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We investigate the relation of the semigroup probability density of an infinite activity Lévy process to the
corresponding Lévy density. For subordinators, we provide three methods to compute the former from the
latter. The first method is based on approximating compound Poisson distributions, the second method uses
convolution integrals of the upper tail integral of the Lévy measure and the third method uses the analytic
continuation of the Lévy density to a complex cone and contour integration. As a by-product, we investigate
the smoothness of the semigroup density in time. Several concrete examples illustrate the three methods and
our results.
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1. Introduction

For the infinitely divisible laws, there are a number of intriguing and useful relations and points
of similarity between the probability measures or probability densities of the laws on the one
hand and their associated Lévy measures or Lévy densities on the other.

In particular, if U is the Lévy measure of an infinitely divisible law on R
d with associated Lévy

process {Xt }t≥0 and if P(dx; t) denotes the law of Xt , then (see Sato (1999), Corollary 8.9)

lim
t→0

t−1
∫

Rd

f (x)P (dx; t) =
∫

Rd

f (x)U(dx) (1)

for any function f in the space C# of bounded continuous functions on R
d vanishing in a neigh-

borhood of 0. It may also be noted that Burnaev (2006) gives two formulas for computing the
Lévy measure from the corresponding cumulant function.

The present paper considers the opposite problem, that of calculating P(dx; t) from U .
In many concrete examples, there is a power series representation

P(dx; t) =
∞∑

n=1

tn

n!Un(dx), (2)

where the Un(dx) are, in general, signed measures and U1 is equal to U , the Lévy measure of
P(dx; t). When d = 1 and both P(dx; t) and U(dx) are concentrated on the positive half-line
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R>0 = (0,∞), it is convenient to give (2) the form

P +(x; t) =
∞∑

n=1

tn

n!U
+
n (x), (3)

with P +(x; t) = P((x,+∞); t) and U+
n (x) = Un((x,+∞)) denoting the upper tail integrals.

More particularly, when P(dx, t) (resp. U(dx)) is absolutely continuous with density p(x; t)
resp. u(x) – the setting on which we focus in this paper – then the ‘density version’ of (3) is

p(x; t) =
∞∑

n=1

tn

n!un(x). (4)

In (4), necessarily, u1 = u and the question is how the further coefficients un may be calculated
from u, possibly also using properties of the cumulant function of X1 (which, of course, is
essentially determined by u). As part of the problem, we discuss conditions ensuring that an
expansion of the form (4) exists. This issue is of some independent interest.

Note that in the case of a finite Lévy measure, the process X is a compound Poisson process
and validity of formulae (4) and (2), with straightforward modifications for the atom at zero, is
easily established; see Barndorff-Nielsen and Hubalek (2006), Section 4.1. We shall not consider
this case here any further.

Except for the discussion in Section 2 and some remarks in Section 4, we only consider the
case where the process X is a subordinator with infinite Lévy measure and without linear drift.
In other words, X is an infinite activity pure jump subordinator.

We shall discuss three methods for determining the coefficients un(x). The first involves, as
the final step, a limiting operation. We have un(x) = limε→0 unε(x), where

unε(x) =
n∑

k=1

(−1)n−k

(
n

k

)
c(ε)n−ku∗k

ε (x). (5)

Here, uε(x) is an approximation of the Lévy density u(x) that corresponds to a compound Pois-
son process with intensity c(ε) and ∗k indicates k-fold convolution. The second method uses
derivatives of convolutions, namely,

un(x) = (−1)n
dn

dxn
((U+)∗n)(x). (6)

In words: we can obtain un(x) as the nth derivative of the nth convolution power of the upper
tail integral of the Lévy density u(x).

The third method uses the complex contour integral

un(x) = 1

2πi

∫
C

κ(θ)neθx dθ, (7)

where κ(θ) is the analytic continuation of the cumulant function to a complex cone containing
�θ ≥ 0 and the contour is, roughly speaking, along the boundary of the cone. We will see that
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such an analytic continuation can be derived from an analytic continuation of the Lévy density
u(x) to a complex cone containing the positive real axis.

We proceed to mention various works containing results that are related to those of the
present paper. The comprehensive monograph by Sato (1999) contains many instances of
the interesting relations between the probability distributions and the Lévy measures of in-
finitely divisible laws (cf. also Embrechts et al. (1979), Embrechts and Goldie (1981) and
Sato and Steutel (1998)). Some examples are the relation between unimodality properties
of the two types of densities (Sato (1999), Section 52) and the behavior under exponen-
tial tilting (or Esscher transformation). See also Léandre (1987), Ishikawa (1994) and Picard
(1997) who, partly in the wider setting of pure jump processes, study cases where the
transition density exists and behaves as a power of t for t → 0. Continuity of P +(x; t)
at t = 0 is characterized in Doney (2004). In Rüschendorf and Woerner (2002) (also see
Woerner (2001)), the authors have established the validity of expansions for the probability
density or distribution function of Xt that are related to, but essentially different from, (3)
and (4).

The paper is organized as follows. Section 2 consists of a number of initial remarks on the
problem at hand. Section 3 contains our main mathematical results. Illustrative examples will
be given in Section 4. Technical auxiliary material used in the proofs appears in the Appen-
dix.

The results in the present paper build partly on our previous, unpublished preliminary work
(Barndorff-Nielsen (2000) and Hubalek (2002)).

2. Initial remarks

2.1. A first, motivating example: the positive α-stable distribution

We consider the positive α-stable distribution with Lévy density

u(x) = − x−1−α

�(−α)
, (8)

where 0 < α < 1. Note that we interpret �(s)−1 as an entire function with zeros at the non-
positive integers. Alternatively, we could use the functional equations �(s + 1) = s�(s) and
�(s)�(1 − s) = π csc(πs) to rewrite expressions in a more familiar (and more lengthy) form.

In general, there is no closed form expression for p(x; t) in terms of elementary functions, but
it is well known (see, e.g., Feller (1971), XVII.7 (6.8)) that

p(x; t) =
∑
n≥1

tn

n! , un(x) = (−1)n

�(−nα)
x−1−nα. (9)

Let us first illustrate the calculation of u2(x) by our first method, that is, as limit of u2ε(x) for
ε → 0, where we use the approximation uε(x) = I[ε,∞)(x)u(x). We have c(ε) = ε−α/�(1 − α).
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For x > 2ε, we obtain, by symmetry and partial integration,

u∗2
ε (x) = 2

α�(−α)2

[
ε−α(x − ε)−1−α

(10)

−
(

x

2

)−1−2α

+ (1 + α)

∫ x/2

ε

y−α(x − y)−2−α dy

]
.

As u2ε(x) = u∗2
ε (x) − 2c(ε)uε(x), we obtain, in the limit,

u2(x) = 2

α�(−α)2

[
−

(
x

2

)−1−2α

+ (1 + α)

∫ x/2

0
y−α(x − y)−2−α dy

]
. (11)

The integral on the right-hand side can be expressed in terms of the incomplete beta function
and, in this particular case, reduced to integrals for the complete beta function by elementary
substitutions. This finally yields agreement with (9) for n = 2.

In principle, though less explicit and more cumbersome, the method can be used for n > 2.
Instead, let us illustrate our second method, the calculation of un(x) according to formula (6).
The tail integral is U+(x) = x−α/�(1 − α) and, by induction, or, quicker, by looking at the
Laplace transforms, we see that (U+)∗n(x) = xn−nα/�(n − nα). Differentiating this equation
n times and applying the functional equation of the Gamma function to simplify the expression,
we obtain (9).

Finally, let us illustrate our third method, the calculation of un(x) according to formula (7).
The Laplace cumulant function is κ(θ) = −θα and we get

un(x) = (−1)n

2πi

∫
C

θnαeθx dθ. (12)

To see that this, in fact, gives (9), we have to substitute θ �→ θ/x and recognize the resulting
integral as a variant of the Hankel contour integral for �(−nα)−1.

