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While effective concentration inequalities for suprema of empirical processes exist under boundedness or
strict tail assumptions, no comparable results have been available under considerably weaker assumptions.
In this paper, we derive concentration inequalities assuming only low moments for an envelope of the
empirical process. These concentration inequalities are beneficial even when the envelope is much larger
than the single functions under consideration.
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1. Introduction

Powerful concentration and deviation inequalities for suprema of empirical processes have been
derived during the last 20 years. These inequalities turned out to be crucial for example, in the
study of consistency and rates of convergence for many estimators. Unfortunately, the known
inequalities are only valid for bounded empirical processes or under strict tail assumptions. So,
this paper was prompted by the question whether useful inequalities can be obtained under con-
siderably weaker assumptions.

Let us first set the framework, starting with a brief summary of the known results for bounded
empirical processes, or more precisely, for empirical processes index by bounded functions. To
this end, we consider independent and identically distributed random variables X1, . . . ,Xn and a
countable function class F such that supf ∈F ‖f ‖∞ ≤ 1 and supf ∈F |Ef (X1)| = 0. The quantity

of interest is denoted by Y := supf ∈F | 1
n

∑n
i=1 f (Xi)| and the root of the maximal variance by

σ := supf ∈F
√
E[f (X1)]2. Refining Rio’s proof in [13] (see also [12], Chapter 5.3, for the proof

techniques), Bousquet derives in [3] an exponential deviation inequality for Y . His result implies

P

(
Y − (1 + ε)EY ≥ σ

√
2x +

(
1

ε
+ 1

3

)
x

)
≤ e−nx for all x, ε > 0. (1)

For many statistical applications, it is important to have bounds like σ
√

2x + ( 1
ε
+ 1

3 )x and e−nx

that are, apart from the assumptions, completely independent of the functions f ; the parameter
ε > 0 is inserted to obtain such bounds. Exponential inequalities for bounded empirical processes
similar to the one above have been found by Klein and Rio [8] and by Massart [11]. These
inequalities are slightly less sharp, but additionally hold for nonidentically distributed random
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variables and also for −Y . The derivations of the mentioned results rely on the entropy method
(initiated by Ledoux in [9]), which provided a new approach to the results in Talagrand’s seminal
work [15]. For an overview of the techniques involved, we refer to the textbooks [2,10,12].

Results are also known for possibly unbounded empirical processes that have weak tails. We
consider independent and identically distributed random variables X1, . . . ,Xn and a function
class F such that supi,f ∈F |Ef (Xi)| = 0 and cardF = p. We additionally assume that Bern-

stein conditions are fulfilled, that is, supf ∈F 1
n

∑n
i=1 E|f (Xi)|m ≤ m!

2 Km−2, m = 2,3, . . . for a
constant K . Bühlmann and van de Geer then derive in [4] the following exponential deviation
inequality for Y := supf ∈F | 1

n

∑n
i=1 f (Xi)|:

P

(
Y −

√
2 log(2p)

n
− K log(2p)

n
≥ Kx + √

2x

)
≤ e−nx for all x > 0.

The lower bounds Kx + √
2x and e−nx are again independent of the functions f . Besides the

classical results for Gaussian processes (see, e.g., [2] and the references therein), other exponen-
tial bounds for unbounded empirical processes are given by Adamczak in [1] and by van de Geer
and Lederer in [17]. These authors assume weak tails with respect to suitable Orlicz norms.

But what if the empirical process is unbounded and does not fulfill the strict tail assumptions
mentioned above? There is no hope to derive exponential bounds as above under considerably
weaker assumptions. However, we show in the following that weak moment assumptions are
sufficient to obtain useful moment type concentration inequalities. For this purpose, we consider
independent, not necessarily identically distributed random variables X1, . . . ,Xn and a count-
able function class F with an envelope that has pth moment at most Mp for a M > 0 and
a p ∈ [1,∞). Our main result, Theorem 3.1, implies then for Y := supf ∈F | 1

n

∑n
i=1 f (Xi)|,

σ := supf ∈F
√
E[f (X1)]2, 1 ≤ l ≤ p, (·)+ := max{0, ·}, ‖ · ‖l := (E[·]l )1/l and for all ε > 0

∥∥(
Y − (1 + ε)EY

)
+
∥∥

l
≤

(
64

ε
+ 7 + ε

)(
l

n

)1−l/p

M + 4

√
l

n
σ

and

∥∥(
(1 − ε)EY − Y

)
+
∥∥

l
≤

(
86.4

ε
+ 7 − ε

)(
l

n

)1−l/p

M + 4.7

√
l

n
σ.

We argue in Section 3 that these bounds are especially useful in the common case where the
envelope (measured by M) is much larger than the single functions (measured by σ ). We also
stress that the empirical process is present on the right-hand sides only through the quantities
M and σ , which can be considered as properties of the single random variables f (Xi), unlike
in known maximal inequalities, which directly involve EY or the entropy of the function set F
(see, e.g., [12], Chapter 6, and [18]) at the corresponding spots. To obtain this, a parameter ε > 0
is required as above.

