σ -finite Borel space, then there is a measurable map � :�2 → �1
such that μ1 = μ2 ◦ �−1 and for all t ∈ T ,

f
(2)
t (ω) = f

(1)
t ◦ �(ω) for μ2-a.a. ω ∈ �2. (2.13)

(ii) If both (�i,Bi ,μi), i = 1,2 are σ -finite Borel spaces, then the mapping � in part (i) is a
measure space isomorphism and it is unique modulo null sets.

Remark 2.18. Theorems 2.11 and 2.17 require that both representations be minimal. Minimality
can be enforced by replacing �i by supp{f (i)

t , t ∈ T }, i = 1,2, and letting Bi = σ {f (i)
t , t ∈ T },

i = 1,2. To be able to apply the above results, however, at least one of the measure spaces
should be Borel. This is neither automatic nor obvious for the new spaces (�i,Bi ). If both
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spaces are Borel, then by part (ii) of Theorems 2.11 and 2.17 minimality ensures that the two
representations are related through a unique measure space isomorphism as in (2.13). In fact, by
part (i) of Theorems 2.11 and 2.17, this relation still holds for some not necessarily invertible
map, provided that just the first representation is minimal. This last fact is an important technical
tool, analogous to Remark 2.5 in Rosiński [31], in the stable case.

2.3. Measurability and stochastic continuity

When studying path properties or ergodicity, it is important or in fact necessary to work with
measurable processes. Here, we establish necessary and sufficient conditions for the existence of
measurable versions of max-i.d. and i.d. processes in terms of their spectral representations.

Let (T ,ρT ) be a separable metric space, equipped with its Borel σ -algebra A. Consider
a family of measurable functions {ft , t ∈ T } on (�,B,μ). This family is said to be jointly
measurable if the map (t,ω) �→ ft (ω) is measurable with respect to the product σ -algebra
A ⊗ B := σ(A × B). For the classical notions of measurability and strong separability of a
stochastic process X = {Xt }t∈T , we refer to Chapter 9 in [39]. The following result extends
Proposition 4.1 in [46] (see also Theorem 11.1.1 in [39]). Its proof is given in [14].

Proposition 2.19. Let X = {X(t), t ∈ T } be a max-i.d. (i.d., resp.) process with spectral repre-
sentation {ft , t ∈ T } ⊂ L∨/+(�,B,μ) over a σ -finite measure space (�,B,μ) as in (2.4) (as
in (2.11), resp.). The process X has a measurable modification if and only if the following two
conditions hold:

(i) The family {ft , t ∈ T } has a jointly measurable modification, that is, there exists a
A⊗B-measurable mapping (t,ω) �→ gt (ω), such that ft = gt (modμ), for all t ∈ T .

(ii) The function t �→ c(t) is measurable if X is i.d.

If the process X has a measurable modification, then it satisfies Condition S, and consequently,
X has a spectral representation over a σ -finite Borel space. In this case, the measurable version
of X and the jointly measurable version of {ft , t ∈ T } may be taken to be strongly separable.

Remark 2.20. The last result shows that, if X has a measurable version, then this version as
well as its corresponding jointly measurable representation {ft }t∈T can be taken to be strongly
separable (cf. Chapter 9 in [39]).

Remark 2.21. Proposition 3.1 in [35] states that any measurable and stationary random field
{X(t), t ∈Rd} is automatically continuous in probability.

This follows from a celebrated result due to Banach on Polish groups. Conversely, it is well
known that stochastically continuous processes (indexed by separable metric spaces) have mea-
surable modifications. Therefore, in the case of stationary random fields on Rd the assumptions
of stochastic continuity and measurability are essentially equivalent.
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3. Flow representations and ergodic decompositions for
stationary i.d. and max-i.d. processes

In the stable and max-stable cases, the connections between spectral representations and ergodic
theoretic decompositions of the underlying flows have lead to a wealth of decomposition and
classification results. We will show that this theory naturally extends to the i.d. and max-i.d.
setting. An alternative powerful approach from the perspective of Poisson suspensions and factor
maps has been recently pioneered by Emmanuel Roy [33,34]. We expect that these tools can
be used to develop an all-encompassing theory, but this is beyond the scope and goals of the
present work. Here, we adopt an alternative approach, which is useful when the i.d. and max-i.d.
processes are given through their stochastic integral representations.

3.1. Existence and uniqueness of flow representations

Let T denote either Z or R. Consider the measure space (Td ,A, λ), where λ is either the counting
measure if T = Z or the Lebesgue measure with A the Borel σ -algebra if T = R. A measure-
preserving Td -action (or flow) on a measure space (�,B,μ) is a family {Tt }t∈Td of measure
space isomorphisms Tt :� → � such that T0 = id μ-a.e. and for every t, s ∈ Rd , Tt ◦ Ts = Tt+s

μ-a.e. The action is called measurable if (t,ω) �→ Tt (ω) is a measurable map from Td ×� to �,
where the former space is endowed with the product σ -algebra A⊗B.

The next statement combines both the i.d. and max-i.d. cases and shows that one can associate
stationary processes with measure-preserving actions. The common theme is the uniqueness.

Theorem 3.1. Let X = {X(t), t ∈ Td} be a stationary and stochastically continuous max-
i.d. (resp., i.d., without Gaussian component) process with a representation {ft , t ∈ T } ⊂
L∨/+(�,B,μ) as in (2.4) (or (2.11), resp.). If the representation is minimal and the measure
space (�,B,μ) is σ -finite Borel, then there exists a measurable and measure-preserving flow
{Tt }t∈Td on (�,B,μ) such that for all t ∈ Td , we have

ft = f0 ◦ Tt , μ-a.e. (3.1)

In the i.d. case the function c(t) in (2.11) is constant.

Proof. By stationarity, for every fixed s ∈ Td , both {ft , t ∈ Td} and {ft+s , t ∈ Td} are minimal
spectral representations of X defined over the same σ -finite Borel space. By Theorems 2.11(ii)
and 2.17(ii), there is a modulo μ unique automorphism Ts of the measure space (�,B,μ) such
that for every t ∈ Td , fs+t = ft ◦ Ts , μ-a.e. Let us show that for every s1, s2 ∈ Td , Ts1+s2 =
Ts1 ◦ Ts2 , μ-a.e. Indeed, we have for every t ∈ Td ,

ft ◦ Ts1+s2 = fs1+s2+t = ft ◦ (Ts1 ◦ Ts2), μ-a.e.

By the uniqueness of the automorphisms, we have Ts1+s2 = Ts1 ◦ Ts2 , μ-a.e., which yields (3.1).
In the sum-i.d. case, note also that the term c(t) appearing in (2.11) does not depend on t ∈ Td

by stationarity.
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This completes the proof in the case T = Z. In the case T = R the flow {Tt }t∈Rd constructed
in this way need not in general be measurable (see, e.g., Example 3.6, below). However, one
can argue as in [31], by using the works of Mackey [19] and Sikorski [41], that each Tt can be
modified on a set of μ-measure zero so that the flow property is valid with probability one and
the flow becomes measurable. Indeed, observe first that by Proposition 2.19, we may assume that
the representation {ft , t ∈ Rd} is jointly measurable. Now, consider the Boolean σ -algebra Bμ

whose elements are equivalence classes [B] of sets B ∈ B with respect to the equality modulo
μ-null sets. Following the argument on page 1168 of Rosiński [31], in order to apply Theorem 1
of [19], it is enough to show that for every finite measure ν̃ on the Boolean σ -algebra Bμ and for
every set B ∈ B the function

t �→ ν̃
([

Tt (B)
])

is Borel measurable. For the finite measure ν on (�,B), induced by ν̃ as ν(B) := ν̃([B]), we
have ν � μ and hence

ν̃
([

Tt (B)
]) =

∫
�

(1B ◦ T−t )(ω)k(ω)μ(dω), (3.2)

where k = dν/dμ ∈ L1(�,B,μ) is the Radon–Nikodym density.
By minimality of the representation {ft , t ∈ Rd}, we have that there is a set A ∈ B such that

μ(A
B) = 0 and A ∈ σ {fti , i ∈ N}, for some countable collection {ti , i ∈ N} ⊂ Rd and there-
fore, there exists a Borel function g :RN → R, such that 1A = g(ft1 , ft2, . . .). We will show that
the integral in (3.2) is a Borel measurable function of t . Since fti−t = fti ◦ T−t modμ, we have
that 1A ◦ T−t = g(ft1−t , ft2−t , . . .)modμ, for every t ∈ Rd . Hence, we have

ν̃
([

Tt (B)
]) =

∫
�

g
(
ft1−t (ω), ft2−t (ω), . . .

)
k(ω)μ(dω) for all t ∈Rd . (3.3)

Now, the joint measurability of {ft , t ∈ Rd} implies the joint measurability of the integrand on
the right-hand side of (3.3) as a function of t and ω. Hence, by Fubini’s theorem, applied to (3.3),
we obtain that t �→ ν̃([Tt (B)]) is Borel measurable. Now, proceeding as on page 1169 of [31],
by using Theorem 1 of [19] and Theorem 32.5 of [41], we obtain that the flow {Tt , t ∈ Rd} has a
jointly measurable modification. �

Theorem 3.1, as in the stable case (cf. [31]) motivates the following.

Definition 3.2. A stationary max-i.d. or i.d. process (with trivial Gaussian part) X with spectral
representation {ft , t ∈ Td} ⊂ L∨/+(�,B,μ) as in (2.4) or (2.11), is said to be generated by a
measure-preserving flow {Tt }t∈Td on (�,B,μ) if:

(i) For every t ∈ Td , ft = f0 ◦ Tt μ-a.e.
(ii) {ft , t ∈ Td} has full support.

In this case, we call the pair (f0, {Tt }t∈Rd ) a flow representation of X on (�,B,μ). Furthermore,
if {ft , t ∈ Td} is minimal, then we say that the flow representation is minimal.
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Remark 3.3. According to the above definition, a flow representation need not be minimal. The
reason why we consider more general non-minimal flow representations is because minimality
may not be easy to check or ensure in applications.

