
Bernoulli 15(2), 2009, 438–463
DOI: 10.3150/08-BEJ164

Subsampling needlet coefficients on the
sphere
P. BALDI1, G. KERKYACHARIAN2, D. MARINUCCI1 and D. PICARD2

1Dipartimento di Matematica, Università di Roma Tor Vergata, Italy.
E-mail: marinucc@mat.uniroma2.it
2Laboratoire de Probabilités et Modèles Aléatoires, Paris, France.

In a recent paper, we analyzed the properties of a new kind of spherical wavelets (called needlets) for
statistical inference procedures on spherical random fields; the investigation was mainly motivated by ap-
plications to cosmological data. In the present work, we exploit the asymptotic uncorrelation of random
needlet coefficients at fixed angular distances to construct subsampling statistics evaluated on Voronoi cells
on the sphere. We illustrate how such statistics can be used for isotropy tests and for bootstrap estima-
tion of nuisance parameters, even when a single realization of the spherical random field is observed. The
asymptotic theory is developed in detail in the high resolution sense.
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1. Introduction

Strong empirical motivations have prompted rising activity in the statistical analysis of spherical
random fields over the last few years, mostly in connection with the analysis of the cosmic
microwave background (CMB) radiation. The first CMB maps were provided by the NASA
mission COBE in 1993 and led to the Nobel prize for physics for J. Mather and G. Smoot in 2006.
Much more refined observations were provided by the satellite mission WMAP in 2003/2006.
Further improvements are expected in the next few years, in view of the forthcoming launch
of the European Space Agency mission Planck. Cosmic microwave background data have been
collected by many other remarkable balloon-borne experiments; a list with links to some data
sets can be found on http://www.fisica.uniroma2.it/~cosmo/.

The analysis of CMB data provides a sort of goldmine of new challenges for statistical method-
ology; see, for instance, Dodelson [8] for a review. Many of these challenges can be addressed
by some forms of spherical wavelets; to list just a few, we recall testing for non-Gaussianity
(Cabella et al. [6], Vielva et al. [29], McEwen et al. [17], Jin et al. [13]), component sepa-
ration (Moudden et al. [18]), foreground subtraction (Hansen et al. [11]), point sources detec-
tion (Sanz et al. [25]), cross-correlation with large scale structure data (Pietrobon et al. [22],
McEwen et al. [16]), searching for asymmetries/directional features in CMB (Wiaux et al. [32],
Vielva et al. [30]) and many others. The importance of wavelets in this environment is easily
understood: on one hand, nearly all predictions from theoretical physics for the behaviour of the
CMB field are presented in Fourier space, where the orthogonality properties make many diffi-
cult problems more tractable. On the other hand, spherical CMB maps are usually observed with
gaps due to the presence of foreground radiation such as the emissions by the Milky Way and
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other galaxies. The double localization properties of wavelets thus make them a very valuable
asset for CMB data analysis. Because of this, indeed very many physical papers have attempted
to use wavelets in cosmology for a variety of different problems. Many of these papers provide
insightful suggestions and important experimental results; however, the focus has typically been
on physical data and few have investigated the statistical foundations of the proposed proce-
dures. In most cases, rather than proposing anew procedures suitable for spherical random fields,
it has been very common to rely on tangent plane approximations to adapt to the sphere standard
wavelet constructions on the plane (an exception is provided by Sanz et al. [25]; see also An-
toine and Vandergheynst [1], Antoine et al. [2] and Wiaux et al. [31] for a nice group-theoretical
construction).

Needlets are a new kind of second-generation spherical wavelets, which were introduced into
functional analysis by Narcowich, Petrushev and Ward [19,20]; they can be shown to make up a
tight frame with excellent localization properties in both the real and the harmonic domains. In
Baldi et al. [4], their properties for the analysis of random fields were established; in particular, it
was shown that a major feature of random needlet coefficients is their asymptotic uncorrelation at
large frequencies j for any fixed angular distance (see Baldi et al. [3] for an analogous result on
the circle). Of course, in the Gaussian and isotropic cases, this property implies that the random
spherical needlets behave asymptotically as an i.i.d. array. This surprising result clearly opens
the way to the implementation of several statistical procedures with an asymptotic justification.
The meaning of asymptotics in this framework should be understood with great care. It should be
stressed that we are considering a single observation (our universe) of a mean square continuous
and isotropic random field on a fixed domain. Our asymptotic theory is then entertained in the
high-resolution sense (compare Marinucci [15]), that is, as higher and higher frequency data
become available for statistical analysis.

In this paper, we build on this essential feature of the random needlet coefficients to propose
new statistical procedures and to provide bootstrap estimates for the asymptotic variance of exist-
ing techniques. The main idea of our work can be described as follows: We partition the sphere S

2

into disjoint subsets with roughly the same dimension, in a sense to be made rigorous later. It is
then possible to evaluate nonlinear statistics on each of these subregions separately. These subre-
gions will constitute a tessellation of the spherical surface composed by Voronoi cells associated
with a suitable ε-net. The geometry of these Voronoi cells on the sphere is interesting by itself
and plays an important role in our results.

We show below that, in the high-resolution sense, these statistics converge asymptotically to
a sequence of independent realizations with the same law as the corresponding ones evaluated
on the full sphere. It is then immediate to exploit this result to obtain computationally feasible
approximations of sample variance for nonlinear functionals (in Baldi et al. [4] estimation of the
normalizing factors was left open). It is also quite straightforward to exploit our construction to
derive tests for statistical isotropy on the sphere. The latter issue is indeed of great importance
for cosmological data analysis: indeed the single most surprising result from the first releases of
WMAP data in 2003/2006 was the apparent presence of an asymmetry in CMB radiation (see, for
instance, Hansen et al. [11]). These findings have sparkled an impressive amount of empirical
research over the last few years, but the results are still inconclusive, partly due to the lack of
widely accepted statistical procedures to tackle this issue. The actual discovery of an asymmetry
in cosmological radiation might call for revolutionary advances in theoretical physics, possible
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explanations ranging from the higher-dimension non-trivial topological structure of the observed
universe to rotating solutions of Einstein field equations.

To some extent, our approach can be viewed as a simple form of subsampling in the sense
of Politis et al. [23]. To the best of our knowledge, subsampling techniques have so far been
considered mainly in the presence of the usual large sample asymptotics, the main instrument to
establish asymptotic properties being some mixing properties as the observations increase. In the
present circumstances, no mixing properties can be advocated, as we assume we are observing
a single realization of a random field on a bounded and compact domain. Once again, then, we
consider our results to be a quite surprising consequence of the peculiar properties of the needlets
construction.

