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On hyperbolic Bessel processes and beyond
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We investigate distributions of hyperbolic Bessel processes. We find links between the hyperbolic cosine of
hyperbolic Bessel processes and functionals of geometric Brownian motion. We present an explicit formula
for the Laplace transform of the hyperbolic cosine of a hyperbolic Bessel process and some other interest-
ing probabilistic representations of this Laplace transform. We express the one-dimensional distribution of
a hyperbolic Bessel process in terms of other, known and independent processes. We present some applica-
tions including a new proof of Bougerol’s identity and its generalization. We characterize the distribution
of the process which is the hyperbolic sine of hyperbolic Bessel process.
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1. Introduction

The important role which functionals of Brownian motion play in many fields of mathematics
(including mathematical finance, diffusion processes in random environment, probabilistic stud-
ies related to hyperbolic spaces etc.) is a motivation to study the wide class of different diffusion
processes connected to those functionals somehow (see, e.g., [6,9,12,17] and [18]). In this work,
we consider a special class of such diffusions: Brownian motion with a special stochastic drift.
It is well known in the literature that processes like Ornstein–Uhlenbeck processes, Bessel pro-
cesses or radial Ornstein–Uhlenbeck processes are examples of Brownian motion with stochastic
drift connected to special functions: parabolic cylinder, Bessel or Kummer functions (see [5]).
In this work, we consider another interesting class of such diffusions – hyperbolic Bessel pro-
cesses which are connected to Legendre functions. We establish the distribution of a hyperbolic
Bessel process. Borodin presented the computation of the transition density function for a hyper-
bolic Bessel process (see formulas (5.4) and (5.5) in [5]). His method relied on the connection
between the Laplace transform of the transition density function and two increasing and decreas-
ing solutions of some ordinary differential equation of the second order (for more details of this
method see also [6]). Gruet established the transition density functions of hyperbolic processes
by methods of planar geometry (see [13,14]). However, the results obtained by both authors are
technically very complicated. The role of the hyperbolic Bessel processes in the world of Brow-
nian motion functionals was mentioned also by Byczkowski, Małecki and Ryznar [8].

Our approach to hyperbolic Bessel processes is completely different and purely probabilis-
tic. We present results for hyperbolic Bessel processes with index α ≥ −1/2 and for fixed time.
We find a link between the hyperbolic cosine of a hyperbolic Bessel process and functionals of
geometric Brownian motion. We present different probabilistic representations of the Laplace
transform of the hyperbolic cosine of a hyperbolic Bessel process R. We also give probabilis-
tic representations of the density of coshRt . The link between hyperbolic Bessel processes and
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functionals of geometric Brownian motion enables us to establish a simple explicit form of the
Laplace transform of the vector (eBt+kt ,

∫ t

0 e2(Bu+ku) du) for a standard Brownian motion B and
a nonnegative integer k. These results are obtained for fixed t (and not for stochastic time) and
so they can be effectively used in numerical computations. We express the distribution of a hy-
perbolic Bessel process R in terms of a squared Bessel process X and a vector (B(μ),A(μ)) of
Brownian motion with drift and the integral of geometric Brownian motion, which is indepen-
dent of X. The joint distribution of (B(μ),A(μ)) is known in the literature and is expressed via the
density function (e.g., see [17]). As an interesting example of applications, we find an alternative
simple proof of the well known Bougerol identity (for a thorough study, we refer the reader to
[1,2] or [11]). We also characterize the distribution of sinh(R) for R being a hyperbolic Bessel
process. It is interesting that this distribution is deduced from the stochastic process which is in a
sense a generalization of a squared Bessel process. At the end, we outline the case of exponential
random time independent of the Brownian motion driving the hyperbolic Bessel process. In this
case, many explicit and computable results are known in the literature (see, e.g., [6,17] or [18]).

2. Hyperbolic Bessel processes with fixed time

We consider a complete probability space (�, F ,P) with filtration F = (Ft )t∈[0,∞) satisfying the
usual conditions and F = F∞, and with a standard Brownian motion B . We define a hyperbolic
Bessel process R of index α ∈ (− 1

2 ;∞) as a nonnegative diffusion, starting from a nonnegative
x, given by

Rt = x + Bt +
(

α + 1

2

)∫ t

0
cothRu du. (2.1)

For α = − 1
2 , we define the hyperbolic Bessel process as the reflected (at 0) Brownian motion

starting from a nonnegative x, that is,

Rt = |x + Bt |. (2.2)

Now, we discuss properties of solutions to (2.1) which follow from general theory on SDE (see,
e.g., Cherny and Engelbert [10]). The behavior of R depends on the index α. For α ∈ (− 1

2 ,∞),
the point 0 is an isolated singular point of (2.1). For α ∈ (− 1

2 ,0) and x ≥ 0 there exists a positive
solution of (2.1) defined up to Ta = inf{t ≥ 0: Rt = a} for every a > x ≥ 0 and such a solution is
unique. This solution hits zero with a positive probability (see [10], Theorem 2.12), but the point
zero is instantaneously reflecting. Indeed we check that m({0}) = 0 for m the speed measure of
the hyperbolic Bessel process (for the boundary classification see, e.g., Borodin and Salminen
[6], pages 14–16). Therefore, by analogy with a SDE defining δ-dimensional Bessel process, in
the case α ∈ (− 1

