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A TOPOLOGICAL CHARACTERIZATION OF THE STRONG DISK

PROPERTY ON OPEN RIEMANN SURFACES

Makoto Abe, Gou Nakamura and Hiroshige Shiga

Abstract

In this paper, we give a topological characterization of a subdomain G of an open

Riemann surface R which has the strong disk property. Namely, we show that the

domain G satisfies the strong disk property in R if and only if the canonical homo-

morphism p1ðGÞ ! p1ðRÞ is injective.

1. Introduction

Let R be a Stein space and let G be an open set of R. If G is Stein and
Runge in R, then G satisfies the strong disk property in R, that is, if j : D ! R is
a continuous map holomorphic on D such that jðqDÞ � G, then we have that
jðDÞ � G, where D is the open unit disk in C (see Abe [1, Proposition 1]). The
converse of this fact is not true in general. In fact, for every natural number
nb 2, there exists a connected open set G of Cn such that G satisfies the strong
disk property but is not Runge in Cn (see Abe [1, Theorem 7]).

On the other hand, by the theorem of Carathéodory, an open set G satisfies
the strong disk property in C if and only if G is Runge in C. Moreover, an open
set G of a planar open Riemann surface R satisfies the strong disk property in R
if and only if every connected component of G is Runge in R (see Abe-Nakamura
[3, Theorem 3.3]). In the present paper, we consider the same property on open
Riemann surfaces which are not necessarily planar.

Let R be an open Riemann surface and let G be a domain in R, that is, a
connected open set of R. We prove that G satisfies the strong disk property in
R if and only if the canonical homomorphism p1ðGÞ ! p1ðRÞ is injective (see
Theorem 3.1). As a corollary (Corollary 4.1), we may show that every Runge
domain in an open Riemann surface R satisfies the strong disk property in R.
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It gives an alternative proof of Abe-Nakamura [3, Proposition 2.6]. We also
prove that an open Riemann surface R is planar if and only if for every domain
G in R the condition that G satisfies the strong disk property in R implies the
condition that G is Runge in R (see Corollary 4.2). It answers the problem in
Abe-Nakamura [3, Problem 3.5].

2. Preliminaries

An open set G of an open Riemann surface R is said to be Runge in R if for
every f A OðGÞ, for every compact set K of G, and for every e > 0, there exists
h A OðRÞ such that j f � hj < e on K . We have the following characterization of
a Runge open set of an open Riemann surface, which is originally due to Behnke-
Stein [5] (see Kusunoki [6, Theorem 6.10] and Mihalache [7, Theorem 5.1]).

Proposition 2.1. Let R be an open Riemann surface and G an open set of
R. Then, the following three conditions are equivalent.

(1) G is Runge in R.
(2) The canonical homomorphism H1ðG;ZÞ ! H1ðR;ZÞ is injective.
(3) No connected component of RnG is compact.

Let D :¼ fz A C j jzj < 1g be the unit disk. An open set G of a Riemann
surface R is said to have the strong disk property in R if G satisfies the follow-
ing condition: if j : D ! R is a continuous map holomorphic on D such that
jðqDÞ � G, then jðDÞ � G (see Abe et al. [2], Abe [1], and Abe-Nakamura [3]).

We rephrase Proposition 2.6 in [3] in terms of open Riemann surfaces as
follows.

Proposition 2.2. Let R be an open Riemann surface and G an open set of R.
If every connected component of G is Runge in R, then G satisfies the strong disk
property in R.

A Riemann surface R is said to be planar if R is biholomorphic to a domain
of the Riemann sphere. We have the following characterization of a Runge
domain in a planar open Riemann surface.

Proposition 2.3 (see [3, Theorem 3.3]). Let R be a planar open Riemann
surface and G an open set of R. Then, the following two conditions are equivalent.

(1) G satisfies the strong disk property in R.
(2) Every connected component of G is Runge in R.