2.2. A simple, general result

Let P(x; t) and u(x) be, respectively, the cumulative distribution function and the Lévy density
(assumed to exist) of an infinite activity Lévy process on R>0. Let the uε(x) be integrable Lévy
densities that we think of as approximations of u(x) and let us define c(ε) and unε(x) as in (5)
above, setting

U0ε(x) = 1, Unε(x) = −
∫ ∞

x

unε(y)dy (n ≥ 1). (13)

Theorem 1. Suppose

lim
ε→0

∫
(1 ∧ x)|uε(x) − u(x)|dx = 0. (14)
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Then

P(x; t) = lim
ε→0

∑
n≥0

Unε(x)
tn

n! , (15)

pointwise for each x ∈ R>0 and t > 0.

This follows easily from Lévy’s continuity theorem and the observation that the distribution
of an infinite activity process is continuous. Details can be found in Barndorff-Nielsen (2000)
and Barndorff-Nielsen and Hubalek (2006). Note that the approximation uε(x)I[ε,∞) satisfies
the assumptions of Theorem 1.

2.3. Formulae for unε

The first few functions unε are

u1ε(x) = uε(x),

u2ε(x) = u∗2
ε (x) − 2c(ε)uε(x),

(16)
u3ε(x) = u∗3

ε (x) − 3c(ε)u∗2
ε (x) + 3c(ε)2uε(x),

u4ε(x) = u∗4
ε − 4c(ε)u∗3

ε + 6c(ε)2u∗2
ε (x) − 4c(ε)3uε(x).

Further, it follows from the well-known inverse relations for binomial sums (see, e.g., Comtet
(1970), III.6.a e) that the formula defining unε(x) in (5) implies conversely that

u∗n
ε (x) =

n∑
k=1

(
n

k

)
c(ε)n−kukε(x). (17)

This can be used to compute unε(x) inductively by

unε(x) = u∗n
ε (x) −

n−1∑
k=1

(
n

k

)
c(ε)n−kukε(x). (18)

In particular, we have

u1ε(x) = uε(x),

u2ε(x) = u∗2
ε (x) − 2c(ε)u1ε(x),

(19)
u3ε(x) = u∗3

ε (x) − 3c(ε)u2ε(x) − 3c(ε)2uε(x),

u4ε(x) = u∗4
ε − 4c(ε)u3ε − 6c(ε)2u2ε(x) − 4c(ε)3uε(x).
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2.4. Cancellation of singularities

Convergence of unε(x) to a function un(x) implies a subtle cancellation of singularities. Equa-
tion (5) contains an alternating sum of terms that diverge. Both c(ε) and the convolution powers
of uε(x) tend to +∞ as ε → 0; in particular, see the first few instances of that formula listed
in (16) above.

To gain an understanding of how this cancellation occurs, note that for n ≥ 0, we have

un+1ε(x) = (n + 1)x−1
{∫ x

0
unε(x − y)ūε(y)dy + (−1)nc(ε)nūε(x)

}
, (20)

with ūε(x) = xuε(x), as can be established by induction. Consider the case n = 2, and
let U+

ε (x) = ∫ ∞
x

uε(y)dy and U+(x) = ∫ ∞
x

u(y)dy. Using (20) and noting that c(ε) =∫ x

0 uε(y)dy + U+
ε (x), we may rewrite u2ε(x) as

u2ε(x) = 2x−1
{∫ x

0
uε(y){ūε(x − y) − ūε(x)}dy − ūε(x)U+

ε (x)

}
. (21)

Hence, by letting ε → 0 and invoking condition (14), we obtain the following.

Proposition 2. Suppose the Lévy density u(x) is differentiable and let ū(x) = xu(x). Then

u2(x) = 2x−1
{∫ x

0
u(y){ū(x − y) − ū(x)}dy − ū(x)U+(x)

}
, (22)

with the integral existing and being finite.

Formula (21), first given in Barndorff-Nielsen (2000), has been generalized by Woerner (2001)
to

1

n + 1
ūn+1ε(x) = 1

n

[∫ x

0
uε(y){ūnε(x − y) − ūnε(x)}dy − ūnε(x)U+(x)

]
, (23)

where ūnε(x) = xunε(x). Typically, though, this cannot be used to pass to the limit ε → 0 for
n > 1.

2.5. Miscellaneous further points

• The power series representation (4) with the coefficients un(x) given as limit of unε(x) was
originally derived by a heuristic argument that may be found in Barndorff-Nielsen and Shep-
hard (2008), Section 3.3.3; see also Barndorff-Nielsen and Hubalek (2006), Section 2.1. In
Section 3 below, we give a rigorous derivation for the case of one-dimensional subordina-
tors, under fairly strong assumptions. In subsequent work, we hope to establish proofs for
Lévy processes in R

d .
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• Heavy tails do not matter much in the problems studied in the present context as we can deal
with them using the Esscher transform. Rather, it is the behavior of small jumps that can
cause difficulties, as reflected in the assumptions of the theorems given below. For details,
see Barndorff-Nielsen and Hubalek (2006), Section 2.4.

• Suppose p(x;0) = 0 and

lim
t→0

t−1p(x; t) = u(x), (24)

and let uε(x) = ε−1p(x; ε), in which case c(ε) = ε−1. By using the semigroup property
p∗k(x, ε) = p(x, kε), formula (5) takes the form

unε(x) = ε−n

n∑
k=1

(−1)n−k

(
n

k

)
p(x; kε). (25)

Now, the right-hand side of (25) is, in fact, an nth order difference quotient of p(x; t), so,
provided p(x; t) is n times differentiable from the right at t = 0, we have

lim
ε→0

unε(x) = ∂n

∂tn
p(x;0). (26)

Thinking of uε(x) as an approximation of ε−1p(x; ε), as well as an approximation of u(x),
this is then a further indication that, in considerable generality, univariate as well as multi-
variate, p(x; t) may be calculated via (5) in the manner discussed above. Of course, in prac-
tice, choosing uε(x) = ε−1p(x; ε) is not an option since the point is to determine p(x; t) in
terms of the Lévy density u(x).

• As a referee pointed out to us, our work has a strong connection to semigroup theory, in
particular to the so-called exponential formulae. Let T be the transition operator defined by

Tf (x) =
∫ ∞

0
f (x + y)p(y; t)dy. (27)

For example, Theorem 1, which holds true for infinitely divisible distributions on R
d , can

be seen as a variant of Hille and Phillips (1957) (E2), page 354. Yet, our main interest is
in interchanging the delicate limit ε → 0 and the infinite summation, and we have not been
able to use results from semigroup theory for that purpose.

• Condition (14) is satisfied, in particular, if there exists an integrable function v on R>0 such
that (x ∧ 1)uε(x) ≤ v(x) for all x ∈ R>0 and all ε. Some candidates for uε are

uε(x) = 1[ε,∞)(x)u(x) or uε(x) = u(x)e−x/ε. (28)

3. Main results

In this section, we analyze the following issues.

• Does unε(x) converge as ε → 0? If so, can we find a more direct method to compute the
limit un(x) from u(x) and so avoid the difficult cancellations in unε(x) as ε → 0?
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• If we have convergence, is p(x; t) in fact n-times differentiable (from the right) at t = 0
and, if so, is un(x) the nth derivative?

• If the answer to the previous question is yes for all n ≥ 1, do we have a convergent Taylor
expansion of p(x; t) at t = 0? Is p(x; t) in fact an entire function in t ∈ C?

In the proofs, we refer to several technical estimates that are provided in the form of lemmas in
the Appendix. Recall that we are assuming that the process X is an infinite activity subordinator.

