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ON THE NUMBER OF CUSPS OF PERTURBATIONS
OF COMPLEX POLYNOMIALS
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Abstract

Let f be a l-variable complex polynomial such that f has an isolated singularity
at the origin. In the present paper, we show that there exists a perturbation f; of f
which has only fold singularities and cusps as singularities of a real polynomial map
from R? to R2. We then calculate the number of cusps of f; in a sufficiently small
neighborhood of the origin and estimate the number of cusps of f; in R

1. Introduction

Let f:R?> — R? be a smooth map which has fold singularities and cusps
as singularities. We call such a map an excellent map. 1In [10], Whitney showed
that the set of excellent maps is dense in C*(R? R?).

It’s known that there is a relation between the topology of surfaces and the
topology of the critical locus of a map. Quine [8] and Fukuda-Ishikawa [2]
studied the number of cusps of stable maps between oriented 2-manifolds. The
degree of cusps of a stable map is determined by the topological degree of a
stable map and the Euler characteristics of surfaces. Fukuda and Ishikawa also
studied the number of cusps of stable perturbations of generic map germs [2].
They showed the number of cusps modulo 2 is a topological invariant of generic
map germs. Moreover, the number of cusps modulo 2 depends only on the
topology of surfaces. Krzyzanowska and Szafraniec gave a criterion to deter-
mine if a polynomial map is an excellent map or not [5]. They also gave an
algorithm to compute the number of cusps of generic polynomial maps. In [9],
Szafraniec considered bifurcations of cusps of families of plane-to-plane maps and
presented an algebraic method for computing the number of cusps of analytic
families. In holomorphic case, Gaffney and Mond gave an algebraic formula
to count the number of cusps and nodes of a generic perturbation of finitely
determined holomorphic map germs from (C?,0) to (C?,0), where o is the origin
of C* [3]. Farnik, Jelonek and Ruas described the number of cusps and nodes
of generic complex polynomial maps [1].
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Let f(z) be a complex polynomial such that f(0) =0. Then there exist a
positive integer k and a complex polynomial g(z) such that f(z) = z¥g(z) and
g(0) #£0. We call k the multiplicity of f at the origin. In this paper, we study
certain perturbations of complex polynomials and calculate explicitly the number
of cusps of perturbations by using multiplicities of singularities of complex poly-
nomials. We identify C with R?. Then f(z) defines a real polynomial map

fiR =R (x, ) = (Rf(x, ), 7 (x, ),

where z = x + v/ —1y. Assume that the origin 0 of C is a singularity of f. We
define a linear perturbation f, of f as follows:

fi(2) = f(2) + tla+ ib)zZ,

where a,b,teR, i =+v/—1 and 0 < |f| « 1. Note that a linear perturbation f; of
f is not a complex polynomial, but is a 1-variable mixed polynomial in the sense
of Oka [7]. We now regard a mixed polynomial map f; : C — C as a real poly-
nomial map (Rf;,Sf,): R> — R% If f(z) =z", Fukuda and Ishikawa showed
that the number of cusps of a linear perturbation of f is congruent to n + 1
modulo 2, see [2, Example 2.3]. In [4], the author, Ishikawa, Kawashima and
Nguyen showed that there exist linear perturbations of 2-variable Brieskorn poly-
nomials which are excellent maps and we estimated the number of cusps of linear
perturbations.

As we will show in Lemma 2, f; is an excellent map for 0 < |¢f| « 1 if a and
b lie outside the union of zero sets of analytic functions determined by a, b and
f. In particular, such a and b are generic. The main theorem is the following.

THEOREM 1. Let f(z) be a complex polynomial and k be the multiplicity of f
at the origin.  Suppose that k > 2. If a linear perturbation f; of f is an excellent
map for 0 < |t| < 1, then the number of cusps of fi|y is equal to k + 1, where U is
a sufficiently small neighborhood of the origin.

We estimate the number of cusps of f; in R>.

COROLLARY 1. Let f; be a liner perturbation of a complex polynomial f in
Theorem 1 and n=deg f. Assume that n > 2. Then the number of cusps of f;
belongs to [n+1,3n— 3. In particular, the number of cusps of f; is at least three.

