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A random vector X with representation X = ∑
j≥0 AjZj is considered. Here, (Zj ) is a sequence of inde-

pendent and identically distributed random vectors and (Aj ) is a sequence of random matrices, ‘predictable’
with respect to the sequence (Zj ). The distribution of Z1 is assumed to be multivariate regular varying. Mo-
ment conditions on the matrices (Aj ) are determined under which the distribution of X is regularly varying
and, in fact, ‘inherits’ its regular variation from that of the (Zj )’s. We compute the associated limiting mea-
sure. Examples include linear processes, random coefficient linear processes such as stochastic recurrence
equations, random sums and stochastic integrals.
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1. Introduction

A general and useful class of stochastic models is the class of random coefficient linear models.
This is the class of d-dimensional random vectors with the stochastic representation

X =
∞∑

j=0

AjZj . (1.1)

Here, (Zj )j≥0 is a sequence of independent and identically distributed (i.i.d.) random vectors in
R

p , which will be assumed to have a regularly varying law; a precise definition will be given
below. A generic element of this sequence is denoted by Z. The sequence (Aj )j≥0 consists of
random matrices. Several examples of stochastic models with representation (1.1) are given in
Section 2. These include linear processes, solutions to stochastic recurrence equations and sto-
chastic integrals. For the latter two examples, it would be very restrictive to require independence
between the coefficients (Aj ) and the noise variables (Zj ). Instead, it will be assumed that the
coefficients satisfy a certain ‘predictability’ assumption with respect to the noise variables. The
precise formulation of this assumption is given in Section 2.

Naturally, the infinite series in (1.1) is assumed to converge almost surely. Sufficient conditions
for such convergence will be provided in the sequel (Theorem 3.1). In this paper, we are interested
in the asymptotic tail behavior of X. In particular, we study situations under which the random
matrices (Aj ) are ‘small’ relative to the noise vectors (Zj ), and the tail probabilities of the
random vector X in (1.1) are ‘inherited’ from the tail probabilities of the noise vectors.
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The interest in models with representation (1.1) where the (Zj ) have regularly varying law is
motivated by applications. Probability distributions with regularly varying tails have become im-
portant building blocks in a wide variety of stochastic models. Evidence for power-tail distribu-
tions is by now well documented in a large number of applications including computer networks,
telecommunications, finance, insurance, hydrology, atmospheric sciences, geology, ecology, etc.
Many of these applications are genuinely multidimensional, involving, for example, multiple
servers in a computer network, portfolios of stocks or insurance, or measurements taken at multi-
ple geographical locations. Hence, our interest in the multidimensional case. This requires using
the notion of multivariate regular variation, which we give below. Interestingly, once the right
notion of regular variation is used, the added generality of the multidimensional result does not
require significant additional effort to be established. Indeed, most of the effort in proving the
main theorem (Theorem 3.1) is spent on proving the tight moment conditions on the coefficients
(Aj ).

The notion of multivariate regular variation we will use in this paper is as follows. We say that
a d-dimensional random vector Z has a regularly varying distribution if there exists a non-null

Radon measure μ on R
d \ {0} (where R

d = [−∞,∞]d ), with μ(R
d \ R

d) = 0, such that

P(u−1Z ∈ · )
P (|Z| > u)

v→ μ(·), (1.2)

as u → ∞, on R
d \ {0}. Here,

v→ denotes vague convergence (see Kallenberg (1983), Resnick
(1987, 2006)). The limiting measure μ necessarily obeys a homogeneity property: there is an α >

0 such that μ(uB) = u−αμ(B) for all Borel sets B ⊂ R
d \{0}. This follows from standard regular

variation arguments (see, e.g., Resnick (2006), Hult and Lindskog (2006), Theorem 3.1). We
will write Z ∈ RV(μ,α) for a random vector satisfying (1.2). For more on multivariate regular
variation, we refer to Basrak (2000) and Resnick (1987, 2006).

The tail behavior of X has been previously studied, in particular, in the one-dimensional case
p = d = 1. In that case, the most general results have been obtained by Resnick and Willekens
(1991) and Wang and Tang (2006) under the assumption that the sequence (Aj ) is non-negative
and independent of the sequence (Zj ). Even in that particular case, our conditions in the case
α ≥ 1 are strictly weaker (the conditions are identical for 0 < α < 1).

Before we proceed, we would like to point out why the ‘predictability’ assumption is impor-
tant. Note that each term in the sum (1.1) is of the form AjZj and Zj has regularly varying law.
If Aj and Zj are independent and Aj satisfies a moment condition, then a multidimensional ver-
sion of Breiman’s theorem (e.g., Basrak et al. (2002), Proposition A.1) can be applied to obtain
the tail behavior of the product AjZj . As we will see, it is not necessary to assume independence
of the entire sequences (Aj ) and (Zj ). The ‘predictability’ assumption which guarantees that Aj

and Zj are independent for each j is sufficient. For a trivial example of how our results can
fail without such an assumption, consider the one-dimensional case with A0 = I (|Z0| ≤ 1) and
Aj = 0 for j ≥ 1.

In the next section, we specify the mentioned ‘predictability’ assumption and provide a wide
range of examples that are covered by the general representation (1.1). In Section 3, we state
the main theorem of this paper, giving sufficient conditions for convergence of the series X in
(1.1) and for X acquiring the regular variation properties from the noise vectors (Zj ). We then
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explore the implications in the various examples specified in Section 2. The assumptions in the
main theorem turn out to be very tight and improve the existing results in most special cases we
are considering. The proof of the main theorem is given in Section 4.

2. Examples

The representation (1.1) covers many interesting examples of stochastic models that are widely
used in applications. Some examples are presented below. We informally divide them into three
main categories: ‘linear processes’, ‘stochastic recurrence equations’ and ‘stochastic integrals’.
For the linear processes, it is quite natural to assume independence between the sequence of co-
efficients (Aj ) and the noise sequence (Zj ). However, for the stationary solution to a stochastic
recurrence equation one does not, in general, have independence between the coefficients and
the noise terms; see Section 2.2 below. There, a ‘predictability’ assumption is required. For sto-
chastic integrals, it is natural to think of (Aj ) as the integrand and introduce a ‘predictability’
assumption with respect to the sequence (Zj ). To cover all these cases, we introduce the follow-
ing assumption on the sequences (Aj ) and (Zj ).

Assume that there is a filtration (Fj , j ≥ 0) such that

Aj ∈ Fj , Zj ∈Fj+1, for j ≥ 0, (2.1)

Fj is independent of σ(Zj ,Zj+1, . . .) for j ≥ 0. (2.2)

In a sense, the sequence (Aj ) is predictable with respect to the sequence (Zj ). The case where
the sequence (Aj ) is independent of the sequence (Zj ) is covered by the ‘predictable’ framework
by setting Fj = σ((Ak)k≥0, Z0, . . . ,Zj−1).

2.1. Linear processes

In this section, we provide detailed examples in the ‘linear processes’ category.

Example 2.1 (Linear process). Let (Aj )j≥0 be a sequence of deterministic real-valued d × p

matrices. Then, assuming convergence, Xk = ∑
j≥0 AjWk−j is a linear process. It is, clearly,

stationary. The (d-dimensional) distribution of X0 has the representation (1.1) with Zj = W−j .