3.1. Pointwise convergence of the coefficient functions

In this subsection, we investigate the limiting behavior of unε(x) as ε → 0 for the particular
choice uε(x) = e−ε/xu(x). This approximation is simple, it is always feasible, in the sense that
it implies

lim
ε→0

uε(x) = u(x), lim
ε→0

∫ ∞

x

uε(y)dy =
∫ ∞

x

u(y)dy ∀x > 0, (29)

and uε(x) will be smooth if u(x) is smooth, a property exploited below. We provide conditions
on u(x) that imply the convergence of unε(x) and obtain the expression (6) for the limit un(x).

Theorem 3. Suppose n ∈ N and
∫ ∞

0
e−rxxk+1

∣∣u(k)(x)
∣∣dx < ∞, k = 0,1, . . . ,m, (30)

holds for some m ≥ n + 2 and r > 0.

(i) Let

U+(x) =
∫ ∞

x

u(y)dy, x > 0. (31)

Then the nth convolution power of U+(x) is well defined for x > 0 and (U+)∗n(x) is n-times
continuously differentiable.

(ii) If we set uε(x) = e−ε/xu(x) for ε > 0 and x > 0 and define

unε(x) =
n∑

k=1

(−1)n−k

(
n

k

)
u∗k

ε (x)c(ε)n−k, (32)

where c(ε) = ∫ ∞
0 uε(x)dx, then limε→0 unε(x) = un(x) for x > 0, where

un(x) = (−1)n
dn

dxn
(U+)∗n(x). (33)

Proof. In Lemma A.9, we show that (U+)∗n(x) exists, and in Lemma A.10, that it is n-times
differentiable. Smoothness of convolutions is less obvious than it at first seems (cf. Doetsch
(1950), Section 2.14, page 104ff and Uludağ (1998)).
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Let λnε(θ) denote the Laplace transform of unε(x). It is given by λnε(θ) = κε(θ)n −
(−1)nc(ε)n. Let λn(θ) = κ(θ)n. Note that λn(θ) is not the Laplace transform of un(x); the
Laplace transform of un(x) does not exist. But, using the estimates from Lemma A.5, namely

∣∣λ(m)
nε (θ)

∣∣ ≤ Emn/|θ |m−n,
∣∣λ(m)

n (θ)
∣∣ ≤ Emn/|θ |m−n (34)

for some constants Emn, we see that both xmunε(x) and xmun(x) have integrable Laplace trans-
forms, namely λ

(m)
nε (θ) and λ

(m)
n (θ). According to Lemma A.10, we can write the inversion inte-

grals

unε(x) = 1

2πixm

∫ r+i∞

r−i∞
λ(m)

nε (θ)eθx dθ, un(x) = 1

2πixm

∫ r+i∞

r−i∞
λ(m)

n (θ)eθx dθ, (35)

and obtain

|unε(x) − un(x)| ≤ erx

2πxm

∫ +∞

−∞
∣∣λ(m)

nε (r + iy) − λ(m)
n (r + iy)

∣∣dy. (36)

We have 0 ≤ uε(x) ≤ u(x), for x > 0, ε > 0 and uε(x) → u(x) for ε → 0. Thus, looking at

κε(θ) =
∫ ∞

0
(e−θx − 1)uε(x)dx, κ(θ) =

∫ ∞

0
(e−θx − 1)u(x)dx (37)

and

κ(k)
ε (θ) = (−1)k

∫ ∞

0
e−θxxkuε(x)dx, κ(k)(θ) = (−1)k

∫ ∞

0
e−θxxku(x)dx (38)

for k = 1, . . . , n, we see, by dominated (or monotone) convergence, that limε→0 κε(θ) =
κ(θ), limε→0 κ

(k)
ε (θ) = κ(k)(θ). The functions λ

(m)
nε (θ) and λ

(m)
n (θ) are polynomials in κε(θ),

κ ′
ε(θ), . . . , κ

(m)
ε (θ), respectively in κ(θ), κ ′(θ), . . . , κ(m)(θ), thus limε→0 λ

(m)
nε (θ) = λ

(m)
n (θ).

Moreover, they are dominated by the integrable function Emn/|θ |m−n and by dominated con-
vergence in (36), we have the desired result. �

An interesting class of infinitely divisible distributions on R>0 is the family of generalized
gamma convolutions. This class is characterized by having absolutely continuous Lévy mea-
sures with densities u(x) such that ū(x) = xu(x) are completely monotone functions (Bondesson
(1992), Theorem 3.1.1).

Theorem 4. If u(x) is a Lévy density such that ū(x) = xu(x) is completely monotone, then the
integrability assumptions (30) in Theorem 3 hold for all n ∈ N with arbitrary r > 0.

Proof. By the Bernstein–Widder representation for completely monotone functions, we know
ū(x) is holomorphic in �x > 0, thus the Taylor series at x > 0 has radius of convergence x and

ū(x/2) = ū(x − x/2) =
∞∑

n=0

(−1)nū(n)(x)
xn

2nn! . (39)
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In our setting,
∫ ∞

0 e−θxū(x/2)dx < ∞ for θ > 0 and as (−1)nū(n)(x) ≥ 0, we can integrate
the series term by term. As ū(n)(x) = xu(n)(x) + nu(n−1)(x) for n ≥ 1 and we know that∫

e−rxxu(x)dx < ∞, we inductively obtain the result. �

Remark 5. An example where Theorem 3 applies but the corresponding distribution is not a gen-
eralized gamma convolution is given by u(x) = x−3/2esin(x). An example where the integrability
conditions (30) do not hold for n ≥ 1 and any r > 0 is given by u(x) = x−3/2 sin(x−3)2. We do
not know whether the conclusion of the theorem is nevertheless true in this case.

3.2. Differentiability in time

For the proof of differentiability properties of the probability densities p(x; t) with respect to
t ≥ 0, we need slightly different integrability properties of the cumulant function κ(θ) and its
derivatives. Sufficient conditions to guarantee those from assumptions on the Lévy density u(x)

are conveniently formulated in terms of the integral modulus of continuity. We recall, for exam-
ple, from Kawata (1972), Theorem 2.7.4, that the integral modulus of continuity ω(1)(δ;f ) for
an integrable function f (x) and a real number δ > 0 is defined by

ω(1)(δ;f ) = sup
0<|h|≤δ

∫ +∞

−∞
|f (x + h) − f (x)|dx. (40)

We note that it is sufficient to consider 0 < h ≤ δ in (40). We use the integral modulus of conti-
nuity for functions f (x) that are a priori defined for x > 0 with the understanding that f (x) = 0,
if x ≤ 0.

Theorem 6. Suppose m ∈ N, n ∈ N, α ∈ (0,1), r ∈ [0,∞) and u(x) is the Lévy density of an
infinite activity subordinator. Suppose

m >
1 + nα

1 − α
, (41)

u(x) is m-times differentiable in x > 0, the functions

v�(x) = (−1)�e−rxx�+1u(�)(x) (� = 0, . . . ,m) (42)

are integrable and their integral modulus of continuity satisfies

ω(1)(δ;v�) =O(δ1−α) (δ → 0). (43)

Let p(x; t) denote the probability densities corresponding to u(x). Then p(x; t) is, for all x > 0,
n-times differentiable in t ≥ 0; furthermore,

uk(x) = (−1)k
∂k

∂xk
(U+)∗k(x) (k = 1, . . . , n), (44)



774 O.E. Barndorff-Nielsen and F. Hubalek

is well defined and

∂k

∂tk
p(x,0) = uk(x) (k = 1, . . . , n). (45)

Proof. Let

λ(m)
n (θ; t) = ∂m+n

∂θm ∂tn
eκ(θ)t , pn(x; t) = ∂n

∂tn
p(x; t). (46)

We will show the following statement inductively for n′ = 1, . . . , n. We have, for all x > 0, that
p(x; t) is n′-times differentiable in t ≥ 0 and that

pn′(x; t) = (−1)m

2πixm

∫ c+i∞

c−i∞
λ

(m)

n′ (θ; t)eθx dθ. (47)

First, with n′ = 0, we observe that (−1)mxmp(x; t) has Laplace transform λ
(m)
0 (θ; t). In

Lemma A.8 below, we show that the assumptions on the integral modulus of continuity im-
ply λ

(m)
0 (θ; t) =O(|θ |−m(1−α)) as 
(θ) → ±∞. Since (41) implies m > 1/(1 −α), we have that

λ
(m)
0 (θ; t) is integrable and we can apply the inversion formula. This is all that was to be shown

for n′ = 0. Suppose, now, we have shown the claim for some n′ − 1 and want to show it for n′.
We can write

h−1(pn′−1(x; t + h) − pn′−1(x; t))
(48)

= (−1)m

2πixm

∫ c+i∞

c−i∞
h−1(λ(m)

n′−1(θ; t + h) − λ
(m)

n′−1(θ; t))eθx dθ.