2 ,0) we understand (2.1) as SDE

dRt = Bt +
(

α + 1

2

)
1{Rt �=0} cothRt dt, R0 = x. (2.3)

For the case α ≥ 0, we have two possibilities. If x > 0, then there exist a unique strictly positive
solution defined up to Ta for every a > x ≥ 0. If x = 0, then there exists a positive solution
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of (2.1) defined up to Ta , and such a solution is unique. Moreover, R > 0 on ]0, Ta] (see [10],
Theorem 2.16). Summing up, general theory implies that for α > − 1

2 and x ≥ 0 there exists a
unique positive solution defined up to the explosion time.

Recall that Gruet [13] defines a hyperbolic Bessel process of index α > −1/2 as a nonnegative
diffusion R with generator

A = 1

2

d2

dx2
+

(
α + 1

2

)
coth(x)

d

dx
. (2.4)

In the case of −1/2 < α < 0, the definition is completed by the requirement that 0 is an in-
stantaneously reflecting point. It is also assumed that the starting point is nonnegative. A similar
definition of hyperbolic Bessel process can be found in Borodin [5]. In [13], by the identification
of the Green function, it is stated that a reasonable candidate for a hyperbolic Bessel process with
α = −1/2 is a reflected Brownian motion (see the end of Section 3 in [13]).

To start the discussion of the properties of hyperbolic Bessel processes, we define a process θ

to be the solution of the SDE

dθt =
√∣∣θ2

t − 1
∣∣dBt + (α + 1)|θt |dt, (2.5)

where α ≥ −1/2, and such that θ0 = x ≥ 1. Observe that for x ∈ R and coefficients σ(x) =√|x2 − 1|, b(x) = (α + 1)|x| we have∣∣σ(x)
∣∣ + ∣∣b(x)

∣∣ ≤ (2 + α)
(|x| + 1

)
,

so there exists a weak solution, which does not explode. Using Ex. 3.14 [19], Chapter IX (with
g ≡ 1, c = 3, δ = 1), we see that pathwise uniqueness holds for (2.5). Thus, the SDE (2.5) has a
unique strong nonexploding solution.

Now, we consider the diffusion ηt := θt −1. It is a diffusion with drift and diffusion coefficients
equal to b̃(y) = (α + 1)|y + 1| and σ̃ (y) = √|y2 + 2y|, respectively. We observe that 0 is an
isolated singular point for η. For α ≥ 0 and a > 0, we have

∫ a

0
exp

(∫ a

x

2b̃(y)

σ̃ 2(y)
dy

)
dx =

∫ a

0

(
a2 + 2a

x2 + 2x

)α+1

dx ≥ aα+1
∫ a

0
x−(α+1) dx = ∞.

Therefore, from [10], Theorems 2.16 and 2.17, it follows that ηt > 0 for all t > 0, provided
η0 > 0. So, if θ0 > 1, then θt > 1 for all t > 0. Hence, the process θ satisfies for α ≥ 0 the SDE

dθt =
√

θ2
t − 1 dBt + (α + 1)θt dt. (2.6)

It turns out that in the case of α ≥ 0 we can recover a hyperbolic Bessel process from the pro-
cess θ . As usual, by ar cosh we denote the inverse function of cosh.

Theorem 2.1. If α ≥ 0 and x > 1, then the process Rt = ar cosh(θt ) is a hyperbolic Bessel
process of index α, where θ is the solution of (2.6), θ0 = x.
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Proof. Observe that, by definition,

Rt = ar cosh(θt ) = ln
(
θt +

√
θ2
t − 1

)
> 0. (2.7)

As θt > 1 for all t ≥ 0, we can use the Itô lemma to conclude that R satisfies (2.1). �

Theorem 2.2. A hyperbolic Bessel process R of index α ≥ −1/2 does not explode.

Proof. For α ≥ 0, we use Theorem 2.1, which implies that R does not explode since θ does not
explode. For α = − 1

2 the process R is given by (2.2), so it does not explode. For α ∈ (− 1
2 ;0), we

observe that cosh(R) and θ have the same generator Aθ on C2
c , the space of twice continuously

differentiable functions with compact support. From the uniqueness of solution of the martin-
gale problem induced by Aθ , we conclude that cosh(R) and θ have the same distribution. The
diffusion θ does not explode, so R does not explode either. �

Now we give a formula for the Laplace transform of cosh of a hyperbolic Bessel process with
α ≥ − 1

2 , one of the most important results of this paper.

Theorem 2.3. Fix α ≥ − 1
2 . If R is a hyperbolic Bessel process of index α and R0 = x ≥ 0, then

for t > 0 and λ > 0,

E
[
exp(−λ coshRt)

] = E

[
exp

(
−λ cosh(x)Vt − λ2

2

∫ t

0
V 2

u du

)]
, (2.8)

where Vt = e(α+1/2)t+Bt and B is a standard Brownian motion.

