A TOPOLOGICAL CHARACTERIZATION OF THE STRONG DISK PROPERTY ON OPEN RIEMANN SURFACES

MAKOTO ABE, GOU NAKAMURA AND HIROSHIGE SHIGA

Abstract

In this paper, we give a topological characterization of a subdomain G of an open Riemann surface R which has the strong disk property. Namely, we show that the domain G satisfies the strong disk property in R if and only if the canonical homomorphism $\pi_1(G) \to \pi_1(R)$ is injective.

1. Introduction

Let *R* be a Stein space and let *G* be an open set of *R*. If *G* is Stein and Runge in *R*, then *G* satisfies the *strong disk property* in *R*, that is, if $\varphi : \overline{\Delta} \to R$ is a continuous map holomorphic on Δ such that $\varphi(\partial \Delta) \subset G$, then we have that $\varphi(\overline{\Delta}) \subset G$, where Δ is the open unit disk in **C** (see Abe [1, Proposition 1]). The converse of this fact is not true in general. In fact, for every natural number $n \ge 2$, there exists a connected open set *G* of **C**ⁿ such that *G* satisfies the strong disk property but is not Runge in **C**ⁿ (see Abe [1, Theorem 7]).

On the other hand, by the theorem of Carathéodory, an open set G satisfies the strong disk property in **C** if and only if G is Runge in **C**. Moreover, an open set G of a planar open Riemann surface R satisfies the strong disk property in Rif and only if every connected component of G is Runge in R (see Abe-Nakamura [3, Theorem 3.3]). In the present paper, we consider the same property on open Riemann surfaces which are not necessarily planar.

Let *R* be an open Riemann surface and let *G* be a *domain* in *R*, that is, a connected open set of *R*. We prove that *G* satisfies the strong disk property in *R* if and only if the canonical homomorphism $\pi_1(G) \rightarrow \pi_1(R)$ is injective (see Theorem 3.1). As a corollary (Corollary 4.1), we may show that every Runge domain in an open Riemann surface *R* satisfies the strong disk property in *R*.

²⁰¹⁰ Mathematics Subject Classification. Primary 30F20, Secondary 32E30, 30E10. *Key words and phrases.* Riemann surface, Runge domain, strong disk property.

Tey words and phrases. Riemann surface, Runge domain, strong disk property.

The first author is partially supported by JSPS KAKENHI (Grant-in-Aid for Scientific Research (C)) Grant Number JP17K05301, the second author is partially supported by JSPS KAKENHI (Grant-in-Aid for Scientific Research (C)) Grant Number JP18K03348 and the third author is supported by JSPS KAKENHI (Grant-in-Aid for Scientific Research (B)) Grant Number JP16H03933. Received September 13, 2018; revised March 18, 2019.

It gives an alternative proof of Abe-Nakamura [3, Proposition 2.6]. We also prove that an open Riemann surface R is planar if and only if for every domain G in R the condition that G satisfies the strong disk property in R implies the condition that G is Runge in R (see Corollary 4.2). It answers the problem in Abe-Nakamura [3, Problem 3.5].

2. Preliminaries

An open set G of an open Riemann surface R is said to be *Runge* in R if for every $f \in \mathcal{O}(G)$, for every compact set K of G, and for every $\varepsilon > 0$, there exists $h \in \mathcal{O}(R)$ such that $|f - h| < \varepsilon$ on K. We have the following characterization of a Runge open set of an open Riemann surface, which is originally due to Behnke-Stein [5] (see Kusunoki [6, Theorem 6.10] and Mihalache [7, Theorem 5.1]).

PROPOSITION 2.1. Let R be an open Riemann surface and G an open set of R. Then, the following three conditions are equivalent.

- (1) G is Runge in R.
- (2) The canonical homomorphism $H_1(G, \mathbb{Z}) \to H_1(R, \mathbb{Z})$ is injective.
- (3) No connected component of $R \setminus G$ is compact.

Let $\Delta := \{\zeta \in \mathbb{C} \mid |\zeta| < 1\}$ be the unit disk. An open set *G* of a Riemann surface *R* is said to have the *strong disk property* in *R* if *G* satisfies the following condition: if $\varphi : \overline{\Delta} \to R$ is a continuous map holomorphic on Δ such that $\varphi(\partial \Delta) \subset G$, then $\varphi(\overline{\Delta}) \subset G$ (see Abe et al. [2], Abe [1], and Abe-Nakamura [3]).