This paper is organized as follows. In Section 2 we give the definition of
excellent maps, a criterion to study generic polynomial mappings and introduce
the notation of the multiplicity of roots of mixed polynomials. In Section 3 we
show the existence of linear perturbations which are excellent maps. In Section
4 we prove Theorem 1 and give an example of a perturbation of a complex
polynomial which has (n+ 1)-cusps and also an example which has (3n — 3)-
cusps.

The author would like to thank Professor Toshizumi Fukui and Professor
Masaharu Ishikawa for precious comments and fruitful suggestions. He also
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thanks to the referee for careful reading of the manuscript and several accurate
comments.

2. Preliminaries

2.1. Excellent maps. Let X and Y be 2-dimensional smooth manifolds.
A smooth map f: X — Y is called an excellent map if for any p € X, there exist
local coordinates (x, y) centered at p and local coordinates centered at f(p) such
that f is locally described in one of the following forms:

(1) (x,3) = (x,»),

(2) (x,2) = (x,2%),

(3) (x,») = (x, 7 +xp).
A point p in the case (1) is a regular point. In the cases (2) (resp. (3)), a point p
is called a fold (resp. a cusp).

We introduce the bundle J"(X, Y) of r-jets and its submanifolds Si(X, Y)
and S?(X,Y) for k=1,2. For a smooth map f:X — Y, a point p and a
positive integer r, let j’f(p) be the r-jet of f at p. Set

XY= J T Y,paq),
(P q)eXxY
where J"(X, Y, p,q) ={j"f(p)| f(p) =q}. The set J'(X,7) is called the bundle
of r-jets of maps from X into Y. The r-extension j'f : X — J'(X,Y) of f is
defined by p+— j'f(p), where pe X. It is known that J'(X,Y) is a smooth
manifold and the r-extension j'f of f is a smooth map. We define a submani-
fold of J'(X,Y) for k=1,2 as follows:

Sk(X,Y)={j'f(p) e J'(X, Y)|rank df, =2 — k}.

A smooth map f: X — Y is an excellent map if and only if
(1) j'f is transversal to Si(X,Y) and S>(X,Y),
(2) j*f is transversal to S%(X,Y),

where S7(X,Y) is defined as follows:

j]f(p) € Sl(Xv Y)7
S{(X,Y) =< j*f(p)eJ*(X,Y) | j'f is transversal to Si(X,Y) at p,

rank d(f'[S1(f))(p) =0

Denote by C*(X, Y) the set of all smooth maps X — Y equipped with the C*-
topology. It is known that the subset of smooth maps from X to Y which are
excellent maps is open and dense in C* (X, Y) topologized with the C*-topology
[6, 10].

2.2. Singularities of polynomial maps. Let g = (g1,92) : U — R? be a poly-

. . 0 P 0 iaJ .
nomial map, where U is an open set. Set J = 091,9) G = (9:,) fori=1,2.

a(x, )’ a(x, »)
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We define the algebraic set G’ as follows:

/ a(le‘]) a((;27‘])
G::{x,yeUJx,y:Glx,y:sz,y: =— =0
(5.9) € UII(x,9) = Gi((,9) = Galox, ) = G0 = G2
In [5, Proposition 2] and [9, Proposition 2.2], Krzyzanowska and Szafraniec

showed the following proposition:

PROPOSITION 1. The algebraic set G' is empty if and only if the set of
singularities of g consists of either fold singularities or cusps. Moreover, the
number of cusps of g is equal to the number of {(x,y) e U|J(x,y) = Gi(x,y) =
G (X, y) = 0}

2.3. Multiplicity with sign. Set z=x41iy. Then a pair of real polyno-
mials (g1,g>2) defines a mixed polynomial g(z,Z) as follows:

9(z,2) = g1(x, y) +iga(x, y)