Proof. Set θt = coshRt ≥ 1, so θ0 = coshx. By the definition of R, the properties of the function
cosh and the Itô lemma we see that

dθt =
√

θ2
t − 1 dBt + aθt dt, (2.9)

where a = α + 1. Using again the Itô lemma, we obtain

de−λθt = −λe−λθt

√
θ2
t − 1 dBt − λae−λθt θt dt + λ2

2
e−λθt

(
θ2
t − 1

)
dt. (2.10)

The process
∫ t

0 e−λθu
√

θ2
u − 1 dBu is a martingale since e−x

√
x2 − 1 ≤ e−1 for x ≥ 1.

Thus, we infer from (2.10) that

Ee−λθt = e−λθ0 − aλ

∫ t

0
E

[
e−λθuθu

]
du + λ2

2

∫ t

0
E

[
e−λθu

(
θ2
u − 1

)]
du. (2.11)

Define p(t, λ) := Ee−λθt , so the function p is bounded. Using (2.11), we deduce that p satisfies
the following partial differential equation:

∂p

∂t
= −λ2

2
p + aλ

∂p

∂λ
+ λ2

2

∂2p

∂λ2
, (2.12)
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with p(0, λ) = e−λθ0 . Set Vt = V0e(α+1/2)t+Bt . Then

dVt = Vt dBt + aVt dt

with a = α + 1. The generator of V is

AV = x2

2

d2

dx2
+ ax

d

dx
.

Observe, by (2.11), that p ∈ C1,2((0,∞) × (0,∞)) and from the Feynman–Kac theorem (see
[16], Chapter 5, Theorem 7.6) we know that the only bounded solution of the partial differential
equation

∂u

∂t
= AV u − x2

2
u, u(0, x) = e−θ0x,

that is, (2.12), admits the stochastic representation

u(t, x) = E exp

(
−θ0Vt − 1

2

∫ t

0
V 2

u du

)
,

where V0 = x. This implies the assertion of the theorem. �

As an easy consequence, we obtain the following proposition.

Proposition 2.4. The Laplace transform of the vector (eBt ,
∫ t

0 e2Bu du) is given by

E exp

(
−γ eBt − λ2

2

∫ t

0
e2Bu du

)
= E exp

(−λ cosh(x + Bt)
)

(2.13)

for γ > 0 and λ > 0, where x = ar cosh γ
λ

.

Proof. The conclusion follows by applying Theorem 2.3 with α = − 1
2 , and the observation that

cosh(Rt ) = cosh(x + Bt), since cosh is an even function. This implies that for any λ > 0,

E exp
(−λ cosh(x + Bt)

) = E exp
(−λ cosh(Rt )

)
. �

Remark 2.5. The form of the Laplace transform of the vector (eBt ,
∫ t

0 e2Bu du) in the last propo-
sition, that is, (2.13), is very simple when compared to the form of density of this vector ob-
tained by Matsumoto and Yor [17]. Indeed, the density given in [17] has the oscillating nature
in the neighbourhood of 0 and is not convenient for computational use (see [4]). The knowl-
edge of the Laplace transform makes it possible to invert it numerically and obtain the density
of (eBt ,

∫ t

0 e2Bu du). It is also important to realize that it enables one to obtain the density for

(eB
(μ)
t ,

∫ t

0 e2B
(μ)
u du), where B

(μ)
t := Bt + μt , μ ∈ R, as we know from [17] that

P

(
B

(μ)
t ∈ dx,

∫ t

0
e2B

(μ)
u du ∈ dy

)
= eμx−μ2t/2P

(
Bt ∈ dx,

∫ t

0
e2Bu du ∈ dy

)
.
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Theorem 2.6. Let k ∈ N, γ > 0, λ > 0 and R be a hyperbolic Bessel process

Rt = ar cosh(γ /λ) + Bt + k

∫ t

0
cothRu du. (2.14)

For λ > 0, we have

E exp(−λ coshRt) = (−1)ke(k2/2)t ∂
kp(γ,λ)

∂γ k
,

where

p(γ,λ) = Ee−λ cosh(ar cosh(γ /λ)+Bt ).

Proof. By Proposition 2.4, for x = ar cosh(γ /λ),

p(γ,λ) = Ee−λ cosh(x+Bt ) = E exp

(
−γ eBt − λ2

2

∫ t

0
e2Bu du

)
.

Define the new probability measure Q by

dQ

dP

∣∣∣∣
Ft

= ekBt−(k2/2)t .

Then Vt = Bt − kt is a standard Brownian motion under Q and

p(γ,λ) = EQ exp

(
−kBt + k2

2
t − γ eBt − λ2

2

∫ t

0
e2Bu du

)

= e(k2/2)tEQ exp

(
−k(Vt + kt) − γ e(Vt+kt) − λ2

2

∫ t

0
e2(Vu+ku) du

)
.

The result follows from Theorem 2.3 after taking the kth derivative of p with respect to γ . �

Proposition 2.7. If k ∈ N and Yt = eBt+kt , then for λ > 0, γ > 0,

E exp

(
−γ Yt − λ2

2

∫ t

0
Y 2

u du

)
= (−1)ke(k2/2)t ∂

kp(γ,λ)

∂γ k
,

where p(γ,λ) is as in Theorem 2.6.