The next corollary follows immediately from Theorems 2.8, 2.14, and 3.1.

Corollary 3.4. Let {X(t), t ∈ Td} be a stationary max-i.d. or i.d. (without Gaussian component)
process which is stochastically continuous (equivalently: has a measurable modification). Then,
X has a minimal representation by a measurable flow on a σ -finite Borel space.

The next result shows that the minimal flow representation associated with a stationary
stochastically continuous max-i.d. or i.d. process is essentially unique up to a flow isomorphism.
This fact will allow us to obtain structural results about the above two types of processes from
ergodic theoretic properties of the associated flows.

Theorem 3.5. Let X = {X(t), t ∈ Td} be a stationary max-i.d. or i.d. (without Gaussian
component) random field. If T = R, suppose in addition that X is stochastically continu-

ous. If (f
(i)
0 , {T (i)

t }t∈Td ) are two minimal flow representations of X on σ -finite Borel spaces
(�i,Bi ,μi), i = 1,2, then there is a measure space isomorphism � :�1 → �2 (defined modulo
null sets) such that f

(1)
0 = f

(2)
0 ◦ �, μ1-a.e., and for all t ∈ Td ,

� ◦ T
(1)
t = T

(2)
t ◦ �, μ1-a.e. (3.4)

The isomorphism � is unique modulo null sets.

Proof. By assumption, {f (i)
0 ◦ T

(i)
t , t ∈ Td}, i = 1,2, are two minimal spectral representations

of X. By the uniqueness of the minimal spectral representations over Borel spaces, there is a
(modulo null sets) unique measure space isomorphism � :�1 → �2 such that for every t ∈ Td ,(

f
(1)
0 ◦ T

(1)
t

) = (
f

(2)
0 ◦ T

(2)
t

) ◦ �, μ1-a.e. (3.5)

Replacing t by t + s and taking the composition of both sides with T
(1)
−s from the right, we obtain(

f
(1)
0 ◦ T

(1)
t

) = (
f

(2)
0 ◦ T

(2)
t

) ◦ (
T (2)

s ◦ � ◦ T
(1)
−s

)
, μ1-a.e. (3.6)

It follows from (3.5) and (3.6) that � and T
(2)
s ◦ � ◦ T

(1)
−s are two measure space isomor-

phisms each linking the representations {f (i)
0 ◦ T

(i)
t , t ∈ Td}, i = 1,2. By the last statement of

Theorem 2.11 or Theorem 2.17, these isomorphisms should be equal up to μ1-zero sets. This
yields (3.4). �

The following example shows that the stochastic continuity of the process X is an essential
assumption for the measurability of the flow in Theorem 3.1.
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Example 3.6. Take � = R, let B be the Borel σ -algebra and μ = λ the Lebesgue measure.
Take any function f0 ∈ L∨(R,B, λ), for concreteness let f0(ω) = e−ω1ω>0. We now construct a
measure-preserving flow on (R,B, λ) with “bad” properties. Let ϕ :R→R be a Hamel function,
that is a non-measurable function which satisfies the Cauchy functional equation ϕ(t + s) =
ϕ(t)+ϕ(s) for all t, s ∈R. Define a map Tt :R →R by Tt (ω) = ω −ϕ(t), for s, t ∈R. It is easy
to check that {Tt }t∈R is a measure-preserving (but not measurable) flow on (R,B, λ). Consider
now a max-i.d. process {X(t), t ∈ R} defined by X(t) = I (ft ), where

ft (ω) = (f0 ◦ Tt )(ω) = e−(ω−ϕ(t))1ω>ϕ(t).

The process X defined above is a stationary max-i.d. process which satisfies Condition S. To
see that Condition S is satisfied note that ϕ(t) = ct for all t ∈ Q and some constant c = ϕ(1).
Hence, the collection {X(t), t ∈ Q} is dense in probability in {X(t), t ∈ R}. The spectral repre-
sentation {ft , t ∈ R} constructed above is minimal and it is defined on a σ -finite Borel space.
Note that the minimality follows from the fact that the σ -algebra generated by the functions
e−(x−ct)1x>ct , t ∈Q, coincides with B. This representation is generated by a measure-preserving
flow {Tt }t∈R. On the other hand, the process X is not stochastically continuous (otherwise, the
function ϕ would be continuous and hence, linear). By Remark 2.21, the process X has no jointly
measurable modification. Consequently, by Proposition 2.19, the representation {ft , t ∈ R} has
no jointly measurable modification and the process X has no representation generated by a mea-
surable measure-preserving flow.

3.2. Conservative–dissipative decompositions

Let {Tt }t∈Td , with T = Z or R, be a measure-preserving and measurable Td -action on a σ -finite
Borel space (�,B,μ). Suppose first that T = Z and d = 1. Recall that a set W ∈ B is said
to be wandering if Tn(W), n ∈ Z, are disjoint modulo μ. If � = ⋃

t∈Z Tn(W)modμ, for some
(maximal) wandering set W , then the flow is said to be dissipative. Conversely, a flow {Tn,n ∈ Z}
is said to be conservative if it has no wandering sets of positive measure. In general, a flow may
be neither purely conservative nor dissipative. The Hopf decomposition entails that � = C ∪ D,
where C ∩ D = ∅ and C and D are two T1-invariant sets such that the restriction of T1 is
conservative on C and dissipative on D. In the continuous-parameter case T =R and d = 1, one
can show that the Hopf decompositions � = Ct ∪ Dt corresponding to the measure preserving
map Tt do not depend on t ∈ R \ {0}, modulo μ (cf. [17,18,31]). Furthermore, a celebrated
result due to Krengel implies that {Tt , t ∈ R} is dissipative if and only if it is isomorphic to a
mixture of Lebesgue shifts, that is, Tt ◦ �(s, v) = �(s + t, v) for a measure space isomorphism
� : (T× V,A⊗ V, λdν) → (�,B,μ).

The multi-parameter case d ≥ 2 is more delicate since it is not obvious how to even define the
conservative/dissipative component of the flow. In a series of works Rosiński, Samorodnitsky
and Parthanil Roy [32,35,36] have shown that the Hopf decomposition and Krengel’s character-
ization of dissipativity extend to the multi-parameter setting with T discrete and/or continuous.
Here, we shall adopt the approach of Parthanil Roy [35] and say that the conservative (dissi-
pative) component of the flow {Tt , t ∈ Rd} is that of the discrete skeleton {Tγ , γ ∈ Zd} (see
Proposition 2.1 therein). The flow is said to be conservative (dissipative, resp.) if its dissipative
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(conservative, resp.) component is trivial. The following characterization result may be taken as
a definition of the Hopf decomposition of a Td -action.

Theorem 3.7 (Corollary 2.2 in [35]). Let {Tt , t ∈ Td} be a measure-preserving and measurable
flow. Let also h ∈ L1(�,B,μ) be positive μ-a.e. Then the conservative part of {Tt }t∈Td is modulo
μ equal to:

C :=
{
ω ∈ � :

∫
Td

h
(
Tt (ω)

)
λ(dt) = ∞

}
.

And for the dissipative component, we have D = � \ C.

Definition 3.8. Let X = {Xt, t ∈ Td} be a measurable stationary max-i.d. or i.d. random field
(without Gaussian part) generated by a measurable flow T = {Tt , t ∈ Td} on (�,B,μ) in the
sense of Definition 3.2. We shall say that X is generated by a conservative (dissipative) flow if
{Tt , t ∈ Td} is conservative (dissipative).

The following result shows that this definition does not depend on the choice of the flow
representation. It provides, moreover, a useful integral test for identifying the conservative and
dissipative parts of a flow. The situation is conceptually similar to the stable and max-stable cases
(Corollary 4.2 in [31], Proposition 3.2 in [35], or Theorem 5.2 in [46]).

Theorem 3.9. Consider a stationary max-i.d. (or i.d.) process X with a jointly measurable spec-
tral representation {ft , t ∈ Td} of full support. The process X is generated by a conservative flow,
if and only if, for every (equivalently any) nonnegative Borel function ψ : [0,∞) → [0,∞) such
that ψ(x) > 0 for all x > 0, and

∫
�

ψ(|f0|)dμ < ∞, we have∫
Td

ψ
(∣∣ft (ω)

∣∣)λ(dt) = ∞ for μ-a.e. ω. (3.7)

Conversely, the process X is generated by a dissipative flow, if the latter integral is finite μ-a.e.
for some (equivalently, every) ψ such that ψ(x) > 0 for all x > 0 and

∫
�

ψ(|f0|)dμ < ∞.

Consider a max-i.d. or an i.d. process X = {X(t), t ∈ Td} with a measurable spectral repre-
sentation of full support. Motivated by Theorem 3.9, let

C =
{
ω ∈ � :

∫
Td

ψ
(∣∣ft (ω)

∣∣)λ(dt) = ∞
}

and D := � \ C. (3.8)

By restricting the spectral representation to the sets C and D, we obtain the following decompo-
sition of X into a max/sum of two independent processes:

X
d= XC �XD, � ∈ {∨,+}, (3.9)

where XC(t) := I∨/+(1Cft ) + c and XD(t) := I∨/+(1Dft ) + c, t ∈ Td , where c = 0 in the
max-i.d. case.
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By relation (5.17), as in the proof of Theorem 3.9, it follows that XC and XD are stationary
and generated by conservative and dissipative flows, respectively. The next result shows that this
decomposition is unique.

Corollary 3.10. The conservative/dissipative decomposition (3.9) is unique in law.

Proof. Let {f (i)
t , t ∈ Td} be two measurable representations of X of full support defined on

(�i,Bi ,μi), i = 1,2. As in the proof of Theorem 3.9, there exist measure-preserving �i :�i →
�̃, i = 1,2, such that for all t ∈ Td , we have f

(i)
t (ω) = gt (�i(ω)), modulo μi (= μ̃ ◦ �−1

i ), i =
1,2, where gt = g0 ◦ Tt , t ∈ T is a measurable minimal spectral representation over the Borel
σ -finite space (�̃, B̃, μ̃). Let Ci and Di be defined as in (3.8) with f replaced by f (i), i = 1,2.
Then, as argued in the proof of Theorem 3.9 (cf. (5.17)), we have that Ci = �−1

i (C̃), mod-
ulo μi , where C̃ is the conservative part of the flow {Tt , t ∈ Td}. This fact since the �i ’s are
measure preserving implies that {1C̃gt , t ∈ Td} is a spectral representation for both XC1 and

XC2 , where XCi
(t) = I∨/+(1Ci

f
(i)
t ) + c, i = 1,2. Hence, XC1

d= XC2 . One can similarly show

that XD1

d= XD2 . �

In view of (the multi-parameter version) of Krengel’s characterization of dissipativity (see,
e.g., [32] or Corollary 2.4 in [35]), we arrive at the following important result.