In Lemma A.8 below, we show that the assumptions on the integral modulus of continuity im-
ply h−1(λ

(m)

n′−1(θ; t + h) − λ
(m)

n′−1(θ; t)) = O(|θ |α(m+n′)−m) as 
(θ) → ±∞. Now, (41) implies
that the integrand in (48) is dominated by an integrable function and we can apply dominated
convergence as h → 0. This shows that pn′−1(x; t) is differentiable with respect to t and its
derivative is given by (47). This finishes the induction. To complete the proof, we observe that
λn(θ) = κ(θ)n = ∂n

∂tn
[eκ(θ)t ]t=0 = λ

(0)
n (θ;0) and, in view of (46), (47) and (35), we indeed obtain

pn(x;0) = un(x). �

Remark 7. If we consider n = 1, then Theorem 6 provides sufficient conditions for the (point-
wise) validity of

u(x) = lim
t→0

t−1p(x; t) (49)

for x > 0. Our assumptions are quite different from those given by Woerner (2001), Corollary 2.3.

3.3. Power series representation in time

The purpose of this section is to show that, subject to some regularity conditions, the probability
densities p(x; t) are analytic functions in t that can be represented by a power series of the
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form (4). To be able to do so, we assume that the Lévy density u(x) is an analytic function
satisfying some growth condition.

Theorem 8. Suppose

a > 0, 0 < α < 1, β > −1, γ > 0, 0 < ψ <
π

2
(50)

and the Lévy density u(z) is an analytic function in a domain containing

W = {z ∈ C : z �= 0, | arg(z)| ≤ ψ}. (51)

Assume, moreover, that

u(z) = az−1−α +O(|z|β) as z → 0 in W (52)

and

u(z) =O(eγ ·�z) as z → ∞ in W. (53)

Then the cumulant function

κ(θ) =
∫ ∞

0
(e−θx − 1)u(x)dx (54)

admits an analytic continuation from {θ ∈ C :�θ > γ } to {θ ∈ C : θ �= γ, | arg(θ − γ )| < π
2 + ψ}

that goes uniformly to 0 as θ → ∞ in {θ ∈ C : θ �= γ, | arg(θ − c)| ≤ π
2 + ψ}, where c > γ is

arbitrary, but fixed.
Furthermore, p(x; t) is, for all x > 0, an entire function in t ∈ C and we have the power series

expansion

p(x; t) =
∑
n≥1

un(x)
tn

n! , (55)

where

un(x) = 1

2πi

∫
C

κ(θ)neθx dθ, (56)

with C the contour | arg(θ − c)| = ψ , θ = 0 being passed on the left.

Proof. Let v(z) = u(z) − az−1−α and λ(θ) = ∫ ∞
0 e−θxv(x)dx. Using

∫ ∞

0
(e−θx − 1)x−1−α dx = �(−α) · θα, (57)

we have

κ(θ) = a�(−α) · θα + λ(θ) − λ(0), (58)

valid for �θ ≥ 0.
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Figure 1. Integration contour for the analytic continuation of κ(θ).

If we let v−(x) = v(e−iψx)e−iψ , then we have the growth estimates v−(x) = O(|x|β) as
x → 0 and v−(x) = O(exp((γ cosψ)x)) as x → ∞. Thus, the Laplace transform λ−(θ) =∫ ∞

0 e−θxv−(x)dx is absolutely convergent for �θ > γ cosψ and λ−(θ) → 0 uniformly as
θ → ∞ in �θ ≥ c cosψ ; see Doetsch (1950), Satz 4, page 142 and Satz 7, page 171.

Next, we show that λ(θ) = λ−(θe−iψ) for real θ > γ . Suppose n ≥ 1 and let us integrate
e−θzv(z) over the closed contour consisting of a straight line from n−1 to n, a circular arc from
n to ne−iψ , a straight line from ne−iψ to n−1e−iψ and a circular arc from n−1e−iψ to n−1 (see
Figure 1). By Cauchy’s theorem, this integral is zero. The estimates (52) and (53) show that the
contributions from the circular arcs vanish as n → ∞ and we obtain

λ(θ) =
∫ ∞

0
e−θxv(x)dx =

∫ e−iψ ·∞

0
e−θzv(z)dz (59)

=
∫ ∞

0
e−θe−iψxv(e−iψ)e−iψ dx = λ−(θe−iψ). (60)

A similar argument shows that the function v+(x) = v(eiψx)eiψ has Laplace transform λ+(θ) =∫ ∞
0 e−θxv+(x)dx, which is absolutely convergent for �θ > γ cosψ and satisfies λ+(θ) → 0

uniformly as θ → ∞ in �θ ≥ c cosψ , and λ(θ) = λ+(θeiψ) for real θ > γ .
Looking at (58) reveals that the Laplace transform of p(x; t), namely eκ(θ)t , is integrable on

the vertical line �θ = c. Thus, we can use the inversion integral

p(x; t) = 1

2πi

∫ c+i∞

c−i∞
eκ(θ)t+θx dθ. (61)

Let n ≥ 1 and consider the integrand eκ(θ)t+θx on the closed contour consisting of the vertical
line connecting c− i ·n and c+ i ·n, the circular arc with center c and radius n going from c+ i ·n
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Figure 2. The contour used to derive (62) and the final contour C.

to c + ei(π/2+ψ) · n, the straight lines connecting c + ei(π/2+ψ) · n, c and c + e−i(π/2+ψ) · n and,
finally, the circular arc from c + e−i(π/2+ψ) · n to c − i · n, see (Figure 2). By Cauchy’s theorem,
the integral is zero. Again, looking at (58) and the properties of the analytical continuation λ(θ)

reveals that the integrand vanishes uniformly on the circular arcs as n → ∞ and, by Jordan’s
lemma, we conclude that

p(x; t) = 1

2πi

∫
C

eκ(θ)t+θx dθ. (62)

On C, the linear term θx dominates κ(θ)t as θ → ∞. Consequently, (62) makes sense for any
t ∈ C, in contrast to (61), where t > 0 is required for convergence. We observe that taking t = 0
yields

1

2πi

∫
C

eθx dθ = 0; (63)

thus, p(x;0) = 0, according to our convention above. We can differentiate (62) under the integral.
Let us consider h ∈ C with |h| ≤ 1 and t ∈ C arbitrary. Using (62), we can write the complex
difference quotient

p(x; t + h) − p(x; t)
h

= 1

2πi

∫
C

eκ(θ)h − 1

h
· eκ(θ)t+θx dθ. (64)
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Again invoking the asymptotic behavior of κ(θ) as θ → ∞ on C, we can, by dominated conver-
gence, prove the existence of the complex derivative ∂p(x; t)/∂t for all t ∈ C and the formula

∂

∂t
p(x; t) = 1

2πi

∫
C

κ(θ) · eκ(θ)t+θx dθ. (65)

It follows that p(x; t) is an entire function in t and

∂n

∂tn
p(x; t) = 1

2πi

∫
C

κ(θ)n · eκ(θ)t+θx dθ. (66)

�

4. Examples

4.1. The positive α-stable law

The results for the positive α-stable law with 0 < α < 1 have already been discussed in an infor-
mal way in Section 2.1. In view of the simple form of the Lévy density (8), it is straightforward
to check that the assumptions for Theorems 3, 6 and 8 are satisfied. Consequently, the results in
Section 2.1 can be derived rigorously by our three methods.