We rephrase Proposition 2.6 in [3] in terms of open Riemann surfaces as follows.

PROPOSITION 2.2. Let R be an open Riemann surface and G an open set of R. If every connected component of G is Runge in R, then G satisfies the strong disk property in R.

A Riemann surface R is said to be *planar* if R is biholomorphic to a domain of the Riemann sphere. We have the following characterization of a Runge domain in a planar open Riemann surface.

PROPOSITION 2.3 (see [3, Theorem 3.3]). Let R be a planar open Riemann surface and G an open set of R. Then, the following two conditions are equivalent. (1) G satisfies the strong disk property in R.

(1) G satisfies the strong disk property in R. (2) Every connected component of G is Runge in R.

(2) Beery connected component of 3 is range

3. Main theorem

Let *R* be an open Riemann surface and *G* a domain of *R*. For a base point p_0 in *G*, $\iota_* : \pi_1(G, p_0) \to \pi_1(R, p_0)$ denotes the homomorphism given by the

inclusion $\iota: G \hookrightarrow R$. We show that the strong disk property of G in R is characterized by ι_* .

THEOREM 3.1. A subdomain G of an open Riemann surface R has the strong disk property in R if and only if ι_* is injective.

Proof. We may assume that the open Riemann surface R is hyperbolic, that is, Δ is the universal covering surface of R. Our proof still works for $R = \mathbb{C}$ or \mathbb{C}^* . Let $\pi : \Delta \to R$ be the universal covering map and $\tilde{G} \subset \Delta$ a connected component of $\pi^{-1}(G)$. We take a Fuchsian group Γ so that $\Delta/\Gamma = R$.

First, we shall show "only if" part. Suppose that ι_* is not injective. Then there exists an element $[\gamma]$ in $\pi_1(G, p_0)$ such that $\iota_*([\gamma]) = [\{p_0\}] \in \pi_1(R, p_0)$ while $[\gamma] \neq [\{p_0\}]$ in $\pi_1(G, p_0)$. Let $\tilde{\gamma}$ be a connected component of $\pi^{-1}(\gamma)$ contained in \tilde{G} . Since γ is homotopic to a trivial curve in R, $\tilde{\gamma}$ is a closed curve in \tilde{G} passing through a point \tilde{p}_0 in $\pi^{-1}(p_0)$. Furthermore, $\tilde{\gamma}$ is not homotopic to a trivial curve in \tilde{G} . Indeed, if it is homotopic to a trivial curve in \tilde{G} , the homotopy is projected to a homotopy in G between γ and a trivial curve. It is a contradiction. Thus, we see that \tilde{G} is not simply connected in Δ . Hence, there exists a compact connected component \tilde{E} of $\Delta \setminus \tilde{G}$.

Let \tilde{G}' be a connected component of $\pi^{-1}(G)$. We show that $\tilde{E} \cap \tilde{G}' = \emptyset$. It is obvious if $\tilde{G}' = \tilde{G}$. Suppose that $\tilde{G}' \neq \tilde{G}$. Then, there exists a non-trivial element $g \in \Gamma$ such that $\tilde{G}' = g(\tilde{G})$. If $\tilde{E} \cap \tilde{G}' \neq \emptyset$, then $\tilde{G}' \subset \tilde{E}$ since \tilde{G} and \tilde{G}' are mutually disjoint. Hence we have $g(\tilde{E}) \subset \tilde{E}$. However, it is absurd because Γ acts properly discontinuously on Δ while $g^n(\tilde{E}) \subset \tilde{E}$ holds for the compact set \tilde{E} for every n. Thus, we conclude that $\tilde{E} \cap \tilde{G}' = \emptyset$ and $\pi(\tilde{E}) \cap G = \emptyset$.

Let $\tilde{\alpha}$ be a simple closed curve in \hat{G} which surrounds \hat{E} . We take a Riemann map $F : \Delta \to D(\tilde{\alpha})$ from Δ onto a Jordan domain $D(\tilde{\alpha})$ bounded by $\tilde{\alpha}$. Then, $f := \pi \circ F$ is a holomorphic map from Δ to R with homeomorphic extension on $\overline{\Delta}$ and $f(\partial \Delta) = \pi(\tilde{\alpha}) \subset G$. However, $f(\Delta) \not\subset G$ since $f(\Delta) \supset \pi(\tilde{E})$. Thus, we see that G does not have the strong disk property in R.