_ z4+zZ z—2Z n z4+Z z—2Z
“IN\ T2 T2 )T\ T )
dg g . . .
Then P and PE satisfy the following equations:
99 _1 (09 09\ _1(091 092\ (062 0o
0z 2\0x dy) 2\ox 0Oy 2\ ox  dy )’
dg 1 (dg .0g\ 1 [(0g1 0g2\ i (09>  0g
az_z(ax+’ay AV AR A
Suppose that w is a mixed singularity of a mixed polynomial ¢, i.e., the gradient

vectors of g, and g, at w are linearly dependent. Then we have

2| -

see [7]. Let a e C be an isolated root of g(z,Z) =0. Put
S; (@) ={zeC|lz—al =4},

where ¢ is a sufficiently small positive real number. We define the multiplicity
with the sign of the root o« by the mapping degree of the normalized function
9 1 1
=:8,(a) = S".
lgl —*
We denote the multiplicity with the sign of the root o by my(g, ).
We say that o is a positive simple root if o satisfies

a9 a9
P[> |2
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Similarly, « is a negative simple root if o satisfies

) 0
2 )| <[ 2
In [7, Proposition 15], o is a positive (resp. negative) simple root if and only if
my(g,a) =1 (resp. my(g,0) = —1).

Consider a bifurcation family g,(z,Z) =0 for go=¢ and r€R, ie., g, is a
family of mixed polynomials which satisfies go = ¢g. Let {P;(¢),...,P,(?)} be the
roots of ¢,(z,Z) =0 which are bifurcating from z =«. Then we have

y
st(ghpj(l)) = ms(g7 O()v
=1

see [7, Proposition 16].

3. The existence of linear perturbations which are excellent maps

Let f(z) be a complex polynomial. Assume that f(0) =0 and the origin
of C is a singularity of f. Set fi =%/ and f, =3f. We take a,beR. Then
a linear perturbation f; of f is defined by fi(z) = f(z) + t(a + ib)Z, where 0 <
|t| « 1. Note that f; is equal to

fi(z) = f(2) + tla+ ib)z
= fi(z) + t(ax + by) + i{ f2(2) + t(bx — ay)}.
Then f, defines a real polynomial map from R? to R? as follows:
Jo: R = R% (%, ) = (filx, p) + t(ax + by), fo(x, p) + 1(bx — ap)).

. . ) 0
We calculate J, G; and G, of f;. By the Cauchy—Riemann equations a—{i =— (’)i)i
and %: %, J is modified as
dy  0Ox
% + ta % + b
J = det
% +tb % —ta
0x dy
0
‘—fl + ta @ + b
— det Ox 0y
B oh oh
N 2
N ofi o 202 2
~(3) +(F) - e+
| ? 202 | 12
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2 2 2
Since f is a harmonic function, i.e., :3 {_ =0, a& ]8(1 = —;gl by the Cauchy—
Riemann equations. Then we have %% Xox yey
%—H aiyl+ th
Gy = det al al
Ox oy
2 2 Ap A2
Y THAY N T T Y B O i O
Ox Oox 0xdy 0Oy 6y(3y 6y Ox dydy = 0Oy 0xdy

Y (Y Phi o

Ox dy) ) éxdy " ox dy dydy

B9 OO R R e DY G e W M
dx 0xdy 0y dydy ax dydy ' dy oxdy

By the same argument, G, is equal to

of n ofi

= det S ’ g_[
B 6J 6J
_) _%H N Sh o Ph
ox 6x(3y 6y 6y6y
0f1 _@ Ch h Ph
Ox ayay (3y axﬁy

(O—ﬁ)—(% A
N Ox ) 8y0y 6x dy 0xdy

oada(L2h oh PR\ (o @4 o AN L
Ox dydy ~ 0dy 0xdy Ox 0xdy 0y dydy

If G and G, are equal to 0 at (x,y),
equation:

(L) (L)) 2L 0ali 8 2
Ox Jy 0x0y Ox 0Oy 0ydy

2 2 2 2
O O O A s A W s O
Ox dydy = 0Oy 0xdy Ox d0xdy 0y dydy

then (x,y) satisfies the following
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() -(3)) 5254
N Ox ay 0ydy Ox 0y 0x0y

0 Y T A W O s i 8
Ox 0x0y dy 0ydy Ox 0ydy 0Oy Oxay

Hence we have
o\ 0f NG AN LAY
1 1 1 1
v E)
5 @ L oh °f 0
ﬁx 6 ox 0x0y 0ydy
_<%>2+3<6f1) sl (enY (@nY
0x dy ox ayé’y 0x0dy
o N\ on *f @A
‘2< (%) *(5))5%%}

=0.