The structure of the paper is as follows: in Section 2 we review some basic features of the
needlets and their properties in the analysis of isotropic random fields. Section 3 discusses the
geometry of the sphere and, more precisely, the separation properties of Voronoi cells and cu-
bature points inside them. In Section 4 we provide our main theoretical results, which are made
possible by careful correlation inequalities that are justified in the Appendix. Section 5 discusses
the results, their statistical applications and possible routes for further research.

2. A review on needlets

In this section, we review very briefly a few basic features of needlet construction. For more
details, we refer to Narcowich, Petrushev and Ward [19] and Baldi et al. [4]. Let us denote by
{Ylm}m=−l,...,l the spherical harmonics (see [28]), that form an orthonormal basis for L2(S

2,μ).
The following decomposition holds:

L2(S
2,μ) =

∞⊕
l=0

Hl,

where the Hl’s are the finite dimensional spaces of L2 spanned by the lth spherical harmonics
and μ is Lebesgue measure on the sphere. We define also the space of the restrictions to S

2 of
the polynomials of a degree not greater than l as

Kl =
l⊕

m=0

Hm.

Now let φ be a C∞ non-increasing function supported in |ξ | ≤ 1, such that 1 ≥ φ(ξ) ≥ 0 and
φ(ξ) = 1 if |ξ | ≤ B−1, and define:

b2(ξ) = φ

(
ξ

2

)
− φ(ξ) ≥ 0

so that

∀|ξ | ≥ 1,
∑
j

b2
(

ξ

Bj

)
= 1, B > 1. (1)
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Define the projection operator

Ll(〈x, y〉) =
l∑

m=−l

Ylm(x)Ylm(y),

where we take x, y on the unit sphere S
2, 〈x, y〉 is the standard scalar product on R

3. Let us now
define the kernel

�j(d(x, y)) =
∑

[Bj−1]<l<[Bj+1]
b2

(
l

Bj

)
Ll(〈x, y〉),

[·] denoting integer part. Finally, we introduce cubature points, that is, for each l we consider
{η :η ∈ Xl}, a finite subset of S

2, and positive real numbers λη > 0 (the cubature weights) in-
dexed by the elements η of Xl , such that

∀f ∈ Kl ,

∫
f dμ =

∑
η∈Xl

ληf (η). (2)

It can be proved that, if Xl is a maximal ε-net (see the definition below) with ε ∼ B−j for some j ,
then it constitutes a set of cubature points (see [19]). This will be our choice in the sequel. We
will write Zj = X2[Bj+1], Zj = {ξj1, . . . , ξjk, . . .} and λjk = λη in order to stick with the usual
wavelet notation.

We are now ready to introduce needlets, which are given by

ψjk(x) :=
∑

[Bj−1]<l<[Bj+1]

√
λjk b

(
l

Bj

)
Ll(〈x, ξjk〉), j = 1,2, . . . , ξjk ∈ Zj .

Needlets enjoy a number of very important properties that are proved elsewhere and that we
summarize in the following two propositions. Write as usual

〈f,ψjk〉L2(S2) :=
∫

S2
f (x)ψjk(x)dμ;

we have the following proposition.

Proposition 1 ([19]). (a) (Reconstruction) The family (ψjη)j∈N,η∈Zj
is a tight frame, hence

f (x) =
∑
j

∑
ξjk∈Zj

〈f,ψjk〉L2(S2)ψjk(x). (3)

(b) (Localization) For any positive integer M there exists a constant cM such that:

|ψjk(x)| ≤ cMBj

[1 + Bj d(x, ξjk)]M , (4)

where d(x, y) = arccos(〈x, y〉) denotes the usual geodesic distance on the sphere.
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Tight frames in some sense are very close to orthonormal bases, as shown by (3); see [12] for
further references and discussion. The good localization properties highlighted in (4) are very
useful when dealing with missing observations or with statistics evaluated on subsets of the
sphere (see below).

Let us now focus on zero-mean, mean square continuous and isotropic random fields. As is
well known, these can be expressed by means of the following spectral decomposition, which
holds in the mean square sense:

T (x) =
∞∑
l=1

Tl(x) =
∑
lm

almYlm(x),

where {alm}l,m, m = 1, . . . , l is a triangular array of zero-mean, orthogonal, complex-valued
random variables with variance E|alm|2 = Cl, the angular power spectrum of the random field.
For m < 0 we have alm = (−1)mal−m, whereas al0 is real. Our random needlet coefficients are
then easily seen to be given by

βjk :=
∫

S2
T (x)ψjk(x)dx = √

λjk

∑
[Bj−1]<l<[Bj+1]

b

(
l

Bj

)
Tl(ξjk), ξjk ∈ Zj .

Remark that in the previous sum only a finite number of non-vanishing terms appear. Hence we
obtain

Eβjkβjk′ = √
λjkλjk′

∑
l≥0

b2
(

l

Bj

)
ClLl(〈ξj,k, ξj,k′ 〉)

and

corr(βj,k, βj,k′) =
∑

l b
2(l/Bj )ClLl(〈ξj,k, ξj,k′ 〉)∑

l b
2(l/Bj )ClLl(1)

=
∑

l b
2(l/Bj )ClLl(〈ξj,k, ξj,k′ 〉)∑

l b
2(l/Bj )Cl(2l + 1)/(4π)

.

In particular E[β2
jk] is equal to

λjk

∑
l≥0

b2
(

l

Bj

)
ClLl(1)︸ ︷︷ ︸

:=γj

. (5)

The following assumption is a mild condition on the regularity of the angular power spectrum.

Condition 1. Let us assume that ∃α > 2 and an integer M ≥ 3 such that

Cl = l−αgj

(
l

Bj

)
, for Bj−1 < l < Bj+1



Subsampling needlet on the sphere 443

and

∀r = 0,1, . . . ,M, sup
j

sup
1/B<u<B

∣∣g(r)
j (u)

∣∣ ≤ Cr < ∞.

Remark 2. A typical example that fulfills Condition 1 is

Cl = G(l)l−α, sup
u≥1/B

ur
∣∣G(r)(u)

∣∣ ≤ Cr < ∞, r = 0,1, . . . ,M.

The following proposition provides the basic correlation inequality for the analysis of the statis-
tical procedures in the sequel.

Proposition 3 ([4]). Under Condition 1 we have, for each positive integer M ,

| corr(βj,k, βj,k′)| ≤ CMB2j

(1 + Bjd(ξj,k, ξj,k′))M
. (6)

Remark 4. The previous inequality is the basic ingredient for many of the results to follow,
together with the geometric analysis in the next section. Inequality (6) entails that needlet coef-
ficients are asymptotically (in the high-resolution sense) uncorrelated at any fixed angular dis-
tance. This makes consistent inference procedures viable, even in the presence of observations
on a single realization of a random field.