We close this section with a short outline of the paper. In Section 2, we give the basic defini-
tions and assumptions. In Section 3, we then state and discuss the main result. This is followed
by complementary bounds in Section 4. Detailed proofs are finally given in Section 5.
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2. Random vectors, concentration inequalities and envelopes

We are mainly interested in the behavior of suprema of empirical processes

Y := sup
f ∈F

∣∣∣∣∣1

n

n∑
i=1

f (Xi)

∣∣∣∣∣ or Y := sup
f ∈F

∣∣∣∣∣1

n

n∑
i=1

(
f (Xi) −Ef (Xi)

)∣∣∣∣∣ (2)

for large n. Here, X1, . . . ,Xn are independent, not necessarily identically distributed random
variables and F is a countable family of real, measurable functions. In the sequel, we may restrict
ourselves to finitely many functions by virtue of the monotonous convergence theorem.

Random vectors generalize the notion of empirical processes. Let Z1, . . . ,Zn be arbi-
trary probability spaces and {Zi(j) :Zi → R,1 ≤ j ≤ N,1 ≤ i ≤ n} a set of random vari-
ables. We then define the random vectors as Z(j) := (Z1(j), . . . ,Zn(j))T :Z1 × · · · ×
Zn → R

n. For convenience, we introduce their mean as PZ(j) := 1
n

∑n
i=1 EZi(j), their em-

pirical mean as PnZ(j) := 1
n

∑n
i=1 Zi(j), and the root of their maximal second moment as

σ := max1≤j≤N

√
1
n

∑n
i=1 EZi(j)2 (all assumed to be finite). Throughout this paper, we then

consider the generalized formulation of (2)

Z := max
1≤j≤N

∣∣PnZ(j)
∣∣. (3)

The corresponding results for the empirical processes (2) can be found via Zi(j) := fj (Xi) or
Zi(j) := fj (Xi) −Efj (Xi) for F = {f1, . . . , fN }.

The basic assumption on the random vectors is expressed using envelopes. First, we call E :=
(E1, . . . ,En)

T :Z1 ×· · ·×Zn → R
n an envelope if |Zi(j)| ≤ Ei for all 1 ≤ j ≤ N and 1 ≤ i ≤ n.

The basic assumption of this paper is then that there is a p ∈ [1,∞) and an M > 0 such that

EEp
i ≤ Mp (4)

for all 1 ≤ i ≤ n. To allow for an extension to countably infinite families of functions F via the
monotoneous convergence theorem, we assume that the constant M is independent of N . Finally,
we stress that the envelope E is typically much larger than the single random vectors Z(j), that
is, M 	 σ .

Asymptotically (n → ∞), the processes (2) and (3) are typically governed by the central limit
theorem. We study in this paper, however, the nonasymtotic behavior (n finite) of the process
(3) (and thus of (2)). For n finite, concentration inequalities provide bounds for the deviations
in both directions from the mean or related quantities. Similarly, deviation inequalities provide
bounds for the deviation in one direction only. We are especially interested in bounds that depend
only on n, M , σ , and p. The bounds should, in particular, not depend on the functions f and
therefore not on EZ or F .

3. Main result

We are mainly concerned with concentration inequalities for unbounded empirical processes that
only fulfill weak moment conditions. In particular, we are interested in bounds that only depend
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on n, M , σ , and p and incorporate empirical processes with envelopes that may be much larger
than the single functions under consideration.

The following theorem is the main result of this paper.

Theorem 3.1. For 1 ≤ l ≤ p and all ε > 0 it holds that

∥∥(
Z − (1 + ε)EZ

)
+
∥∥

l
≤

(
64

ε
+ 7 + ε

)(
l

n

)1−l/p

M + 4

√
l

n
σ

and

∥∥(
(1 − ε)EZ − Z

)
+
∥∥

l
≤

(
86.4

ε
+ 7 − ε

)(
l

n

)1−l/p

M + 4.7

√
l

n
σ.

As discussed in the preceding section, we state our results in terms of random vectors instead
of empirical processes. The connection can be made as described. Furthermore, we note that a
considerable improvement with respect to l does not seem to be possible. Slightly better constants
can be obtained, however, at the price of less incisive bounds or less accessible proofs (see
Remark 5.1 in the proofs section). We finally note that the expectation EZ can be replaced by
suitable approximations. Such approximations are usually found with chaining and entropy (see,
e.g., [5,18,19]) or generic chaining (see, e.g., [7,14,16]).

Let us now have a closer look at the above result. In contrast to the known results given in
the introduction, the single functions may be unbounded and may only fulfill weak moment
conditions. For the envelope, the moment restrictions are increasing with increasing power l, as
expected.

And what about large envelopes, that is M 	 σ ? Theorem 3.1 separates the part including
the size of the envelope (measured by M) from the part including the size of the single random
vectors (measured by σ ). For p > 2l and n 	 1, a possibly large value of M is counterbalanced
by 1

n1−l/p 
 1√
n

and thus, the influence of large envelopes is tempered. In particular, the term
including the size of the envelope can be neglected for n → ∞ if p is sufficiently large.