Set real polynomials ¢;, ¢, and ® as follows:
NG SN AR YN ANN G AN
b= <_3<$> +<ay)> {(@@) (My)
A0
0x 0xdy 0ydy’
¢-—_0_ﬁ 25f1 2\ (@AY
2 oyoy 0x0y
(@) +<@>2 o Ph
oy 0y 0x0y 0yody’
® = ag, + be,.

Suppose that G; and G, are equal to 0 at (x, y).
definitions of ¢;, ¢, and @, ®(x, y) is also equal to 0. To show the existence

of linear perturbations which are excellent maps, we consider the intersection of

¢1'(0) and ¢ (0).

+

b

_|_

By the equation (1) and the
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LeMMA 1. Let U be a sufficiently small neighborhood of the origin 0 of C.
2,
Assume that U satisfies {w € U‘%(w) = 0} ={0} and {we U 7 (w) = 0} C

0z0z
{0}, Then the intersection of ¢;7'(0), ¢5'(0) and U is equal to {0}.

Proof. Let (x,y) be a point of ¢;'(0)N¢,'(0)NU. Assume that (x,y)

. afi _ i —
satisfies a(x, y)=0 or (6x (x, y)) ( ) =0. Then we have

. 3 2, 2 2, 2
(Fn) {(%u, y>) - (jxf;; (x, y>> } -0,

ofi % ’*f
<5(x7y)) axay(my)oy@y( ,¥)=0

2
ey =00 Ty = 20

ay ayay %)
Rxn =L =0} o {(m)e vl

By the above equations, (x,y) satisfies =—

=0. So (x,y) belongs to {(x, y) € U‘

2fi >*f

0x0y () = oydy ) )

. on N ofi

h ¢ ﬁ —_— = — - - = V.

Suppose that (x, y) satisfies o (x,y)=0 or 3<6x (x, y)) + (6y (x, ) 0
By the same argument, we can check that (x,y) is equal to O.

2
We assume that (x,y) satisfies %% £0 and {<8f1> 3(%> }

(x,y)=0 By the assumption of U, (x,y) is equal to 0.

o, o, x 0y | 0x \ dy
{3<E> <6y) }#O on U. Then (x,y)ed; ' (0)N¢,'(0)N U satisfies
() @)% - (3]
) 2h A _ 0x 0x Jy 0ydy 0x0y
0xdy dydy _( (g{l 2 ; (0;_];>2> % ’

AN AT AT AN A
_<6x> ”(ay) ox \\oay) ~\axay
, Oh Ch .
daxdy dydy ( < f1>2 (@q) ) o
_3( Y1 o
X dy dy

By the above equations, (x,y) satisfies the following equation:

+
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2 2
_3%24_%2 %24__%2_'_3%2 %2
ox oy oy ox oy Ox
2 2
y LY ([ oh B
dydy 0x0y N

(’)Zf 2 52f 2
Th : - : I 1 . By th ion (2), th
us <6y(’)y (x7 y)) ((’bcay (x, y)) is equal to 0 y the equation (2), the

A2 o vy

second differentials O—J:I(x, y) a oA (x,y) of fi are equal to 0. By the
dydy 0xdy

assumption of U, the intersection ¢, '(0) N¢,'(0)N U is equal to {0}. O

To study singularities of f;, we define the mixed polynomial G, as
follows:

G, = G+ iG,
%-f'Z‘ aiy1+tb —%Hb %—m
= det 6i QJ + i det iJ i‘]
ox 0y 0x ay

of of oI (of; ofi aJ
<5 et <_y+ b>>0y <6y+ b <0x_t >>0x
:(?;-i—t(a-i—ib))gi—i(gj;—t(a-i-ib))gi.