Proof. This follows from Theorems 2.6 and 2.3. �

Theorem 2.8. If R is a hyperbolic Bessel process of index α ≥ − 1
2 starting from x, then for

λ > 0,

E exp(−λ coshRt) =
√

2π√
t

e−(a2t/2)E
(
1{Vt≥|Bt |}Vtht (Bt , x)J0

(
λφ(Bt ,Vt )

))
,
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where a = α + 1
2 , J0 is the Bessel function of the first kind of order 0, ht (z, x) = exp( z2

2t
+ az −

λ cosh(x)ez), φ(v, z) = √
2ev/2(cosh z − coshv)1/2 for z ≥ |v|, and V,B are two independent

standard Brownian motions.

Proof. Let Wt = Bt + at and let Q be the new probability measure given by

dQ

dP

∣∣∣∣
Ft

= e−aBt−(a2/2)t .

From Theorem 2.3, we have

E exp(−λ coshRt) = E exp

(
−λ cosh(x)eat+Bt − λ2

2

∫ t

0
e2(Bu+au) du

)

= EQ exp

(
aWt − a2

2
t − λ cosh(x)eWt − λ2

2

∫ t

0
e2Wu du

)

= e−(a2/2)tE exp

(
aBt − λ cosh(x)eBt − λ2

2

∫ t

0
e2Bu du

)
,

so

E exp(−λ coshRt) = e−(a2/2)tE
[
eaBt−λ cosh(x)eBt

E
(
e−(λ2/2)

∫ t
0 e2Bu du|Bt

)]
.

To finish the proof, we use the conditional Laplace transform (see (5.5) in [17])

E
(
e−(λ2/2)

∫ t
0 e2Bu du|Bt = x

) 1√
2πt

e−x2/(2t) =
∫ ∞

|x|
z√

2πt3
e−z2/(2t)J0

(
λφ(x, z)

)
dz. �

Now we define a process �(α). Let B be a standard Brownian motion, α ∈ R, λ > 0 and

�
(α)
t = eBt+αt

1 + λ
∫ t

0 eBu+αu du
. (2.15)

Theorem 2.9. If R is a hyperbolic Bessel process of index α ≥ − 1
2 starting from x, then for

λ > 0,

E exp(−λ coshRt) = e−λE

[
e−λ(cosh(x)−1)�

(α+1/2)
t

(
1 + λ

∫ t

0
eBu+(α+1/2)u du

)−α−1]
,

where B is a standard Brownian motion and �
(α)
t is given by (2.15).

Proof. Set Y
(α)
t = eBt+αt . Define the new measure Q by

dQ

dP

∣∣∣∣
Ft

= e−λ
∫ t

0 Y
(α+1/2)
u dBu−(λ2/2)

∫ t
0 (Y

(α+1/2)
u )2 du.
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Theorem 2.3 implies

Ee−λ coshRt = E
[
e− cosh(x)λY

(α+1/2)
t −(λ2/2)

∫ t
0 (Y

(α+1/2)
u )2 du

]
= EQ

[
e− cosh(x)λY

(α+1/2)
t +λ

∫ t
0 Y

(α+1/2)
u dBu

]
= EQ

[
e− cosh(x)λY

(α+1/2)
t +λ(Y

(α+1/2)
t −1)−(α+1)λ

∫ t
0 Y

(α+1/2)
u du

] := I,

where we have used the fact that

Y
(α+1/2)
t = 1 +

∫ t

0
Y

(α+1/2)
u dBu + (α + 1)

∫ t

0
Y

(α+1/2)
u du. (2.16)

From the Girsanov theorem, the process Vt = Bt + λ
∫ t

0 Y
(α+1/2)
u du is a standard Brownian mo-

tion under Q. By the result of Alili, Matsumoto, and Shiraishi [3], Lemma 3.1, we have

Bt = Vt − ln

(
1 + λ

∫ t

0
eVu+(α+1/2)u du

)
. (2.17)

Thus,

Y
(α+1/2)
t = eVt+(α+1/2)t

1 + λ
∫ t

0 eVu+(α+1/2)u du
,

and

I = e−λEQ

[
exp

(
−λ

(
cosh(x) − 1

) eVt+(α+1/2)t

1 + λ
∫ t

0 eVu+(α+1/2)u du
− (α + 1)(Vt − Bt)

)]

= e−λE

[
e−λ(cosh(x)−1)�

(α+1/2)
t

(
1 + λ

∫ t

0
eBu+(α+1/2)u du

)−α−1]
. �

Let us observe that for a hyperbolic Bessel process of index α ≥ − 1
2 starting from x = 0 the

expectation E[exp(−λ coshRt)] involves the random variable
∫ t

0 eBu+(α+1/2)u du and not �
(α)
t .

Taking α = −1/2 in the previous result, we obtain the following corollary.

Corollary 2.10. For λ > 0, x ≥ 0,

E
[
exp

(−λ cosh(Bt + x)
)] = e−λE

[
e−λ(cosh(x)−1)�

(0)
t

(
1 + λ

∫ t

0
eBu du

)−1/2]
.