We conclude this section with two straightforward consequences of Theorem 3.1 and an addi-
tional remark.

Corollary 3.1. Theorem 3.1 directly implies probability bounds via Chebyshev’s inequality. Un-
der the above assumptions, it holds for x > 0

P
(
Z ≥ (1 + ε)EZ + x

) ≤ min
1≤l≤p

(((64/ε) + 7 + ε)(l/n)1−l/pM + 4
√

l/nσ)l

xl

and similarly

P
(
Z ≤ (1 − ε)EZ − x

) ≤ min
1≤l≤p

(((86.4/ε) + 7 − ε)(l/n)1−l/pM + 4.7
√

l/nσ)l

xl
.
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If σ , M , ε, and p − 2l are strictly positive constants, this implies the logarithmic rate
(ln(n))−l/2 for P(Y − (1 + ε)EY ≥ √

ln(n)/n). This rate can be directly compared to the corre-
sponding polynomial rates resulting from (1) (with x ∼ ln(n)/n) to observe that the avoiding of
the boundedness assumption causes slower rates, as expected.

Corollary 3.2. Concrete first order bounds under the above assumptions are for example

E[Z − 2EZ]+ ≤ 72
M

n1−1/p
+ 4

σ√
n

and

E

[
1

2
EZ − Z

]
+

≤ 179.3
M

n1−1/p
+ 4.7

σ√
n
.

Remark 3.1. Allowing the right-hand side in Theorem 3.1 to depend on EZ, we can avoid the
parameter ε and find for example

∥∥(Z −EZ)+
∥∥

l
≤ 10.2

(
l

n

)1−l/p

M +
√

32

(
l

n

)1−l/p

MEZ +
√

2l

n
σ

and a similar bound for ‖(EZ−Z)+‖l . For the proof, one can proceed similarly as in Remark 5.1
and Lemma 5.3. These kinds of results are, however, of less statistical importance.

4. Complementary bounds

In this section, we complement the main result Theorem 3.1 with two additional bounds. These
additional bounds can be of interest if l is close to p.

The first result reads as the following theorem.

Theorem 4.1. Assume that the random variables Zi(j) are centered. For 1 ≤ l ≤ p it holds that

∥∥(Z − 4EZ)+
∥∥

l
≤ (

l�(l/2)
)1/l

√
32

n
M,

where � is the usual Gamma function.

Let us compare Theorem 4.1 with Theorem 3.1. On the one hand, the above result does not
possess the flexibility of the factor (1 + ε) and is a deviation inequality only. On the other hand,
the term including the size of the envelope M is independent of p and has a different power of
n in the denominator compared to the corresponding term in Theorem 3.1. Comparing these two
terms in detail, we find that the bound of Theorem 3.1 may be sharper than the corresponding
bound in Theorem 4.1 if l ≤ p < 2l.

We finally give explicit deviation inequalities for Z in the case of finitely many random vec-
tors. For p ≥ 2, explicit bounds are found immediately by replacing EZ in Theorem 3.1 or
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Theorem 4.1 by the upper bound
√

8 log(2N)
n

M (see [6]). Another bound is found by an approach
detailed in Section 5. The bound reads as follows.

Theorem 4.2. Assume that the random variables Zi(j) are centered. Then, for p ≥ 2, l ∈ N,
and p ≥ l, ∥∥∥∥

(
Z − 2M

log(2N)√
n

)
+

∥∥∥∥
l

≤
√

35

n
lM.

This can supersede the bound in Theorem 4.1 for log(2N) ≤ 32.

5. Proofs

In this last section, we give detailed proofs.

5.1. Proof of Theorem 3.1

The key idea of our proofs is to introduce an appropriate truncation that depends on the envelope
of the empirical process. This allows us to split the problem into two parts that can be treated
separately: On the one hand, a part corresponding to a bounded empirical process that can be
treated by convexity arguments and Massart’s results on bounded random vectors [11]. And on
the other hand, a part corresponding to an unbounded empirical process that can be treated by
rather elementary means.

For ease of exposition, we present some convenient notation for the truncation first. After
deriving a simple auxiliary result, we then turn to the main task of this section: We first consider
the truncated part of the problem in Lemma 5.2 and then prove Lemma 5.3, a generalization of
Theorem 3.1.

A basic tool used in this section is truncation. Before turning to the proofs, we want to give
some additional notation for this tool. First, we define the unbounded and the bounded part of
the random vectors as

Z(j) := (
Z1(j), . . . ,Zn(j)

)T := (
Z1(j)1{E1>K}, . . . ,Zn(j)1{En>K}

)T
,

Z(j) := (
Z1(j), . . . ,Zn(j)

)T := (
Z1(j)1{E1≤K}, . . . ,Zn(j)1{En≤K}

)T
.