4.2. The gamma distribution

Suppose X is the gamma process, for which X1 has the law �(ν,α) with parameters ν = 1 and
α = 1. The probability and Lévy densities are

p(x; t) = 1

�(t)
xt−1e−x, u(x) = x−1e−x. (67)

To illustrate our results, we choose the approximation uε(x) = xεu(x). We note that uε(x) =
�(ε)p(x, ε) and thus

unε(x) = �(1 + ε)n · ε−n
n∑

k=1

(−1)n−k

(
n

k

)
p(x; kε). (68)

So, we are basically in the situation discussed in the third remark of Section 2.5: the convergence
of unε(x) to un(x) is equivalent to the convergence of the nth order difference quotient of (67)
at t = 0 to the nth derivative from the right. The gamma probability density is, for any x > 0, an
entire function in t and the coefficients in the series expansion (4) are given by

un(x) = x−1e−x
n−1∑
k=0

(
n

k

)
k!ck lnn−k−1 x.
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The numbers ck arise in the expansion �(1 + z)−1 = ∑
n≥0 cnz

n. They can be expressed explic-
itly as

cn = 1

(n − 1)!Yn−1
(
γ,−ζ(2),2ζ(3), . . . , (−1)n−2(n − 2)!ζ(n − 1)

)

with Yn the complete exponential Bell polynomials as given in Comtet (1970), III.3.c, γ the
Euler–Mascheroni constant and ζ the Riemann zeta function.

Let us now imagine that we did not know (67). The function xu(x) is obviously completely
monotone and Theorem 4, and so Theorem 3, applies. Let us illustrate the calculation of u2(x) by
formula (33). The tail integral is U+(x) = E1(x), where E1(x) denotes the exponential integral;
see Abramowitz and Stegun (1992), 5.1.1, page 228. A direct calculation of (U+)∗2(x) is not
very explicit. Let us write

U+(x) = V (x) − L(x), L(x) = lnx, V (x) = lnx + E1(x). (69)

This decomposition is useful because L(x) is simple, while V (x) and its derivatives are inte-
grable at zero. We have V (0) = −γ and V ′(0) = 1. Equation (69) implies

(U+)∗2(x) = L∗2(x) − 2(L ∗ V )(x) + V ∗2(x). (70)

Next, we observe L∗2(x) = (ln2 x − 2 lnx + 2 − π2/6)x and thus [L∗2(x)]′′ = (2 lnx)/x. To
compute the second derivatives of (L ∗ V )(x) and V ∗2(x), we can interchange differentiation
and convolution by the usual formulas; see Doetsch (1950), 2.14.5, page 115ff. Namely, we use

[V ∗2(x)]′′ = (V ′)∗2(x) + 2V (0)V ′(x) (71)

and

[(V ∗ L)(x)]′′ = (V ′′ ∗ L)(x) + V ′(0)L(x) + V (0)L′(x). (72)

The convolution integrals on the right-hand side of (71) and (72) can be computed in terms of
the exponential integral. Combining the three contributions, those terms cancel and we obtain

u2(x) = 2x−1e−x(lnx + γ ), (73)

in agreement with (68) above.
Finally, what can we say about Theorem 8 in this case? In its present form, it does not

apply since (52) is not satisfied, though formula (56) is correct. The cumulant function is
κ(θ) = − ln(1 + θ) and

un(x) = (−1)n

2πi

∫
C

ln(1 + θ)neθx dθ. (74)

Agreement of this formula with (68) can be established by referring to the Hankel contour inte-
grals for the derivatives of �(z)−1 at z = 1.
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4.3. The inverse Gaussian distribution

The inverse Gaussian distribution IG(δ, γ ) with δ = 1 and γ = 1 has a Lévy density of the form

u(x) = 1√
2π

x−3/2e−x/2 (75)

and the probability density is

p(x; t) = 1√
2π

tet x−3/2e−(t2x−1+x)/2. (76)

Using the generating function for the Hermite polynomials Hn(x), namely,

e2xt−t2 =
∑
n≥0

Hn(x)
tn

n! , (77)

we find

un(x) = n√
π

2−n/2x−1−n/2e−x/2Hn−1

(√
x

2

)
. (78)

Let us choose the approximation uε(x) = e−ε2/(2x)u(x). We recognize that this is a multiple of
p(x, ε) and, again, showing the convergence of unε(x) to un(x) essentially reduces to a study of
the nth order difference quotient of p(x; t) at t = 0.

Let us look at the second approach, based on the tail integral. Again, xu(x) is completely
monotone. We have

U+(x) =
√

2

πx
e−x/2 − erfc

(√
x

2

)
, (79)

where erfc(x) is the complementary error function; see Abramowitz and Stegun (1992), 7.1.2,
page 297. Let us illustrate the computation of u3(x). By looking at Laplace transforms, we es-

tablish (U+)∗3(x) = 2
√

2x
π e−x/2(2 + x)− (2x2 + 6x) erfc(

√
x
2 ) and differentiating −(U+)∗3(x)

three times, we obtain

u3(x) = 3√
2π

x−5/2(x − 1)e−x/2, (80)

in agreement with (78) above. Finally, Theorem 8 applies, the cumulant function is κ(θ) = 1 −√
1 + 2θ and we get

un(x) = (−1)n

2πi

∫
C

(
1 − √

1 + 2θ
)neθx dθ. (81)

Agreement of this formula with (78) can be established as follows. First, we substitute θ �→
(θ − 1)/2 and, expanding the integrand by the binomial theorem, we obtain a sum of Hankel
integrals of the form (12) with α = 1/2, producing a sum of powers of x. Using the well-known
explicit form of the coefficients of the Hermite polynomials shows (78).
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4.4. Examples on R: The Meixner and the normal inverse Gaussian
distribution

The following example is not covered by the standing assumptions in this paper, as the Meixner
distribution (see Schoutens (2003), Section 5.3.10, page 62), is an infinitely divisible distribution
on R, not on R>0.

Let us consider the Meixner distribution with parameters μ = 0, δ = 1, α = 1 and β = 0. It
has the density

p(x; t) = 1

π
22t−1 �(t + ix)�(t − ix)

�(2t)
.

This expression can be expanded in a series,

p(x; t) =
∑
n≥1

un(x)
tn

n! , |t | < |x|,

with

un(x) = n

x sinh(πx)
Yn−1(a1(x), . . . , an−1(x)),

where

a1(x) = ψ(ix) + ψ(−ix) + 2 ln 2 + 2γ

and

an(x) = ψ(n)(ix) + ψ(n)(−ix) − (−1)n2n(n − 1)!ζ(n) (n ≥ 2).

Here, Y again denotes complete exponential Bell polynomials, γ is the Euler–Mascheroni con-
stant, ψ is the digamma function and ζ the Riemann zeta function. Note, however, that here,
p(x; t) is not an entire function in t due to the poles of the Gamma function. Thus, we must
expect qualitative differences to the cases studied in the present paper.