3. Main theorem

Let R be an open Riemann surface and G a domain of R. For a base point
p0 in G, i� : p1ðG; p0Þ ! p1ðR; p0Þ denotes the homomorphism given by the
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inclusion i : G ,! R. We show that the strong disk property of G in R is char-
acterized by i�.

Theorem 3.1. A subdomain G of an open Riemann surface R has the strong
disk property in R if and only if i� is injective.

Proof. We may assume that the open Riemann surface R is hyperbolic, that
is, D is the universal covering surface of R. Our proof still works for R ¼ C
or C�. Let p : D ! R be the universal covering map and ~GG � D a connected
component of p�1ðGÞ. We take a Fuchsian group G so that D=G ¼ R.

First, we shall show ‘‘only if ’’ part. Suppose that i� is not injective. Then
there exists an element ½g� in p1ðG; p0Þ such that i�ð½g�Þ ¼ ½fp0g� A p1ðR; p0Þ while
½g�0 ½fp0g� in p1ðG; p0Þ. Let ~gg be a connected component of p�1ðgÞ contained in
~GG. Since g is homotopic to a trivial curve in R, ~gg is a closed curve in ~GG passing
through a point ~pp0 in p�1ðp0Þ. Furthermore, ~gg is not homotopic to a trivial
curve in ~GG. Indeed, if it is homotopic to a trivial curve in ~GG, the homotopy is
projected to a homotopy in G between g and a trivial curve. It is a contradic-
tion. Thus, we see that ~GG is not simply connected in D. Hence, there exists a
compact connected component ~EE of Dn ~GG.

Let ~GG 0 be a connected component of p�1ðGÞ. We show that ~EE \ ~GG 0 ¼ j.
It is obvious if ~GG 0 ¼ ~GG. Suppose that ~GG 0 0 ~GG. Then, there exists a non-trivial
element g A G such that ~GG 0 ¼ gð ~GGÞ. If ~EE \ ~GG 0 0j, then ~GG 0 � ~EE since ~GG and ~GG 0

are mutually disjoint. Hence we have gð ~EEÞ � ~EE. However, it is absurd because
G acts properly discontinuously on D while gnð ~EEÞ � ~EE holds for the compact set
~EE for every n. Thus, we conclude that ~EE \ ~GG 0 ¼ j and pð ~EEÞ \ G ¼ j.

Let ~aa be a simple closed curve in ~GG which surrounds ~EE. We take a
Riemann map F : D ! Dð~aaÞ from D onto a Jordan domain Dð~aaÞ bounded by
~aa. Then, f :¼ p � F is a holomorphic map from D to R with homeomorphic
extension on D and f ðqDÞ ¼ pð~aaÞ � G. However, f ðDÞ 6� G since f ðDÞ � pð ~EEÞ.
Thus, we see that G does not have the strong disk property in R.

Next we shall show ‘‘if ’’ part. Suppose that i� is injective. If p1ðG; p0Þ
is the trivial group, then G is a simply connected domain and any connected
component of p�1ðGÞ is simply connected in D. If p1ðG; p0Þ is not the trivial
group, then any connected component ~GG of p�1ðGÞ is also simply connected
in D. Indeed, if ~GG is not simply connected, then Dn ~GG has a compact con-
nected component ~EE. Let ~aa be a simple closed curve in ~GG surrounding ~EE.
Then, a :¼ pð~aaÞ � G is homotopic to a trivial curve in R because ~aa is a closed
curve. It is also homotopic to a trivial curve in G since i� is injective. How-
ever, it is absurd because ~aa is not homotopic to a trivial curve in ~GG. Thus,
we see that ~GG is simply connected in D. Therefore, in any case ~GG is simply
connected.