Similarly, we define

E := (E1, . . . ,En)
T := (E11{E1>K}, . . . ,En1{En>K})T ,

E := (E1, . . . ,En)
T := (E11{E1≤K}, . . . ,En1{En≤K})T .

To prevent an overflow of indices, the truncation level K > 0 is not included explicitly in the
notation. The truncation level is, however, given at the adequate places so that there should not
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be any confusion. Finally, we define the maxima of the truncated random variables as

Z := max
1≤j≤N

∣∣PnZ(j)
∣∣ and Z := max

1≤j≤N

∣∣PnZ(j)
∣∣

and the maximal variance of the bounded parts as

σ := max
1≤j≤N

√√√√1

n

n∑
i=1

VarZi(j).

Now we derive a simple auxiliary lemma.

Lemma 5.1. Under the assumptions of Theorem 3.1, it holds that σ ≥ σ and

∣∣E[Z − Z]∣∣l ≤ Mp

Kp−l

for the truncation level K > 0.

Proof. The first assertion is straightforward. For the second assertion, since ||a| − |b|| ≤ |a − b|
for all a, b ∈ R, we observe that∣∣E[Z − Z]∣∣ =

∣∣∣E[
max

1≤j≤N

∣∣PnZ(j)
∣∣ − max

1≤j≤N

∣∣PnZ(j)
∣∣]∣∣∣

≤ E

[
max

1≤j≤N

∣∣∣∣PnZ(j)
∣∣ − ∣∣PnZ(j)

∣∣∣∣]

≤ E

[
max

1≤j≤N

∣∣Pn

(
Z(j) − Z(j)

)∣∣]

= E

[
max

1≤j≤N
|PnZ|

]

≤ E

[
1

n

n∑
i=1

E i

]
.

With Hölder’s and Chebyshev’s inequality, we obtain for 1 ≤ i ≤ n

EE l

i = EE l
i 1{Ei>K}

≤ (
EEp

i

)l/p
(E1{Ei>K})1−l/p

≤ (
EEp

i

)l/p
(
EEp

i

Kp

)1−l/p

≤ Mp

Kp−l
.

These two results and Jensen’s inequality yield then the second assertion. �
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We can now turn to the harder part of this section. We first consider bounded random vectors
in Lemma 5.2. We then proof a bound for unbounded random vectors in Lemma 5.3, from which
the main result can be deduced easily.

Lemma 5.2. Let 1 ≤ l ≤ p, ε > 0 and denote by K > 0 the truncation level. Then,

∥∥(
Z − (1 + ε)EZ

)
+
∥∥

l
≤

(
64

ε
+ 5

)
lK

n
+ 4

√
lσ√
n

and

∥∥(
(1 − ε)EZ − Z

)
+
∥∥

l
≤

(
86.4

ε
+ 5

)
lK

n
+ 4.7

√
lσ√

n
.

Proof. The key idea is to use convexity arguments so that we can apply well-known bounds for
bounded random vectors.

To begin, we set J := (32/ε + 2.5)K and I := (2(l − 1)J /n + √
8(l − 1)σ/

√
n)l and then

define the function gl :R+ → (1,∞) as

gl(x) := e(n/(2J 2))(
√

2σ 2+J (x∨I )1/l−√
2σ)2

.

We used here the notation a ∨ b := max{a, b} for a, b ∈ R. The function gl is strictly increasing,
smooth, convex on the interval (I,∞), and its inverse on (1,∞) is given by

g−1
l (y) =

(
2J

n
logy + 4σ√

n

√
logy

)l

. (5)

The straightforward derivations of these facts are omitted for the sake of brevity.
The convexity of the function gl makes it possible to apply a result of [11]. To show this, we

introduce

X := (
Z − (1 + ε)EZ

)l

+
and find with Jensen’s inequality and the fact that gl is increasing

gl(EX) ≤ gl

(
E[X ∨ I ]) ≤ Egl(X ∨ I ).

Massart’s inequality [11], Theorem 4, (13), for bounded random vectors translates then to our
setting as

P

(
nZ ≥ (1 + ε)nEZ + σ

√
8nx +

(
32

ε
+ 2.5

)
Kx

)
≤ e−x,

where x > 0. This is equivalent to

P

(
Z ≥ (1 + ε)EZ + σ

√
8x

n
+ J

n
x

)
≤ e−x. (6)
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We now deduce (cf. [17])

E
[
e(n/(2J 2))(

√
2σ 2+J (X∨I )1/l−√

2σ)2]
=

∫ ∞

0
P
(
e(n/(2J 2))(

√
2σ 2+J (X∨I )1/l−√

2σ)2
> t

)
dt

≤ 1 +
∫ ∞

1
P
(
e(n/(2J 2))(

√
2σ 2+J (X∨I )1/l−√

2σ)2
> t

)
dt

= 1 +
∫ ∞

1
P

(√
2σ 2 + J (X ∨ I )1/l >

√
2σ +

√
2J 2

n
log t

)
dt

= 1 +
∫ ∞

1
P

(
J (X ∨ I )1/l > 4σ

√
J 2

n
log t + 2J 2

n
log t

)
dt

and note that

JI 1/l < 4σ

√
J 2

n
log t + 2J 2

n
log t ⇔

2(l − 1)J

n
+

√
8(l − 1)σ√

n
< 4σ

√
log t

n
+ 2J

n
log t.