3. The geometry of Voronoi cells on the sphere

In this section, we establish some properties of Voronoi cells on the sphere. These properties will
be instrumental for the correlation inequalities we shall need in our main arguments. Let us first
introduce some notation.

We start by defining the standard (open and closed) balls in S
2 as

B(a,α) = {x, d(a, x) ≤ α}, B◦(a,α) = {x, d(a, x) < α}.
Also, if A ⊂ S

2 we denote by |A| the two-dimensional measure of A. Of course, for the full
sphere |S2| = 4π. Now let ε > 0 and x1, . . . , xN ∈ S

2 such that

∀i �= j, d(xi, xj ) > ε

and the set {x1, . . . , xN } = 
ε is maximal for this property, that is,

∀x ∈ S
2, d(x,
ε) ≤ ε and ∀i �= j, B

(
xi,

ε

2

)
∩ B

(
xj ,

ε

2

)
= ∅.

We call such a set 
ε a maximal ε-net.
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Of course, if ε = π, obviously N = 1, and as soon as ε < π, N ≥ 2. For instance, if π
2 ≤ ε < π,

we can take N = 2 and ξ1 and ξ2 are two opposite poles; however, N = 3 is possible taking three
points on a geodesic circle at distance 2π

3 . The next lemma is a simple but useful result.

Lemma 5. Let {x1, . . . , xN } = 
ε be a maximal ε-net. Then

4

ε2
≤ N ≤ 4

ε2
π2. (7)

Proof. Let us first recall that ∀a ∈ S
2, ∀0 < η ≤ π,

|B(a,η)| = 2π
∫ η

0
sin θ dθ = 2π(1 − cosη) = 4π sin2(η/2) (∼ πη2 for η → 0).

More precisely, if 0 < η ≤ 2α ≤ π, as 1
α

sinα ≥ 2
π ,

η2 4

π
≤ πη2

(
sinα

α

)2

≤ |B(a,η)| ≤ πη2. (8)

As ⋃
xi∈
ε

B(xi, ε) = S
2,

we have

4π = |S2| ≤
∑

xi∈
ε

|B(xi, ε)| ≤ Nπε2

and, as the B(xi,
ε
2 ) are disjoint

N

(
ε

2

)2 4

π
≤

∑
xi∈
ε

∣∣∣∣B(
xi,

ε

2

)∣∣∣∣ ≤ 4π. �

Remark 6. Actually, it is easy to see that

1

sin2 ε/2
≤ N ≤ 1

sin2 ε/4
,

so that

1

4
≤ 1

4 cos2 ε/4
≤ N sin2 ε

4
≤ 1.

We can now introduce, for all xi ∈ 
ε , the Voronoi cells:
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Definition 7. Let 
ε be a maximal ε-net. We define the associate family of Voronoi cells:

S(xi) = {x ∈ S
2,∀j �= i, d(x, xi) ≤ d(x, xj )}.

Clearly

B

(
xi,

ε

2

)
⊂ S(xi) ⊂ B(xi, ε).

Now observe that ∀a �= b and the set {x ∈ S, d(x, a) = d(x, b)} is a geodesic circle on the sphere.
Let us denote this circle by Ca,b. The set: {x ∈ S

2, d(x, a) ≤ d(x, b)} = D(a,b) is the half-sphere
defined by this geodesic circle containing a. We have

S(xi) =
⋂
j �=i

D(xi, xj ),

so S(xi) is the intersection of a finite number of half-spheres. Actually,

S(xi) =
⋂

j �=i,d(xj ,xi )≤2ε

D(xi, xj )

and, more precisely,

S(xi) ∩ S(xj ) �= ∅ �⇒ d(xi, xj ) ≤ 2ε.

The following lemma provides a bound on the number of points of a maximal ε-net that lie within
a distance 2ε from a fixed center.

Lemma 8.

Card{j �= i, d(xj , xi) ≤ 2ε} ≤ 6π2.

Proof. Let K(ε, xi) = {xj �= xi, d(xj , xi) ≤ 2ε}. Clearly, as

K(ε, xi) ⊂ B(xi,2ε) \ B(xi, ε),

we have, if xj ∈ K(ε, xi), B(xj ,
ε
2 ) ⊂ B(xi,

5ε
2 ) \ B(xi,

ε
2 ). Hence, since the balls B(xj ,

ε
2 ) are

disjoint, ∑
{j �=i,d(xj ,xi )≤2ε}

∣∣∣∣B(
xj ,

ε

2

)∣∣∣∣ ≤
∣∣∣∣B(

xi,
5ε

2

)∖
B

(
xi,

ε

2

)∣∣∣∣. (9)

For 0 < μ < η ≤ π, we have

|B(a,η) \ B(a,μ)| = 2π
∫ η

μ

sin θ dθ = 2π(cosμ − cosη)

= 4π sin

(
η − μ

2

)
sin

(
η + μ

2

)
≤ π(η2 − μ2).
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Hence

η ≤ π
2

�⇒ 4

π
(η2 − μ2) ≤ |B(a,η) \ B(a,μ)| ≤ π(η2 − μ2). (10)

Now, if η → 0 and 0 ≤ μ < η,

|B(a,η) \ B(a,μ)| ∼ π(η2 − μ2). (11)

So, by (9) and (8),

card(K(ε, xi))

(
ε

2

)2 4

π
≤ π

((
5ε

2

)2

−
(

ε

2

)2)
,

which implies

card(K(ε, xi)) ≤ 6π2,

as required. �

Of course ⋃
xi∈
ε

S(xi) =
⋃

xi∈
ε

B(xi, ε) = S
2.

It is obvious that if x, y ∈ S(xi) then the portion of geodesic circle joining x to y is inside S(xi).

Definition 9. Two Voronoi cells S(xi) and S(xj ) with i �= j are said to be adjacent if

S(xi) ∩ S(xj ) �= ∅.

Remark 10. From Lemma 8 it is clear that there are at most 6π2 adjacent cells to any given cell.

With the previous results at hand, we have now the ingredients to define our statistics on
suitable subsets of S

2, as explained in the following section.

4. Asymptotics for needlet functionals

In Baldi et al. [4] we discussed the asymptotics of several statistics of the form

�
(q)
j := 1

Aj

∑
k

Hq(β̂jk), where β̂jk := βjk√
Eβ2

jk

.

