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A WEAK COHERENCE THEOREM AND REMARKS TO
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Abstract

The proofs of K. Oka’s Coherence Theorems are based on Weierstrass’ Preparation

(division) Theorem. Here we formulate and prove a Weak Coherence Theorem without

using Weierstrass’ Preparation Theorem, but only with power series expansions: The

proof is almost of linear algebra. Nevertheless, this simple Weak Coherence Theorem

su‰ces to give other proofs of the Approximation, Cousin I/II, and Levi’s (Hartogs’

Inverse) Problems even in simpler ways than those known, as far as the domains are

non-singular; they constitute the main basic part of the theory of several complex

variables.

The new approach enables us to complete the proofs of those problems in quite an

elementary way without Weierstrass’ Preparation Theorem or the cohomology theory of

Cartan–Serre, nor L2-q method of Hörmander.

We will also recall some new historical facts that Levi’s (Hartogs’ Inverse) Problem

of general dimension nb 2 was, in fact, solved by K. Oka in 1943 (unpublished) and

by S. Hitotsumatsu in 1949 (published in Japanese), whereas it has been usually rec-

ognized as proved by K. Oka 1953, by H. J. Bremermann and by F. Norguet 1954,

independently.

1. Introduction and a weak coherence

K. Oka [29], [30] proved three fundamental coherence theorems for
(i) the sheaf O :¼ OCn of germs of holomorphic functions on Cn,
(ii) the ideal sheaf IhAi of an analytic subset A of an open subset

of Cn,
(iii) the normalization of the structure sheaf of a complex space,

where for the second, H. Cartan [4] gave his own proof based on Oka [29]
(cf. [17] Chap. 9). We simply call IhAi a (resp. non-singular) geometric ideal
sheaf of a (resp. non-singular) analytic subset A (cf., e.g., [17] Chap. 6). Oka’s
Coherence has played a fundamental role in modern Mathematics, so that it
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led to the notion of ringed spaces due to H. Cartan, and developed by J.-P.
Serre, R. Remmert, H. Grauert and A. Grothendieck (cf. [6] p. 162). The proofs
of the above coherence theorems rely on Weierstrass’ Preparation (division)
Theorem.

The aim of this paper is to formulate a Weak Coherence Theorem (Theorem
1.2 below), which we prove not with Weierstrass’ Preparation Theorem, but only
with power series expansions, and then to apply it to prove the Approximation
Problem, Cousin I/II Problems, q-equation (for functions), holomorphic exten-
sions (interpolations), and Levi’s (Hartogs’ Inverse) Problem for unramified
Riemann domains (over Cn)1) (see Theorem 4.11 and §4.3); they constitute
the main basic part of the theory of several complex variables. The proofs are
even simpler than those in the standard references (cf., e.g., Gunning–Rossi [10],
Grauert–Remmert [9], Hörmander [12], Noguchi [17]).

Note that the present approach enables us to complete the proofs of those
problems in quite an elementary way without Weierstrass’ Preparation Theorem
or the cohomology theory2) of Cartan–Serre, nor L2-q method of Hörmander.
The present paper came out from the study of the degree structure of a generator
system of a coherent analytic sheaf by [16], and was inspired by Oka’s un-
published paper [33].

Let W denote a domain of Cn with the structure sheaf O ¼ OW. For a
holomorphic function f A OðWÞ in W we write f A GðW;OÞ for the induced sheaf-
section of O and f

z
for the germ of f at z A W. Let F be an analytic sheaf

on W (i.e., a sheaf of O-modules over W), and let xj A GðW;FÞ, 1a ja q, be
finitely many sections on W. Then the relation sheaf Rðx1; . . . ; xqÞ of fxjgq

j¼1

is a subsheaf of O q consisting of those germ-vectors ð f1z; . . . ; fqzÞ A O q
z such

that

f1zx1ðzÞ þ � � � þ fq
z
xqðzÞ ¼ 0; z A W:ð1:1Þ

Now we formulate:

Theorem 1.2 (Weak Coherence). Let S � W be a complex submanifold.3)
(i) The non-singular geometric ideal sheaf IhSi is locally finite.
(ii) Let fsj A GðW;IhSiÞ : 1a jaNg be a finite generator system of IhSi

on W with sj A OðWÞ: i.e.,

IhSi ¼
XN
j¼1

O � sj:

Then, the relation sheaf Rðs1; . . . ; sNÞ is locally finite.