This is fulfilled if t ≥ el−1. Hence, with Massart’s inequality (6),

E
[
e(n/(2J 2))(

√
2σ 2+J (X∨I )1/l−√

2σ)2]
≤ 1 + el−1 − 1 +

∫ ∞

el−1
P

(
X1/l > 4σ

√
log t

n
+ 2J

n
log t

)
dt

= el−1 +
∫ ∞

el−1
P

(
Z > (1 + ε)EZ + 4σ

√
log t

n
+ 2J

n
log t

)
dt

≤ el−1 +
∫ ∞

el−1
exp

(− log t2)dt < el .

In summary, we have

gl(EX) < el .

This is now inverted using equation (5) to obtain

EX ≤
(

2lJ

n
+ 4

√
lσ√
n

)l

.

This finishes the proof of the first claim. The second claim can be deduced similarly using [11],
Theorem 4, (14). �
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Remark 5.1. The constants in Lemma 5.2 are not optimal. First, we note that more restrictive
assumptions allow one to replace Massart’s inequality (6) by sharper concentration inequalities
(e.g., from Klein and Rio [8] assuming centered random vectors or from Bousquet [3] assuming
centered and identically distributed random vectors) and permit therefore shaper bounds. Second,
instead of using such concentration inequalities, one can work with the underlying log-Laplace
transforms directly. We found that this approach leads to slightly better constants but also to a
less accessible proof. Let us sketch the approach:

One may first verify that for any t > 0 and a ≥ 0

logE
[
n(Z −EZ) − a

]l
+ ≤ logE

[
etn(Z−EZ)

] + l log(l/t) − l − ta. (7)

We can now use bounds for the log-Laplace transform logE[etn(Z−EZ)] of n(Z − EZ), for ex-
ample, from [11]:

logE
[
etn(Z−EZ)

] ≤ vt2

1 − 2.5Kt
with v := 2nσ 2 + 32KnEZ. (8)

The bound (8) with t := (
√

v
l
+ 2.5K)−1 can be inserted into (7) and the result can be simplified

with

(
√

α + β + γ )e−α/δ/(
√

α+β+γ ) ≤ √
β + 2γ + δ

for α,β, γ, δ > 0. This then leads to the bound

∥∥(
Z − (1 + ε)EZ

)
+
∥∥

l
≤

(
32

ε
+ 5

)
lK

n
+

√
2lσ√
n

.

The quantity ‖((1 − ε)EZ − Z)+‖l can be bounded similarly.

We now use the above lemma to prove the following.

Lemma 5.3. Let 1 ≤ l ≤ p, ε > 0 and denote by K > 0 the truncation level. Then,

∥∥(
Z − (1 + ε)EZ

)
+
∥∥

l
≤

(
64

ε
+ 5

)
lK

n
+ 4

√
lσ√
n

+ Mp/l

Kp/l−1

and

∥∥(
(1 − ε)EZ − Z

)
+
∥∥

l
≤

(
86.4

ε
+ 5

)
lK

n
+ 4.7

√
lσ√

n
+ Mp/l

Kp/l−1
.

Proof. The key idea of the proof is to separate the bounded from the unbounded quantities. We
then develop bounds for ‖Z‖l via elementary means and combine this with the above results to
deduce the desired bounds.
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We start with the proof of the first inequality. First, we split Z in a bounded and an unbounded
part

Z = max
1≤j≤N

∣∣PnZ(j)
∣∣

= max
1≤j≤N

∣∣Pn

(
Z(j) + Z(j)

)∣∣
≤ max

1≤j≤N

(∣∣PnZ(j)
∣∣ + ∣∣PnZ(j)

∣∣)
≤ Z + Z

and deduce with the triangle inequality that∥∥(
Z − (1 + ε)EZ

)
+
∥∥

l

≤ ∥∥(
Z + Z − (1 + ε)EZ

)
+
∥∥

l
(9)

≤ ∥∥(
Z − (1 + ε)EZ

)
+ + Z

∥∥
l

≤ ∥∥(
Z − (1 + ε)EZ

)
+
∥∥

l
+ ‖Z‖l .

Now, we turn to the development of bounds for ‖Z‖l . As above, with the help of Hölder’s and
Chebyshev’s inequalities, we obtain for 1 ≤ i ≤ n

EE l

i ≤ Mp

Kp−l

and therefore with the triangle inequality

‖Z‖l ≤ ‖PnE‖l ≤ Mp/l

Kp/l−1
. (10)

Combining inequalities (9), (10), and the bound from Lemma 5.2 gives finally

∥∥(
Z − (1 + ε)EZ

)
+
∥∥

l
≤

(
64

ε
+ 5

)
lK

n
+ 4

√
lσ√
n

+ Mp/l

Kp/l−1
.