Here Aj denotes the number of cubature points and Hq as usual are the Hermite polynomials of
order q, (see, e.g., Surgailis [27]):

Hq(u) = (−1)qeu2/2 dq

duq
e−u2/2,
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that is, H1(u) = u, H2(u) = u2 − 1, H3(u) = u3 − 3u, . . . . It was shown that E�
(q)
j = 0 and, as

j → ∞
�

(q)
j√
�

(q)
j

→d N(0,1), where �
(q)
j := E

[(
�

(q)
j

)2]
.

Indeed it is also possible to show stronger results; for instance, the joint convergence over differ-
ent values of q.

Our purpose here is to provide estimates for the normalizing variance �
(q)
j . Our idea is to

“subsample” our statistics by evaluating them on distinct Voronoi cells. By means of the asymp-
totic properties of needlet coefficients, we shall show that each cell will provide asymptotically
an independent realization of the same limiting distribution as the statistic on the whole sphere. It
will then be immediate to exploit these results to estimate by bootstrap our limiting distribution.
More precisely, fix B > 1, let j, r be two non-negative integers such that B−j < B−r/4 and write

πB−j := {xj,1, . . . , xj,Aj

},
πB−r := {xr,1, . . . , xr,Ar } for corresponding sequences of maximal
ε-nets with ε = πB−j and = πB−r , respectively. Let us also define

Na;rj := Card
(
S(xr,a) ∩ 
πB−j

)
, Ar = Card{
πB−r },

where S(xr,a) are the Voronoi cells of the πB−r -net 
πB−r . In other words, Nra;j represents the
number of points in the B−j -net that fall inside the Voronoi cell of 
πB−r around the point xr,a

(note that xr,a need not belong to 
πB−j ). Ar denotes the cardinality of such Voronoi cells. In
particular,

∑Ar

a=1 Na;rj = Aj .
We focus on the triangular array

�a;rj := 1√
Na;rj

∑
k∈
πB−j ∩S(xr,a)

Hq(β̂jk), a = 1,2, . . . ,Ar , (12)

for a fixed positive integer q . We define σ 2
j := Var{Hq(βjk)}, the variance of each summand in

(12), and �a;rj := Var{�a;rj } the variance of the whole sum. In the sequel, we drop the index q

whenever this causes no ambiguity. In particular, for r = 0 the unique Voronoi cell is S
2 itself

and we write �j := �a;0j . We prove the following:

Theorem 11. Assume that the field is Gaussian and that Condition 1 holds.

(a) As j → ∞

lim
j→∞

σ̂ 2
j

σ 2
j

= 1, in probability,

where

σ̂ 2
j := 1

Aj

∑
k∈
πB−j

Hq(β̂jk)
2.
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(b) For r, j such that

1

r
+ r

j
→ 0, (13)

�j is consistently estimated by

�̂j = 1

Ar

Ar∑
a=1

�2
a;rj , (14)

that is,

lim
j→∞

�̂j

�j

= 1, in probability.

(c) For r (and hence Ar) fixed and j → ∞, we have{
�1;rj√

�j

, . . . ,
�Ar ;rj√

�j

}′
→d NAr (0, I ), as j → ∞. (15)

(d) As r → ∞, and j
r

→ ∞, we have{
�ra;j√

�rj

}
a=1,...,Ar

→ {Za}a=1,...,Ar , Za
d= NID(0,1), (16)

{
�ra;j√

�̂rj

}
a=1,...,Ar

→ {Za}a=1,...,Ar , Za
d= NID(0,1), (17)

the convergence taking place in the space of sequences �∞ endowed with the standard topology.

Remark 12. We note here that (a) and (b) of Theorem 11 provide some sort of boot-
strap/subsampling approximation for the sample variance for the statistics

�j = 1

Aj

∑
k∈


πB−j

Hq(β̂jk),

thus eliminating the need for parametric assumptions on nuisance parameters or lengthy Monte
Carlo simulations. In particular, for q = 1, point (a) yields a consistent estimate of the normaliz-
ing factor γj defined in (5).

Condition (13) of Theorem 11 is clearly reminiscent of standard bandwidth assumptions in
nonparametric estimation. It ensures that the number of pixels on which needlet coefficients can
be evaluated grows more rapidly than the number of Voronoi cells or, in other words, the number
of observations within each Voronoi cell goes to infinity. Points (c) and (d) entail that statistics
evaluated on (possibly adjacent) Voronoi cells are asymptotically i.i.d.

In the sequel, we take r to be an increasing function of j, but we refrain from writing rj to
simplify notation.
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The proof of Theorem 11 requires a very careful bound on cross-correlation of our statistics
over different Voronoi cells. Such bounds rely very much on the following result, the proof of
which is quite delicate and collected in the Appendix.

Proposition 13. Let 0 < ε ≤ δ/4 and let 
δ be a maximal δ-net and 
ε be a maximal ε-net.
For xa ∈ 
δ , let S(xa) denote the Voronoi cells centered at xa for the δ-net 
δ . Let Na;δε =
Card(S(xa) ∩ 
ε) and assume that ε = πB−j . Then, if xa, xb ∈ 
δ , xa �= xb and M ≥ 3, there
exists C > 0 verifying the following property:

1√
Na;δεNb;δε

∑
v∈
ε∩S(xa)

∑
u∈
ε∩S(xb)

1

(1 + Bj d(u, v))M
≤ C

ε

δ

(
1 + 1{M=3} log

δ

ε

)
.

Proof of Theorem 11. From Proposition 13 it is immediate to get the following inequality,
which we shall exploit several times in our arguments below. For some C > 0, we have

1√
Na;δεNb;δε

∑
v∈
ε∩S(xa)

∑
u∈
ε∩S(xb)

1

(1 + Bjd(u, v))M

(18)
≤ C(j − r)B−(j−r) logB.

(a) The proof of (a) is very similar to the proof of b), indeed slightly simpler, and hence
omitted.

(b) It is readily checked that limj→∞ E{�̂j /�j } = 1. The idea of our argument is then to
establish

lim sup
j→∞

Var

{
�2

ra;j
�j

}
= O(1), (19)

lim sup
j→∞

max
a,b

∣∣∣∣Cov

{
�2

ra;j
�j

,
�2

rb;j
�j

}∣∣∣∣ = 0 (20)

and then to use these results to conclude the proof by noting that

lim sup
j→∞

Var

{
�̂j

�j

}
= lim sup

j→∞
1

A2
r

Ar∑
a,b=1

Cov

{
�2

ra;j
�j

,
�2

rb;j
�j

}

= lim sup
j→∞

1

A2
r

Ar∑
a=1

Var

{
�2

ra;j
�j

}
+ O

(
1

A2
r

Ar∑
a �=b=1

Cov

{
�2

ra;j
�j

,
�2

rb;j
�j

})
= 0.
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To make this argument rigorous, we start by noting that

Cov

{
�2

ra;j
�j

,
�2

rb;j
�j

t

}
= 1

Nra;jNrb;j
(21)

×
∑

k1,k2∈
πB−j ∩S(xra)

k3,k4∈
πB−j ∩S(xrb)

E{Hq(βjk1)Hq(βjk2)Hq(βjk3)Hq(βjk4)}
�2

j

.