Example 2.2 (Random coefficient linear process). This is a generalization of the linear process.
Let (Ak,Wk)k∈Z be a stationary sequence, where each Ak = (Ak,j )j≥0 is itself a sequence of
random d × p matrices. Assuming, once again, convergence, the process Xk = ∑

j≥0 Ak,jWk−j

is a random coefficient linear process. The stationarity of the sequence (Ak,Wk)k∈Z implies that
it is a stationary process and the distribution of X0 has the representation (1.1) with Zj = W−j .
To apply our results, we will need to assume that the sequences (A0,i )i≥0 and (Wk)k≤0 satisfy
the predictability assumptions (2.1) and (2.2). Of course, assuming that the sequences (A0,i )i≥0
and (Wk)k≤0 are independent is sufficient for this purpose and this is often the case of interest
in the context of linear processes. However, certain important cases of random coefficient linear
process are naturally stated in the predictable framework; see Section 2.2.
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Example 2.3 (Partial sum process). Consider the random coefficient linear process (Xk) in the
previous example and let Sn = X1 + · · · + Xn. Then, with Bn,i = ∑n

k=1∨i Ak,k−i ,

Sn =
n∑

k=1

∑
j≥0

Ak,jWk−j =
n∑

i=−∞

n∑
k=1∨i

Ak,k−iWi =
∑
j≥0

Bn,n−jWn−j .

Of course, (Sn)n≥1 is not, in general, a stationary process, but at each time n, its marginal distri-
bution has the representation (1.1) with Aj = Bn,n−j and Zj = Wn−j . Once again, predictability
assumptions must hold. Simply assuming that the sequence (Ak)k≥0 is independent of the se-
quence (Wk)k≥0 is sufficient, but not necessary, for this purpose.

2.2. Stochastic recurrence equations

A very important particular case of the random coefficient linear model is the stationary solution
of a stochastic recurrence equation (SRE).

Assume that p = d and let (Mk,Wk)k∈Z be a sequence of independent and identically dis-
tributed pairs of d × d matrices and d-dimensional random vectors. Under the assumptions
E log+ ‖Mk‖ < ∞ and E log+ |Wk| < ∞, there exists a strictly stationary causal solution to the
SRE

Xk = MkXk−1 + Wk, k ∈ Z,

if and only if the top Lyapunov exponent

γ = inf
n∈N

E[(n + 1)−1 log‖M0‖ · · · ‖M−n‖] < 0;

see Bougerol and Picard (1992), Theorem 1.1, attributed to Brandt (1986). A sufficient condition
for γ < 0 is that E log+ ‖M0‖ < 0. The stationary solution can be represented as

X0 = W0 +
∑
j≥1

M0 · · ·M−j+1W−j ,

which is a random coefficient linear model of the form (1.1) with A0 = 1, Aj = M0 · · ·M−j+1,
j ≥ 1, and Zj = W−j (see, e.g., Kesten (1973), Konstantinides and Mikosch (2005)). Note that
with Fj = σ(M0,W0, . . . ,M−j+1,W−j+1), it follows that Aj ∈ Fj , Zj ∈ Fj+1 and Fj is inde-
pendent of σ(Zj ,Zj+1, . . .). Hence, the predictability assumptions (2.1)–(2.2) are satisfied.

2.3. Stochastic integrals

In this section, we provide examples within the ‘stochastic integrals’ category.

Example 2.4 (Random sum). Let p = d and Aj = Id I {1 ≤ j ≤ N}, where N is a positive
integer-valued random variable which is a stopping time with respect to a filtration (Gj , j ≥ 0)

to which the sequence (Zj ) is adapted, and such that Gj is independent of σ(Zj+1,Zj+2, . . .)

for j ≥ 0. Then X = ∑N
j=1 Zj is a random sum.
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Example 2.5 (Stochastic integral). The following is a modification of the random sum in the
previous example. Let (Ct )t≥0 be a p-dimensional renewal reward process with renewal times
τ1, τ2, . . . . We take a version of (Ct ) with right-continuous paths with left limits. For some fixed
time T > 0, let NT be the number of renewals until time T . Suppose the jump distribution of (Ct )

(e.g., the reward distribution) is regularly varying, that is, �Cτj
= (Cτj

−Cτj −)
d= Z ∈ RV(μ,α).

Let Gt = σ(A,Cs,0 ≤ s ≤ t) for t ≥ 0, where A is independent of σ(Cs, s ≥ 0). Let (Ht )t≥0
be predictable with respect to this filtration d × p-matrix-valued process that is independent of
(Ct ). Then the vector-valued stochastic integral∫ T

0
Ht dCt

has representation (1.1) with Aj = Hτj
I {1 ≤ j ≤ NT } and Zj = �Cτj

.

3. Convergence and tail behavior

Consider the random vector X with stochastic representation (1.1). We will assume throughout
most of this paper that

Z ∈ RV(μ,α), and if α > 1, we assume additionally that EZ = 0. (3.1)

The assumption of the zero mean will allow us to work under relatively weak conditions. We will
separately address what happens if the mean is not equal to zero.

For a matrix A, we denote by ‖A‖ the operator norm of A. For a vector z ∈ R
d , we denote the

Euclidean norm by |z|.
We start by considering a linear process. That is, suppose (Aj )j∈Z is a deterministic sequence

of matrices. Then the following conditions are sufficient for a.s. convergence of the series (1.1):∑
‖Aj‖α−ε < ∞, for some ε > 0, if 0 < α ≤ 2; (3.2)∑

‖Aj‖2 < ∞, if α > 2 (3.3)

(here, and throughout the paper, we omit the summation index whenever it is clear what it is).
This follows from Mikosch and Samorodnitsky (2000) in the case d = p = 1; the extension to the
vector case is immediate. By Fubini’s theorem, in the case of random Aj ’s, which are indepen-
dent of the sequence (Zj ), the following conditions are, therefore, sufficient for a.s. convergence
of the series (1.1):∑

‖Aj‖α−ε < ∞ a.s. for some ε > 0, if 0 < α ≤ 2; (3.4)∑
‖Aj‖2 < ∞ a.s. if α > 2. (3.5)

For linear processes, the conditions (3.2) and (3.3) turn out to be sufficient for the sum X

in (1.1) to acquire its regular variation from that of (Zj ); in the case d = p = 1, this has been
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shown by Mikosch and Samorodnitsky (2000). It is clear that the conditions (3.4) and (3.5) will
not suffice in the general case. If one looks at a general term in the sum (1.1), it is of the form
AjZj , and Zj is regularly varying. The tail behavior of such a product is usually controlled by a
moment condition on the matrix Aj , of the type

E[‖Aj‖α+ε] < ∞ for some ε > 0. (3.6)

Then the term AjZj is regularly varying with limit measure E[μ ◦ A−1
j (·)] (see Basrak et al.

(2002), Proposition A.1). This is the measure such that

E[μ ◦ A−1
j (B)] = E[μ{z :Ajz ∈ B}].

This result is usually referred to as Breiman’s theorem (Breiman (1965)). Clearly, requiring (3.6)
for each j is too weak to control the tails of the infinite sum in (1.1). The above discussion shows,
however, that we need to control both the small values of Aj ’s that persist for long stretches of
time, and the large values of Aj ’s as well. This calls for a combination of different moment
conditions. One such combination is presented in the following result.

Theorem 3.1. Assume the ‘predictable’ framework (2.1)–(2.2). Suppose that (3.1) holds,
P(

⋂
j≥0{‖Aj‖ = 0}) = 0 and there is some 0 < ε < α such that∑

E‖Aj‖α−ε < ∞ and
∑

E‖Aj‖α+ε < ∞, if α ∈ (0,1) ∪ (1,2); (3.7)

E
(∑

‖Aj‖α−ε
)(α+ε)/(α−ε)

< ∞, if α ∈ {1,2}; (3.8)

E
(∑

‖Aj‖2
)(α+ε)/2

< ∞, if α ∈ (2,∞). (3.9)

Then the series (1.1) converges a.s. and

P(u−1X ∈ · )
P (|Z| > u)

v→ E
[∑

μ ◦ A−1
j (·)

]
, (3.10)

as u → ∞, on R
d \ {0}.