This finishes the proof of the first part of the lemma. For the second part, we note that

Z = max
1≤j≤N

∣∣PnZ(j)
∣∣

= max
1≤j≤N

∣∣Pn

(
Z(j) − Z(j)

)∣∣
≤ max

1≤j≤N

(∣∣PnZ(j)
∣∣ + ∣∣PnZ(j)

∣∣)
≤ Z + Z
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and therefore Z ≥ Z − Z. Consequently,∥∥(
(1 − ε)EZ − Z

)
+
∥∥

l

≤ ∥∥(
(1 − ε)EZ − Z + Z

)
+
∥∥

l

≤ ∥∥(
(1 − ε)EZ − Z

)
+ + Z

∥∥
l

≤ ∥∥(
(1 − ε)EZ − Z

)
+
∥∥

l
+ ‖Z‖l .

One can then proceed as in the first part. �

Proof of Theorem 3.1. Set K = ( n
l
)l/pM in Lemma 5.3 and use Lemma 5.1 to replace the

truncated quantities by the original ones. �

5.2. Proof of Theorem 4.1

Here, we prove Theorem 4.1 with the help of symmetrization and desymmetrization.

Proof of Theorem 4.1. The trick is to use symmetrization and desymmetrization arguments so
that we are able to use [11], Theorem 9, in a favorable way.

Beforehand, we define Zε := max1≤j≤N | 1
n

∑n
i=1 εiZi(j)| with independent Rademacher ran-

dom variables εi . Then, we symmetrize according to [19], Lemma 2.3.6, with the function
	(x) = (x − 4EZ)l+ to obtain

E[Z − 4EZ]l+ ≤ E[2Zε − 4EZ]l+
and we desymmetrize with the function 	(x) = x to obtain

E[2Zε − 4EZ]l+ ≤ E[2Zε −E2Zε]l+.

Hence,

E[Z − 4EZ]l+ ≤ 2l
EEε[Zε −EZε]l+, (11)

where we write here and in the following Eε for the expectation and Pε for the probability w.r.t.
the Rademacher random variables. Next, we observe that

Eε[Zε −EZε]l+
=

∫ ∞

0
Pε

(
(Zε −EZε)

l+ > t
)

dt

=
∫ ∞

0
Pε

(
Zε > EZε + t1/l

)
dt

≤
∫ ∞

0
Pε

(
max

1≤j≤N

1

n

n∑
i=1

εiZi(j) > E max
1≤j≤N

1

n

n∑
i=1

εiZi(j) + t1/l

)
dt
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+
∫ ∞

0
Pε

(
max

1≤j≤N
−1

n

n∑
i=1

εiZi(j) > E max
1≤j≤N

1

n

n∑
i=1

εiZi(j) + t1/l

)
dt

≤ 2
∫ ∞

0
Pε

(
max

1≤j≤N

1

n

n∑
i=1

εiZi(j) > E max
1≤j≤N

1

n

n∑
i=1

εiZi(j) + t1/l

)
dt.

In a final step, we apply Massart’s inequality [11], Theorem 9, with

L2 = max
1≤j≤N

n∑
i=1

(
2
∣∣Zi(j)

∣∣)2 ≤ 4nPnE2,

where PnE2 := 1
n

∑n
i=1 E2

i . This yields

2
∫ ∞

0
Pε

(
max

1≤j≤N

1

n

n∑
i=1

εiZi(j) > E max
1≤j≤N

1

n

n∑
i=1

εiZi(j) + t1/l

)
dt

≤ 2
∫ ∞

0
exp

(
− nt2/l

8PnE2

)
dt

= 2

(
8

n

)l/2(
PnE2)l/2

∫ ∞

0
exp

(−t2/l
)

dt

= 2

(
8

n

)l/2(
PnE2)l/2 l�(l/2)

2
.

With inequality (11), this gives

E[Z − 4EZ]l+ ≤ 2l l

(
8

n

)l/2

E
[
PnE2]l/2

�

(
l

2

)
.

Finally, due to the triangle inequality, it holds that

E
[
PnE2]l/2 ≤ E[PnE]l ≤ Ml

and hence

E[Z − 4EZ]l+ ≤ l�

(
l

2

)(
32

n

)l/2

Ml. �

5.3. Proof of Theorem 4.2

We eventually derive Theorem 4.2 using truncation. After some auxiliary results, we derive
Lemma 5.6. This lemma settles the bounded part of the problem. It is then used to proof
Lemma 5.7 which is a slight generalization of the main theorem. Finally, we derive Theorem 4.2
as a simple corollary.

We begin with two auxiliary lemmas.
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Lemma 5.4. Let W be a centered random variable with values in [−A,A], A ≥ 0, such that
EW 2 ≤ 1. Then,

EeW/A ≤ 1 + 1

A2
.