Let ρj (k1, k2) = corr(βjk1 , βjk2) = corr(β̂jk1 , β̂jk2). By the diagram formula (see, e.g., Surgailis
[27]) and with standard manipulations it can be shown that (21) is bounded by

Kq!
Nra;jNrb;j

∑
k1,k2∈
πB−j ∩S(xra)

k3,k4∈
πB−j ∩S(xrb)

|ρq1
j (k1, k2)ρ

q2
j (k1, k3)

(22)
× ρ

q3
j (k1, k4)ρ

q4
j (k2, k3)ρ

q5
j (k2, k4)ρ

q6
j (k3, k4)|

for some K > 0 and for all choices of non-negative integers q1, . . . , q6 such that q1 + · · · + q6 =
2q and (q2 ∨q3), (q4 ∨q5) are strictly positive. Rearranging terms and recalling that |ρj (·, ·)| ≤ 1,
we obtain

(22) ≤ K

Nra;jNrb;j

∑
k1,k2∈
πB−j ∩S(xra)

k3,k4∈
πB−j ∩S(xrb)

|ρj (k1, k3)ρj (k2, k4)|

=
{√

K

Nra;jNrb;j

∑
k1∈
πB−j ∩S(xra)

k3∈
πB−j ∩S(xrb)

|ρj (k1, k3)|
}2

≤
{√

K

Nra;jNrb;j

∑
k1∈
πB−j ∩S(xra)

k3∈
πB−j ∩S(xrb)

CMB2j

(1 + Bjd(ξj,k1, ξj,k3))
M

}2

≤ C(j − r)2B−2(j−r) log2 B,

in view of Proposition 13 and (18). Thus (20) is established. The proof of (19) is similar. It
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follows that

lim
j→∞ Var

{
�̂j

�j

}
= lim

j→∞ Var

{
1

Ar

Ar∑
a=1

�2
ra;j
�j

}

= lim
j→∞

1

A2
r

Ar∑
a=1

Var

{
�2

ra;j
�j

}
+ lim

j→∞
1

A2
r

Ar∑
a,b=1

Cov

{
�2

ra;j
�j

,
�2

rb;j
�j

}

≤ O

(
1

Ar

)
+ lim sup

j→∞
max

1≤a,b≤Ar

∣∣∣∣Cov

{
�2

ra;j
�j

,
�2

rb;j
�j

}∣∣∣∣ = o(1), as j → ∞,

which completes the proof of (b).
(c) Here we recall that Aj = A is fixed, that is, we are focusing on a finite number of subsets

of the sphere. In these circumstances, the argument is very similar to the proof of Theorem 9 in
Baldi et al. [4]. We use the Cramér–Wold device and thus focus on the linear combination

1√
�j

Ar∑
a=1

wja�ja →d N

(
0,

Ar∑
a=1

w2
ja

)
,

where wja ∈ R for all j = 1,2, . . . , a = 1, . . . ,Aj . It is obvious that

E

{
1√
�j

Ar∑
a=1

wja�ja

}
= 0.

On the other hand

Var

{
1√∑Ar

a=1 w2
ja�j

Ar∑
a=1

wja�ja

}

= E

{
1√∑Ar

a=1 w2
ja�j

Ar∑
a=1

wja�ja

}2

= 1 + 1∑Ar

a=1 w2
ja�j

∑
a �=b

wjawjbE{�ja�jb} → 1,

as j → ∞, in view of (20). Also, let us denote by cump(X) the cumulant of order p of the
random variable X; to establish the central limit theorem, we resort to a recent result by Nualart
and Peccati [21], where it is proved that convergence to zero of the fourth-order cumulant is a
sufficient condition for asymptotic Gaussianity in the Gaussian subordinated case we are consid-
ering here (see also DeJong [7] for a similar approach with multilinear forms in i.i.d. sequences).
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Again by the diagram formula for cumulants, we obtain easily for p = 4,

cum4

{
Ar∑
a=1

wja

�ja√
�j

}

=
Ar∑

a,b,c,d=1

wjawjbwjcwjd cum

{
�ja√
�j

,
�jb√
�j

,
�jc√
�j

,
�jd√
�j

}

≤ KA4
r√

Nra;jNrb;jNrc;jNrd;j

×
∑

k1∈
πB−j ∩S(xra)

...
k4∈
πB−j ∩S(xrd )

cum

{
Hq(βjk1)√

�j

,
Hq(βjk2)√

�j

,
Hq(βjk3)√

�j

,
Hq(βjk4)√

�j

}

≤ KA4
r√

Nra;jNrb;jNrc;jNrd;j

×
∑

k1∈
πB−j ∩S(xra)

...
k4∈
πB−j ∩S(xrd )

|ρj (k1, k2)||ρj (k2, k3)||ρj (k3, k4)||ρj (k4, k1)|

≤ KA4
r

{
1√

Nra;jNrb;j

∑
k1∈
πB−j ∩S(xra)

k2∈
πB−j ∩S(xrb)

CMB2j

(1 + Bjd(ξj,k1 , ξj,k2))
M

}

×
{

1√
Nrc;jNrd;j

∑
k3∈
πB−j ∩S(xrc)

k4∈
πB−j ∩S(xrd )

CMB2j

(1 + Bjd(ξj,k3 , ξj,k4))
M

}

= o(1), as j → ∞,

again in view of Proposition 13 and (18). The central limit theorem is then established.
(d) Fix a finite subset D ⊂ N of cardinality A and label its elements a = 1, . . . ,A. It is

obvious that as j → ∞{
�rk;j√

�j

}
k∈D

=
{

�ra;j√
�j

}
a=1,...,A

→d Za
d= N(0,1),

by exactly the same argument as in (c). Because D is arbitrary, we have thus established con-
vergence in the finite-dimensional distributions sense of the sequence {�ra;j /

√
�j }a∈N to the

sequence {Za}a∈N. It is a standard result that in R
∞ the finite-dimensional sets are a determining
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class (see Billingsley [5], page 19), so that weak convergence is actually equivalent to conver-

gence of the finite-dimensional distributions. The argument for {�ra;j /
√

�̂j }a∈N is entirely anal-
ogous by means of Slutzky’s lemma.