Corollary 3.11. A measurable stationary max-i.d. or i.d. process X is generated by a dissipative
flow if and only if it has a mixed moving maximum/average representation. That is, for some
σ -finite Borel space (V ,V, ν) and (�,B,μ) = (Td × V,A⊗ V, λ ⊗ ν), we have

X
d= {

I∨/+(ft ) + c, t ∈ Td
}
, where ft (s, v) = f0(t + s, v), (s, v) ∈ �

for some f0 ∈ L∨/+(�,B,μ).

4. Examples of max-i.d. processes

4.1. Max-stable processes

Max-stable processes form a subclass of the max-i.d. processes. Fix α > 0. A process X =
{X(t), t ∈ T } is called (α-Fréchet) max-stable if for every n ∈ N the process X1 ∨ · · · ∨ Xn has
the same law as n1/αX, where X1, . . . ,Xn are i.i.d. copies of X. The marginal distributions of X

are α-Fréchet distributions of the form P[X(t) ≤ x] = exp{−σα(t)x−α}, x > 0. Here, σ(t) > 0
is called the scale parameter of X(t).

For max-stable processes, a theory of spectral representations has been developed; see [4,
5,11,42,46]. We will explain the connection to the max-i.d. spectral representations devel-
oped here. Let Lα+(�′,B′,μ′) be the set of measurable functions g :�′ → [0,∞) such that∫
�′ gα dμ′ < ∞. Let � = (0,∞) × �′ be equipped with the product σ -algebra B and with
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a measure μ = αu−(α+1) duμ′. A collection of functions {gt , t ∈ T } ⊂ Lα+(�′,B′,μ′) is called a
spectral representation of a max-stable process {X(t), t ∈ T } if

{
X(t), t ∈ T

} d=
{∨

i∈N
uigt

(
ω′

i

)
, t ∈ T

}
, (4.1)

where {(ui,ω
′
i ), i ∈ N}, are points of the Poisson process �μ with intensity μ on �. The pro-

cess X, being also max-i.d., must admit a spectral representation in the sense of Section 2.1. This
representation can be constructed as follows. Define ft :� → [0,∞) by ft (u,ω′) = ugt (ω

′),
t ∈ T . Then, (4.1) implies that {ft , t ∈ T } is a spectral representation of X viewed as a max-i.d.
process.

A spectral representation {gt , t ∈ T } ⊂ Lα+(�′,B′,μ′) of a max-stable process X is called min-
imal (see [11,45,46]) if (i) supp{gt , t ∈ T } = �′ modμ′ and (ii) σ {gt/gs, t, s ∈ T } = B′ modμ′.

Lemma 4.1. In the above context, if {gt , t ∈ T } is a minimal spectral representation of a max-
stable process X, then {ft , t ∈ T } is a minimal spectral representation of X as a max-i.d. process.

Proof. Notice that (ft/fs)(x, y) = (gt/gs)(y), (with 0/0 is interpreted as 0) does not depend
on x. Therefore, ρ(F ) := σ {ft/fs, t, s ∈ T } =R+ × σ {gt/gs, t, s ∈ T }, which is (modμ) equiv-
alent to R+ × B�′ := {R+ × B :B ∈ B�′ } by condition (ii). We also have that gt is (modμ)
measurable with respect to (w.r.t.) R+ × B�′ (modμ) and since ρ(F ) = R+ × B�′ (modμ),
it follows that gt is (modμ) measurable w.r.t. σ(F ) := σ {ft , t ∈ T } (⊃ ρ(F )). Therefore,
(x, y) �→ x1{supp(gt )}(y) = ft (x, y)/gt (y) is (modμ) measurable w.r.t. σ(F ). Now, the full
support condition (i) implies also that (x, y) �→ x is (modμ) measurable w.r.t. σ(F ). This
implies that BR+ ×�′ is included in σ(F ) (modμ). Since also R+ × B�′ is (modμ) in-
cluded in σ(F ), it follows that BR+ × B�′ is (modμ) contained in σ(F ). This shows that
BR+ ⊗ B�′ ≡ σ(BR+ × B�′) = σ(F ) (modμ). This shows that {ft , t ∈ T } is a minimal rep-
resentation of X since condition (i) for {gt , t ∈ T } implies also the full support condition for
the ft ’s. �

Remark 4.2. Lemma 4.1 shows that all previous results on max-stable processes that rely on
the notion of minimality can be obtained via the new notion of minimality. The following con-
struction due to Maharam gives the precise connection between the “old” and “new” spectral
representations in the case of stationary processes.

Let X = {X(t), t ∈ Rd} be a stationary stochastically continuous max-stable process with
α-Fréchet margins. Then by [5], there is a non-singular flow T ′

t on a σ -finite Borel space
(�′,B′,μ′) and a function g0 ∈ Lα+(�′,B′,μ′) such that {gt , t ∈ Rd} is a minimal spectral rep-
resentation of X, where

gt =
(

dμ′ ◦ T ′
t

dμ′

)1/α

g0 ◦ T ′
t , t ∈ R.

(Recall that a measurable flow {T ′
t }t∈Rd is said to be non-singular if the measures μ′ ◦ T ′

t and μ

are equivalent.)
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The process X, being max-stable, is also max-i.d. Let us construct the flow representation of X

in the sense of Section 3. We shall employ the Maharam construction [1,20]. Let � = (0,∞)×�′
and consider the mappings Tt :� → � defined by

Tt

(
u,ω′) :=

((
dμ′ ◦ T ′

t

dμ′
(
ω′))1/α

u,T ′
t

(
ω′)), (4.2)

where (t,ω′) �→ d(μ′ ◦ T ′
t )/dμ′(ω′) is a measurable version of the Radon–Nikodym derivatives

(see, e.g., Theorem A.1 in [16]). It is easy to see that {Tt }t∈R is a measurable flow, which is
measure-preserving (see, e.g., [1,20]). Now, (4.2) implies that (f0, {Tt }t∈Rd ) is a flow represen-
tation of X in the sense of Section 3.

4.2. Independent random variables

Any collection {X(t), t ∈ T } of independent random variables forms a max-i.d. process. To see
this, take any n ∈ N and let Xi,n(t),1 ≤ i ≤ n, t ∈ T , be independent random variables such
that P[Xi,n(t) ≤ x] = (P[X(t) ≤ x])1/n. Then, {X(t), t ∈ T } has the same law as {∨n

i=1 Xi,n(t),

t ∈ T }, thus showing the max-i.d. property. Assume that T is countable. Then, Condition S is
satisfied. The minimal spectral representation of {X(t), t ∈ T } can be constructed as follows.
As always, we assume that essinfX(t) = 0 and, additionally, P[X(t) = 0] < 1 for all t ∈ T . Let
� = T × (0,∞) be endowed with the product of the power set 2T and the Borel σ -algebra on
(0,∞). Define a measure μ on � by μ({t} × [x,∞)) = − logP[X(t) < x], t ∈ T , x > 0. In this
way, � turns into a σ -finite Borel space. Define the functions ft :� →R, t ∈ T , by

ft (s, x) =
{x, t = s,

0, t 
= s, s ∈ T ,x > 0.

Then, {ft , t ∈ T } is a minimal spectral representation of {Xt, t ∈ T }. If T = Z and the random
variables Xt are i.i.d., then X is stationary and we can define a (discrete time) flow representation
by setting Tt (s, x) = (s − t, x), t ∈ Z, and noting that ft = f0 ◦ Tt .

4.3. Mixed moving maximum processes

Here, we present a general probabilistic construction of mixed moving maxima max-i.d. pro-
cesses. Similar construction applies in the i.d. context. Let {Ui, i ∈ N} (interpreted as storm
centers) be the points of a Poisson process on Rd with constant intensity λ. Let {F(t), t ∈ Rd}
be a measurable random process with values in [0,∞) such that for every a > 0, we have∫

Rd

P
[
F(t) > a

]
dt < ∞. (4.3)

Let Fn,n ∈ N, be i.i.d. copies of F (storms), which are independent from the Poisson process
{Ui, i ∈N} of storm centers. Define a process {X(t), t ∈Rd} by

X(t) = sup
i∈N

Fi(t − Ui). (4.4)
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Condition (4.3) implies that X is a well-defined max-i.d. process, which is stationary by the
translation invariance of the point process {Ui, i ∈ N}. Indeed, without loss of generality, we can
let Fi(t) = f (t,Vi), where Vi are i.i.d. Uniform(0,1) random variables and f :Rd × [0,1] →
[0,∞) is a Borel function. Thus, �μ = {(Ui,Vi), i ∈N} is a Poisson point process on Rd ×[0,1]
with intensity μ(dudv) = λdudv. Relation (4.3) and Fubini’s theorem guarantee that ft (u, v) :=
f (t − u,v) ∈ L+(Rd × [0,1],μ), for all t ∈ Rd , and hence

{
X(t), t ∈Rd

} d=
{∫ ∨

Rd×[0,1]
f (t − u,v)�μ(du,dv)

}
is well-defined. Clearly ft (u, v) = f0(Tt (u, v)), where f0(u, v) := f (−u,v) and Tt (u, v) :=
(u − t, v), t ∈ Rd , is the simple Lebesgue shift flow in the first coordinate, which is measurable
and measure-preserving. This shows that the process X is stationary and in fact has a mixed
moving maximum representation. The above discussion and Corollary 3.11 imply that the process
X in (4.4) is generated by a dissipative flow.