We will use the following notation:

A
(α)
t =

∫ t

0
e2(Bu+αu) du, α ∈ R, At = A

(0)
t , (2.18)

with B being a standard Brownian motion.
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Theorem 2.11. If R is a hyperbolic Bessel process of index α = 0 and x = 0, then the density of
coshRt on [1,∞), t > 0, has the form

P(coshRt ∈ dz) = E

[
1

4A
(1)
t/4

exp

(
− z − 1

4A
(1)
t/4

)]
dz. (2.19)

Proof. Fix t > 0. Using Theorem 2.9 for α = x = 0 and λ > 0 we obtain

Ee−λ(coshRt−1) = E

[
1

1 + λ
∫ t

0 eBu+u/2 du

]
.

From the last equality and the scaling property of Brownian motion, we have

Ee−λ(coshR4t−1) = E

[
1

1 + 4λ
∫ t

0 eB4u+2u du

]
= E

[
1

1 + 4λA
(1)
t

]
. (2.20)

From Theorem 2.8 in [15], we know that

E

[
1

1 + 4λA
(1)
t

]
= 1 − 4λ

∫ ∞

0
Gt(y)e−4λy dy,

where Gt(y) = E(e−y/A
(1)
t ).

Since Gt is differentiable, integration by parts yields

E

[
1

1 + 4λA
(1)
t

]
= 1 +

∫ ∞

0
Gt(y)

(
e−4λy

)′ dy = −
∫ ∞

0
G′

t (y)e−4λy dy.

From the last equality and the definition of Gt , we have

E

[
1

1 + 4λA
(1)
t

]
=

∫ ∞

0
e−4λyE

[
1

A
(1)
t

exp

(
− y

A
(1)
t

)]
dy

(2.21)

=
∫ ∞

0
e−λzE

[
1

4A
(1)
t

exp

(
− z

4A
(1)
t

)]
dz.

From (2.20) and (2.21), we conclude that

P
(
(coshR4t − 1) ∈ dz

) = E

[
1

4A
(1)
t

exp

(
− z

4A
(1)
t

)]
dz

for z ≥ 0, which ends the proof. �

Remark 2.12. Using the explicit form of the density of A
(1)
t and Theorem 2.11, we can obtain

the integral form of the density of coshRt , with α = 0 and x = 0.
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Proposition 2.13. If R is a hyperbolic Bessel process of index α = 0 and x = 0, then on [1,∞),

P(coshRt ∈ dz) = −1

4
G′

t/4

(
z−1

4

)
dz (2.22)

for t > 0, where

Gt(y) = e−t/2E exp

(
Bt + 1

2t

(
B2

t − ϕ2
y(Bt )

))
, (2.23)

B is a standard Brownian motion and

ϕy(z) = ln
(
ye−z + cosh(z) +

√
y2e−2z + sinh2(z) + 2ye−z cosh(z)

)
. (2.24)

Proof. As before, let Gt(y) = E(e−y/A
(1)
t ). As an easy consequence of the Matsumoto–Yor result

[17], Theorem 5.6, we find that Gt is given by (2.23) (see the proof of Theorem 2.5 in [15]). Now
the assertion follows from Theorem 2.11 and the observation that

E

[
1

4A
(1)
t/4

exp

(
− z − 1

4A
(1)
t/4

)]
= −1

4
G′

t/4

(
z−1

4

)
.

�

Let us recall that the formula of Laplace transform of a squared Bessel process X of index α

has the form

Ee−λXt = (1 + 2λt)−(α+1) exp
(−λx/(1 + 2λt)

)
(2.25)

for λ > 0, t ≥ 0 and X0 = x ≥ 0 (see [19], Chapter XI, page 441). We will use (2.25) in the proof
of the next theorem and subsequently.

The next theorem states that, for a fixed t , that Rt
(law)= F(B,A,X) for some functional F , so

the distribution of Rt can be represented as a functional of A,B and a squared Bessel process X

of index α independent of B .

Theorem 2.14. If R is a hyperbolic Bessel process of index α ≥ − 1
2 , R0 = x ≥ 0, then

cosh(Rt )
(law)= 1 + 2A

(2α+1)
t/4 X1 (2.26)

for every t > 0, where X is a squared Bessel process of index α, independent of a standard

Brownian motion B and starting from 1
2 (cosh(x) − 1)e2B

(2α+1)
t/4 /A

(2α+1)
t/4 . Moreover, we have

Rt
(law)= ar cosh

(
1 + 2A

(2α+1)
t/4 X1

)
. (2.27)

Proof. From Theorem 2.9 and the form of the Laplace transform of a squared Bessel process,
that is, (2.25), we have

E exp(−λ coshRt) = e−λE

[
e−λ(cosh(x)−1)�

(α+1/2)
t

(
1 + λ

∫ t

0
eBu+(α+1/2)u du

)−α−1]
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= e−λE exp
(−λeBt+(α+1/2)t X̂∫ t

0 eBu+(α+1/2)u du/(2eBt +(α+1/2)t )

)
for arbitrary λ > 0, where X̂ is a squared Bessel process of index α, independent of a standard
Brownian motion B and starting from cosh(x) − 1. It is now clear that

cosh(Rt )
(law)= 1 + eBt+(α+1/2)t X̂∫ t

0 eBu+(α+1/2)u du/(2eBt +(α+1/2)t )
. (2.28)