Remark 3.1. Note that in the context of Theorem 3.1, it is only notationally different to consider
a two-sided sum

X =
∑
j∈Z

AjZj ,

as long as one modifies the ‘predictability’ assumptions (2.1)–(2.2) appropriately. Indeed, the
two-sided case can be turned into the one-sided case by relabelling the variables, for instance, by
defining

A′
2j = Aj , Z′

2j = Zj , j ≥ 0,

A′−2j−1 = Aj , Z′−2j−1 = Zj , j ≤ −1.



844 H. Hult and G. Samorodnitsky

For this relabelling, the predictability assumption is satisfied by assuming that σ(Zj ,Zj+1, . . .) is
independent of σ(A−j , . . . ,A−1,A0, . . . ,Aj ) for j ≥ 0 and that σ(. . . ,Zj−1,Zj ) is independent
of σ(Aj , . . . ,A−1,A0, . . . ,A−j−1) for j ≤ −1. Indeed, in this case, one can take

F2j = σ(A−j , . . . ,Aj ,Z−j+2, . . . ,Zj−1),

F2j+1 = σ(A−j−1, . . . ,Aj ,Z−j+1, . . . ,Zj−1).

If a different relabelling is used to go from the two-sided case to the one-sided, then one must
modify the predictability assumption accordingly.

Remark 3.2. If one removes the assumption of zero mean in the case α > 1, it is clear that
the conclusion of Theorem 3.1 will still hold under the following additional assumption on the
sequence (Aj ),

the series SA =
∑

Aj converges and lim
u→∞

P(‖SA‖ > u)

P (|Z| > u)
= 0, (3.11)

or under an even weaker assumption

lim
u→∞

P(|SA EZ| > u)

P (|Z| > u)
= 0.

Remark 3.3. In the univariate case p = d = 1, the limiting measure μ of Z has the representation

μ(dx) = wαx−α−1I {x > 0}dx + (1 − w)α|x|−α−1I {x < 0}dx (3.12)

for some w ∈ [0,1]. Then (3.10) becomes

P(X > u)

P (|Z| > u)
→

∑
E
[|Aj |α

(
wI {Aj > 0} + (1 − w)I {Aj < 0})].

Remark 3.4. The most general results on the tail behavior of the series (1.1) so far have been
the works of Resnick and Willekens (1991) and Wang and Tang (2006) who considered the one-
dimensional case p = d = 1 and the sequence (Aj ) being non-negative and independent of the
sequence (Zj ). Even in that particular case, our conditions in the case α ≥ 1 are strictly weaker
(the conditions are identical for 0 < α < 1).

Next, we consider the implications of Theorem 3.1 in some of the examples presented in
Section 1.

Example 3.1 (Linear process). Consider the linear process of Example 2.1. Since (Aj ) is a
deterministic sequence, we immediately obtain the following statement.

Corollary 3.1. Suppose that (3.1) holds and that there is some 0 < ε < α such that∑
‖Aj‖α−ε < ∞, 0 < α ≤ 2,
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‖Aj‖2 < ∞, α > 2.

Then the series (1.1) converges a.s. and

P(u−1X ∈ · )
P (|Z| > u)

v→
∑

μ ◦ A−1
j (·)

on R
d \ {0}.

In the one-dimensional case p = d = 1 and Z ∈ RV(α,μ) with μ as in (3.12), we recover
Mikosch and Samorodnitsky (2000), Lemma A.3 under identical assumptions.

Example 3.2 (Random sum). Consider the situation of Example 2.4: d = p and Aj = Id I {1 ≤
j ≤ N}, where N is a positive-integer-valued random variable which is a stopping time with
respect to a filtration (Gj , j ≥ 0) to which the sequence (Zj ) is adapted, and such that Gj is
independent of σ(Zj+1,Zj+2, . . .) for j ≥ 0. We then have the following result, which can be
thought of as a ‘tail Wald’s identity’.

Corollary 3.2. Suppose that (3.1) holds and that there is some τ > 0 such that

EN < ∞ if α ∈ (0,1) ∪ (1,2), (3.13)

EN1+τ < ∞ if α ∈ {1,2}, (3.14)

ENα/2+τ < ∞ if α ∈ (2,∞). (3.15)

We then have

P(u−1X ∈ ·)
P (|Z| > u)

v→ ENμ(·)

on R
d \ {0}. If α > 1, but EZ 
= 0, then the same conclusion is obtained if one replaces (3.13),

(3.14) and (3.15) by the assumption

lim
u→∞

P(N > u)

P (|Z| > u)
= 0. (3.16)

In the one-dimensional case d = p = 1, with the noise variables (Zk)k∈Z being non-negative,
and independent of N , we recover the results of Stam (1973) and Fay et al. (2006).

Example 3.3 (SRE). Consider the stationary solution to a stochastic recurrence equation of Ex-
ample 2.2. From Theorem 3.1, we obtain the following result.

Corollary 3.3. Suppose that W ∈ RV(μ,α) and that for some ε > 0,

E‖M‖α+ε < 1.

Then the series (1.1) converges a.s. and (3.10) holds.
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Proof. For α ∈ (0,1) ∪ (1,2), it follows by Jensen’s inequality that

E
∑

‖Aj‖α−ε =
∑

(E‖M‖α−ε)j ≤
∑

(E‖M‖α+ε)j(α−ε)/(α+ε) < ∞.

Hence, (3.7) is satisfied. For α ∈ {1,2}, it follows by convexity (see Kwapień and Woyczyński
(1992), Lemma 3.3.1) that

E
(∑

‖Aj‖α−ε
)(α+ε)/(α−ε) ≤

(∑
(E‖Aj‖α+ε)(α−ε)/(α+ε)

)(α+ε)/(α−ε)

(3.17)

=
(∑

(E‖M‖α+ε)j(α−ε)/(α+ε)
)(α+ε)/(α−ε)

< ∞. (3.18)

Hence, (3.8) is satisfied. The case α > 2 is similar. �

Note that we do not need to assume zero mean of the noise.
Specializing to the univariate case p = d = 1 and μ as in (3.12), we see that

P(X > x)

P (|Z| > x)
→ E

[∑
j≥0

μ[z :�1−j,0z > 1]
]

= E

[∑
j≥0

μ[z > 0 : (Y1−j · · ·Y0)
+z > 1] + μ[z < 0 : (Y1−j · · ·Y0)

−z < −1]
]

=
∑
j≥0

μ[z > 1]E[(Y1−j · · ·Y0)
+]α + μ[z < −1]E[(Y1−j · · ·Y0)

−]α

=
∑
j≥0

wE[(Y1−j · · ·Y0)
+]α + (1 − w)E[(Y1−j · · ·Y0)

−]α

= w
∑
j≥0

∑
k=0,1,...,j,even

(
j

k

)
(E(Y−)α)k(E(Y+)α)j−k

+ (1 − w)
∑
j≥0

∑
k=0,1,...,j, odd

(
j

k

)
(E(Y−)α)k(E(Y+)α)j−k

= w
∑

k even

(E(Y−)α)k

(1 − E(Y+)α)k+1
+ (1 − w)

∑
k odd

(E(Y−)α)k

(1 − E(Y+)α)k+1

= w(1 − E(Y+)α) + (1 − w)E(Y−)α

(1 − E(Y+)α)2 − (E(Y−)α)2
.

In particular, if Y is non-negative, then this reduces to

P(X > x)

P (|Z| > x)
→ w(1 − EYα)−1.



Tail probabilities for infinite series 847

In this particular case, we recover (under identical assumptions) the results of Grey (1994) or
Konstantinides and Mikosch (2005), Proposition 2.2.