Proof. We follow well known ideas (see, e.g., [4], Chapter 14):

EeW/A = 1 +E

[
eW/A − 1 − W

A

]

≤ 1 +E

[
e|W |/A − 1 − |W |

A

]

= 1 +
∞∑

m=2

E|W |m
m!Am

≤ 1 +
∞∑

m=2

Am−2

m!Am

≤ 1 + 1

A2
. �

Lemma 5.5. Let Cn
m := |{(i1, . . . , im)T ∈ {1, . . . , n}m :∀j ∈ {1, . . . ,m}∃j ′ ∈ {1, . . . ,m}, j ′ �= j,

ij = ij ′ }| for m,n ∈ N. Then,

Cn
m ≤ m!

(
n

2

)�m/2�
.

Proof. The proof of this lemma is a simple counting exercise. We start with the case m ≤ 2. One
finds easily that Cn

1 = 0 and Cn
2 = n, which completes the case m ≤ 2. Next, we consider the case

m > 2. To this end, we note that C1
m = 1, C2

3 = 2 and C2
m ≤ 2m ≤ m! for m > 3. This completes

the cases n ≤ 2. Now, we do an induction in n. So we let n ≥ 2 and find

Cn+1
m = Cn

m + m(m − 1)

2! Cn
m−2

+ m(m − 1)(m − 2)

3! Cn
m−3 + · · · + m(m − 1) · · ·3

(m − 2)! Cn
2 + 1.

By induction, this yields

Cn+1
m ≤ m!

[(
n

2

)�m/2�
+ 1

2!
(

n

2

)�(m−2)/2�

+ 1

3!
(

n

2

)�(m−3)/2�
+ · · · + 1

(m − 2)!
(

n

2

)�2/2�]
+ 1.



2034 J. Lederer and S. van de Geer

We now assume that m is even. So,

Cn+1
m ≤ m!

[(
n

2

)m/2

+ 1

2!
(

n

2

)m/2−1

+ 1

3!
(

n

2

)m/2−2

+ · · · + 1

(m − 2)!
(

n

2

)]
+ 1

= m!
[(

n

2

)m/2

+ 1

2!
(

n

2

)m/2−1

+
m/2−1∑
j=2

(
1

(2j − 1)! + 1

(2j)!
)(

n

2

)m/2−j
]

+ 1

≤ m!
[(

n

2

)m/2

+ m

4

(
n

2

)m/2−1

+
m/2−1∑
j=2

(m
2
j

)(
1

2

)j(
n

2

)m/2−j

+
(

1

2

)m/2
]

= m!
m/2∑
j=0

(m
2
j

)(
1

2

)j(
n

2

)m/2−j

= m!
(

n + 1

2

)�m/2�
.

This completes the proof for m > 2 with m even. We note finally, that for odd m > 2 we have
Cn

m < mCn
m−1 ≤ m!( n

2 )�m/2�. �

We now settle the bounded part of the problem. Bounded random variables are in particular
subexponential, so one could apply results from [20], for example. But for our purposes, a direct
treatment as in the following is more suitable.

Lemma 5.6. Let l ∈ N and p,A ≥ 2. Then, for the truncation level K = A
2 +

√
A2

4 − 1,

∥∥∥∥
(

max
1≤j≤N

(Pn − P)Z(j) − AM
log(N)

n

)
+

∥∥∥∥
l

≤ M

A
+ lAM

n
.

Proof. We assume w.l.o.g. M = 1 and observe that

E
[
Zi(j) −EZi(j)

]2 ≤ EZi(j)2 ≤ 1.

Moreover, because of Hölder’s and Chebyshev’s inequalities and K ≥ 1, it holds that

∣∣Zi(j) −EZi(j)
∣∣ ≤ ∣∣Zi(j)

∣∣ + ∣∣EZi(j)
∣∣ ≤ K + 1

K
= A.

These observations, the independence of the random variables and Lemma 5.4 yield then

Een(Pn−P)Z(j)/A

= Ee
∑n

i=1(Zi(j)−EZi(j))/A

≤
(

1 + 1

A2

)n

.
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Next, one checks easily, that the map x �→ ex1/l
is convex on the set [(l − 1)l,∞). Hence, using

Jensen’s inequality again, we obtain

∥∥∥∥
(

max
1≤j≤N

(Pn − P)Z(j) − A
log(N)

n

)
+

∥∥∥∥
l

≤ A

n

∥∥∥(
max

1≤j≤N
n(Pn − P)Z(j)/A − log(N)

)
+ ∨ (l − 1)

∥∥∥
l

≤ A

n
log

(
E exp

((
max

1≤j≤N
n(Pn − P)Z(j)/A − log(N)

)
+ ∨ (l − 1)

))

= A

n
log

(
E exp

((
max

1≤j≤N
n(Pn − P)Z(j)/A − log(N)

)
∨ (l − 1)

))

≤ A

n
log

(
max

1≤j≤N
E exp

(
n(Pn − P)Z(j)/A

) + el−1
)

≤ A

n
log

((
1 + 1

A2

)n

+ el−1
)

.