Using the scaling property of a squared Bessel process (see [19], Chapter XI, Proposition 1.6),
we obtain

1 + eBt+(α+1/2)t X̂∫ t
0 eBu+(α+1/2)u du/(2eBt +(α+1/2)t )

= 1 + 1

2
X1

∫ t

0
eBu+(α+1/2)u du, (2.29)

where X is a squared Bessel process of index α independent of B and starting from the stochastic
point X0 = 2(cosh(x) − 1)eBt+(α+1/2)t /

∫ t

0 eBu+(α+1/2)u du. Hence, taking 4t instead of t , we
infer that

cosh(R4t )
(law)= 1 + 1

2
X1

∫ 4t

0
eBu+(α+1/2)u du

(law)= 1 + 2A
(2α+1)

t X1,

where X is a squared Bessel process of index α independent of a standard Brownian motion B

and starting from X0 = 1
2 (cosh(x) − 1)e2B

(2α+1)
t /A

(2α+1)

t , where A
(2α+1)

t is given by (2.18) with
B instead of B . As Rt ≥ 0, the second part of the theorem follows from the first one. The proof
is complete. �

Remark 2.15. Fix α ≥ −1/2 and x ≥ 0. For every t > 0, from the proof of Theorem 2.14 we
deduce that

Rt
(law)= ar cosh

(
1 + (1/2)atX1

)
, (2.30)

where at = ∫ t

0 eBu+(α+1/2)u du, X is a squared Bessel process of index α ≥ −1/2 indepen-
dent of a standard Brownian motion B and starting from the random point X0 = 2(cosh(x) −
1)eBt+(α+1/2)t /

∫ t

0 eBu+(α+1/2)u du (see (2.28) and (2.29)).

Theorem 2.14, in the special case x = 0, gives

Proposition 2.16. (a) If x = 0 and α ≥ −1/2, then for every t the density function of cosh(Rt )

on [1,∞) is

P
(
cosh(Rt ) ∈ dz

) = 1

4α+1

(z − 1)α

�(α + 1)
E

[
e−(z−1)/(4A

(2α+1)
t/4 ) 1

(A
(2α+1)
t/4 )α+1

]
dz. (2.31)

(b) If x = 0 and α ≥ −1/2, then for every t the density function of Rt on [0,∞) is

P(Rt ∈ dz) = 1

4α+1

(cosh(z) − 1)α sinh(z)

�(α + 1)
E

[
e−(cosh(z)−1)/(4A

(2α+1)
t/4 ) 1

(A
(2α+1)
t/4 )α+1

]
dz.
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Proof. From Theorem 2.14 for x = 0 and α ≥ −1/2, we obtain

cosh(Rt )
(law)= 1 + 2A

(2α+1)
t/4 X1, (2.32)

where X is a squared Bessel process of index α, independent of B and starting from 0.
(a) (2.32) implies, for x = 0 and α ≥ −1/2, that

P
(
cosh(Rt ) ≤ z

) = P

(
X1 ≤ z − 1

2A
(2α+1)
t/4

)
.

Hence and from the form of the density of a squared Bessel process (see [19], Chapter XI,
Cor. 1.4), we have for x = 0 and α ≥ −1

P
(
cosh(Rt ) ∈ dz

) =
(

1

4

)α+1
(z − 1)α

�(α + 1)
E

[
e−(z−1)/(4A

(2α+1)
t/4 ) 1

(A
(2α+1)
t/4 )α+1

]
dz,

that is, (2.31).
(b) From the properties of a hyperbolic Bessel process for α ≥ −1/2 and x ≥ 0 it follows that

Rt ≥ 0. Thus, by (2.32),

Rt
(law)= ar cosh

(
1 + 2A

(2α+1)
t/4 X1

)
,

so

P(Rt ≤ z) = P

(
X1 ≤ cosh(z) − 1

2A
(2α+1)
t/4

)
.

Using this equality and again the form of the density of a squared Bessel process, we have, for
x = 0 and α ≥ −1/2,

P(Rt ∈ dz)

=
(

1

4

)α+1
(cosh(z) − 1)α sinh(z)

�(α + 1)
E

[
e−(cosh(z)−1)/A

(2α+1)
t/4

1

(A
(2α+1)
t/4 )α+1

]
dz,

and the proof is complete. �

Remark 2.17. Using the explicit form of the density of A
(2α+1)
t and Proposition 2.16, we can

obtain the integral form of the density of Rt for α ≥ −1/2 and R0 = 0. This formula is new and
differs significantly from the density obtained by Borodin (see formula (5.4) in [5]).

The next two facts follow immediately from Theorem 2.14 and in slightly different forms can
be found in [17].
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Corollary 2.18. For any z ≥ 1, we have

E

[
1√
At

exp

(
− (cosh(z) − 1)

4At

)]
=

√
2

t

√
cosh(z) − 1

sinh(z)
exp

(
−z2

8t

)
.