4. Proof of Theorem 3.1

The outline of the proof is as follows. First, we show that the conditions (3.7)–(3.9) guarantee
almost sure convergence of the sum in (1.1). Then, to prove (3.10), we start with the univariate
case and divide into four cases: 0 < α < 1 in Section 4.1; α = 1 in Section 4.2; 1 < α < 2 in
Section 4.3; α ≥ 2 in Section 4.4. Finally, the multidimensional case is treated in Section 4.5.

We start with the almost sure convergence of the sum (1.1). Let (Ẑj ) be a sequence with
the same law as (Zj ), independent of the sequence (Aj ) (we may need to enlarge the underly-
ing probability space to construct such a sequence). The series

∑∞
j=0 Aj Ẑj converges a.s. by

Fubini’s theorem and (3.4)–(3.5). Furthermore, the sequences (Aj Ẑj ) and (AjZj ) are tangent
with respect to the filtration F̃j = σ(Fj+1, Ẑ0, . . . , Ẑj ) for j ≥ 0. That is, Law(AjZj | F̃j−1) =
Law(Aj Ẑj | F̃j−1). Also, note that the sequence (Aj Ẑj ) is conditionally independent, given the
σ -field G = σ((Ak)k≥0, (Zk)k≥0) (see Kwapień and Woyczyński (1992), Section 4.3 for details).
Therefore, Kwapień and Woyczyński (1992), Corollary 5.7.1 guarantees a.s. convergence of the
series in (1.1).

We will prove now (3.10). We start with the univariate case d = p = 1, in which case the
statement of the proposition reduces to

lim
x→∞

P(X > x)

P (|Z| > x)
=

∞∑
j=1

(
wE((Aj )

+)α + (1 − w)E((Aj )
−)α

)
(4.1)

with w = limx→∞ P(Z > x)/P (|Z| > x) and where a+ and a− are, respectively, the positive
part and the negative part of a real number a.

For finite n ≥ 1 as x → ∞, we have

P(
∑n

j=1 AjZj > x)

P (|Z| > x)
→

n∑
j=1

(
wE((Aj )

+)α + (1 − w)E((Aj )
−)α

)
,

by Lemma 4.3 below. Therefore, it is sufficient to show that

lim
n→∞ lim sup

x→∞
P(

∑
j>n AjZj > x)

P (|Z| > x)
= 0. (4.2)

4.1. The case 0 < α < 1

We start with the case 0 < α < 1, in which case we will actually check that (4.2) holds with the
sum of absolute values in the numerator. The first step is to show that for any M > 0, (4.2) holds
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with each Aj replaced by Ãj = AjI {|Aj | < M} and, by scaling, it is enough to consider the case
M = 1. We may decompose the probability as

P(
∑ |ÃjZj | > x)

P (|Z| > x)
= P(

∑ |ÃjZj | > x,
∨ |ÃjZj | > x)

P (|Z| > x)︸ ︷︷ ︸
I

(4.3)

+ P(
∑ |ÃjZj | > x,

∨ |ÃjZj | ≤ x)

P (|Z| > x)︸ ︷︷ ︸
II

,

with
∨

denoting maximum. For I, an upper bound can be constructed as

P(
∑ |ÃjZj | > x,

∨ |ÃjZj | > x)

P (|Z| > x)
≤ P(

∨ |ÃjZj | > x)

P (|Z| > x)

≤
∑ P(|ÃjZj | > x)

P (|Z| > x)

=
∑ ∫ 1

0 P(y|Zj | > x)P (|Ãj | ∈ dy)

P (|Z| > x)
.

Using Potter’s bounds (see, e.g., Resnick (1987)) it follows that there exists x0 > 0 such that
P(|Z| > x/y)/P (|Z| > x) ≤ cyα−ε for x > x0 and 0 < y ≤ 1. Hence, the last expression is
bounded above by

c
∑
j>n

∫ 1

0
yα−εP (|Aj | ∈ dy) ≤ c

∑
j>n

E|Aj |α−ε → 0 as n → ∞,

by (3.7). For II, Markov’s inequality implies

II ≤ P(
∑ |ÃjZj |I {|ÃjZj | ≤ x} > x)

P (|Z| > x)

≤
∑ E[|ÃjZj |I {|ÃjZj | ≤ x}]

xP (|Z| > x)

=
∑∫ 1

0
y

E[|Zj |I {|Zj | ≤ x/y}]
xP (|Z| > x)

P (|Aj | ∈ dy).

By Karamata’s theorem (see Resnick (1987))

E[|Z|I {|Z| ≤ x}] ∼ α(1 − α)−1xP (|Z| > x)
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and there exists x0 such that for x > x0, the last expression is bounded from above by

c
∑
j>n

∫ 1

0
yy−1+α−εP (|Aj | ∈ dy)

≤ c
∑
j>n

E[|Aj |α−ε] → 0 as n → ∞,

by (3.7). Combining I and II proves (4.2) for (Ãj ).
Next, for M > 0 and v < x/M , the remaining term can be bounded by

P
(∑

|AjI {|Aj | > M}Zj | > x
)

≤ P
(∑

|Aj |I {M < |Aj | < x/v}|Zj | > x/2
)

+ P
(∑

|Aj |I {|Aj | ≥ x/v}|Zj | > x/2
)
.

The result will follow once we show that, uniformly in n,

lim
M→∞ lim sup

x→∞
P(

∑
j>n |Aj |I {M ≤ |Aj | < x/v}|Zj | > x)

P (|Z| > x)
= 0 (4.4)

and

lim
M→∞ lim sup

x→∞
P(

∑
j>n |Aj |I {|Aj | ≥ x/v}|Zj | > x)

P (|Z| > x)
= 0. (4.5)

Let us start with (4.4). Using the decomposition which lead to I and II above, we see that it is
sufficient to show that

lim
M→∞ lim sup

x→∞

∑ P(|Aj |I {M ≤ |Aj | < x/v}|Zj | > x)

P (|Z| > x)
= 0 (4.6)

and

lim
M→∞ lim sup

x→∞
P(

∑ |Aj |I {M ≤ |Aj | < x/v}|Zj |I {|AjZj | ≤ x} > x)

P (|Z| > x)
= 0. (4.7)

The term in (4.6) can be written as

∑ P(|Aj |I {M ≤ |Aj | < x/v}|Zj | > x)

P (|Z| > x)

=
∑∫ x/v

M

P (|Zj | > x/y)

P (|Z| > x)
P (|Aj | ∈ dy).
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For v and x sufficiently large, Potter’s bounds imply that this is bounded above by

c
∑∫ x/v

M
yα+εP (|Aj | ∈ dy) ≤ c

∑
E|Aj |α+εI {Aj ≥ M}.

Since
∑

E|Aj |α+ε < ∞, by assumption (3.7), the sum converges to zero as M → ∞.
We now turn to (4.7). Markov’s inequality gives

P(
∑ |Aj |I {M ≤ |Aj | < x/v}|Zj |I {|AjZj | ≤ x} > x)

P (|Z| > x)

≤
∑ E[|Aj |I {M ≤ |Aj | < x/v}|Zj |I {|AjZj | ≤ x}]

xP (|Z| > x)

=
∑∫ x/v

M

yE[|Zj |I {|Zj | ≤ x/y}]
xP (|Z| > x)

P (|Aj | ∈ dy).