Next we shall show "if" part. Suppose that ι_* is injective. If $\pi_1(G, p_0)$ is the trivial group, then G is a simply connected domain and any connected component of $\pi^{-1}(G)$ is simply connected in Δ . If $\pi_1(G, p_0)$ is not the trivial group, then any connected component \tilde{G} of $\pi^{-1}(G)$ is also simply connected in Δ . Indeed, if \tilde{G} is not simply connected, then $\Delta \setminus \tilde{G}$ has a compact connected component \tilde{E} . Let $\tilde{\alpha}$ be a simple closed curve in \tilde{G} surrounding \tilde{E} . Then, $\alpha := \pi(\tilde{\alpha}) \subset G$ is homotopic to a trivial curve in R because $\tilde{\alpha}$ is a closed curve. It is also homotopic to a trivial curve in G since ι_* is injective. However, it is absurd because $\tilde{\alpha}$ is not homotopic to a trivial curve in \tilde{G} . Thus, we see that \tilde{G} is simply connected in Δ . Therefore, in any case \tilde{G} is simply connected.

Let $f : \Delta \to R$ be a continuous map which is holomorphic in Δ . Suppose that $\gamma := f(\partial \Delta) \subset G$. We may take a lift $F : \overline{\Delta} \to \Delta$ of f such that $\tilde{\gamma} := F(\partial \Delta) \subset \tilde{G}$. Since \tilde{G} is simply connected, the closed curve $\tilde{\gamma}$ is homotopic to a trivial curve in \tilde{G} . Let ζ be a point in $\Delta \setminus \pi^{-1}(G)$. Then, the winding number of $\tilde{\gamma} =$ $F(\partial \Delta)$ for ζ is zero for any lift F of f. Indeed, since $\tilde{\gamma}$ is homotopic to a trivial curve, there exists a continuous map $H: [0,1] \times [0,1] \to \tilde{G}$ such that

- (i) $H(0,t) = \tilde{\gamma}(t)$ and $H(1,t) \equiv \tilde{p}_0 \in G$ for every $t \in [0,1]$.
- (ii) H(s, 0) = H(s, 1) for every $s \in [0, 1]$.

Let $\tilde{\gamma}_s$ be the closed curve given by $H(s, \cdot) : [0, 1] \to \tilde{G}$. Since $\tilde{\gamma}_s \notin \zeta$ for every $s \in [0, 1]$, the winding number of $\tilde{\gamma}_s$ for ζ depends continuously on $s \in [0, 1]$ and it is a constant. Noting that $\tilde{\gamma}_1 = \{\tilde{p}_0\}$, we verify that the winding number of $\tilde{\gamma}_0 = \tilde{\gamma}$ for ζ is zero. From the argument principle, we see that there is no point $z \in \Delta$ such that $F(z) = \zeta$. Hence, we conclude that $F(\Delta) \subset \tilde{G}$ and $f(\Delta) \subset G$. Namely, G has the strong disk property in R.

4. Corollaries

In the first part of the proof of Theorem 3.1, we found a compact connected component \tilde{E} of $\Delta \setminus \pi^{-1}(G)$ if ι_* is not injective. Then, $E := \pi(\tilde{E})$ is a connected component of $R \setminus G$ and compact. This argument is an alternative proof of Proposition 2.2 when G is a domain.

COROLLARY 4.1. Let G be a domain in an open Riemann surface R. If G is a Runge domain, then G has the strong disk property in R.

Theorem 3.1 also solves a problem posed in [3] as follows.

COROLLARY 4.2. Let R be an open Riemann surface. Then, the Runge property and the strong disk property are the same for any domain in R if and only if R is planar.

Proof. Suppose that R is planar and G is a proper domain of R. We may assume that R is a domain in C. If G is a Runge domain, then G has the strong disk property in R from Corollary 4.1. If G is not a Runge domain, then there exists a connected component E of $R \setminus G$ which is compact in R. Here, we claim that there exists a simple closed curve α in G such that the Jordan domain D_{α} bounded by α which contains E is in R.