�

5. Discussion and statistical applications

The results in the previous section lend themselves to several applications for the statistical analy-
sis of spherical random fields, in particular for CMB data. Here we briefly discuss some exam-
ples; we do not provide a complete discussion or application to real data, as we prefer to defer
this more detailed investigation to future works. Refer also to [9,22] for numerical evidence and
applications of needlets to CMB data.

An immediate application of the results in Theorem 11 concerns studentization. Indeed, in
Baldi et al. [4], several statistics were proposed, based on needlet functionals, to test for good-
ness of fit, Gaussianity and isotropy of CMB data. We remark that these three issues are very
widely studied in the huge satellite experiment collaborations on CMB, such as WMAP and
Planck. These statistics could all be expressed as linear combinations of {�ra;j } in (12), and as-
ymptotic Gaussianity was established under the null, provided the normalizing variance could be
taken to be known. The results of the previous section can then be immediately exploited to pro-
vide estimates of the limiting variances, thus making feasible testing procedures with a standard
asymptotic distribution. In particular, Theorem 11, part (d) shows how nonlinear statistics can be
studentized by the estimates �̂j given in (14) without affecting the limiting distribution.

Other possible applications of our results relate to testing for isotropy of spherical random
fields data. Indeed, in cosmological applications an issue that has drawn an enormous amount
of attention over the last three years is the possible existence of statistical asymmetries in the
behaviour of CMB radiation. The assumption of an isotropic universe is very much embedded at
the roots of cosmology, in view of the so-called Einstein cosmological principle that the universe
should “look the same” to any observer. However, quite unexpectedly, some evidence of statisti-
cal anisotropy is indeed present in the first releases of WMAP data (2003, 2006); see, for instance,
Hansen et al. [10] and the references therein. Statistical procedures considered so far have led
to inconclusive results. This mixed evidence has sparked an enormous amount of further empiri-
cal research, as such asymmetries may entail profound consequences in fundamental physics (as
mentioned in the Introduction). It is therefore of great importance to devise new statistical tests
that can exploit as efficiently as possible the available data. In view of their double localization
in real and harmonic space, needlets emerge as natural candidates to build such procedures. We
stress, in fact, that the knowledge of the scales where the asymmetries might lie would provide
essential information toward their understanding. We mention here that many other new wavelet-
related systems have recently been introduced to deal with anisotropic features, such as curvelets
and other forms of directional wavelets (see Jin et al. [13], Starck et al. [26], Vielva et al. [30]
and Wiaux et al. [32]). We view these important approaches as complementary to ours and we
leave for future research the investigation of interactions between these lines of research.
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We suggest the following procedures: For fixed q and A, consider

Sj := sup
a=1,...,Ar

∣∣∣∣�a;rj√
�̂j

∣∣∣∣;
under the null of Gaussianity and isotropy, we have from Theorem 11, part (c):

lim
j→∞ Pr{Sj ≤ x} = {�(x) − �(−x)}Ar ,

where � denotes the standard cumulative distribution function of a Gaussian random variable.
Under the alternative, we would expect to obtain unusually large values over some regions of the
sky where data are generated according to a different model, and thus we expect the procedure
to have good power properties against suitable alternatives.

An alternative approach can be envisaged as follows: In many applications, a possible direc-
tion for the asymmetries is easily conjectured. For instance, with CMB data, natural frames of
reference are provided by either the ecliptic plane (i.e., the subspace approximately spanned by
the planetary orbits around the sun) or the galactic plane, that is, the plane approximately defined
by the location of the Milky Way. Asymmetries in these directions would lead presumably to
explanations that do not directly involve the CMB itself, but rather other astrophysical entities
of a non-cosmological nature. These forms of north–south asymmetries can be readily tested by
means of the procedure that we describe below. Let

�ja;q := 1√
Nj

∑
k∈
πB−j ∩S(xa)

Hq(β̂jk), a = 1,2,

where x1, x2 ∈ S2 denote the north and south poles in the suitable frame of reference (e.g., the
so-called galactic or ecliptic poles). From Theorem 11, part (c), we have that

Tj := 1

2�̂j

{�j1;2 − �j2;2}2 →d χ2
1 under H0,

thus immediately providing threshold values with an asymptotic justification.
More sophisticated approaches are indeed possible. One idea is to exploit the asymptotically

i.i.d. behaviour of needlet coefficients to transform these statistics into an approximate sample
of spherical directional data, and then use the rich machinery of testing for uniformity that has
been developed in these circumstances (see Mardia and Jupp [14], Pycke [24] and the references
therein). A possible idea is to proceed with a hard thresholding of needlet coefficients and then
focus on the directions that correspond to selected coefficients. More precisely, we can define the
new data set

{xrj ;τ ∈ S
2 : |β̂jk| > τj },

for a suitable choice of the thresholding sequence {τj }. Under the null, in view of the limiting
properties of {β̂jk}, the sequence {xrj ;τ } is approximately uniformly distributed on the sphere, a
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conclusion that can easily tested by a variety of well-established procedures. A rigorous investi-
gation of this proposal, however, is beyond the scope of the present paper and will be deferred to
future research. Likewise, applications of the ideas in this section to CMB data from WMAP are
currently in progress and will be reported elsewhere.

6. Appendix: Proof of Proposition 13

For notational simplicity and without loss of generality, throughout this Appendix we take B = 2.
The proof requires several steps. The first part, which is relatively simple, refers to circumstances
where the distance between Voronoi cells is larger than their radius.

6.1. First case d(S(xa),S(xb)) ≥ δ

Under this hypothesis, and due to the next lemma, we have

1√
Na;δεNb;δε

∑
v∈
ε∩S(xa)

∑
u∈
ε∩S(xb)

1

(1 + 2j d(u, v))M

≤ √
Na;δεNb;δε

1

(2j δ)M
≤ 2π2

(
δ

ε

)2(
ε

δ

)M

= 2π2
(

ε

δ

)M−2

.

Lemma 14. Let 0 < ε ≤ δ
4 and let 
δ be a maximal δ-net and 
ε bea maximal ε-net. Let xa ∈ 
δ

and let S(xa) be the corresponding Voronoi cell. Then(
δ

ε

)2 1

4π2
≤ Card

(
S(xa) ∩ 
ε

) ≤ 2π2
(

δ

ε

)2

. (23)

Proof. As B(xa,
δ
2 ) ⊂ S(xa) ⊂ B(xa, δ), we have

⋃
u∈S(xa)∩
ε

B

(
u,

ε

2

)
⊂ B

(
xa, δ + ε

2

)

and

B

(
xa,

δ

2
− ε

)
⊂

⋃
u∈S(xa)∩
ε

B(u, ε).