Lemma 4.1 implies that for v and x sufficiently large, we have the upper bound

c
∑∫ x/v

M

yα+εP (|Aj | ∈ dy) ≤ c
∑

E|Aj |α+εI {|Aj | ≥ M},

which converges to zero.
Finally, we want to show (4.5). By Potter’s bounds, P(|Z| > x) ≥ x−α−ε for x sufficiently

large. Hence,

P(
∑ |Aj |I {|Aj | ≥ x/v}|Zj | > x)

P (|Z| > x)
≤ P(

∨ |Aj | > x/v)

P (|Z| > x)

≤
∑ P(|Aj | > x/v)

P (|Z| > x)

≤
∑

xα+εP (|Aj | > x/v)

≤ vα+ε
∑∫ ∞

x/v

yα+εP (|Aj | ∈ dy)

≤ vα+ε
∑

E|Aj |α+εI {|Aj | ≥ x/v},
which converges to zero as x → ∞. This completes the proof of (4.2) in the case 0 < α < 1.

4.2. The case α = 1

As in the case 0 < α < 1, we start by proving (4.2) with each Aj replaced by Ãj =
AjI {|Aj | < M}. Again, by scaling, it is enough to consider the case M = 1. We use the decom-
position (4.3). The argument for I is the same as for 0 < α < 1, so it is sufficient to consider II.
Let

L(y) = E|Z|I {|Z| ≤ y}, y > 0.
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Note that since α = 1, L is slowly varying at infinity. Write

P
(∑

|ÃjZj |I {|ÃjZj | ≤ x} > x
)

≤ P
(∑

|Ãj |[|Zj |I {|ÃjZj | ≤ x} − L(x/|Ãj |)] > x/2
)

+ P
(∑

|Ãj |L(x/|Ãj |) > x/2
)

:= IIa + IIb.

Consider first IIa . Let 0 < δ < 1. By Markov’s inequality,

P
(∑

|Ãj |[|Zj |I {|ÃjZj | ≤ x} − L(x/|Ãj |)] > x/2
)

≤
(

2

x

)1+δ

E
∣∣∣∑ |Ãj |[|Zj |I {|ÃjZj | ≤ x} − L(x/|Ãj |)]

∣∣∣1+δ

.

By predictability of (Ãj ), the above sum is a sum of martingale differences. By the Burkholder–
Davis–Gundy inequality (see, e.g., Protter (2004)), the last expression is bounded above by

c

x1+δ
E
∣∣∣∑ |Ãj |2[|Zj |I {|ÃjZj | ≤ x} − L(x/|Ãj |)]2

∣∣∣(1+δ)/2

≤ c

x1+δ

∑
E
∣∣|Ãj |[|Zj |I {|ÃjZj | ≤ x} − L(x/|Ãj |)]

∣∣(1+δ)
.

Conditioning on the Aj variables, we see that

IIa
P (|Z| > x)

≤ c
∑∫ 1

0
y1+δ E||Zj |I {|Zj | ≤ x/y} − L(x/y)|1+δ

x1+δP (|Z| > x)
P (|Aj | ∈ dy)

≤ c
∑∫ 1

0
y1+δ E|Zj |1+δI {|Zj | ≤ x/y} + L(x/y)1+δ

x1+δP (|Z| > x)
P (|Aj | ∈ dy)

≤ 2c
∑∫ 1

0
y1+δ E|Zj |1+δI {|Zj | ≤ x/y}

x1+δP (|Z| > x)
P (|Aj | ∈ dy).

Once again, by Karamata’s theorem (Resnick (1987)),

E[|Z|1+δI {|Z| ≤ x}] ∼ αδ−1x1+δP (|Z| > x) (4.8)

and there exists x0 such that for x > x0, the above expression is bounded by

c
∑
j>n

∫ 1

0
y1+δy−(1+δ)+1−εP (|Aj | ∈ dy) ≤ c

∑
j>n

E[|Aj |1−ε] → 0 as n → ∞,
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by (3.8). This takes care of the term IIa . For IIb , we have, for ε > 0, by slow variation of L(x),
using Markov’s inequality and (3.8),

IIb
P (|Z| > x)

≤ P(
∑ |Ãj |(x/|Ãj |)ε > cx)

P (|Z| > x)

= P(
∑ |Ãj |1−ε > cx1−ε)

P (|Z| > x)

≤ C

x(1+ε)P (|Z| > x)
E
(∑

|Ãj |1−ε
)(1+ε)/(1−ε) → 0 as x → ∞.

Therefore, we have (4.2) for (Ãj ).
Further, as in the case 0 < α < 1, we need to check (4.4) and (4.5). The argument for (4.5)

works without changes in the present case and the same is true for the first half of the argument
for (4.4), presented in (4.6). Therefore, it remains only to consider the second half of (4.4),
namely to prove that for v large enough,

lim
M→∞ lim sup

x→∞
P(

∑ |Aj |I {M ≤ |Aj | < x/v}|Zj |I {|Zj | ≤ x/|Aj |} > x)

P (|Z| > x)
= 0.

The argument is similar to the one used above. First, we can decompose the probability

P
(∑

|Aj |I {M ≤ |Aj | < x/v}|Zj |I {|Zj | ≤ x/|Aj |} > x
)

≤ P
(∑

|Aj |I {M ≤ |Aj | < x/v}(|Zj |I {|Zj | ≤ x/|Aj |} − L(x/|Aj |)
)
> x/2

)
+ P

(∑
|Aj |I {M ≤ |Aj | < x/v}L(x/|Aj |) > x/2

)
:= IIIa + IIIb.

Using Markov’s inequality and the Burkholder–Davis–Gundy inequality we see that for 0 <

δ < 1,

IIIa ≤ c

x1+δ

∑
E|Aj |1+δI {M ≤ |Aj | < x/v}∣∣|Zj |I {|Zj | ≤ x/|Aj |} − L(x/|Aj |)

∣∣1+δ
.

Notice that by (4.8) and for v large enough,

E|Aj |1+δI {M ≤ |Aj | < x/v}∣∣|Zj |I {|Zj | ≤ x/Aj } − L(x/|Aj |)
∣∣1+δ

= E
(|Aj |1+δI {M ≤ |Aj | < x/v}EZ

∣∣|Zj |I {|Zj | ≤ x/|Aj |} − L(x/|Aj |)
∣∣1+δ)

≤ cE

(
|Aj |1+δI {M ≤ |Aj | < x/v}

(
x

|Aj |
)1+δ

PZ(|Z| > x/|Aj |)
)

≤ cx1+δP (|Z| > x)E(|Aj |1+εI {|Aj | ≥ M})
for some ε > 0. Here, PZ and EZ indicate that the probability and expectation, respectively, are
computed with respect to the Z variables (i.e., conditionally on Aj ). In the last step, we used
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independence and the fact that P(|Z| > z) is regularly varying. We now see that

IIIa
P (|Z| > x)

≤ c
∑

E|Aj |1+εI {|Aj | ≥ M},

which converges to zero by (3.8).
It remains to consider IIIb. For IIIb , we have, for ε > 0, by slow variation of L(x), using

Markov’s inequality and (3.8),

IIIb
P (|Z| > x)

≤ P(
∑ |Aj |I {M ≤ |Aj | < x/v}(x/|Aj |)ε > cx)

P (|Z| > x)

= P(
∑ |Aj |1−εI {M ≤ |Aj | < x/v} > cx1−ε)

P (|Z| > x)

≤ C

x(1+ε)P (|Z| > x)
E
(∑

|Aj |1−ε
)(1+ε)/(1−ε) → 0 as x → ∞.

This completes the proof of (4.2) for α = 1.