Since 6_] is equal to l a—J—ia—J 6_] and 1 are equal to
0z q 2\ox dy)’ ox oy q
0f _ 300 o Prof _efof  df
ox oz 0z0z 0z 0z0z 8z 0zdz Oz’
6_] 26] 26f8f 6f§76f@
ay 0z 0z0z 0z l

0z0z 0z 0z0z 0z

where z=x+1iy. Thus G, is equal to

(U o\ (LTSN (o (LA S
(Zriarin) am&‘@&) ’(&"“’“”)(@&*@E)

_ o >f of
N (62) 020z 0z

—|— 2ti(a + ib) ——
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: of | o ,
Suppose that z satisfies Gi(z) =0 and al(z) = { (z) #0. By using the above
equation, we have z ozoz

o . f f o9
of .
T @) = -+ i)

Thus z satisfies J(z) = 0. Since the multiplicity & of f at the origin is greater

than 1, G,(0) =0 and f( )aa{ (0) =0. Thus we have

{zeU|G,(z):o%(z>¢o jg();ﬁo}

={ze U\{0}| Gi(z) = 0} c T 1(0).

Similarly, we define the following mixed polynomial:

. ox 0y . ox 0y
H, := det 6_] 6_] + i det 6_] (3_]
ox 0y ox 0y

_(9G1 6G2 oJ (G 0G2 5]
“Uox " )y oy 8y '

The differentials of G, satisfy the following equations:
0G G, 090G oG
o (G )] (062 _9G1)
0z ox  0dy ox 0y
%6, _1 @_@ L 1(26:, 26
0z 2\ ox 0y 2\ ox  ay )’

(0G, 0G\oJ (3G, 3G\ dJ
H’_(az+az—>ay l(@z az-)ax

_0G (300 96, (0o
0z \dy ox 0z \dy ox)

oJ .0J oJ oJ .0J oJ
. ___:_2_ e _:2_ H T 1
Since 2 i E i EE and 3y +i E i 5. Hi is equal to

Then we have
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B 0G; 0J 0G, 0J
=gt az e

2 —_

_—2{ 4:1 i +2ti(a + ib) o7 af}a i

z |0z0z

d P

+2i{ 21(6}() azafaz-l-m(a—i-lb)

AN 5 a1\ oY

N < ) 0z0z 0z0z 0z 0z0z0z

g | (Y o o

+arla+ib) TS - )+

o
Lo

definitions of G, and H,, we have

*f
0z0z

Note that J(0) = —*(@* +b*) #0 for t #0 and (a,b) # (0,0). By the

{z€ U\{0}| Gy(=) = Hi(2) = 0} = {ze U1IE) = Gi(2) = Go(2)

_AGud) L AGd)
=2y D omy) @ 0}'

We show the existence of a linear perturbation f; of f which is an excellent map
for generic (a,b).

LemMma 2. For a generic choice of (a,b), fil, is an excellent map.

Proof. We will show that there exists a perturbation f; of f such that
{ze U\{0} | G,(z) = H,(z) =0} is empty. If ze U\{0} satisfies G,(z) =0, we

have
of 3
82( )) 6262( 2

>f L of |
6262( )6z< 2

tla+ib) = <

Assume that z € U\{0} satisfies G,(z) = H,(z) = 0. By using the above equation,
we have



604 KAZUMASA INABA
2
of A of / of . f
<6z( )> (6262( )> 62( ){2<6262( )> 52( )626262( )}
2 PE
(o) Eo(Zo) {-(5e) +Zoazo]

~(Zo) Zewes

=0,

where ¥(z,Z) =3

0z0z 0z0z | 0z 0z0z0z 0z0z | 0z 0z0z0z

is a real-valued polynomial function. Set f(z) = cz* + (higher terms), where k
is the multiplicity of f at the origin. Then y has the following form:

¥ = (k4 D)k*(k — 1)%¢[*z]*® + (higher terms).