We finally note that a + b < eab for all a, b ≥ 1 and find

∥∥∥∥
(

max
1≤j≤N

(Pn − P)Z(j) − A
log(N)

n

)
+

∥∥∥∥
l

<
A

n
log

((
1 + 1

A2

)n

el

)

= A

n

(
log

(
1 + 1

A2

)n

+ log el

)

≤ 1

A
+ lA

n
. �

The results above can now be used to derive a generalization of the main problem.

Lemma 5.7. Assume that the random variables Zi(j) are centered. Then, for p,A ≥ 2, l ∈ N,
and p ≥ l,

∥∥∥∥
(

Z − AM
log(2N)

n

)
+

∥∥∥∥
l

≤
(

2

(
2

A

)p−1

+ (l!)1/l

√
2

n
+ 1

A
+ lA

n

)
M.

Proof. The idea is again to separate the bounded and the unbounded quantities. The part with
the unbounded quantities is treated by elementary means and Lemma 5.5. For the bounded part,
we use Lemma 5.6.
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First, we assume w.l.o.g. that M = 1 and set K = A
2 +

√
A2

4 − 1. Then, we deduce with the
triangle inequality that∥∥∥∥

(
max

1≤j≤N
PnZ(j) − A

log(N)

n

)
+

∥∥∥∥
l

=
∥∥∥∥
(

max
1≤j≤N

(Pn − P)Z(j) − A
log(N)

n

)
+

∥∥∥∥
l

≤
∥∥∥∥
(

max
1≤j≤N

(Pn − P)Z(j) + max
1≤j≤N

(Pn − P)Z(j) − A
log(N)

n

)
+

∥∥∥∥
l

(12)

≤
∥∥∥∥(

max
1≤j≤N

(Pn − P)Z(j)
)

+ +
(

max
1≤j≤N

(Pn − P)Z(j) − A
log(N)

n

)
+

∥∥∥∥
l

≤
∥∥∥(

max
1≤j≤N

(Pn − P)Z(j)
)

+

∥∥∥
l
+

∥∥∥∥
(

max
1≤j≤N

(Pn − P)Z(j) − A
log(N)

n

)
+

∥∥∥∥
l

.

So, we are able to treat the unbounded and the bounded quantities separately. We begin with the
unbounded quantities. We first note that

[
(Pn − P)Z(j)

]l
+ ≤ (

(Pn + P)E
)l = (

(Pn − P)E + 2PE
)l

.

Hence, ∥∥∥(
max

1≤j≤p
(Pn − P)Z(j)

)
+

∥∥∥
l
≤ 2PE + ∥∥(Pn − P)E

∥∥
l
. (13)

Hölder’s and Chebyshev’s inequalities are then used to find

PE = 1

n

n∑
i=1

EE i ≤ 1

n

n∑
i=1

(
EEp

i

)1/p
(E1{Ei>K})1−1/p ≤ 1

Kp−1
. (14)

To bound the left over quantity, we note that for all i and p ≥ q ∈ N

E[E i −EE i]q ≤ 2q

so that

E
[
(E i1 −EE i1) · · · (E il −EE il )

] ≤ 2l .

Moreover, it holds that

E
[
(E i1 −EE i1) · · · (E il −EE il )

] = 0

for all i1, . . . , il such that there is a j with ij �= ij ′ for all j ′ �= j . With Lemma 5.5, we then get
for n > 1

E
[
(Pn − P)E

]l ≤ 2lCn
l

nl
≤ 2l l!

nl

(
n

2

)�l/2�
≤ l!

√
2

n

l

. (15)
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Clearly, this also holds for n = 1 and l = 1. For n = 1 and l > 1, we note that

E
[
(Pn − P)E

]l ≤ 2l ≤ l!√2
l
,

so that inequality (15) holds for all n and l under consideration. Inserting then inequalities (14)
and (15) in inequality (13), we obtain the result for the unbounded part

∥∥∥(
max

1≤j≤p
(Pn − P)Z(j)

)
+

∥∥∥
l
≤ 2

Kp−1
+ (l!)1/l

√
2

n
. (16)

Next, we plug the result of Lemma 5.6 and inequality (16) in inequality (12) to derive

∥∥∥∥
(

max
1≤j≤N

PnZ(j) − A
log(N)

n

)
+

∥∥∥∥
l

≤ 2

(
2

A

)p−1

+ (l!)1/l

√
2

n
+ 1

A
+ lA

n
.

Finally, we define Z(j + N) := −Z(j) for 1 ≤ j ≤ N . We then get∥∥∥∥
(

Z − A
log(2N)

n

)
+

∥∥∥∥
l

=
∥∥∥∥
(

max
1≤j≤2N

PnZ(j) − A
log(2N)

n

)
+

∥∥∥∥
l

≤ 2

(
2

A

)p−1

+ (l!)1/l

√
2

n
+ 1

A
+ lA

n

replacing N by 2N in the results above. �

Theorem 4.2 is now a simple corollary.

Proof of Theorem 4.2. Set A = 2
√

n in Lemma 5.7. �
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