4.3. The case 1 < α < 2

Next, let 1 < α < 2. Assume first that the law of Z is continuous and that the limit measure μ

assigns positive weights to both (−∞,0) and (0,∞).
We start, as above, in the case 0 < α < 1 (this time, the absolute values stay outside the sum)

and establish (4.2) for Ãj . We start with the same decomposition as in (4.3), except that we
decompose not according to whether or not

∨ |ÃjZj | > x, but rather whether or not for some
j , Zj does not belong to the interval [−h(x/Ãj ), x/Ãj ] for the function h in Lemma 4.2. The
idea here is that h is constructed such that ZI {−h(y) ≤ Z ≤ y} has mean zero so that martingale
inequalities can be applied. Obviously, the argument for I in the decomposition (4.3) works for
any α > 1 and so it covers the case 1 < α < 2. Let us consider the term II in that decomposition.
Let 0 < δ < 2 − α. By Markov’s inequality,

P
(∣∣∣∑ ÃjZj I {−h(x/Ãj ) ≤ Zj ≤ x/Ãj }

∣∣∣ > x
)

(4.9)

≤ 1

xα+δ
E
∣∣∣∑ ÃjZj I {−h(x/Ãj ) ≤ Zj ≤ x/Ãj }

∣∣∣α+δ

.

By the predictability, zero mean of the Z’s and the property of the function h, the above is a sum
of martingale differences. Therefore, we can use the Burkholder–Davis–Gundy inequality (see,
e.g., Protter (2004)) to conclude that for large x, the above is bounded by

c

xα+δ
E
∣∣∣∑(

ÃjZj I {−h(x/Ãj ) ≤ Zj ≤ x/Ãj }
)2

∣∣∣(α+δ)/2

≤ c

xα+δ

∑
E|ÃjZj I {−h(x/Ãj ) ≤ Zj ≤ x/Ãj }|α+δ,
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where c is a finite positive constant that is allowed to change in the sequel. In the last step, we
used the fact that the 
q -norm is bounded by the 
p-norm for p < q , that is, ‖ · ‖
q ≤ ‖ · ‖
p .
Conditioning on the Aj variables, we see that

II

P(|Z| > x)
≤ c

∑∫ 1

0
yα+δ E[|Zj |α+δI {−h(x/y) ≤ Zj ≤ x/y}]

xα+δP (|Z| > x)
P (|Aj | ∈ dy).

Once again, by Karamata’s theorem (Resnick (1987)),

E[|Z|α+δI {|Z| ≤ x}] ∼ αδ−1xα+δP (|Z| > x) (4.10)

and there exists some x0 such that for x > x0, the above expression is bounded by

c
∑
j>n

∫ 1

0
yα+δy−(α+δ)+α−εP (|Aj | ∈ dy) ≤ c

∑
j>n

E[|Aj |α−ε] → 0 as n → ∞,

by (3.7). Therefore, we have (4.2) for (Ãj ).
Further, as in the case 0 < α < 1, we need to check (4.4) and (4.5). The argument for (4.5)

works without changes in the present case and the same is true for the first half of the argument
for (4.4), presented in (4.6). Therefore, it remains only to consider the second half of (4.4),
namely to prove that for v large enough,

lim
M→∞ lim sup

x→∞
P(|∑AjI {M ≤ |Aj | < x/v}ZjI {−h(x/Aj ) ≤ Zj ≤ x/Aj }| > x)

P (|Z| > x)
= 0.

The argument is similar to the one used above. Using Markov’s inequality, predictability, zero
mean and the definition of the function h allows us, once again, to use the Burkholder–Davis–
Gundy inequality and see that for 0 < δ < 2 − α,

P
(∣∣∣∑AjI {M ≤ |Aj | < x/v}ZjI {−h(x/Aj ) ≤ Zj ≤ x/Aj }

∣∣∣ > x
)

≤ c

xα+δ

∑
E
∣∣AjZj I {M ≤ |Aj | < x/v}I {−h(x/Aj ) ≤ Zj ≤ x/Aj }

∣∣α+δ (4.11)

:= III.

Notice that by (4.10), for and v large enough and using the fact that h(x) ≤ cx,

E|AjZj I {M ≤ |Aj | < x/v}I {−h(x/Aj ) ≤ Zj ≤ x/Aj }|α+δ

= E
(|Aj |α+δI {M ≤ |Aj | < x/v}EZ|Zj |α+δI {−h(x/Aj ) ≤ Zj ≤ x/Aj }

)
≤ cE

(
|Aj |α+δI {M ≤ |Aj | < x/v}

(
x

|Aj |
)α+δ

PZ(|Z| > x/|Aj |)
)

≤ cxα+δP (|Z| > x)E(|Aj |α+εI {|Aj | ≥ M}).
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In the last step, we used independence and the fact that P(|Z| > z) is regularly varying. We now
see that

III

P(|Z| > x)
≤ c

∑
E|Aj |α+εI {|Aj | ≥ M},

which converges to zero by (3.7). Therefore, we have proven (4.2) for 1 < α < 2, under the ad-
ditional assumption that the law of Z is continuous and that the limit measure μ assigns positive
weights to both (−∞,0) and (0,∞). In general, let (Z̃j ) be an i.i.d. sequence, independent of
the sequences (Aj ) and (Zj ) (we enlarge the probability space if necessary), such that each Z̃j

is continuous, symmetric and

lim
x→∞

P(|Z̃j | > x)

P (|Z| > x)
= 1.

By symmetry and independence,

P
(∣∣∣∑AjZj

∣∣∣ > x
)

≤ 2P
(∣∣∣∑Aj(Zj + Z̃j )

∣∣∣ > x
)
.

However, the sequence (Zj + Z̃j ) satisfies the extra assumptions and so we have established
(4.2) for 1 < α < 2 in full generality.

4.4. The case α ≥ 2

The proof of the relation (4.2) for α ≥ 2 proceeds similarly to the case 1 < α < 2. Specifically,
we need to estimate both the term II in (4.9) and the term III in (4.11). As in the case 1 < α < 2,
we may, and will, assume that the random variables (Zj ) satisfy the assumptions of Lemma
4.2. Furthermore, using Kwapień and Woyczyński (1992), part (iv) of Theorem 5.2.1, we may
assume that the sequence (Zj ) is independent of the sequence (Aj ). Indeed, to achieve that, we
simply replace the sequence (Zj ) with the sequence (Ẑj ) defined at the beginning of the proof
of the theorem and use the tangency.

We start with the case α = 2. We first estimate II in (4.9). Starting with the Burkholder–Davis–
Gundy inequality as before, we proceed as follows. Using Jensen’s inequality,∑(

ÃjZj I {−h(x/Ãj ) ≤ Zj ≤ x/Ãj }
)2

≤
(∑

Ã2
j

)δ/(2+δ)(∑
Ã2

j |Zj |2+δI {−h(x/Ãj ) ≤ Zj ≤ x/Ãj }
)2/(2+δ)

and so, by conditioning,

II ≤ c

x2+δ
E
[(∑

Ã2
j

)δ/2 ∑
Ã2

j |Zj |2+δI {−h(x/Ãj ) ≤ Zj ≤ x/Ãj }
]

= c

x2+δ
E
[(∑

Ã2
j

)δ/2 ∑
Ã2

j EZ

(|Zj |2+δI {−h(x/Ãj ) ≤ Zj ≤ x/Ãj }
)]

.
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Using (4.8), we see that for large x, this expression is bounded from above by

c

x2+δ
E

[(∑
Ã2

j

)δ/2 ∑
Ã2

j

(
x

|Ãj |
)2+δ

P (|Z| > x/|Ãj |)
]

= cE
[(∑

Ã2
j

)δ/2 ∑
|Ãj |−δP (|Z| > x/|Ãj |)

]
≤ cP (|Z| > x)E

[(∑
Ã2

j

)δ/2 ∑
|Ãj |2−ε−δ

]
≤ cP (|Z| > x)E

[(∑
|Ãj |2−ε−δ

)1+δ/(2−ε−δ)]
(when writing sums as above, and in the sequel, we adopt the convention of not including the
terms with Ãj = 0). In the last two steps, we used regular variation of P(|Z| > z) and ‖ · ‖
q ≤
‖ · ‖
p , for p < q , respectively. Choosing δ and ε small enough and using (3.8), we see that

lim
n→∞ lim sup

x→∞
II

P(|Z| > x)
= 0.