2,4 2,\2 3 2\ 3
of <6f>g s <0f>g 7 . Note that ¥

—
If k=2, then ¥(0,0) is not equal to 0 and <f( )) Zi(z)w(z, Z) is equal to
y4

x ((0,0) + (higher terms))
— z22(2¢ + (higher terms))?(2¢ + (higher terms))
x (¥(0,0) + (higher terms)).

o
Since U is sufficiently small, <ze U\{O}.(@(z)> g—f(z)x//(z,z‘):o} is the

empty set. So {ze U\{0}|G,(z) = H,(z) = 0} is empty.

We assume that k > 3. Then lp(z Z) # 0 and (0,0) = 0. Thus ¢ '(0) 1s a
1-dimensional algebraic set. Since y ' (0) is a 1-dimensional algebraic set, ' (0)
has finitely many branches which depend only on f(z). On U, each branch of
np*l(O) is given by a convergent power series

ém (ch /l/l ZCZ/H >

where 0 <u« 1 for m=1,...,d. By Lemma I, the set {u#0|¢(&,(u) =
¢y (&n(u)) =0} is empty for m —1 .,d. Since xp '(0)N U has finitely many
branches, we can choose coeﬁicients a and b of ® such that

(I)(ém(u)) = a¢l (éM(u)) + b¢2(ém(u)) 7 0
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for 0<u«l and m=1,...,d. Thus the intersection of {ze U\{0}|Gi(z) =

Gl, (G, J)

G =0} and {ze U\{0 z) =
2(2)=0) and { \{}\ ) -0
osition 1, the set of s1ngular1t1es of f: consists of either fold singularities or
cusps. Therefore, Jily 1s an excellent map when (a,b) satisfies ®(&,,(«)) # 0 for
]

O<u«<land m=1,...,d.

(z) = 0} is empty. By Prop-

Let w be a singularity of f and U, be a sufficiently small neighborhood
of w. By changing coordinates of U, and f(U,), we may assume that w =0
and f(w) =0. So we can apply Lemma 2 to any singularity of f. Thus we can
check that f; is an excellent map for 0 < |7 « 1 if ¢ and b are generic.

4. Proof of Theorem 1

To calculate the number of cusps of f;, we study zero points of G,.

LemMA 3. The set {ze€ U|G,(z) =0, z # 0} is the set of positive simple roots
of G; for (a,b) # (0,0) and 0 < |f] < 1.

0 0
Proof. If z is a singularity of G,, z satisfies %(z)’ = ‘%(z), see |7,
Proposition 15] Hence we have o -
— 2
DA il P A o°f
62 0z0z + 2ti(a+ i) 02020z 0z| —2 0z ) 0zdzoz + 2ti(a+ib) 575 0z0z

Assume that z belongs to G, !(0). By the definition of G, and the above
equation, we have

B 262f o’ >f | Lo O )P
020z |0z| (0z0z| 0z 0z0z0z|0z| 0zoz
A A N G AN LA s
" |0z 020z |0z| 0z0z0z 0z ) |0zoz| 0zoz|

Let k& be the multiplicity of f at the origin. Then f(z) has the following
form:

f(2) = ¢z + (higher terms).
By the equation (3), we have
|2558| |kO(k — 1)%c|e|* + (higher terms)|
= 28 |=k> (k — 1)%¢|e|* + (higher terms)].

Note thdt k 1s greater than 1. The positive integer k satisfies k°(k — 1)%¢|¢|*
kS(k —1)%cle|*.  Since U is sufficiently small, the above equation does not hold
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in U\{0}. So we can show that

0G, 0G;
=ol>[Fe)

for any z e (U\{0}) N G, '(0). Thus zero points of G, except for the origin are
positive simple. O
Assume that f; is an excellent map for 0 < || « 1. We prove Theorem 1.
Proof of Theorem 1. By Proposition 1, the number of cusps of f|, is equal
to the number of {ze U|G(z) =0, z;éO} Set {zeU|G,(z)=0,z#0} =

{wi,...,m}. We denote the multiplicity of sign by m,(G;,w;) for j=1,...,v
By [7, Proposition 16] and Lemma 3, we have

(i my(Gy, W,-)> + m(Gy, 0) = v+ my (G, 0) = my( G, 0).