Proof. This follows from Proposition 2.16 for x = 0 and α = − 1
2 and the form of the density of

cosh(Bt ). �

Proposition 2.19. For every λ > 0, we have

EAλ
t = E(cosh(B4t ) − 1)λ

2λE(B1)2λ
,

where B is a standard Brownian motion.

Proof. This follows from Theorem 2.14 for x = 0 and α = −1/2. �

In the next proposition, we deduce from Theorem 2.14 an alternative purely probabilistic proof
of Bougerol’s identity (see [7], [3], Proposition 6.1, or [17], Section 3). For completeness, we also
present the generalized version of Bougerol’s identity which is exactly Proposition 4 in [2]; in
our proof we use similar ideas as in [11]. An interesting discussion of Bougerol’s identity and its
consequences can also be found in [1].

Proposition 2.20. Let B and W be two independent standard Brownian motions.
(a) (Bougerol’s identity) For t > 0,

sinh(Bt )
(law)= WAt . (2.33)

(b) ([2]) If x ∈ R, then

sinh(x + Bt)
(law)= sinh(x)eBt + WAt . (2.34)

Proof. (a)

(WAt )
2 (law)= At(W1)

2 (law)= cosh(B4t ) − 1

2
= e2·(1/2)B4t + e−2·(1/2)B4t − 2

4
(law)= (

sinh(Bt )
)2

,

where in the second equality we use Theorem 2.14 with x = 0 and α = −1/2. Hence, using the
fact that WAt and sinh(Bt ) are symmetric random variables we obtain (2.33).

(b) By the same arguments as in (a), we conclude that

∣∣sinh(x + Bt)
∣∣ (law)= ∣∣sinh(x)eBt + WAt

∣∣
and we can expect that we can skip the absolute value signs. Indeed, define

Mt = eBt

(
sinh(x) +

∫ t

0
e−Bu dWu

)
.
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Observe, by Proposition 2.1 in [12], that

sinh(x)eBt + WAt

(law)= sinh(x)eBt + eBt

∫ t

0
e−Bu dWu = Mt.

It is easy to check that M is a diffusion with the generator

AM = 1

2

(
x2 + 1

) d2

dx2
+ 1

2
x

d

dx
. (2.35)

It is also evident that the SDE corresponding to the above generator has a unique strong solution.
To finish the proof it is enough to observe that M̂t := sinh(x + Bt) is a diffusion such that the

generators of M and M̂ are equal on C2
c , so M

(law)= M̂ . �

A simple but interesting consequence of Proposition 2.20 is the following proposition.

Proposition 2.21. Let B be a standard Brownian motion. For any λ ≥ 0 and t ≥ 0 we have

E(1 + 2λAt)
−1/2 = Ee−λ sinh2(Bt ). (2.36)

Proof. Let B and W be independent standard Brownian motions. Using (2.25), we have

Ee−λW 2
At = EE

(
e−λW 2

At |σ(Bu,u ≤ t)
) = E(1 + 2λAt)

−1/2.

The assertion follows from Bougerol’s identity. �

In the next proposition, we deduce from Theorem 2.20 a simple form of the characteristic
function of the vector (eBt ,WAt ).

Proposition 2.22. Let B and W be two independent standard Brownian motions. Then, for u ∈ R

and v �= 0,

EeiueBt +ivWAt = Eeiv sinh(ar sinh(u/v)+Bt ). (2.37)

Proof. From Theorem 2.20, we infer that

u

v
eBt + WAt

(law)= sinh
(
ar sinh(u/v) + Bt

)
,

which implies (2.37). �

Now we establish a representation of the law of the process sinh(R), where R is a hyperbolic
Bessel process of index α = 0, in terms of functionals of independent Brownian motions.
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Theorem 2.23. Let x ≥ 0 and R be a hyperbolic Bessel process of index α = 0 starting from x.
Then

(
sinh(Rt ), t ≥ 0

)
(2.38)

(law)=
(

e−Bt+t/2
((

sinh(x) +
∫ t

0
eBu−u/2 dVu

)2

+
(∫ t

0
eBu−u/2 dZu

)2)1/2

, t ≥ 0

)
,

where B,V,Z are three independent standard Brownian motions.

Proof. Define ξt = sinh2(Rt ). Then the diffusion ξ satisfies the SDE

dξt = 2
√

ξ2
t + ξt dBt + (2 + 3ξt )dt,

and the generator of ξ is

Aξ = 2
(
x2 + x

) d2

dx2
+ (2 + 3x)

d

dx
. (2.39)

Denote the diffusion and drift coefficients of ξ by σ(x) = 2
√

x2 + x and μ(x) = 2+3x. Observe
that for any x ≥ 0 and y ∈ (x − 1, x + 1),

(
σ(x) − σ(y)

)2 ≤ 4
(∣∣x2 − y2

∣∣ + |x − y|) = 4|x − y|(|x + y| + 1
) ≤ 4|x − y|(2|x| + 2

)
≤ 4|x − y|(σ(x) + 2

) ≤ 4|x − y|(σ 2(x)/2 + 5/2
)
.

The uniqueness of solution for the corresponding SDE follows now from [19], Chapter IX,
Ex. 3.14. Thus there is a unique solution of the martingale problem induced by Aξ .