The argument for III is similar; we present the main steps. Write

III ≤ c

xα+δ
E
[(∑

A2
j I {|Aj | ≥ M}

)δ/2

×
∑

A2
j I {M ≤ |Aj | < x/v}|Zj |2+δI {−h(x/Aj ) ≤ Zj ≤ x/Aj }

]
≤ cE

[(∑
A2

j I {|Aj | ≥ M}
)δ/2

×
∑

|Aj |−δI {M ≤ |Aj | < x/v}P(|Z| > x/|Aj |)
]

≤ cP (|Z| > x)E
[(∑

|Aj |2+ε−δI {|Aj | ≥ M}
)1+δ/(2+ε−δ)]

.

Choosing, for example, δ = ε small enough, we see by (3.8) that

lim
n→∞ lim sup

x→∞
III

P(|Z| > x)
= 0.

This establishes the statement (4.2) for α = 2.
Next, we look at the case α > 2 and α not equal to an even integer. We start with the term II. Let

k = �(α + δ)/2�, that is, the smallest integer greater than or equal to (α + δ)/2. Our assumption
on α implies that for δ small enough,

2(k − 1) < α. (4.12)
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Proceeding from the Burkholder–Davis–Gundy bound on II, we have

II ≤ c

xα+δ
E

[∑
j1

. . .
∑
jk

Ã2
j1

. . . Ã2
jk

Z2
j1

. . .Z2
jk

× I {−h(x/Ãji
) ≤ Zji

≤ x/Ãji
for i = 1, . . . , k}

](α+δ)/(2k)

≤ c

xα+δ
E
[∑

|Ãj |2k|Zj |2kI {−h(x/Aj ) ≤ Zj ≤ x/Aj }
](α+δ)/(2k)

+ c

xα+δ
E

[ ∑
(j1,...,jk)∈Dk

Ã2
j1

. . . Ã2
jk

Z2
j1

. . .Z2
jk

× I {−h(x/Ãji
) ≤ Zji

≤ x/Ãji
for i = 1, . . . , k}

](α+δ)/(2k)

:= IIa + IIb,

where Dk = {(j1, . . . , jk) such that not all j1, . . . , jk are equal}. Note that by the definition of k

and, again, ‖ · ‖
q ≤ ‖ · ‖
p , for p < q ,

IIa ≤ c

xα+δ
E

∑
|Ãj |α+δ|Zj |α+δI {−h(x/Aj ) ≤ Zj ≤ x/Aj }

= c

xα+δ
E

∑
|Ãj |α+δEZ

(|Zj |α+δI {−h(x/Aj ) ≤ Zj ≤ x/Aj }
)

and once more using (4.8), we can bound, for large x, this expression by

c

xα+δ
E

∑
|Ãj |α+δ

(
x

|Ãj |
)α+δ

P (|Z| > x/|Ãj |)

≤ cP (|Z| > x)E
∑

|Ãj |α−ε ≤ cP (|Z| > x)E
(∑

|Ãj |2
)(α−ε)/2

.

Therefore, by (3.9),

lim
n→∞ lim sup

x→∞
IIa

P (|Z| > x)
= 0.

Next, it follows from independence and (4.12) that for some 0 < C < ∞,

E(Z2
j1

. . .Z2
jk

) ≤ C (4.13)
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for all (j1, . . . , jk) ∈ Dk . Therefore,

IIb ≤ c

xα+δ
E

[ ∑
(j1,...,jk)∈Dk

Ã2
j1

. . . Ã2
jk

](α+δ)/(2k)

≤ c

xα+δ
E

(∑
Ã2

j

)(α+δ)/2

and so for δ small enough, by (3.9),

lim
x→∞

IIb
P (|Z| > x)

= 0.

This takes care of the term II and the argument for III is, as we have seen a number of times
before, entirely similar.

Finally, let us consider the case α = 2m for some integer m > 1. This case is very similar to the
case α > 2 and not equal to an even integer, however, (4.12) does not hold (k = m + 1 for small
δ here). This does not make a difference as far as the term IIa above is concerned. For the term
IIb , we proceed as follows. Write D̂k for the subset of Dk where exactly k − 1 of the indices are
equal. Note that for δ small enough, the bound (4.13) still holds for all (j1, . . . , jk) ∈ Dk \ D̂k .
Then

IIb ≤ c

xα+δ
E

[ ∑
(j1,...,jk)∈D̂k

Ã2
j1

. . . Ã2
jk

Z2
j1

. . .Z2
jk

× I {−h(x/Ãji
) ≤ Zji

≤ x/Ãji
for i = 1, . . . , k}

](α+δ)/(2k)

+ c

xα+δ
E

[ ∑
(j1,...,jk)∈Dk\D̂k

Ã2
j1

. . . Ã2
jk

Z2
j1

. . .Z2
jk

× I {−h(x/Ãji
) ≤ Zji

≤ x/Ãji
for i = 1, . . . , k}

](α+δ)/(2k)

:= IIb1 + IIb2.

The term IIb2 is treated in the same way as the term IIb with α > 2 not being an even integer.
Furthermore,

IIb1 ≤ c

xα+δ
E

[∑
j1

∑
j2 
=j1

Ã2
j1

|Ãj2 |αZ2
j1

|Zj2 |αI

{
−h

(
x

Ãj2

)
≤ Zj2 ≤ x

Ãj2

}](α+δ)/(2k)

≤ c

xα+δ
E

[∑
j1

∑
j2 
=j1

Ã2
j1

|Ãj2 |αEZ

(
Z2

j1
|Zj2 |αI

{
−h

(
x

Ãj2

)
≤ Zj2 ≤ x

Ãj2

})](α+δ)/(2k)
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= c

xα+δ
E

[∑
j1

∑
j2 
=j1

Ã2
j1

|Ãj2 |αEZ

(
|Zj2 |αI

{
−h

(
x

Ãj2

)
≤ Zj2 ≤ x

Ãj2

})](α+δ)/(2k)

.

By Karamata’s theorem, l(x) = E|Z|αI {|Z| ≤ x} is slowly varying at infinity and, as such, is
bounded from above for large x by cxε . Therefore, for large x,

IIb1 ≤ c

xα+δ
E

[∑
j1

∑
j2 
=j1

Ã2
j1

|Ãj2 |α
(

x

|Ãj2 |
)ε

](α+δ)/(2k)

= c

xα+δ−ε(α+δ)/(2k)
E

[∑
j1

Ã2
j1

∑
j2

|Ãj2 |α−ε

](α+δ)/2k

≤ c

xα+δ−ε(α+δ)/(α+2)
E
(∑

Ã2
j

)(α+2−ε)(α+δ)/(2(α+2))

and we see that for δ, ε small enough and ε < δ(α + 2)/(α + δ), the power of x is larger than α,
so we may use (3.9) to obtain

lim
x→∞

IIb1

P(|Z| > x)
= 0

for all n. This completes the treatment of the term II in the case where α is an even integer greater
than 2 and the term III is treated in the same way.

This proves the limit (4.2) in all cases and, hence, we have established the one-dimensional
statement (4.1).

4.5. The multidimensional case

We now prove the general statement (3.10). For finite n ≥ 1, Lemma 4.3 implies

P(u−1 ∑
j≤n AjZj ∈ ·)

P (|Z| > u)

v→ E

[∑
j≤n

μ ◦ A−1
j (·)

]
.

As in the one-dimensional case considered above, (3.10) will follow once we check that

lim
n→∞ lim sup

x→∞
P(|∑j>n AjZj | > x)

P (|Z| > x)
= 0.