Let f : D ! R be a continuous map which is holomorphic in D. Suppose
that g :¼ f ðqDÞ � G. We may take a lift F : D ! D of f such that ~gg :¼ FðqDÞ �
~GG. Since ~GG is simply connected, the closed curve ~gg is homotopic to a trivial
curve in ~GG. Let z be a point in Dnp�1ðGÞ. Then, the winding number of ~gg ¼
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FðqDÞ for z is zero for any lift F of f . Indeed, since ~gg is homotopic to a trivial
curve, there exists a continuous map H : ½0; 1� � ½0; 1� ! ~GG such that

(i) Hð0; tÞ ¼ ~ggðtÞ and Hð1; tÞ1 ~pp0 A ~GG for every t A ½0; 1�.
(ii) Hðs; 0Þ ¼ Hðs; 1Þ for every s A ½0; 1�.

Let ~ggs be the closed curve given by Hðs; �Þ : ½0; 1� ! ~GG. Since ~ggs d z for every
s A ½0; 1�, the winding number of ~ggs for z depends continuously on s A ½0; 1� and
it is a constant. Noting that ~gg1 ¼ f~pp0g, we verify that the winding number of
~gg0 ¼ ~gg for z is zero. From the argument principle, we see that there is no point
z A D such that FðzÞ ¼ z. Hence, we conclude that FðDÞ � ~GG and f ðDÞ � G.
Namely, G has the strong disk property in R. r

4. Corollaries

In the first part of the proof of Theorem 3.1, we found a compact connected
component ~EE of Dnp�1ðGÞ if i� is not injective. Then, E :¼ pð ~EEÞ is a connected
component of RnG and compact. This argument is an alternative proof of
Proposition 2.2 when G is a domain.

Corollary 4.1. Let G be a domain in an open Riemann surface R. If G is
a Runge domain, then G has the strong disk property in R.

Theorem 3.1 also solves a problem posed in [3] as follows.

Corollary 4.2. Let R be an open Riemann surface. Then, the Runge prop-
erty and the strong disk property are the same for any domain in R if and only if
R is planar.

Proof. Suppose that R is planar and G is a proper domain of R. We may
assume that R is a domain in C. If G is a Runge domain, then G has the strong
disk property in R from Corollary 4.1. If G is not a Runge domain, then there
exists a connected component E of RnG which is compact in R. Here, we claim
that there exists a simple closed curve a in G such that the Jordan domain Da

bounded by a which contains E is in R.
Indeed, as an open Riemann surface, G admits a sequence of regular sub-

regions fGngyn¼1 such that Gn � Gnþ1 and G ¼
Sy

n¼1 Gn ([4, II. 12D Theorem]),
where a subregion D of G is regular if it is a relatively compact region bounded
by a finite number of simple closed analytic curves and every connected com-
ponent of GnD is not compact. Moreover, we may assume that each boundary
component of Gn is a dividing curve (cf. [6, p. 184]).

Let En be the connected component of CnGn containing E. Then, E 0 :¼Ty
n¼1 En is connected in CnG which contains E. Since E is compact in R, we

see that E 0 � R and E 0 ¼ E. Hence, EN � R if N is su‰ciently large. From
our assumption, each En is simply connected domain bounded by a simple closed
analytic curve. Thus, we see that qEN becomes our desired curve a of the claim.

Let f : D ! Da be a Riemann map onto Da. The map f admits a homeo-
morphic extension f : D ! Da. Hence f ðqDÞ ¼ a � G. On the other hand,
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f ðDÞ ¼ Da � R but f ðDÞ 6� G because f ðDÞ � E. Thus, we verify that G does
not have the strong disk property in R. Therefore, we conclude that the Runge
property and the strong disk property are the same in R.

Next, we suppose that R is not planar. Then, there exists a non-trivial
simple closed curve a in R such that a satisfies the following conditions.

(1) Rna consists of two components R1 and R2.
(2) R1 is relatively compact in R (and a is homologous to zero).
Let G be an annular neighborhood of a. It follows from (2) that G is not

Runge domain. On the other hand, G has the strong disk property in R because
a is non-trivial and i� : p1ðG; p0ÞGZ ! p1ðR; p0Þ is injective. Hence, we have a
domain which is not Runge but has the strong disk property for a non-planar
surface R. r
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