In view of (8), it follows easily that

Card
({u ∈ S(xa) ∩ 
ε}

)ε2

π
≤ π

(
δ + ε

2

)2

.
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Hence

Card
({u ∈ S(xa) ∩ 
ε)}

) ≤ 2π2
(

δ

ε

)2

and moreover

4

π

(
δ

2
− ε

)2

≤ Card
({u ∈ S(xa) ∩ 
ε}

)
πε2,

hence (
δ

ε

)2 1

4π2
≤ 4

π2

(
δ

2ε
− 1

)2

≤ Card
({u ∈ S(xa) ∩ 
ε}

)
. �

6.2. Second case d(S(xa),S(xb)) < δ

Here we face the situation where we have neighbouring Voronoi cells; the corresponding covari-
ances are clearly harder to bound and we shall first introduce several lemmas.

Lemma 15. Let ε ∼ 2−j and M ≥ 3. Let xa �= xb and xa, xb ∈ 
δ. Let u ∈ 
ε ∩S(xa) be fixed.
Then ∑

v∈
ε∩S(xb)

1

(1 + 2j d(u, v))M

≤ CM

1

(1 + 2j d(u,S(xb)))M−2
.

CM can be chosen equal to 2π32M−1.

Proof. By straightforward manipulations, we obtain the bound

A(u) =
∑

v∈
ε∩S(xb)

1

(1 + 2j d(u, v))M

=
∑

v∈
ε∩S(xb)

1

|B(v, ε/2)|
∫

B(v,ε/2)

1

(1 + 2j d(u, v))M
dx

≤ π
ε2

∑
v∈
ε∩S(xb)

∫
B(v,ε/2)

2M

(1 + 2j d(u, x))M
dx
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by (8) and as by the triangle inequality d(u, x) ≤ 2d(u, v) for x ∈ B(v, ε/2). Clearly

∑
v∈
ε∩S(xb)

∫
B(v,ε/2)

2M

(1 + 2j d(u, x))M
dx

≤
∫

Bc(xi ,ε/2)

2M

(1 + 2j d(u, x))M
dx

≤ 2π
∫ π

ε/2

2M sin θ

(1 + 2j θ)M
dθ ≤ 2π

∫ π

ε/2

2Mθ

(2j θ)M
dθ ≤ π22M−1

M − 2
2−2j ≤ π22M−12−2j ,

which implies

A(u) ≤ π22M−1.

The previous inequality for d(u,S(xa)) ≤ ε

2
yields immediately

A(u) ≤ π32M−1 1

(1 + 2j d(u,S(xb)))M−2
.

On the other hand, if d(u,S(xa)) >
ε

2
,

∑
v∈
ε∩S(xb)

∫
B(v,ε/2)

2M

(1 + 2j d(u, x))M
dx

≤
∫

Bc(u,d(u,S(xa)))

2M

(1 + 2j d(u, x))M
dx

≤
∫ π

d(u,S(xa))

2π2M sin θ

(1 + 2j θ)M
dθ ≤ 2π2(1−j)M

∫ π

d(u,S(xa))

θ1−M dθ

≤ 2π2−j 2

M − 2

(
2j d(u,S(xa))

−(M−2) ≤ 2π2−j (2j d(u,S(xa)))
)−(M−2)

,

whence we get

A(u) ≤ 2π(2j d(u,S(xb))
−(M−2) ≤ 2π3M−2 1

(1 + 2j d(u,S(xb)))M−2
.

We are thus able to conclude that∑
v∈
ε∩S(xb)

1

(1 + 2j d(u, v))M
≤ 2π32M−1 1

(1 + 2j d(u,S(xb)))M−2
. �



458 P. Baldi et al.

Using the previous Lemma 15, we have:

W
def= 1√

Na;δεNb;δε

∑
u∈
ε∩S(xa)

∑
v∈
ε∩S(xb)

1

(1 + 2j d(u, v))M

≤ 1√
Na;δεNb;δε

2π32M−1
∑

u∈
ε∩S(xa)

1

(1 + 2j d(u,S(xb)))M−2
.

Now as d(S(xa), S(xb)) ≤ δ, let us observe that if u ∈ 
ε ∩ S(xa)

d(u,S(xb)) ≤ d(S(xa), S(xb)) + 2δ ≤ 3δ.

Some computations yield, using Abel’s formula of summation by parts:

W ≤ 2π32M−1√
Na;δεNb;δε

∑
0≤l≤3δ/ε

Card{u ∈ 
ε ∩ S(xa), lε ≤ d(u,S(xb)) < (l + 1)ε}
(1 + l)M−2

= 2π32M−1√
Na;δεNb;δε

∑
1≤l≤3δ/ε+1

Card{u ∈ 
ε ∩ S(xa), (l − 1)ε ≤ d(u,S(xb)) < lε}
lM−2

≤ 2π32M−1√
Na;δεNb;δε

{(
ε

3δ

)M−2

Card{u ∈ 
ε ∩ S(xa), d(u,S(xb)) < 3δ + ε}

+
∑

1≤l≤3δ/ε

(
1

lM−2
− 1

(1 + l)M−2

)
Card{u ∈ 
ε ∩ S(xa), d(u,S(xb)) < lε}

}

≤ 4π2
(

ε

δ

)2

2π32M−1
{(

ε

3δ

)M−2

2π2
(

δ

ε

)2

+
∑

1≤l≤3δ/ε

M − 2

lM−1
Card{u ∈ 
ε ∩ S(xa), d(u,S(xb)) < lε}

}

≤ 16π53M+1
(

ε

δ

)M−2

+ 8π332M−1
(

ε

δ

)2 ∑
1≤l≤3δ/ε

M − 2

lM−1
Card{u ∈ 
ε ∩ S(xa), d(u,S(xb)) < lε}.

Let us introduce a further auxiliary result.

Lemma 16. For d(S(xa), S(xb)) ≤ δ, ε ≤ δ/4,

Card{u ∈ 
ε ∩ S(xa), d(u,S(xb)) < lε} ≤ C1(l + 1)2 + C2
δ

ε
(l + 1)

(with, e.g., C1 = 6π4 and C2 = 54π4).
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Proof. Using Lemma 8, if ∂A denotes the boundary of the set A, we have

∂(S(xb)) =
M⋃

m=1

�m, M ≤ 6π2,

where �m = [am,am+1] is a portion of a geodesic circle �m ⊂ Ccm:= ∂(B(cm, π
2 ) of length less

than diam(S(xb)) ≤ 2δ, cm denoting its center. Let u ∈ 
ε ∩ S(xa), d(u,S(xb)) < lε. Certainly

d(u,S(xb)) = d(u,w), w ∈ ∂(S(xb)).