4.4. Max-i.d. processes associated to Poisson line processes

Instead of taking points of a Poisson process as storm centers in (4.4), we can also take lines of a
Poisson line process as storm centers. Let T = R/(2πZ) be identified with the unit circle. Each
point (r, ϕ) in L := R× T corresponds to an oriented line in R2 which passes through the point
(r cosϕ, r sinϕ) in the direction of the vector (− sinϕ, cosϕ). In this way, L can be identified
with the set of all oriented lines in R2. Take a Poisson point process {(ri , ϕi), i ∈N} on L whose
intensity is λdr × dϕ, where λ > 0 is constant. The corresponding random set of lines in R2 is
called the Poisson line process and is interpreted as the set of storm centers. Its law is invariant
with respect to translations of R2; see, for example, [15].

Let now {F(t), t ∈R} be a measurable process with values in [0,∞) such that for every a > 0,
we have

∫
R
P[F(t) > a]dt < ∞. Let Fi , i ∈ N, be i.i.d. copies of F (storms). Define a process

{η(x, y), (x, y) ∈R2} by

η(x, y) = max
i∈N

Fi(x cosϕi + y sinϕi − ri). (4.5)

Note that |x cosϕ + y sinϕ − r| is the distance from the point (x, y) to the line corresponding to
(r, ϕ) ∈ L. As in the previous Section 4.3, without loss of generality, we have Fi(t) = f (t,Vi),
where Vi are i.i.d. Uniform(0,1) random variables and hence{

η(x, y), (x, y) ∈R2}
(4.6)

d=
{∫ ∨

R×[0,2π)×[0,1]
f (x cosϕ + y sinϕ − r, v)�μ(dr,dϕ,dv), (x, y) ∈R2

}
,

where �μ = {(ri , ϕi, vi), i ∈N} is a Poisson process on � := R× [0,2π) × [0,1] with intensity
μ(dr,dϕ,dv) = λdr dϕ dv. This representation together with the translation invariance of the
Poisson line process readily implies the following result.
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Proposition 4.3. η is a stationary max-i.d. process on R2.

One can construct also max-stable processes of this type. Fix α > 0. Start with a Poisson
process � = {(ri , ϕi, zi), i ∈ N} on L × (0,∞) with intensity λdr × dϕ × αz−(α+1) dz. Let
{F(t), t ∈ R} be a process with values in [0,∞) such that E

∫
R

Fα(r)dr < ∞. Let {Fi, i ∈ N}
be independent copies of F . Define

ζ(x, y) = max
i∈N

ziFi(x cosϕi + y sinϕi − ri). (4.7)

Proposition 4.4. {ζ(x, y), (x, y) ∈ R2} is a stationary max-stable process with α-Fréchet mar-
gins.

Max-stability follows directly from the properties of the Poisson processes and stationarity is
the consequence of the stationarity of the Poisson line process. For simplicity, we considered
here processes based on Poisson lines in R2, but a similar construction is possible in Rd , where
the lines are replaced by k-dimensional affine subspaces in Rd, k < d . For k = 0 we recover
the mixed moving maxima processes, for k ≥ 1, however, these processes are generated by a
conservative flow. We show this next for the case of the Poisson line process (k = 1).

Proposition 4.5. The Poisson line max-i.d. process in (4.5) is generated by a conservative flow.

Proof. Without loss of generality, we may assume that Leb[t ∈ R :F(t) > 0] > 0, almost surely.
Indeed, let as above F(t) = f (t,V ) and A := {v ∈ [0,1] : Leb[t ∈ R :f (t, v) > 0] = 0}. Sup-

pose first that Leb(A) = 1, that is the paths t �→ F(t) are zero for almost all t ∈ R, with probabil-
ity one. For example, F(t) = 1B(t) for a set B of Lebesgue measure zero. In this case, we have
that for all fixed (x, y) ∈R2, the random variable η(x, y) in (4.5) is almost surely zero.

On the other hand, if 0 < Leb(A) < 1, consider the process G(t) = f (t,W), where W
d= V |Ac

have the conditional distribution of V restricted to the set Ac := [0,1]\A. By a thinning argument
and replacing in (4.5), λ and F by λ/Leb(Ac) and G, respectively, we see that for all (x, y) ∈ R2,
we have {

η(x, y), (x, y) ∈R2} d=
{

max
i∈N

Gi(x cosϕi + y sinϕi − ri), (x, y) ∈R2
}
,

where Gi ’s are independent copies of G. With probability one, however, the paths of the process
t �→ G(t) are positive over a set of positive Lebesgue measure. This shows that, without loss of
generality, we can suppose that (4.5) holds with Leb[t ∈R :F(t) > 0] > 0, almost surely.

Let now ψ(x) > 0, x > 0, be as in Theorem 3.9. In view of (4.6), we have that

Jψ(ϕ, r, v) :=
∫
R2

ψ
(
f (x cosϕ + y sinϕ − r, v)

)
dx dy =

∫
R

(∫
R

ψ
(
f (̃x, v)

)
dx̃

)
dỹ,

where x̃ := x cosϕ + y sinϕ − r , and ỹ := −x sinϕ + y cosϕ.
Since Leb[t ∈ R :F(t) = f (t,V ) > 0] > 0 almost surely, we have

∫
R

ψ(f (̃x,V ))dx̃ > 0 a.s.
Hence, Jψ(ϕ, r, v) = ∞ for almost all (ϕ, r, v) ∈ R × [0,2π) × [0,1], which means that the
process η is generated by a conservative flow. �
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Remark 4.6. In general, we conjecture that the Poisson line process X for k ≥ 1 is generated by
a null-recurrent flow (see, e.g., Samorodnitsky [38], and also [11,33,46]).

4.5. Penrose min-i.d. random fields

The next family of examples generalizes the processes considered by Penrose [24–26]. Let
� = {Ui, i ∈ Z} be the points of Poisson process on Rk with a constant intensity λ. Let {ξi(t),

t ∈ Rd}, i ∈ Z, be independent copies of a random field {ξ(t), t ∈ Rd} with values in Rk which
has stationary increments. Let | · | be the Euclidean norm. Define

X(t) = min
i∈Z

∣∣Ui + ξi(t)
∣∣. (4.8)

Proposition 4.7. The process X is stationary, min-i.d. process (i.e., −X is max-i.d.).

The min-i.d. property follows directly from the fact that for every n ∈ N, we can represent �

as a union of n independent Poisson processes with constant intensity λ
n

. The stationarity of X

follows from the stationarity of increments of ξ ; see Proposition 2.1 in [12]. To construct concrete
families of examples one may take k = 1 and ξ to be the zero-mean Gaussian process defined on

Rd with covariance function E[ξ(t)ξ(s)] = σ 2

2 (|t |2H + |s|2H − |t − s|2H ), where H ∈ (0,1] is
the Hurst exponent and σ 2 > 0 (see Figure 1). Min-i.d. processes of this type appeared in [13] as
limits of pointwise minima (in the sense of absolute value) of independent Gaussian processes.

One can also take d = 1, k ∈ N arbitrary and let ξ be the Rk-valued standard Brownian mo-
tion. The next result shows that the resulting processes, which were introduced and studied by
Penrose [24–26], are of mixed moving maximum type for k ≥ 3 and are conservative for k ≤ 2.

Proposition 4.8. Let X = {X(t), t ∈ R} be as in (4.8), where {ξ(t), t ∈R} is the standard Brow-
nian motion in Rk . The max-i.d. process −X is generated by a conservative flow for k = 1,2 and
dissipative for k ≥ 3.

Figure 1. Realizations of Penrose-type min-i.d. random fields driven by isotropic Lévy fractional Brownian
motions defined on R2 with Hurst exponents H = 0.1, 0.5, and 0.9, respectively, left to right.
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Proof. We shall apply the integral test in Theorem 3.9 above. In the case k = 1,2 the result
follows from the neighborhood-recurrence property of the Brownian motion. In the case k ≥ 3
we will use the fact that the Brownian motion in Rk is transient.

Consider the space � := R × C0(R,Rk), equipped with the product of the Borel σ -algebras,
where C0(R,Rk) is the space of Rk-valued continuous functions on R which vanish at 0.
Consider the Poisson point process � = {(Ui, ξi), i ∈ Z} on � with intensity μ(du,dv) =
λ(du)Pξ (dv), where λ is the Lebesgue measure on R and Pξ is the law of ξ on C0(R,Rk).
Therefore, for the max-i.d. process −X we obtain the spectral representation

−X
d=

{∫ ∨

�

ft (u, v)�μ(du,dv)

}
t∈R

, with ft (u, v) = −∣∣u + v(t)
∣∣,

where v = (v(t))t∈R ∈ C0(R,Rk). Observe that since Pξ [v(0) = 0] = 1, we have
∫
�

f0 dμ =∫
R

e−|u| du < ∞ and one can take ψ(x) := ex in (3.7).
Consider first the transient case k ≥ 3. By the Dvoretzky–Erdös criterion (see, e.g., Theo-

rem 3.22 in [23]) by taking g(r) = r1/3, we obtain that
∫ ∞

1 g(r)k−2r−k/2 dr < ∞, and therefore
lim inf|t |→∞ |ξ(t)|/g(t) = ∞, with probability one. Thus, for Pξ -almost all v, we have

ψ
(
ft (u, v)

) = e−|u+v(t)| ≤ exp
{−|t |1/3}

for all sufficiently large |t |. Since the latter bound is integrable, we obtain that
∫
R

ψ(ft (u, v))dt <

∞ for μ-almost all (u, v) ∈ �. This, in view of Theorem 3.9 implies that −X is generated by a
dissipative flow.