Because of the finite-dimensionality, it is enough to prove the corresponding statement for each
one of the d × p elements of the random matrices. We will check (in the obvious notation) that

lim
n→∞ lim sup

x→∞
P(|∑j>n A

(11)
j Z

(1)
j | > x)

P (|Z| > x)
= 0. (4.14)
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Note that |A(11)
j | ≤ ‖Aj‖ and so the sequence (A

(11)
j ) in (4.14) satisfies the one-dimensional

version of the assumptions (3.7)–(3.9). Only one thing prevents us from immediately apply-
ing the one-dimension statement (4.1) and it is the fact that the tail of |Z(1)| may happen
to be strictly lighter than that of ‖Z‖. To overcome this problem, let (Z̃j ) be an indepen-

dent copy of the sequence (Zj ), also independent of the sequence (A
(11)
j ), and (εj ) a se-

quence of i.i.d. Rademacher random variables, independent of the rest of the random variables.
Then

P

(∣∣∣∣∣∑
j>n

A
(11)
j Z

(1)
j

∣∣∣∣∣ > x

)
≤ P

(∣∣∣∣∣∑
j>n

A
(11)
j

(
Z

(1)
j + εj |Z̃j |

)∣∣∣∣∣ > x/2

)

+ P

(∣∣∣∣∣∑
j>n

A
(11)
j εj |Z̃j |

∣∣∣∣∣ > x/2

)
,

which allows us to apply (4.1) to each term above and prove (4.14). This completes the proof of
the theorem.

Remark 4.1. The argument leading to (4.1) and (4.2) can also be used to show various modifi-
cations of these two statements. For example, in (4.2), one can allow n and x to go to infinity at
the same time to obtain

lim
x→∞

P(
∑

j>n(x) AjZj > x)

P (|Z| > x)
= 0 (4.15)

for any function n(x) → ∞ as x → ∞. Further, only values of the Zj ’s comparable to the level
x are relevant in (4.1), in the sense that

lim
τ→0

lim sup
x→∞

P(|∑∞
j=1 AjZj 1(|Zj | ≤ τx)| > x)

P (|Z| > x)
= 0. (4.16)

Lemma 4.1. Let Z ∈ RV(α,μ) be a random vector with 0 < α < 1. Then for each y > 0 ε > 0,
and c > 0, there is some x0 such that

|E[ZI {|Z| ≤ x/y}]|
xP (|Z| > x)

≤ c max[yα−1+ε, yα−1−ε], x ≥ x0.

Proof. Karamata’s theorem implies

E[|Z|I {|Z| ≤ x}] ∼ α(1 − α)−1xP (|Z| > x)

and the claim follows from Potter’s bound. �

Lemma 4.2. Let Z ∈ RV(α,μ) with α > 1 a one-dimensional continuous random variable and
such that μ assigns positive weights to both (−∞,0) and (0,∞). Then there are numbers
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K,C > 0 and a function h : [K,∞) → (0,∞) satisfying C−1 ≤ h(x)/x ≤ C and∫ ∞

x

yP (Z ∈ dy) =
∫ −h(x)

−∞
|y|P(Z ∈ dy)

for all x ≥ K .

Proof. By the assumptions, B = ∫ 0
−∞ |y|P(Z ∈ dy) ∈ (0,∞). The function G(x) =∫ ∞

x
yP (Z ∈ dy) is continuous and decreases to zero. Let K ≥ 1 be such that G(x) ≤ B/2

for x ≥ K and define

h(x) = inf

{
t > 0 :

∫ −t

−∞
|y|P(Z ∈ dy) = G(x)

}
.

It remains to prove the existence of a number C in the statement. Let g(x) = h(x)/x. First, we
show that g(x) is bounded. By Karamata’s theorem,

H(x) =
∫ −h(x)

−∞
|y|P(Z ∈ dy) ∼ (1 − w)h(x)1−αl(h(x))

= (1 − w)(g(x)x)1−αl(g(x)x),

G(x) ∼ wx1−αl(x),

where l(x) is a slowly varying function. Supposing that g(x) → ∞, then since H(x) = G(x),
we can find a constant C and ε ∈ (0, α − 1) such that

1 = H(x)

G(x)
∼ 1 − w

w
g(x)1−α l(g(x)x)

l(x)
≤ Cg(x)1−αg(x)ε.

But the right-hand side converges to 0, which is a contradiction. Hence, g(x) cannot be un-
bounded. A similar argument shows that g(x) must be bounded away from 0. �

The following is a slight generalization of Basrak et al. (2002), Proposition A.1.

Lemma 4.3. Let Z1, . . . ,Zn be i.i.d. random vectors in RV(α,μ) and A1, . . . ,An a sequence of
random matrices such that for every j = 1, . . . , n, Zj is independent of σ(A1, . . . ,Aj ). Assume,
further, that for some ε > 0, E‖Aj‖α+ε < ∞ for j = 1, . . . , n. Then

P(u−1 ∑n
j=1 AjZj ∈ ·)

P (|Z| > u)

v→ E

[
n∑

j=1

μ ◦ A−1
j (·)

]
. (4.17)

Proof. Let μ̂ denote the measure in the right-hand side of (4.17) (as usual, the origin is not a part
of the space where μ̂ lives, so any mass at the origin is simply lost). Let B ∈ R

d be a Borel set,
bounded away from the origin, and assume that it is a μ̂-continuity set. We will use the notation
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Aε = {x ∈ R
d :d(x,A) < ε} and Aε = {x ∈ A :d(x,Ac) > ε} for a set A ∈ R

d and ε > 0. Choose
ε > 0 so small that Bε is still bounded away from the origin. We have

P

(
u−1

n∑
j=1

AjZj ∈ B

)
≤ P

(
n⋃

j=1

{u−1AjZj ∈ B
ε}

)

+ P

(
n⋃

j1=1

n⋃
j2=j1+1

{u−1|Aj1Zj1 | > ε/n,u−1|Aj2Zj2 | > ε/n}
)

.

By the Portmanteau theorem,

lim sup
u→∞

P(
⋃n

j=1{u−1AjZj ∈ Bε})
P (|Z| > u)

≤ μ̂(B
ε
).

On the other hand, by Basrak et al. (2002), Proposition A.1 for every j1 < j2 and M > 0,

lim sup
u→∞

P(u−1|Aj1Zj1 | > ε,u−1|Aj2Zj2 | > ε)

P (|Z| > u)

≤ lim sup
u→∞

P(|Aj1Zj1 | > M, |Aj2Zj2 | > uε)

P (|Z| > u)

= ε−αE(|Aj2 |αI {|Aj1Zj1 | > M})
and letting M → ∞, we obtain

lim
u→∞

P(u−1|Aj1Zj1 | > ε,u−1|Aj2Zj2 | > ε)

P (|Z| > u)
= 0.

Using regular variation, we conclude that

lim sup
u→∞

P(u−1 ∑n
j=1 AjZj ∈ B)

P (|Z| > u)
≤ μ̂(B

ε
).

Letting ε → 0 and using the fact that B is a μ̂-continuity set, we obtain

lim sup
u→∞

P(u−1 ∑n
j=1 AjZj ∈ B)

P (|Z| > u)
≤ μ̂(B).

A matching lower bound follows in a similar way using the relation

P

(
u−1

n∑
j=1

AjZj ∈ B

)
≥ P

(
n⋃

j=1

{u−1AjZj ∈ Bε}
)

− P

(
n⋃

j1=1

n⋃
j2=j1+1

{u−1|Aj1Zj1 | > θ,u−1|Aj2Zj2 | > θ}
)

,
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where θ = min{ε/n, infx∈B ‖x‖}. �
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