The normal inverse Gaussian Lévy process with parameters μ = 0, δ = 1, α = 1 and β = 0
has the probability density

p(x; t) = tet

π

K1(
√

t2 + x2)√
t2 + x2

(x ∈ R). (82)

This expression admits a power series expansion in t = 0 for |t | < |x| and the coefficients un(x)

can be expressed in terms of polynomials and the Bessel K-function. We do not give details here,
but note that this result is similar to the Meixner case.

As both the normal inverse Gaussian and the Meixner Lévy processes can be expressed as
subordinated Brownian motions, it might be interesting to investigate the power series expansion
of a subordinator and the corresponding subordinated process in general. This issue is left to
future research.
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4.5. A bivariate example: The inverse Gaussian–normal inverse Gaussian
law

Again, this example is not covered by the assumptions of the rest of this paper as it deals with a
bivariate distribution on R>0 × R. We consider the probability densities

p(x, y; t) = t

2π
et x−2 exp

[
−1

2

(
t2 + y2

x
+ x

)]
(83)

on R>0 × R. They correspond to an inverse Gaussian–normal inverse Gaussian, or IG-NIG,
Lévy process. For properties of this type of law and its origin in a first-passage time problem
for a bivariate Brownian motion, see Barndorff-Nielsen and Blæsild (1983), Example 4.1 and
Barndorff-Nielsen and Shephard (2001), Example 4.3.

The associated Lévy measure is

u(x, y) = 1

2π
x−2 exp

[
−1

2

(
y2

x
+ x

)]
(84)

and the Laplace cumulant function is κ(θ, η) = 1 − √
1 + 2θ − η2. We can set uε(x, y) =

u(x, y)e−ε2/(2x) and proceed, just as in Section 4.3 for the IG distribution, to obtain, with (a bi-
variate extension of) our first method,

un(x, y) = lim
ε→0

n∑
k=1

(
n

k

)
(−1)n−kεn−ku∗k

ε (x, y). (85)

The resulting series expansion

p(x, y; t) =
∑
n≥1

tn

n!un(x, y), un(x, y) = n2−(n−1)/2x−(n−1)/2u(x, y)Hn−1

(√
x

2

)
(86)

agrees with the series obtained directly from the explicit expression for p(x, y; t) and the gener-
ating function for the Hermite polynomials; see (77).

Appendix: Auxiliary results

This section provides technical estimates used in the proofs of Theorem 3 and Theorem 6. Sev-
eral statements look well known and standard. Yet, for rigorous proofs, a careful checking of
integrability and differentiability conditions is necessary and, in a few places, delicate, in the
present setting.

A.1. Auxiliary estimates for the cumulant function

The structure of this subsection is as follows. In Lemma A.2, we show that the integrability
assumptions (30) of Theorem 3 imply a certain asymptotic behavior of the derivatives of u(x) as
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x → 0 and as x → ∞. This is used in Lemma A.3 to derive estimates of the derivatives of the
cumulant function κ(θ) as θ → ∞, by partial integration. We then introduce

βnk(θ) = Bnk

(
κ ′(θ), . . . , κ(n−k+1)(θ)

)
(87)

and

β∗
nk(θ) = Bnk

(|κ ′(θ)|, . . . , ∣∣κ(n−k+1)(θ)
∣∣), (88)

where Bnk denotes the partial Bell polynomials, as defined and discussed in Comtet (1970),
Section 3, page 144ff. The estimates for the derivatives of κ(θ) are plugged into the Bell polyno-
mials βnk(θ) in Lemma A.4. Using the latter, we obtain estimates for the derivatives of λn(θ) as
θ → ∞ in Lemma A.5. Next, Lemma A.6 shows that uε(x) satisfies the assumptions (30) uni-
formly for 0 < ε ≤ 1 and thus, applying Lemmas A.2–A.5 to uε(x), gives uniform estimates for
the derivatives of λnε(θ) as θ → ∞. Finally, Lemma A.7 provides a refined estimate for βnk(θ)

from the slightly stronger assumptions of Theorem 6.
We are considering distributions on R>0, thus we have |eκ(θ)| ≤ 1 for �(θ) ≥ 0. Moreover,

κ(θ) is analytic for �(θ) > 0 and

κ(n)(θ) = (−1)n
∫ ∞

0
e−θxxnu(x)dx, �(θ) > 0, n ≥ 1. (89)

Definition A.1. Suppose n ∈ N and c > 0. We then say that assumption An(c) holds for u(x) if
u(x) is n-times continuously differentiable and

∫ ∞

0
e−cxxk+1

∣∣u(k)(x)
∣∣dx < ∞, k = 0,1, . . . , n. (90)

A consequence of assumption An(c) is, that the Laplace transform
∫ ∞

0 e−θxxmu(n)(x)dx ex-
ists for any m ≥ n + 1 and �(θ) > c.

Lemma A.2. Suppose n ≥ 2 and c > 0. If assumption An(c) holds, then

lim
x→0

e−θxxnu(n−2)(x) = 0, lim
x→∞ e−θxxnu(n−2)(x) = 0 (91)

for �(θ) > c.

Proof. Let 0 < a < b. Partial integration gives

∫ b

a

e−θx
(
xnu(n−2)(x)

)′ dx = e−θxxnu(n−2)(x)|ba + θ

∫ b

a

e−θxxnu(n−2)(x)dx. (92)

We have (xnu(n−2)(x))′ = nxn−1u(n−2)(x)+xnu(n−1)(x) and see from the integrability assump-
tions An(c) and �(θ) > c that both integrals in (92) converge to a finite value as a → 0 and b →
∞ (separately). Thus, the limits limx→0 e−θxxnu(n−2)(x) = α and limx→∞ e−θxxnu(n−2)(x) =
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ω exist with finite α and ω. But, α �= 0 or ω �= 0 would imply that e−θxxn−1u(n−2)(x) is asymp-
toically equivalent to α/x as x → 0, respectively to ω/x as x → ∞. Both properties would
contradict the integrability of e−θxxn−1u(n−2)(x) that follows, again, from assumption An(c).
Thus, we must have α = 0 and ω = 0. �

The following lemma is essentially a reformulation of the well-known fact that an n-times
differentiable function f (x) with f (k)(x) integrable for 0 ≤ k ≤ n has a Fourier transform f̂ (y)

which satisfies f̂ (y) = O(|y|−n) as |y| → ∞. As we will need uniform growth estimates later,
we provide a more detailed statement with explicit bounds.

Lemma A.3. Suppose n ≥ 0 and c > 0. If assumption An(c) holds and we let

Lk(c) =
∫ ∞

0
e−cxxk+1

∣∣u(k)(x)
∣∣dx, k = 0,1, . . . , n, (93)

then

∣∣κ(n)(θ)
∣∣ ≤ Mn(c)

|θ |n−1
, �(θ) > c, (94)

where

M0(c) = L0(c), Mn(c) =
n−1∑
k=0

(
n − 1

k

)
(n)n−1−kLk(c) (n ≥ 1). (95)

Proof. For n = 1, we have κ ′(θ) = − ∫ ∞
0 e−θxxu(x)dx and the assertion of the lemma is obvi-

ous, namely, |κ ′(θ)| ≤ L0. For n = 0, we can write κ(θ) = ∫ θ

0 κ ′(ζ )dζ and the assertion follows,
namely |κ(θ)| ≤ L0|θ |. For n ≥ 2, we recall κ(n)(θ) = (−1)n

∫ ∞
0 e−θxxnu(x)dx. Let 0 < a < b.