Suppose now k ≤ 2. By the neighborhood recurrence of the Brownian motion [23] in dimen-
sions k = 1,2, the time which the Brownian motion spends in any open set is infinite with prob-
ability 1. It follows immediately that

∫
R

ψ(ft (u, v))dt = ∞ for μ-almost every (u, v) ∈ �. By
Theorem 3.9 this implies that −X is generated by a conservative flow. �

4.6. Stationary union-i.d. random sets

A measurable process {X(t), t ∈ Rd} taking only values 0,1 can be identified with the ran-
dom set S := {t ∈ Rd :X(t) = 1}. Note that we do not require the sets to be, say, closed. If the
process X is max-i.d., then the corresponding random set S is union-i.d. and vice versa. This
means that for every n ∈ N we can find i.i.d. random sets C1, . . . ,Cn such that S has the same
finite-dimensional distributions as C1 ∪ · · · ∪ Cn; see [22], Chapter 4. The process X is stochas-
tically continuous iff the random set S is stochastically continuous in the following sense: for
every t ∈ Rd , lims→t P[t ∈ S, s /∈ S] = lims→t P[t /∈ S, s ∈ S] = 0. Using Theorem 3.1, we can
describe all stationary stochastically continuous union-i.d. random sets.

Theorem 4.9. Let S be a stationary, stochastically continuous, union-i.d. random set in Rd .
Then there is a σ -finite Borel space (�,B,μ), a measurable, measure-preserving Rd -action
{Tt }t∈Rd on (�,B,μ), and a set A ∈ B with μ(A) < ∞ such that

S
d= {

t ∈Rd :�μ

(
T −1

t (A)
) 
= 0

}
, (4.9)
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where �μ is a Poisson random measure on (�,B) with intensity measure μ.

Proof. Let {X(t), t ∈ Rd} be the {0,1}-valued max-i.d. process corresponding to S, that is,
X(t) = 1t∈S . Then, X has a flow representation in the sense of Theorem 3.1. The function f0

in this representation takes only values 0,1, (modμ). That is, f = 1A for some set A ∈ B. Note
that A has finite measure since f ∈ L∨. Since f0 ◦ Tt = 1

T −1
t A

, the statement of the theorem
follows. �

Example 4.10. Let � be the space Rd endowed with the Lebesgue measure. Consider a flow
Tt (ω) = ω − t,ω, t ∈ Rd . Let A ⊂ Rd be a Borel set of finite measure and let � = {Ui, i ∈ N}
be a unit intensity Poisson process on Rd . Then, the corresponding union-i.d. stationary random
set has the form S = ⋃

i∈N(Ui − A) and it is known in the literature as the Boolean model with
(non-random) grain A. More generally, one can let � := Rd ×E be the product of Rd with some
probability space E and define Tt (x, y) := (x − t, y), x, t ∈ Rd, y ∈ E as the shift of the first
coordinate. By taking a random set A = A(y), one obtains a mixed or random grain Boolean
model, which is similar to and in fact corresponds to the level-set of a mixed moving maxima
random field model.

5. Proofs

5.1. Lemma on conjugacy between collections of functions

The following lemma is used in the proofs of Theorems 2.11 and 2.17.

Lemma 5.1. Let (�i,Bi ,μi), i = 1,2 be two measure spaces. Consider two families of
measurable functions f

(i)
t :�i → R, t ∈ T , i = 1,2, and define two measurable mappings

Fi : (�i,Bi ) → (RT ,B) by Fi(ω) = (f
(i)
t (ω))t∈T , ω ∈ �i , i = 1,2. Here, B is the product

σ -algebra on RT . Assume that

1. σ {f (i)
t , t ∈ T } = Bi modμi , i = 1,2.

2. The induced measures μ1 ◦ F−1
1 and μ2 ◦ F−1

2 are equal on (RT ,B).

Then, the following two claims are true:

(i) If (�1,B1) is a Borel space, then there exists a measurable map � :�2 → �1 such that
μ1 = μ2 ◦ �−1 and for all t ∈ T , we have f

(2)
t = f

(1)
t ◦ �, μ1-a.e.

(ii) If both (�i,Bi ), i = 1,2 are Borel spaces, then the mapping in part (i) is a measure space
isomorphism and it is unique (modulo null sets).

Proof. It will be convenient to identify the sets in Bi that are equal modulo μi, i = 1,2. Formally,
let Ii ⊂ Bi be the σ -ideals of μi -null sets in the spaces (�i,Bi ,μi) (see, e.g., Chapter II.21
in [41]) and let [Bi] := Bi/Ii be the corresponding factor σ -fields, i = 1,2. The elements of [Bi]
are the equivalence classes [B] = {A ∈ Bi :μi(A
B) = 0}, where B ∈ Bi , i = 1,2.
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We shall define next a σ -isomorphism U : [B1] → [B2], that is, a bijective mapping that pre-
serves countable unions and complements. For all B ∈ B1, we set

U
([B]) := [

F−1
2 (A)

]
, where

[
F−1

1 (A)
] = [B]. (5.1)

Note that such an A ∈ B exists since by assumption F−1
1 (B) = σ {f (1)

t , t ∈ T } = B1 modμ1. One
can readily see that the mapping U is a well-defined σ -isomorphism. Indeed, since μ1 ◦ F−1

1 =
μ2 ◦ F−1

2 , for every A′,A′′ ∈ B,

μ1
(
F−1

1

(
A′)
F−1

1

(
A′′)) = μ1

(
F−1

1

(
A′
A′′))

= μ2
(
F−1

2

(
A′
A′′)) = μ2

(
F−1

2

(
A′)
F−1

2

(
A′′)).

Thus, F−1
1 (A′) = F−1

1 (A′′)modμ1, if and only if F−1
2 (A′) = F−1

2 (A′′)modμ2, and the defini-
tion of U does not depend on the choice of the representative B of the equivalence class [B] and
on the choice of A in (5.1). This shows, moreover, that [B ′] = [B ′′] if and only if U([B ′]) =
U([B ′′]), that is, U is injective. On the other hand, since F−1

2 (B) = σ {f (2)
t , t ∈ T } = B2 modμ2,

for all B ∈ B2, we have [F−1
2 (A)] = [B], for some A ∈ B and hence U([F−1

1 (A)]) = [B]. This
shows that U is onto and hence a bijection. Also, since μ1(F

−1
1 (A)) = μ2(F

−1
2 (A)), we have

by (5.1) that U is measure-preserving. Since U clearly preserves the countable unions and com-
plements, it is a σ -isomorphism.

Under the assumption of part (i), we have that (�1,B1) is a Borel space. Then, Theorem 32.5
of [41] implies that the σ -isomorphism U is induced by a measurable point mapping � :�2 →
�1 in the following sense:

U
([B]) = [

�−1(B)
]
, B ∈ B1. (5.2)

Clearly, since U is a σ -isomorphism, we also have that μ1 = μ2 ◦ �−1.
Let us fix some t ∈ T and show that f

(2)
t = f

(1)
t ◦ � holds μ2-a.e. Let I be a Borel subset of

R and consider the cylinder set A = {ϕ :T →R :ϕ(t) ∈ I } ⊂RT . We have[(
f

(1)
t ◦ �

)−1
(I )

] = [
�−1((f (1)

t

)−1
(I )

)] = U
([(

f
(1)
t

)−1
(I )

])
(5.3)

= U
([

F−1
1 (A)

]) = [
F−1

2 (A)
] = [(

f
(2)
t

)−1
(I )

]
.

Assume that f
(2)
t 
= f

(1)
t ◦ � on D ∈ B2 with μ2(D) > 0. Then we can find an ε > 0 and a

measurable set D′ ⊂ D with μ2(D
′) > 0 such that |f (2)

t − f
(1)
t ◦ �| > ε everywhere on D′.

Further, we can find a k ∈ Z and a measurable set D′′ ⊂ D′ with μ1(D
′′) > 0 such that with

I = [kε, (k + 1)ε), we have f
(2)
t ∈ I everywhere on D′′. It then follows that f

(1)
t ◦ � /∈ I on D′′.

But this contradicts (5.3), which implies f
(2)
t = f

(1)
t ◦ �, μ1-a.e.

Now, we turn to proving part (ii). That is, that � a measure space isomorphism and unique
(modulo null sets) under the additional assumption that (�2,B2) is a Borel space. By apply-
ing the above argument to the σ -isomorphism U−1 : [B2] → [B1], we obtain that there exists a
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measurable, measure-preserving �̃ :�1 → �2, such that

U−1([B]) = [
�̃−1(B)

]
for all B ∈ B2.

Therefore, � := �◦ �̃ :�1 → �1 is measurable and since U ◦U−1 ≡ id, we have that [�(A)] =
[A] for all A ∈ B1. We will use the fact that (�1,B1) is a Borel space to show that � = id modμ1,
which will imply that � is a measure space isomorphism (Definition 2.9).

By Kuratowski’s theorem, (�1,B1) is isomorphic to either (E,2E), where E is an at most
countable set, or (R,BR) – the real line equipped with the Borel σ -algebra. The discrete case is
trivial. Suppose now the latter is true and without loss of generality let (�1,B1) ≡ (R,BR). Let
ε > 0 be arbitrary and suppose that μ1({|� − id| > ε}) > 0, then for some k ∈ Z, we have
for D := {|� − id| > ε} ∩ [kε, (k + 1)ε) that μ1(D) > 0. But then �(x) /∈ [kε, (k + 1)ε),
for all x ∈ D, and hence �(D) ∩ D = ∅. This contradicts the fact that [�(D)] = [D] be-
cause μ1(D) > 0. Since ε > 0 was arbitrary, it follows that � = id modμ1 and hence �−1 =
�̃modμ1.