The multiplicity m,(Gy,0) is equal to

deg ( 6202 / ’ 6262

=2(k

S}(O) - Sl>

where S!(0) ={ze U||z] =¢} and 0 <&« 1. By the definition of G, for any
t #0, my(G,,0) is equal to

N A N |
deg <2n(a+ ib) 3207 75 2ti(a + ib) 3202 22| ° S, (0) — S
=k-2—-(k—-1)=-1,
where 0 < g « e Thus the number of cusps of f;|, is equal to k+ 1. O
0 , . .
Proof of Corollary 1. Set ﬁ_f: nH/: (z—w;))™. Let U; be a sufficiently

small neighborhood of w;. By the same argument as in the proof of Theorem 1,
the number of cusps of fi[y is equal to m;+2. Note that Z _ymy=n—1.
Then the number of cusps of f: 1s equal to

/

Jj=1

=1
=n—1+2/
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Since the number / of singularities of f belongs to [1,n — 1], the number of cusps
of f; belongs to [n+1,3n—3].

By the change of coordinates, we may assume that the origin 0 is a
singularity of f and f(0)=0. Then the multiplicity of f at 0 is greater
than 1. By Theorem 1, the number of cusps of f|, is at least three, where U
is a sufficiently small neighborhood of 0. O

We construct a perturbation of a complex polynomial which has (n+ 1)-
cusps and also a perturbation which has (3n — 3)-cusps.

Example 1. Let f(z) =z" and fi(z) = z" + t(a + ib)Z be a perturbation of f
which is an excellent map. Then G,(z) is equal to
Gi(z) = =2in*(n — 1)z 722" 4 2tn*(n — 1)(a + ib)z"2z"~!
= —2in*(n — D)|z)*" H{nz" — t(a + ib)z}.
Set z=re" and a+ ib = te”, where 7 > 0. Then we have
—2in*(n — D)rHnr"e"? — trre =0},

Assume that z # 0 and G,(z) =0. Then z satisfies

(l‘f)l/(”U 1+ 2jn
r=\— , 0= ,
n n+1

for j=0,...,n. Thus the number of cusps of f; is equal to n+ 1.

Example 2. Let f(z) =z"+z Then the number of singularities of f is
equal to n— 1 and the multiplicity at each singularity of f is equal to 2. Let
fi(z) =z" + z+ t(a + ib)Z be a perturbation of f which is an excellent map. By
the same argument as in the proof of Corollary 1, the number of cusps of f; is
equal to 3n— 3.

4.1. Perturbations of f;. Let f; be a linear perturbation of f which is an
excellent map. We fix a, b and ¢. Let g(z,Z) be a mixed polynomial which

. 0 0 . . .
satisfies 6—5(0) = a—Z(O) = 0. In this subsection, we study a perturbation of f;:

Ji5(2) == f(z) + ta+ib)z + s9(z, 2),

where 0 < |s] « |{] « 1.

THEOREM 2. The set of singularities of f, , consists of either fold singularities
or cusps and the number of cusps of fi s is constant for 0 < |s| < |#] « L.

Proof. Let w be a singularity of f and U, be a sufficiently small neigh-

o o
borhood of w. Set J, = 7@(%/’,_,‘;,\%‘3)7 Gis= 0o, ) 0 is195)

and G y = ————=.
a(x, y) o(x, y) 2T 0 (x, y)
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We define mixed polynomials G;, and H,, as follows:

NGy ds) | (G Jy)
6()(, y) a('xa y)

Since the set of singularities of f; ¢ consists of either fold singularities or cusps,
we have

Gt,s = Gl,s + iGZ,Sa Ht,s =

{ze Uy|Jo(z) = G,o = Hy o = 0} = 0.
Then there exists a positive real number sy such that

{ze U,

JS(Z) = Gt,s = Ht,s = 0} = @7

for any 0 < |s| <sp. Thus any singularity of f; , is a fold singularity or a cusp.
By the definition of J;, the origin 0 is a regular point of f;,. Since the set
{zeC|G.o(z) =0,z #0} is the set of positive simple roots of f;, {zeC|
G, s(z) =0,z # 0} is also the set of positive simple roots of f; ; for 0 < |s| < 5.
By [7, Proposition 16], the number of cusps of f;, is constant for 0 < |s| < so.