Repeated partial integration gives

∫ b

a

e−θxxnu(x)dx = −
n−1∑
k=1

1

θk
e−θx(xnu(x))(k−1)

∣∣∣b
a
+ 1

θn−1

∫ b

a

e−θx(xnu(x))(n−1) dx (96)

and, by the Leibniz rule, we obtain

(xnu(x))(k−1) =
k−1∑
�=0

(
k − 1

�

)
(n)k−1−�x

n−1−kx�+2u(�)(x). (97)

From assumption An(c) and Lemma A.2, we conclude, letting a → 0 and b → ∞, that

κ(n)(θ) = (−1)n

θn−1

∫ ∞

0
e−θx(xnu(x))(n−1) dx. (98)
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Using (97), this time with k = n, we get

(xnu(x))(n−1) =
n−1∑
�=0

(
n − 1

�

)
(n)n−1−�x

�+1u(�)(x). (99)

This shows that the integral in (98) is bounded by Mn(c). �

Lemma A.4. Suppose n ≥ 0 and c > 0. If assumption An(c) holds, then

β∗
nk(θ) ≤ Mnk

|θ |n−k
, k = 1, . . . , n, (100)

where Mnk = Bnk(M1, . . . ,Mn−k+1), the constants M1, . . . ,Mn are as in Lemma A.3 above, and
Bnk denote the partial Bell polynomials.

Proof. The Bell polynomials Bnk have non-negative coefficients and are therefore increasing
functions of each argument. Using the bounds from Lemma A.3, we have

β∗
nk(θ) = Bnk

(|κ ′(θ)|, . . . , ∣∣κ(n−k+1)
∣∣) ≤ Bnk

(
M1,

M2

|θ | , . . . ,
Mn−k+1

|θ |n−k

)
. (101)

Using the homogeneity property of the Bell polynomials (see Comtet (1970), Theorem III.3.A),
in particular, the last part of the proof, we obtain the desired result. �

Lemma A.5. Suppose m ≥ 1, n ≥ 1 and assumption An(c) holds for u(x) with some c > 0, and
let λn(θ) = κ(θ)n. Then

∣∣λ(m)
n (θ)

∣∣ ≤ Emn

|θ |m−n
with Emn =

m∧n∑
j=1

(n)jL
n−j

0 Mmj . (102)

Proof. From the explicit form of Faa di Bruno’s formula (see, e.g., Gradshteyn and Ryzhik
(2000), (0.43) and Comtet (1970) (Theorems III.3.A and III.4.A)), we get λ

(m)
n (θ) =∑m∧n

j=1 (n)j κ(θ)n−j × βmj (θ) and, in conjunction with the estimates from Lemma A.4 we obtain
the result. �

Lemma A.6. Suppose n ≥ 0, assumption An(c) holds for u(x) with some c > 0 and we let

Lk(c) =
∫ ∞

0
e−cxxk+1

∣∣u(k)(x)
∣∣dx, k = 0,1, . . . , n. (103)

If we set uε(x) = e−ε/xu(x) for x > 0 and ε > 0, then assumption An(c) holds for uε(x) and we
have, for any ε > 0, the uniform bound

∫ ∞

0
e−cxxn+1

∣∣u(n)
ε (x)

∣∣dx ≤ L̄n(c), (104)
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where

L̄n(c) =
n∑

k=0

k∑
�=1

(
n

k

)(
k − 1

� − 1

)
k!
�!�

�e−�Ln−k(c). (105)

Proof. This follows from

[e−ε/x](k) =
k∑

�=1

(−1)�+k

(
k − 1

� − 1

)
k!
�!x

−k

(
ε

x

)�

e−ε/x (106)

and the inequality 0 ≤ x�e−x ≤ ��e−� for x ≥ 0. �

Lemma A.7. Suppose m ∈ N, α ∈ (0,1), c ∈ (0,∞) and u(x) is the Lévy density of an infinite
activity subordinator which is m-times differentiable and such that the functions

v�(x) = e−cxx�+1u(�)(x) (� = 0, . . . ,m) (107)

are integrable and their integral modulus of continuity satisfies

ω(1)(δ;v�) =O(δ1−α) (δ → 0). (108)

We then have, for n = 0, . . . ,m,

κ(n)(θ) =O(|θ |α−n),
(
(θ) → ±∞)

(109)

and, for � = 1, . . . ,m,

βm�(θ) =O(|θ |�α−m)
(
(θ) → ±∞)

. (110)

Proof. From the proof of Lemma A.3 above, we know that

κ(n)(θ) = (−1)n

θn−1

n−1∑
�=0

(
n − 1

�

)
(n)n−1−� ·

∫ ∞

0
e−θxx�+1u(�)(x)dx (111)

for n = 1, . . . ,m. Using the assumptions (108) and the well-known relation between the as-
ymptotic behavior of the integral modulus of continuity at zero and the asymptotic growth of the
Fourier transform at infinity yields (109) for n = 1, . . . ,m. To be more specific, we apply Kawata
(1972), Theorem 2.7.4 to the functions f (x) = e−�(θ)xx�+1u(�)(x)I(x>0). Note that there is a
misprint (not relevant here) in the reference: f (t) should be f̂ (t).

The case n = 0 follows immediately by using the estimate for κ ′(θ) in κ(θ) = ∫ θ

0 κ ′(ζ )dζ .
Plugging these estimates into (87) and looking at the explicit formula for the Bell polynomials
given in Comtet (1970), Theorem III.3.A shows that

βm�(θ) =O
(∑

|θ |a1(α−1)+···+am(α−m)
)

=O(|θ |�α−m). (112)

�
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Lemma A.8. Suppose the assumptions for Lemma A.7 hold and

λ(m)
n (θ; t) = ∂m+n

∂θm ∂tn
eκ(θ)t . (113)

Then

λ(m)
n (θ; t) =O

(|θ |(m+n)α−m
) (
(θ) → ±∞)

. (114)

Proof. First, we have

λ(0)
n (θ; t) = κ(θ)neκ(θ)t . (115)

Using (89) and (109) with n = 0 shows the claim for m = 0. Next, by differentiating (115) m ≥ 1
times according to Faa di Bruno’s formula, we get

λ(m)
n (θ; t) =

m∑
�=1

�∑
j=0

(
�

j

)
(n)j κ(θ)n−j t�−j eκ(θ)tβm�(θ)κ(θ)neκ(θ)t . (116)

Using (89), (109) with n = 0 and (110), we obtain (114). �

A.2. Convolutions and Laplace transforms

In this subsection, we provide further auxiliary results for the proof of Theorem 3. For notational
convenience, let us define V (x) = U+(x) and Vn(x) = V ∗n(x). First it is shown in Lemma A.9
that the convolution powers V ∗n(x) exist. We then show that the V ∗n(x) are n-times differen-
tiable and we provide an integral representation in Lemma A.10.

Lemma A.9. Let

V (x) =
∫ ∞

x

u(y)dy. (117)

Then

Vn(x) = V ∗n(x), x > 0, (118)

is well defined for n ≥ 1 and we have the Laplace transforms
∫ ∞

0
e−θxVn(x)dx = (−1)n

κ(θ)n

θn
, �(θ) > 0. (119)

Proof. Let r > 0 be arbitrary. A standard argument using the Fubini–Tonelli theorem shows that
Ṽ (x) = e−rxV (x) is integrable. Thus, the convolution powers Ṽ ∗n(x) exist for almost all x > 0
and are integrable on R>0. As we have

erxṼ ∗2(x) =
∫ x

0
V (y)V (x − y)dy, (120)
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this shows that V (y)V (x − y) is integrable on (0, x) and V ∗2(x) exists for almost all x > 0.
Repeating the argument shows that the higher convolution powers exist for almost all x > 0. �

In Barndorff-Nielsen and Hubalek (2006), a second proof is given, using the theory of convo-
lutions of functions of the class J0 (from Doetsch (1950)) and it is shown that the convolution
powers Vn(x) = V ∗n(x) actually exist for all x > 0.

Next, we address the differentiability of Vn(x) = V ∗n(x). For technical reasons, we work with
the derivatives of xmVn(x) instead, where m is sufficiently large.