To complete the proof, we need to show the uniqueness of �. Assume that �∗ :�2 → �1 is
another measure space isomorphism such that for all t ∈ T , f

(2)
t = f

(1)
t ◦�∗, μ2-a.e. Then, rela-

tion (5.3) holds with � replaced by �∗, which implies that �∗ induces the same σ -isomorphism
U as �. Since �∗ is a measure space isomorphism, the measurable map �̃ := (�∗)−1 induces
the σ -isomorphism U−1 and hence � := �◦ �̃ induces the identity σ -isomorphism on the Borel
space (�1,B1). As argued above, this implies that � ◦ �̃ = id, (modμ1). �

5.2. Proofs in the max-i.d. case

Proof of Theorem 2.8. Write R+ = [0,∞). Let T0 be the at most countable set appearing
in Condition S. Let R

T0+ be the space of functions ϕ :T0 → R+ endowed with the product
σ -algebra B. Denote by ν the exponent measure of the process {X(t), t ∈ T0}; see Vatan [44]. It
is a σ -finite measure on R

T0+ such that for every t1, . . . , tn ∈ T0 and x1, . . . , xn > 0 we have

P
{
X(tj ) < xj ,1 ≤ j ≤ n

} = exp

{
−ν

(
n⋃

j=1

{
ϕ ∈ R

T0+ :ϕ(tj ) ≥ xj

})}
. (5.4)

We agree that ν({0}) = 0 (which is different from [44]). Taking the coordinate mappings

ft :RT0+ →R, ft (ϕ) = ϕ(t), t ∈ T0, we therefore obtain a spectral representation of {X(t), t ∈ T0}
on (R

T0+ ,B). To see this, compare (2.3) and (5.4). Let t ∈ T be arbitrary. Condition S states
that there exists a sequence {tn}n∈N ⊂ T0 such that X(tn) → X(t) in probability. Thus, the
sequence X(tn) is Cauchy in probability. By the equality of the finite-dimensional distribu-
tions, the sequence I (ftn) is Cauchy in probability, and therefore, it converges in probabil-
ity. By Theorem 4.5 in [2], there is a function ft ∈ L∨(R

T0+ ,B, ν) such that I (ftn) converges
in probability to I (ft ). Theorem 4.4 of [2] implies that the finite-dimensional distributions of
{I (ft ), t ∈ T } and {X(t), t ∈ T } are equal, that is, the collection {ft , t ∈ T } is a spectral repre-
sentation of {X(t), t ∈ T } on (R

T0+ ,B). Since the coordinate functions ft , t ∈ T0, generate the
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product σ -algebra B, and ν(
⋂

t∈T0
{ft = 0}) = ν({0}) = 0, this representation is minimal. To

complete the proof note that by Kuratowski’s theorem, for at most countable T0, the measurable
space (R

T0+ ,B) is isomorphic to [0,1] endowed with the Borel σ -algebra. �

Proof of Theorem 2.11. As in Lemma 5.1, we define two measurable mappings Fi : (�i,Bi ) →
(RT ,B) by

Fi(ω) = (
f

(i)
t (ω)

)
t∈T

, ω ∈ �i, i = 1,2.

The first condition of Lemma 5.1 is satisfied by the assumption of minimality. We will show that
the induced measures μ1 ◦ F−1

1 and μ2 ◦ F−1
2 are equal on (RT ,B). We will prove that for all

t1, . . . , tn ∈ T and all intervals [x1, y1), . . . , [xn, yn) ⊂R we have

μ1

(
n⋂

j=1

{
xj ≤ f

(1)
tj

< yj

}) = μ2

(
n⋂

j=1

{
xj ≤ f

(2)
tj

< yj

})
. (5.5)

Recall that {f (i)
t , t ∈ T }, i = 1,2, are spectral representations of the same process X. By (2.3),

we have that for all x1, . . . , xn > 0,

μ1

(
n⋃

j=1

{
f

(1)
tj

≥ xj

}) = μ2

(
n⋃

j=1

{
f

(2)
tj

≥ xj

})
. (5.6)

Note that μi({f (i)
t > x}) < ∞ for all x > 0, t ∈ T , since f

(i)
t ∈ L∨. Using this fact and the

inclusion–exclusion formula, we obtain that relation (5.6) is also valid with the unions therein
replaced by intersections. This proves that (5.5) holds provided that 0 < xj < yj for all j =
1, . . . , n. Note that this argument breaks down if xj = 0 for some j since we cannot apply the
inclusion–exclusion formula to sets of infinite measure. To show that the measures μ1 ◦F−1

1 and
μ2 ◦ F−1

2 agree on the “boundary” of RT+ we need a separate argument.
We now show that (5.5) continues to hold even if some of the xj ’s are allowed to be zero. We

do not need to consider the case of negative xj ’s since f
(i)
t ≥ 0, μi -a.e., by definition of L∨. By

letting some of the xj ’s go to 0 and using continuity of measure we obtain that (5.5) continues

to hold if some of the sets of the form {xj ≤ f
(i)
tj

< yj } therein are replaced by {0 < f
(i)
tj

< yj }.
By additivity of measure, the proof of (5.5) in full generality will be completed if we show
that (5.5) continues to hold if some of the sets of the form {xj ≤ f

(i)
tj

< yj } therein are replaced

by {f (i)
tj

= 0}. Let us make this statement precise. Take l,m ∈ N0, s1, . . . , sl ∈ T , r1, . . . , rm ∈ T

and 0 < u1 < v1, . . . ,0 < um < vm. Define two measurable sets Ci ⊂ �i , i = 1,2, by

Ci = Ai ∩ Bi, Ai =
l⋂

k=1

{
f (i)

sk
= 0

}
, Bi =

m⋂
j=1

{
uj ≤ f (i)

rj
< vj

}
, i = 1,2.
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We will show that μ1(C1) = μ2(C2). Suppose first that m 
= 0. Then, μi(Ci) = μi(Bi)−μi(Bi ∩
Di), where

Di =
l⋃

k=1

{
f (i)

sk
> 0

} =
⋃
n∈N

Di,n, Di,n =
l⋃

k=1

{
1

n
≤ f (i)

sk
< n

}
, i = 1,2.

We have already shown that (5.5) holds if xj > 0 for all j = 1, . . . , n. This implies that μ1(B1) =
μ2(B2) (where both terms are finite since m 
= 0). Also, by the inclusion–exclusion formula,
μ1(B1 ∩ D1,n) = μ2(B2 ∩ D2,n) for every n ∈ N. Note that Di,1 ⊂ Di,2 ⊂ · · · . Letting n → ∞
and using the continuity of measure, we obtain μ(B1 ∩ D1) = μ2(B2 ∩ D2). This proves that
μ1(C1) = μ2(C2) in the case m 
= 0.

Consider now the case m = 0. In this case it is possible that μi(Bi) = ∞ and the above argu-
ment breaks down. We show that μ1(C1) = μ2(C2), or, equivalently, μ1(A1) = μ2(A2). We will
use the minimality and an exhaustion argument (cf. Lemma 1.0.7 in [1]) to show that there is a
sequence q1, q2, . . . ∈ T such that

μi

(⋂
n∈N

{
f (i)

qn
= 0

}) = 0, i = 1,2. (5.7)

Fix i ∈ {1,2}. Since the measure μi is σ -finite, we can represent �i as a disjoint union of sets
E1,E2, . . . ∈ Bi such that μi(Ek) < ∞, k ∈ N. Let ek = infQ μi(

⋂
q∈Q{f (i)

q = 0} ∩ Ek), where
the infimum is taken over all at most countable sets Q ⊂ T . Clearly, ek < ∞. For every n ∈ N

we can find at most countable Qkn ⊂ T such that μi(
⋂

q∈Qkn
{f (i)

q = 0} ∩ Ek) < ek + 1
n

. Since

Qk := ⋃
n∈N Qkn is at most countable, we have ek = μi(Fk), where Fk = ⋂

q∈Qk
{f (i)

q = 0}∩Ek .

It follows that for every t ∈ T , f
(i)
t = 0 a.e. on Fk . Otherwise, we could consider Qk ∪ {t} and

arrive at a contradiction. By the assumption of minimality this implies that, we must have ek = 0.
This holds for every k ∈N. The proof of (5.7) is completed by taking the union of the collections
Qk , k ∈ N.

Consider measurable sets

Gi,p = Ai ∩
(

p−1⋂
k=1

{
f (i)

qk
= 0

}) ∩ {
f (i)

qp
> 0

}
, p ∈N, i = 1,2.

We have μ1(G1,p) = μ2(G2,p) for every p ∈ N. Indeed, by continuity of measure,

μi(Gi,p) = lim
n→∞μi

(
Ai ∩

(
p−1⋂
k=1

{
f (i)

qk
= 0

}) ∩
{

1

n
≤ f (i)

qp
< n

})
.

The right-hand side does not depend on i = 1,2 as a particular case of μ1(C1) = μ2(C2) in the
case m > 0. It follows from (5.7) that

μ1(A1) =
∞∑

p=1

μ1(G1,p) =
∞∑

p=1

μ2(G2,p) = μ2(A2).
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This completes the proof of (5.5).
It follows now from (5.5) that the measures μ1 ◦ F−1

1 and μ2 ◦ F−1
2 coincide on the semi-

ring C consisting of sets of the form
⋂n

j=1{ϕ :T → R :xj ≤ ϕ(tj ) < yj }, where t1, . . . , tn ∈ T ,
[x1, y1), . . . , [xn, yn) ⊂R. Note that C generates the product σ -algebra B. Also, by (5.7), we can
represent RT as

RT =
∞⋃

n=1

∞⋃
k=1

{
ϕ :T → R :k−1 ≤ ϕ(qn) < k

}
modμ1 ◦ F−1

1 and μ2 ◦ F−1
2 .

Note that the sets in the union in the right-hand side have finite μ1 ◦F−1
1 (and μ2 ◦F−1

2 ) measure
and belong to the semiring C. The uniqueness of the extension of measure theorem yields that
μ1 ◦ F−1

1 = μ2 ◦ F−1
2 . The assumptions of Lemma 5.1 are verified. Lemma 5.1 yields (2.6) and

completes the proof of the theorem. �

5.3. Proofs in the i.d. case

We start with discussing some properties of the spectral representation. Note first that the func-
tional I is not additive. Nevertheless, by (2.10) it follows that for all f,g ∈ L+

I (f ) + I (g) = I (f + g) + γ (f,g), where
(5.8)

γ (f,g) :=
∫

�

(
a(f + g) − a(f ) − a(g)

)
dμ.

The next result shows that γ in (5.8) is well defined and that this constant correction term can
be controlled in terms of the metric d .

Lemma 5.2. For all f,g ∈ L+, we have that
∫
�

|a(f ) + a(g) − a(f + g)|dμ < ∞. Moreover,
for γ and d as in (5.8) and (2.12), we have∣∣γ (f,g)

∣∣ ≤ 3
(
d(f + g)

)2 + 2
(
d(f ) + d(g)

)
d(f + g).