]
4.2. Lower bounds of the numbers of cusps of non-linear perturbations. Let
. . . . oh oh
h(z,z) be a mixed polynomial which satisfies /(0) =0 and E(O) # E(O) .

We define a perturbation f;, of a complex polynomial f as follows:

fin(2) := f(z) + th(z,2),
where 0 < |t| « 1. Set iy = Rh, h, = Ih and

afl oy ofi | O
sl
%Jr [5/12 aﬁ ny 6h2

A

0y ox  ox ay

Jnh - det

Then any singularity of f;, belongs to J,;}(0). Assume that f;, satisfies the
following conditions: '

(i) fin is an excellent map for 0 < || « 1,

(ii) any cusp of f,; is a simple root of G;;, where

éfl 6h1 6f1 8h1 _ah 6h2 6f1 th
. 6x ax éy ay . 6y Ux 6x ay
Gy = det 0J i n 0Jin +idet Gy oJn
0x Jy Ox Jy

_ af OJ[h @ha],h
__2<a “a) 5 T2
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-1
Assume that w belongs to Jt7;(0)0<622h> (0). By the definition of

. aJ, 1 /aJ oJ,
G.n, Gyp(w) is equal to 0. Since Lh (w) =< ( Lh (w)—1i Lh (w)> =0,
O(RGe Jn) (w) and 0(SGum Jun) (w) afez equal t20 Oax So w be(lacj)}ngs to G’

a(x, ) o(x,y) ' '
Since f; is an excellent map, G’ is empty by Proposmon 1. This is a contra-

0/ h) (0) is empty. Let U

diction. Thus the intersection of J,!(0) and

0z
be a sufficiently small neighborhood of the origin Suppose that z € U satisfies

” -1
Z¢ (0],,/1) (0) and Gt,h(Z) _ —2l<af< )+ _( ))ajzh( )+2 l%( )OJz,h (Z) —

0z oz 0 0z 0z
0. Then z satisfies

aJ[,h< )
of oh, a9 an
E(z)‘f‘tg(z)—ﬁf%(z)y
2 (z)
Of i | 9fen
L) = [22).

Thus z is a singularity of fj, ie., z€J, 1(0). Then the number of cusps of

oJ: 1 .
Sunly 1s equal to the number of {ze U|Gii(z) =0, 6” (z) # O} by Proposi-

tion 1. We define

Zo>
Sol<

20
ol

5:
-1

THEOREM 3. Let f,, be a perturbation of a complex polynomial f which
satisfies the condition (i) and the condition (ii). Then the number of cusps of fi nly
is greater than or equal to k — o, where k is the multiplicity of f at the origin.

of\? o*f .
Proof. Note that my(Gy p,0) = m; (6_> W’O =k. By [7, Proposition
16], we have z) ozoz

k=my(Gon0)= > mGin)

aeG, ,7(0)

= Z mS(Gl,l’Hﬁ)_'_ Z ms(Gl,h7y)'
BEG1(0), (3rn/(22))(B) %0 ye (@I n/(22)7(0)

Set
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deg G = Z my(Gyp, f) and
BeG,1(0),(07,,1/(92)) () #0

deg j = Z ms(Gl,hay)'
ye(@Ji1/(82))7'(0)

By the condition (ii), the number of cusps of f; |, is greater than or equal to
deg G. By the definition of J,,, we have

Z 0Jin B 0Jo.n 0) = o QO _
s 0z )= s oz’ = 0zoz 0z )

ye(0J,4/(02)) 7 (0)

Since g—f(O) =0 and ?(0)‘ # %(O) , deg J is equal to 6. Thus deg G is equal
z V4 z
to k —90. O
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