We split the proof into two parts according to whether w is a corner point or not.
• If w is a corner point am, then

u ∈ 
ε, d(u, am) ≤ lε ≤ 3δ

and

Card{u ∈ 
ε, d(u, am) ≤ lε} ≤ 1
4 π2(2l + 1).

In effect, for such u we have ⋃
u

B

(
u,

ε

2

)
⊂ B

(
am,

(
l + 1

2

)
ε

)
.

So if km = Card{u ∈ 
ε, d(u, am) < lε}, as l ≥ 1, using (8)

km

4

π

(
ε

2

)2

≤ π
(

l + 1

2

)2

ε2,

hence

km ≤ 1
4 π2(2l + 1)2 ≤ π2(l + 1)2.

• On the other hand, let us focus on w ∈]am,am+1[,
d(u,S(xb)) = d(u,w) = d(u,Ccm) ≤ 3δ.

So we have that

u ∈ B

(
cm,

π
2

)∖
B

(
cm,

π
2

− lε

)
and also to the portion of the half sphere B(cm,π/2), which is between the two geodesics joining
cm to am and cm to am+1. Let us call this set G(cm;am,am+1).

Therefore {u ∈ 
ε ∩S(xa), d(u,S(xb)) < lε} is contained in the union of the M sets {u ∈ 
ε ∩
B(am, lε)} and in the union of the M sets {u ∈ 
ε ∩G(cm;am,am+1)∩B(cm, π

2 )\B(cm, π
2 − lε)}.

Let us evaluate the cardinality of each of these sets.
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Let us consider the set {u ∈ 
ε ∩ G(cm;am,am+1) ∩ B(cm, π
2 )\B(cm, π

2 − lε)}. It is a simple
observation that for a point u of this set,

B

(
u,

ε

2

)
⊂ B

(
cm,

π
2

+ ε

2

)∖
B

(
cm,

π
2

−
(

l + 1

2

)
ε

)
(24)

(recall that the B(u, ε
2 ) are disjoint), and also

B

(
u,

ε

2

)
⊂ G(cm;a′

m,a′
m+1),

where [a′
m,a′

m+1] is a portion of geodesic circle (�m ⊂ Ccm containing [am,am+1] of length
2δ + 2α, with α ≤ δ. Indeed, such a point u is on a geodesic joining cm to w ∈]am,am+1[.

Let us recall that d(cm,w) = π
2 and thus as d(u,w) ≤ 3δ and if δ ≤ π

12 , certainly, the ball
B(u, ε) does not contain the point cm (as ε ≤ δ

4 ).
Hence, let us consider the geodesic tangent [cm, v], where v belongs to the boundary of the

ball. Let us also consider the spherical triangle (cm,u, v). The α that we are trying to bound is
the angle at the vertex cm.

By a standard spherical trigonometric formula, we have:

sinα

sind(u, v)
= sin v̂

sind(u, cm)
,

where v̂ denotes the angle at the vertex v in the spherical triangle (cm,u, v). This formula trans-
lates here as:

sinα

sin ε
= sin π/2

sin(π/2 − d(u,w))
= 1

cosd(u,w)
.

Hence, as ε ≤ δ
4 ,

sinα ≤ sin ε

cos 3δ
≤ sin δ/4

cos 3δ
≤ sin δ.

The last inequality is easy to check for δ ≤ π
12 .

We are now in the position to conclude the proof of Lemma 16.
Let us first take δ ≤ π

12 . So, if km = Card{u ∈ 
ε ∩ G(cm;am,am+1) ∩ B(cm, π
2 ) \ B(cm, π

2 −
lε)}. By (24)

km

4

π

(
ε

2

)2

≤
∣∣∣∣G(cm;am,am+1) ∩ B

(
cm,

π
2

+ ε

2

)∖
B

(
cm,

π
2

−
(

l + 1

2

)
ε

)∣∣∣∣.
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So

km

4

π

(
ε

2

)2

≤ 4δ

2π
π
[(

π
2

+ ε

2

)2

−
(

π
2

−
(

l + 1

2

)
ε

)2]
= 2δ

[
π(l + 1)ε + 1

2
ε2 −

(
l + 1

2

)
ε2

]
≤ 2πδ(l + 1)ε.

So

km ≤ δ

ε
2π2(l + 1).

On the other hand, let us suppose instead that π
12 < δ ≤ π. The computation of the cardinality

K = Card{u ∈ 
ε ∩ B(cm, π
2 ) \ B(cm, π

2 − lε)} is much simpler: By (24)

K
4

π

(
ε

2

)2

≤
∣∣∣∣B(

cm,
π
2

+ ε

2

)∖
B

(
cm,

π
2

−
(

l + 1

2

)
ε

)∣∣∣∣,
which leads to

K
4

π

(
ε

2

)2

≤ π
[(

π
2

+ ε

2

)2

−
(

π
2

−
(

l + 1

2

)
ε

)2]
≤ π2(l + 1)ε

and therefore

K ≤ 1

ε
π3(l + 1) = π

12

1

ε
12π2(l + 1) ≤ δ

ε
12π2(l + 1).

By the previous computations and recalling that the number of adjacent cells is ≤ 6π2, we have
completed the proof of Lemma 16. �

Now we can conclude the proof of Proposition 13 by noting that

W ≤ 16π53M+1
(

ε

δ

)M−2

+ 8π33M−2
(

ε

δ

)2 ∑
1≤l≤3δ/ε

M − 2

lM−1
Card{u ∈ 
ε ∩ S(xi), d(u,S(xb)) < lε}

≤ 16π5
(

ε

δ

)M−2

+ 8π33M−2
(

ε

δ

)2 ∑
1≤l≤3δ/ε

M − 2

lM−1
C1(l + 1)2

+ 8π33M−2 ε

δ

∑
1≤l≤3δ/ε

M − 2

lM−1
C2(l + 1),
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and if M ≥ 3, (
ε

δ

)2 ∑
1≤l≤3δ/ε

1

lM−1
(l + 1)2 ∼

(
ε

δ

)2 ∑
1≤l≤3δ/ε

1

lM−3
≤ C

ε

δ

as well as

ε

δ

∑
1≤l≤3δ/ε

1

lM−1
(l + 1) ∼ ε

δ

∑
1≤l≤3δ/ε

1

lM−2
≤ C

ε

δ
log

δ

ε
.
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