Proof. Consider the integral defining γ (f,g) over the sets A := {|f + g| > 1}, B := Ac ∩
{|f | ≤ 1} ∩ {|g| ≤ 1} and C := Ac ∩ ({|f | > 1} ∪ {|g| > 1}), which form a disjoint partition
of �.

Observe that over B the integrand is zero, since a(f ) = f,a(g) = g and a(f + g) = f + g

whenever |f | ≤ 1, |g| ≤ 1, and |f + g| ≤ 1. Note, on the other hand that the set Bc = A ∪ C ⊂
{|f +g| > 1}∪{|f | > 1}∪{|g| > 1} has a finite μ measure because f,g and f +g belong to L+.
Since |a(f +g)−a(f )−a(g)| ≤ 3 it therefore follows that

∫
�

|a(f +g)−a(f )−a(g)|dμ < ∞
and γ (f,g) is well defined.

Over A, we have that∫
{|f +g|>1}

∣∣a(f + g) − a(f ) − a(g)
∣∣dμ ≤ 3μ

{|f + g| > 1
} ≤ 3

(
d(f + g)

)2
.
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Now, focus on the set C. The function a in (2.9) is Lipschitz and in fact |a(x) + a(y)| ≤ |x + y|
for all x, y ∈R. Therefore, |a(f + g) − a(f ) − a(g)| ≤ 2|f + g|, and hence∫

C

∣∣a(f + g) − a(f ) − a(g)
∣∣dμ ≤ 2

∫
{|f +g|≤1}

|f + g|(1{|f |>1} + 1{|g|>1})dμ

≤ 2d(f + g)
(
d(f ) + d(g)

)
,

where the last relation follows from the Cauchy–Schwartz inequality and the fact that
μ{|f | > 1} ≤ d(f )2. Combining the above two bounds, we obtain the desired inequality. �

Relation (5.8) readily implies the following result on the sum of two spectral representations
over the same space.

Proposition 5.3. Consider two i.d. processes X
(i)
t := I (f

(i)
t ) + c

(i)
t , t ∈ T , where {f (i)

t }t∈T ⊂
L+(�,B,μ), and c

(i)
t ∈R, i = 1,2. Then, their sum has the following spectral representation:{

X
(1)
t + X

(2)
t

}
t∈T

d= {
I
(
f

(1)
t + f

(2)
t

) + c
(1)
t + c

(2)
t + γ

(
f

(1)
t , f

(2)
t

)
, t ∈ T

}
.

Recall now that convergence in probability is metrized by the Ky Fan distance which is given
by

dKF(ξ, η) ≡ dKF(ξ − η) := inf
{
δ > 0 :P

{|ξ − η| ≥ δ
} ≤ δ

}
. (5.9)

The next proposition shows that the metric d on the space of integrands is comparable to the
metric dKF on the space of integrals.

Proposition 5.4. For all f ∈ L+, we have

dKF
(
I (f )

) ≤ 2d(f )2/3 and 1 − e−cd(f )2 ≤ 2dKF
(
I (f ) − I (f )′

) ≤ 4dKF
(
I (f )

)
, (5.10)

with c = 1 − sin(1), where I (f )′ is an independent copy of I (f ).

The following elementary inequality is used in the proof of Proposition 5.4.

Lemma 5.5. Let X be a symmetric random variable. Then

sup
|θ |≤1

(
1 −EeiθX

) ≤ 2dKF(X). (5.11)

Proof of Lemma 5.5. Since X is symmetric, we have that its characteristic function φX(θ) =
EeiθX, θ ∈ R is real and

(
1 − φX(θ)

) =
∫ ∞

−∞
(
1 − cos(θx)

)
FX(dx).



Stochastic integral representations of infinitely divisible processes 135

Note that 0 ≤ 1 − cos(u) ≤ u2/2, for all u ∈R. Thus, with ε ∈ (0,1], we have

(
1 − φX(θ)

) ≤ |θε|2
2

∫ ε

−ε

FX(dx) +
∫

|x|≥ε

FX(dx) ≤ ε + P
{|X| ≥ ε

}
for all |θ | ≤ 1 ≤ √

2/ε. The inequality (5.11) follows from the definition (5.9) of the Ky Fan
distance functional. �

Proof of Proposition 5.4. We first prove the second inequality in (5.10). Let X := I (f )−I (f )′,
where I (f )′ is an independent copy of I (f ). Thus, in view of (2.10), X is symmetric with
characteristic function

φX(θ) = ∣∣EeiθI (f )
∣∣2 = exp

{
−2

∫
�

(
1 − cos(θf )

)
dμ

}
, θ ∈R. (5.12)

Now, by Lemma 5.5, we obtain

0 ≤ sup
|θ |≤1

(
1 − φX(θ)

) ≤ 2dKF(X).

Thus, in view of (5.12), using the fact that the function u �→ 1−e−2u,u ≥ 0 is strictly increasing,
the above supremum can be taken inside the exponential, and hence

1 − e−2A := 1 − exp

{
−2 sup

|θ |≤1

∫
�

(
1 − cos(θf )

)
dμ

}
≤ 2dKF(X). (5.13)

We will focus on the term A above and obtain a lower bound for it. Notice that

sup
|θ |≤1

∫
{|f |≤1}

(
1 − cos(θf )

)
dμ + sup

|θ |≤1

∫
{|f |>1}

(
1 − cos(θf )

)
dμ ≤ A + A ≡ 2A.

Since x2/3 ≤ 1 − cos(x), |x| ≤ 1, for the first term above, we have

1

3

∫
{|f |≤1}

|f |2 dμ = sup
|θ |≤1

θ2

3

∫
{|f |≤1}

|f |2 dμ ≤ sup
|θ |≤1

∫
{|f |≤1}

(
1 − cos(θf )

)
dμ.

On the other hand, over the set {|f | > 1}, we apply the inequality sup|θ |≤1(1 − cos(θf )) ≥∫ 1
0 (1 − cos(θf ))dθ = 1 − sin(f )/f . By combining these two lower bounds, we obtain

1

3

∫
{|f |≤1}

|f |2 dμ +
∫

{|f |>1}

(
1 − sin(f )

f

)
dμ ≤ 2A. (5.14)

Also, since 1 − sin(x)/x ≥ 1 − sin(1) =: c ≈ 0.1585 > 0, for all |x| ≥ 1, we obtain further that

cd(f )2 ≤ 1

3

∫
{|f |≤1}

|f |2 dμ +
∫

{|f |>1}

(
1 − sin(f )

f

)
dμ.
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In view of (5.13), (5.14), and the monotonicity of u �→ 1 − e−u, we obtain 1 − e−cd(f )2 ≤
2dKF(X), which, since dKF(X) ≡ dKF(I (f )−I (f )′) ≤ 2dKF(I (f )), yields the second inequality
in (5.10).

We now establish the first inequality in (5.10). Let d := d(f ) ≡ (
∫
�

1 ∧ |f |2 dμ)1/2, f ∈ L+
and consider the sets A = {|f | ≥ 1} and B = {|f | < 1}. Note that μ(A) < ∞ and recall by (2.8)
that I (f 1A) = ∫

A
f d�μ − ∫

A
a(f )dμ. From the definition of a and d , see (2.9) and (2.12), it

follows that | ∫
A

a(f )dμ| ≤ μ(A) ≤ d2 and therefore

P
{∣∣I (f 1A)

∣∣ > d2} ≤ P

{∣∣∣∣∫
A

f d�μ

∣∣∣∣ 
= 0

}
≤ 1 − e−μ(A) ≤ 1 − e−d2

. (5.15)

The second inequality follows from the fact that
∫
A

f d�μ is non-zero only when the Poisson
point process �μ has at least one point in the set A. Also, I (f 1B) has (by definition) expecta-
tion 0 and variance

∫
B

f 2 dμ ≤ d2. Thus, by the Chebyshev’s inequality,

P
{∣∣I (f 1B)

∣∣ > d2/3} ≤ d2/3. (5.16)

Since I (f ) = I (f 1A) + I (f 1B), by (5.15) and (5.16), in the case d ≤ 1, we get

P
{∣∣I (f )

∣∣ > 2d2/3} ≤ P
{∣∣I (f )

∣∣ > d2 + d2/3}
≤ P

{∣∣I (f 1A)
∣∣ > d2} + P

{∣∣I (f 1B)
∣∣ > d2/3}

≤ 1 − e−d2 + d2/3

≤ 2d2/3.

Hence dKF(I (f )) ≤ 2d2/3, provided that d ≤ 1. This, since dKF(I (f )) ≤ 1 implies the first in-
equality in (5.10). �

Proof of Proposition 2.15. The proof is standard. Let {fn}n∈N ⊂ L+ be a Cauchy sequence in d .
Then, for all ε ∈ (0,1), we have

μ
{|fm − fn| > ε

} ≤ 1

ε2

∫
�

1 ∧ |fm − fn|2 dμ = d(fm,fn)
2

ε2
→ 0,

as m,n → ∞, which shows that {fn}n∈N is Cauchy in measure. Hence, there exists a sub-
sequence {nk}k∈N and a measurable function f , such that fnk

→ f , as nk → ∞, μ-a.e. Now,
by the Fatou’s lemma, we obtain

d(fnk
, f )2 =

∫
�

1 ∧ |fnk
− f |2 dμ ≤ lim inf

�→∞

∫
�

1 ∧ |fnk
− fn�

|2 dμ = lim inf
�→∞ d(fnk

, fn�
)2.

This inequality implies that d(fnk
, f ) < ∞, and hence f ∈ L+, because d(f,0) ≤ d(f,fnk

) +
d(fnk

,0) < ∞. Since {fn}n∈N is Cauchy in the metric d , we also have that d(fnk
, f ) → 0, as

nk → ∞, and hence d(fn,f ) → 0, as n → ∞. Thereby proving that the metric d is complete.
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Let now (�,B) be Borel. Recall that the measure μ is σ -finite. Then the space L2 =
L2(�,B,μ) (⊂ L+) equipped with the usual L2-norm is separable and let {fn}n∈N be a dense
subset of L2. By (2.12), for all f ∈ L+, fn ∈ L2, and K > 0, we have

d(f,fn)
2 =

∫
�

1 ∧ |f − fn|2 dμ

≤
∫

{|f |≤K}
|f − fn|2 dμ +

∫
{|f |>K}

dμ

≤
∫

�

(f 1{|f |≤K} − fn)
2 dμ + μ

{|f | > K
}
.