For a standard Brownian motion B we define, as previously, Yt = eBt−t/2. We now consider a
SDE of the form

dXt = 2
√

XtYt dWt + 2Y 2
t dt, (2.40)

where X0 = sinh2(x) and W is a standard Brownian motion independent of B . Observe, using
the Itô lemma, that the process ψ = X

Y 2 is a diffusion with the generator Aψ having the same

form as Aξ on C2
c . Hence, by uniqueness of solution of the martingale problem induced by Aξ ,

the processes | sinh(R)| and |√X/Y | have the same law. To skip the absolute value signs we
note that both processes are nonnegative. Moreover, the SDE (2.40) has a unique weak solution.
Indeed, using the change of time τt = inf{s ≥ 0:

∫ s

0 Y 2
u du ≥ t} we find that the process Xτ· is

the square of a 2-dimensional Bessel process, and it is not difficult to see that the process X

inherits “good” properties of the square of a 2-dimensional Bessel process. To finish the proof,
we observe that the unique weak solution of (2.40) can be written as

Xt =
(

sinh(x) +
∫ t

0
Yu dVu

)2

+
(∫ t

0
Yu dZu

)2

. (2.41)
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To verify that (2.41) satisfies (2.40), it is enough to observe that W defined as

Wt :=
∫ t

0
1{�s �=0}

(sinh(x) + ∫ s

0 Yu dVu)dVs + (
∫ s

0 Yu dZu)dZs√
(sinh(x) + ∫ s

0 Yu dVu)2 + (
∫ s

0 Yu dZu)2
, (2.42)

where �s = (sinh(x) + ∫ s

0 Yu dVu)
2 + (

∫ s

0 Yu dZu)
2, is a standard Brownian motion. A simple

use of the Itô lemma finishes the proof. �

It turns out that the methods of the proof of Theorem 2.23 also allow us to find a representation
of the law of the hyperbolic sine of a hyperbolic Bessel process.

Theorem 2.24. Let x ≥ 0 and R be a hyperbolic Bessel process of index α ≥ −1/2 starting
from x. Then (

sinh(Rt ), t ≥ 0
) (law)= (

√
Xt/Yt , t ≥ 0), (2.43)

where Yt = eBt−(α+1/2)t , Xt satisfies the SDE

dXt = 2
√

XtYt dWt + 2(1 + α)Y 2
t dt, (2.44)

X0 = sinh2(x) and B,W are two independent standard Brownian motions.

Proof. The proof follows the lines of the previous one. �

Theorem 2.25. Let Y be given by Yt = eBt−(α+1/2)t , where B is a standard Brownian motion.
For any w ≥ 0, t ≥ 0,

(
sinh(Rt ), t ≥ 0

) (law)= (
(Yt )

−1S∫ t
0 Y 2

u du
, t ≥ 0

)
, (2.45)

where S is a Bessel process of dimension 2(1 + α) independent of B , and S0 = sinh(x).

Proof. Consider the process X having dynamics given by (2.44) with B and W independent
standard Brownian motions. Let τt = inf{s ≥ 0:

∫ s

0 Y 2
u du ≥ t}. Observe that the process Xτt

is the square of a 2(1 + α)-dimensional Bessel process. Observe also that conditionally, under
the knowledge of the trajectory of (Ys, s ≤ t), the process Xτt is still the square of a 2(1 + α)-
dimensional Bessel process. Hence, the assertion follows from Theorem 2.24. �

Proposition 2.26. Let k ∈ N, x ≥ 0, and let Y be a given continuous process such that
E

∫ t

0 Y 2
u du < ∞ for any t ≥ 0. Then the unique solution of the SDE

dXt = 2
√

XtYt dWt + kY 2
t dt, (2.46)

where W is a standard Brownian motion independent of Y and X0 = x, is

Xt =
(√

x +
∫ t

0
Yu dW 1

u

)2

+
k∑

i=2

(∫ t

0
Yu dWi

u

)2

, (2.47)
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where Wi , i = 1, . . . , k, are independent standard Brownian motions.

Proof. As previously, the uniqueness of solution of (2.46) follows from the fact that the standard
change of time (τt = inf{u:

∫ u

0 Y 2
s ds > t}) results in X becoming the square of a k-dimensional

Bessel process. We complete the proof by the direct checking that X defined by (2.47) satisfies
(2.46), using analogous arguments to those in the proof of Theorem 2.25. �

2.1. Hyperbolic Bessel processes with stochastic time

Proposition 2.27. Let Tδ be a random variable with exponential distribution with parameter
δ > 0. Assume that Tδ is independent of a standard Brownian motion B . Then for a hyperbolic
Bessel process of the form (2.1) with α ≥ −1/2, we have

E exp(−λ coshRTδ ) =
∫ ∞

0

∫ ∞

0
e−λu cosh(x)−(1/2)vpγ (u,1, y)dy du, (2.48)

where for γ =
√

2δ + (α + 1
2 )2,

pγ (u,1, y) = δ

y1/2−αu
e−(y2+1)/(2u)Iγ

(
y

u

)
(2.49)

and Iγ is a modified Bessel function.

Proof. We use Theorem 2.3 and the result of Matsumoto-Yor [17], Theorem 4.11. �
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