Lemma A.10. Suppose n ∈ N and assumption Am(c) holds for some m ≥ n+2 and c > 0. Then
Vn(x) is n-times differentiable and

V (k)
n (x) = (−1)m+n

2πixm

∫ c+i∞

c−i∞

(
κ(θ)n

θn−k

)(m)

eθx dθ, x > 0, k = 0,1, . . . , n. (121)

Proof. The result follows basically from Erdélyi et al. (1954), IV.4.1 (13), page 130, which
implies, that

∫ ∞

0
e−θxxmV (k)

n (x)dx =
(

κ(θ)n

θn−k

)(m)

. (122)

For a rigorous proof of (121), we have to show that (i) Vn(x) is actually n-times differentiable,
(ii) that the integrability conditions that allow the application of the quoted rule for the Laplace
transform are satisfied and (iii) that the use of the Laplace inversion formula to deduce (121)
from (122) is valid. This can be done in an elementary way by induction, with some careful and
tedious bookkeeping, incorporating the estimates from Appendix A.1. For details, we refer the
reader to Barndorff-Nielsen and Hubalek (2006), Lemmata 23 and 24. �

The result is less obvious than it at first seems. First, the common belief, that convolution in-
creases smoothness is, in general, not true, as the shocking counterexamples in Uludağ (1998)
demonstrate. Second, the integrability assumptions to apply the standard theorems on the deriva-
tives of convolutions (such as in Doetsch (1950), I.2.14.5) are typically not satisfied in our setting
for V (x), as can be immediately seen from the positive stable example. Third, the application of
Erdélyi et al. (1954), IV.4.1 (13), page 130 cannot validly be decomposed into an application of
Erdélyi et al. (1954), IV.4.1 (8), page 129 followed by an application of Erdélyi et al. (1954),
IV.4.1 (6), page 129.

Acknowledgements

We thank Ken-Iti Sato, Angelo E. Koudou and an anonymous referee for helpful comments on
an earlier version of this paper.



Probability measures, Lévy measures and analyticity in time 789

References

Abramowitz, M. and Stegun, I.A. eds. (1992). Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables. New York: Dover Publications Inc. MR1225604

Barndorff-Nielsen, O.E. (2000). Probability densities and Lévy densities. Research Report 18, Aarhus
Univ., Centre for Mathematical Physics and Stochastics (MaPhySto).

Barndorff-Nielsen, O.E. and Blæsild, P. (1983). Reproductive exponential families. Ann. Statist. 11 770–
782. MR0707928

Barndorff-Nielsen, O.E. and Hubalek, F. (2006). Probability measures, Lévy measures, and analyticity in
time. Thiele Research Report 2006–12, Univ. Aarhus, Denmark, The Thiele Centre.

Barndorff-Nielsen, O.E. and Shephard, N. (2001). Modelling by Lévy processes for financial econometrics.
In Lévy processes, Theory and Applications (O.E. Barndorff-Nielsen, T. Mikosch and S.I. Resnick, eds.)
283–318. Boston, MA: Birkhäuser. MR1833702

Barndorff-Nielsen, O.E. and Shephard, N. (2008). Financial Volatility in Continuous Time: Volatility and
Lévy Based Modelling. Cambridge Univ. Press. To appear.

Bondesson, L. (1992). Generalized Gamma Convolutions and Related Classes of Distributions and Densi-
ties. New York: Springer. MR1224674

Burnaev, E.V. (2006). An inversion formula for infinitely divisible distributions. Uspekhi Matematicheskikh
Nauk 61 187–188. MR2278841

Comtet, L. (1970). Analyse combinatoire. Tome I. Paris: Presses Universitaires de France. MR0262087
Doetsch, G. (1950). Handbuch der Laplace-Transformation. 1. Basel: Birkhäuser. MR0344808
Doney, R.A. (2004). Small-time behaviour of Lévy processes. Electron. J. Probab. 9 209–229. MR2041833
Embrechts, P. and Goldie, C.M. (1981). Comparing the tail of an infinitely divisible distribution with inte-

grals of its Lévy measure. Ann. Probab. 9 468–481. MR0614631
Embrechts, P., Goldie, C.M. and Veraverbeke, N. (1979). Subexponentiality and infinite divisibility.

Z. Wahrsch. Verw. Gebiete 49 335–347. MR0547833
Erdélyi, A., Magnus, W., Oberhettinger, F. and Tricomi, F.G. (1954). Tables of Integral Transforms. I. New

York: McGraw-Hill. MR0061695 (15,868a)
Feller, W. (1971). An Introduction to Probability Theory and Its Applications. II, 2nd ed. New York: Wiley.

MR027043 (42 #5292)
Gradshteyn, I.S. and Ryzhik, I.M. (2000). Table of Integrals, Series, and Products, 6th ed. San Diego, CA:

Academic Press Inc. MR1773820
Hille, E. and Phillips, R.S. (1957). Functional Analysis and Semi-groups, rev. ed. Providence, RI: Amer.

Math. Soc. MR0089373
Hubalek, F. (2002). On a conjecture of Barndorff-Nielsen relating probability densities and Lévy densi-

ties. In Proceedings of the 2nd MaPhySto Conference on Lévy Processes: Theory and Applications
(O.E. Barndorff-Nielsen, ed.). Number 22 in MaPhySto Miscellanea.

Ishikawa, Y. (1994). Asymptotic behavior of the transition density for jump type processes in small time.
Tohoku Math. J. Second Series 46 443–456. MR1301283

Kawata, T. (1972). Fourier Analysis in Probability Theory. New York: Academic Press. MR0464353
Léandre, R. (1987). Densité en temps petit d’un processus de sauts. Séminaire de Probabilités XXI. Lecture

Notes in Math. 1247 81–99. Berlin: Springer. MR0941977 (89g:60179)
Picard, J. (1997). Density in small time at accessible points for jump processes. Stochastic Process. Appl.

67 251–279. MR1449834
Rüschendorf, L. and Woerner, J.H.C. (2002). Expansion of transition distributions of Lévy processes in

small time. Bernoulli 8 81–96. MR1884159
Sato, K. (1999). Lévy Processes and Infinitely Divisible Distributions. Cambridge: Cambridge Univ. Press.

MR1739520

http://www.ams.org/mathscinet-getitem?mr=1225604
http://www.ams.org/mathscinet-getitem?mr=0707928
http://www.ams.org/mathscinet-getitem?mr=1833702
http://www.ams.org/mathscinet-getitem?mr=1224674
http://www.ams.org/mathscinet-getitem?mr=2278841
http://www.ams.org/mathscinet-getitem?mr=0262087
http://www.ams.org/mathscinet-getitem?mr=0344808
http://www.ams.org/mathscinet-getitem?mr=2041833
http://www.ams.org/mathscinet-getitem?mr=0614631
http://www.ams.org/mathscinet-getitem?mr=0547833
http://www.ams.org/mathscinet-getitem?mr=0061695
http://www.ams.org/mathscinet-getitem?mr=027043
http://www.ams.org/mathscinet-getitem?mr=1773820
http://www.ams.org/mathscinet-getitem?mr=0089373
http://www.ams.org/mathscinet-getitem?mr=1301283
http://www.ams.org/mathscinet-getitem?mr=0464353
http://www.ams.org/mathscinet-getitem?mr=0941977
http://www.ams.org/mathscinet-getitem?mr=1449834
http://www.ams.org/mathscinet-getitem?mr=1884159
http://www.ams.org/mathscinet-getitem?mr=1739520


790 O.E. Barndorff-Nielsen and F. Hubalek

Sato, K. and Steutel, F.W. (1998). Note on the continuation of infinitely divisible distributions and canonical
measures. Statistics 31 347–357. MR1711429

Schoutens, W. (2003). Lévy Processes in Finance: Pricing Financial Derivatives. Chichester: Wiley.
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