Since f ∈ L+, we have that f 1{|f |≤K} ∈ L2 and μ{|f | > K} → 0, as K → ∞. Thus, by picking
large enough K and a suitable fn, one can make d(f,fn) arbitrarily small, showing that {fn}n∈N
is also dense in the metric space (L+, d), thereby proving separability. �

Proof of Proposition 2.16. Suppose first that d(fn − f ) + |cn − c| → 0, as n → ∞. Then, by
Slutsky’s theorem, it is enough to show that I (fn) converges in probability to I (f ), as n → ∞.
By (5.8), we have that I (fn)− I (f ) = I (fn −f )+ γ (fn,−f ). Proposition 5.4 and the assump-

tion d(fn −f ) → 0 imply that I (fn −f )
P→ 0, n → ∞. It remains to show that γ (f,−fn) → 0,

as n → ∞. By the triangle inequality for d , we have |d(fn) − d(f )| ≤ d(fn − f ) → 0, as
n → ∞, and in particular d(fn), n ∈ N is bounded. Thus, by Lemma 5.2 applied to f and
g := −fn, we obtain γ (f,−fn) → 0, as n → ∞. This completes proof of the ‘if’ part.

To prove the ‘only if’ part, suppose that I (fn)+cn
P→ ξ,n → ∞, set ξm,n := I (fm)−I (fn)+

cm − cn, and let ξ ′
m,n be and independent copy of ξm,n. Then, by using (2.10) we obtain that

ξm,n − ξ ′
m,n

d= I (fm − fn) − I (fm − fn)
′,

where I (fm − fn)
′ is an independent copy of I (fm − fn). Now, by the second bound in (5.10)

of Proposition 5.4 applied to f := fm − fn, we obtain

1 − e−cd(fm−fn)2 ≤ 2dKF
(
I (fm − fn) − I (fm − fn)

′) ≡ 2dKF
(
ξm,n − ξ ′

m,n

) ≤ 4dKF(ξm,n).

The right-hand side of the last inequality vanishes, as m,n → ∞, since the sequence {I (fn) +
cn, n ∈ N} converges in probability and therefore it is Cauchy in the Ky Fan metric. This implies
that d(fm − fn) → 0,m,n → ∞, and since (L+, d) is complete (Proposition 2.15), there is an
f ∈ L+, such that d(fn − f ) → 0, n → ∞. Therefore, by the already established ‘if’ part, it

follows that I (fn)
P→ I (f ), n → ∞. This, and the fact that I (fn) + cn

P→ ξ,n → ∞ imply (by
Slutsky) that the sequence cn converges to a constant c and ξ = I (f ) + c. This completes the
proof. �

Proof of Theorem 2.14. Let T0 be the at most countable subset of T appearing in Condition S.
Consider the space RT0 , equipped with the product σ -algebra B. Following [21] (see also [33]),
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let μ be the Lévy measure of {X(t), t ∈ T0} on RT0 . For t ∈ T0, we define the coordinate map-
pings ft :RT0 → R by ft (ϕ) = ϕ(t), where ϕ :T0 → R, ϕ ∈ RT0 . Then, {ft , t ∈ T0} is a spectral
representation of {X(t), t ∈ T0} by the properties of the Lévy measure.

For t /∈ T , observe that by Condition S, there exists a sequence {tn} ⊂ T0, such that X(tn)

converges in probability to X(t), as n → ∞. In other words, I (fn)+ cn converges in probability
to I (f ) + c, for some cn and c. Thus, by Proposition 2.16, the sequence of functions ftn has a
limit in (L+, d), as n → ∞. We take this limit to be the spectral function ft .

Notice that the so-defined spectral representation is minimal. Indeed, the σ -algebra σ {ft ,

t ∈ T } coincides with the product σ -algebra B on RT0 . We also have that supp{ft , t ∈ T0} =RT0

(modμ) because
⋂

t∈T0
{ft = 0} = {0}, a set whose Lévy measure is 0 by convention. To

complete the proof, observe that the measurable space (RT0 ,B) is Borel by Kuratowski’s the-
orem. �

Proof of Theorem 2.17. We are going to apply Lemma 5.1. Define the measurable mappings
Fi : (�i,Bi ) → (RT ,B) by

Fi(ω) = (
f

(i)
t (ω)

)
t∈T

, ω ∈ �i, i = 1,2.

Minimality implies that the first condition of Lemma 5.1 is satisfied. We prove that μ1 ◦ F−1
1 =

μ2 ◦ F−1
2 . Let t1, . . . , tn ∈ T and observe that in view of (2.10) we have

Eei
∑n

j=1 θj X(tj ) = E exp

{
i

n∑
j=1

θj

(
I
(
f

(i)
tj

) + c
(i)
j

)}

= exp

{
i

n∑
j=1

c
(i)
j θj +

∫
Rn

(
ei

∑n
j=1 θj xj − i

n∑
j=1

θj a(xj ) − 1

)(
μi ◦ G−1

i

)
(dx)

}
,

where Gi = (f
(i)
tj

)nj=1 :�i → Rn and c
(i)
1 , . . . , c

(i)
n ∈ R are constants, i = 1,2. The last rela-

tion and the uniqueness of the Lévy measure of the i.d. random vector (X(tj ))
n
j=1 shows that

(μ1 ◦ G1)
−1(A) = (μ2 ◦ G2)

−1(A) for all Borel sets A ⊂ Rn \ {0}. We need to show that
(μ1 ◦ G1)

−1({0}) = (μ2 ◦ G2)
−1({0}). As in the proof of Theorem 2.11 we can find a sequence

q1, q2, . . . ∈ T such that μi(
⋂

j∈N{f (i)
tj

}) = 0, i = 1,2. Consider measurable sets

Ei,p = G−1
i

({0}) ∩
(

p−1⋂
j=1

{
f (i)

qj
= 0

}) ∩ {
f (i)

qp

= 0

}
.

For every p, we have shown that μ1(E1,p) = μ2(E2,p). It follows that

μ1
(
G−1

1

({0})) =
∞∑

p=1

μ1(E1,p) =
∞∑

p=1

μ2(E2,p) = μ2
(
G−1

2

({0})).
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This proves that (μ1 ◦ G1)
−1(A) = (μ2 ◦ G2)

−1(A) for all Borel sets A ⊂ Rn. In other words,
the measures μ1 ◦ F−1

1 and μ2 ◦ F−1
2 are equal on the semiring C consisting of subsets {ϕ :T →

R : (ϕ(tj ))
n
j=1 ∈ A}, where A ⊂ Rn is Borel. This semiring generates the product σ -algebra B.

Also, we have a decomposition

RT =
∞⋃

n=1

∞⋃
k=1

{
ϕ :T → R :k−1 ≤ ∣∣ϕ(qn)

∣∣ ≤ k
}

modμ1 ◦ F−1
1 and μ2 ◦ F−1

2 .

Note that the sets on the right-hand side have finite μ1 ◦F−1
1 (and μ2 ◦F−1

2 ) measure and belong
to the semiring C. By the uniqueness of measure extension theorem, the measures μ1 ◦ F−1

1 and
μ2 ◦ F−1

2 are equal. Lemma 5.1 completes the proof. �

5.4. Proof of Theorem 3.9

By Theorems 2.8, 2.14 and 3.1, the process X has a minimal spectral representation gt := g0 ◦
Tt , t ∈ Td over a σ -finite Borel space (�̃, B̃, μ̃), where {Tt , t ∈ Td} is a measure preserving and
measurable flow (see also Proposition 2.19).

Since the spectral representation {ft , t ∈ T } ⊂ L∨/+(�,B,μ) is of full support, it is minimal
if we set B = σ {ft , t ∈ T }. Even though B may not be Borel, Theorems 2.11(i) and 2.17(i) imply
that there exists a measurable measure-preserving mapping � : (�,B) → (�̃, B̃), such that for all
t ∈ Td , gt ◦ � = ft μ-a.e. Therefore, by using the joint measurability of the two representations
and appealing to Fubini, we see that∫

Td

ψ
(∣∣ft (ω)

∣∣)λ(dt) =
∫
Td

ψ
(∣∣gt

(
�(ω)

)∣∣)λ(dt)

(5.17)

≡
∫
Td

ψ
(∣∣g0 ◦ Tt

(
�(ω)

)∣∣)λ(dt) = ∞, μ-a.e.

which, since μ̃ = μ ◦ �−1, shows that relation (3.7) is equivalent to
∫
Td ψ(|g0 ◦ Tt (ω̃)|)λ(dt) =

∞, μ̃-a.e. Thus, using the criterion in Theorem 3.7 one can relate (3.7) to the conservativity of
the flow. More precisely, proceeding as in the proof of Proposition 3.2 in [35], let

h(ω̃) :=
∑
γ∈Zd

aγ

∫
γ+[0,1)d

ψ
(∣∣g0 ◦ Tt (ω̃)

∣∣)λ(dt),

where aγ > 0 and
∑

γ∈Zd aγ = 1. By Fubini’s theorem, the full support condition on {gt , t ∈ T }
implies that h ∈ L1(�̃, B̃, μ̃) and h > 0, μ̃-a.e. Observe also by applying Fubini again and using
the facts that λ is shift-invariant and the flow {Tt }t∈Td is measure-preserving

∑
β∈Zd

h ◦ Tβ(ω̃) =
∫
Td

ψ
(∣∣g0 ◦ Tt (ω̃)

∣∣)λ(dt).



140 Z. Kabluchko and S. Stoev

Theorem 3.7, applied to the discrete flow {Tβ}β∈Zd shows that is conservative if and only if (3.7)
holds, which completes the proof.
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[31] Rosiński, J. (1995). On the structure of stationary stable processes. Ann. Probab. 23 1163–1187.

MR1349166
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