Indeed, as an open Riemann surface, G admits a sequence of regular subregions $\{G_n\}_{n=1}^{\infty}$ such that $\overline{G_n} \subset G_{n+1}$ and $G = \bigcup_{n=1}^{\infty} G_n$ ([4, II. 12D Theorem]), where a subregion D of G is regular if it is a relatively compact region bounded by a finite number of simple closed analytic curves and every connected component of $G \setminus D$ is not compact. Moreover, we may assume that each boundary component of G_n is a dividing curve (cf. [6, p. 184]).

Let E_n be the connected component of $\mathbb{C}\backslash G_n$ containing E. Then, $E' := \bigcap_{n=1}^{\infty} E_n$ is connected in $\mathbb{C}\backslash G$ which contains E. Since E is compact in R, we see that $E' \subset R$ and E' = E. Hence, $E_N \subset R$ if N is sufficiently large. From our assumption, each E_n is simply connected domain bounded by a simple closed analytic curve. Thus, we see that ∂E_N becomes our desired curve α of the claim.

Let $f : \Delta \to D_{\alpha}$ be a Riemann map onto D_{α} . The map f admits a homeomorphic extension $f : \overline{\Delta} \to \overline{D_{\alpha}}$. Hence $f(\partial \Delta) = \alpha \subset G$. On the other hand,

590

 $f(\Delta) = D_{\alpha} \subset R$ but $f(\Delta) \not\subset G$ because $f(\Delta) \supset E$. Thus, we verify that G does not have the strong disk property in R. Therefore, we conclude that the Runge property and the strong disk property are the same in R.

Next, we suppose that R is not planar. Then, there exists a non-trivial simple closed curve α in R such that α satisfies the following conditions.

(1) $R \setminus \alpha$ consists of two components R_1 and R_2 .

(2) R_1 is relatively compact in R (and α is homologous to zero).

Let G be an annular neighborhood of α . It follows from (2) that G is not Runge domain. On the other hand, G has the strong disk property in R because α is non-trivial and $\iota_* : \pi_1(G, p_0) \cong \mathbb{Z} \to \pi_1(R, p_0)$ is injective. Hence, we have a domain which is not Runge but has the strong disk property for a non-planar surface R.

References

- M. ABE, Polynomial convexity and strong disk property, J. Math. Anal. Appl. 321 (2006), 32-36.
- [2] M. ABE, M. FURUSHIMA AND M. TSUJI, Equicontinuity domain and disk property, Complex Var. Theory Appl. 39 (1999), 19–25.
- [3] M. ABE AND G. NAKAMURA, Strong disk property for domains in open Riemann surfaces, Filomat 30 (2016), 1711–1716.
- [4] L. V. AHLFORS AND L. SARIO, Riemann surfaces, Princeton University Press, Princeton, New Jersey, 1974.
- [5] H. BEHNKE AND K. STEIN, Entwicklung analytischer Funktionen auf Riemannschen Flächen, Math. Ann. 120 (1949), 430–461.
- [6] Y. KUSUNOKI, Function theory: Riemann surfaces and conformal mappings, Asakura Shoten, Tokyo, 1973 (in Japanese).
- [7] N. MIHALACHE, The Runge theorem on 1-dimensional Stein spaces, Rev. Roumaine Math. Pures Appl. 33 (1988), 601–611.

Makoto Abe NATURAL SCIENCES RESEARCH DIVISION SCHOOL OF INTEGRATED ARTS AND SCIENCES HIROSHIMA UNIVERSITY 1-7-1 KAGAMIYAMA HIGASHI-HIROSHIMA 739-8521 JAPAN E-mail: abem@hiroshima-u.ac.jp

Gou Nakamura SCIENCE DIVISION CENTER FOR GENERAL EDUCATION AICHI INSTITUTE OF TECHNOLOGY 1247 YACHIGUSA, YAKUSA TOYOTA 470-0392 JAPAN E-mail: gou@aitech.ac.jp

MAKOTO ABE, GOU NAKAMURA AND HIROSHIGE SHIGA

Hiroshige Shiga Department of Mathematics School of Science Tokyo Institute of Technology O-okayama, Meguro-ku Tokyo 152-8551 Japan

CURRENT ADDRESS: DEPARTMENT OF MATHEMATICS KYOTO SANGYO UNIVERSITY MOTOYAMA, KAMIGAMO, KITA-KU KYOTO 603-8555 JAPAN E-mail: shiga@cc.kyoto-su.ac.jp

592