1) In the present, ‘‘over Cn’’ will be abbreviated, unless necessary.

2)We use only the 1-cocyle class space H 1ð�;OÞ as a complex vector space.

3)A complex submanifold is not necessarily connected in this paper.
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We give a proof of this theorem in §2. In §3 we will apply it to prove Oka’s
Jôku-Ikô4) (see Lemma 3.11), and then we will give a unified proof for Cousin
I/II Problems, and q-equation for functions in §4 (Theorem 4.11) by combin-
ing the Weak Coherence Theorem 1.2 with a method of cuboid induction on
dimension; these yield H 1ðW;OÞ ¼ 0 for a holomorphically convex domain W
(Lemma 4.20), which su‰ces to derive Oka’s Heftungslemma or Grauert’s finite-
ness theorem for O on a strongly pseudoconvex domain (Theorem 4.21). In §4.3
we finally give the solution of Levi’s (Hartogs’ Inverse) Problem for unramified
Riemann domains.

2. Proof of Theorem 1.2

(i) We take an arbitrary point a A W.
Case of a B S: Since S is closed, there is a neighborhood U � W of a with

U \ S ¼ j. Then,

IhSix ¼ Ox ¼ 1 � Ox;
Ex A U ;

and therefore, f1g is a finite generator system of IhSix on U .
Case of a A S: There is a holomorphic local coordinate neighborhood U of

a with z ¼ ðz1; . . . ; znÞ such that

a ¼ ð0; . . . ; 0Þ A U ¼ PDð0; ðrjÞÞ;ð2:1Þ

S \U ¼ fz ¼ ðzjÞ A U : z1 ¼ � � � ¼ zq ¼ 0g ð1a bqa nÞ;

where PDð0; ðrjÞÞ ¼ fðzjÞ A Cn : jzj j < rj; 1a ja ng is a polydisk with center at
0. Let f

b
A IhSib ðb A U \ SÞ be any element. With the coordinate system

ðzjÞ we write b ¼ ðbjÞ ¼ ð0; . . . ; 0; bqþ1; . . . ; bnÞ. The function f is represented
by a unique power series expansion, f ðzÞ ¼

P
n AZ n

þ
cnðz� bÞn, which decomposes

to

f ðzÞ ¼
X

n¼ðn1; n 0Þ AZ n
þ; n1>0

cnðz� bÞn þ
X

n¼ðn1; n 0Þ AZ n
þ; n1¼0

cnðz� bÞn

¼
X

n¼ðn1; n 0Þ AZ n
þ; n1>0

cnz
n1�1
1 ðz 0 � b 0Þn

0

0
@

1
Az1 þ

X
n 0 AZ n�1

þ

c0n 0 ðz 0 � b 0Þn
0
:

Here we put n 0 ¼ ðn2; . . . ; nnÞ, z 0 ¼ ðz2; . . . ; znÞ, and b 0 ¼ ðb2; . . . ; bnÞ. Setting

4)This is a method or a principle of K. Oka all through his series of papers [21]–[31] such that to

solve a problem on a di‰cult domain one embeds the domain into a higher dimensional polydisk,

extends the problem on the polydisk, and then solves it by making use of the simple shape of the

polydisk (cf. [17]).
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h1ðz1; z 0Þ ¼
X

n¼ðn1; n 0Þ AZn
þ; n1>0

cnz
n1�1
1 ðz 0 � b 0Þn

0

0
@

1
A;

g1ðz 0Þ ¼
X

n 0 AZ n�1
þ

c0n 0 ðz 0 � b 0Þn
0
;

we have

f ðz1; z 0Þ ¼ h1ðz1; z 0Þ � z1 þ g1ðz 0Þ:ð2:2Þ

For g1ðz 0Þ we apply a similar decomposition with respect to variable z2, so
that

g1ðz 0Þ ¼ h2 � z2 þ g2ðz 00Þ; z 00 ¼ ðz3; . . . ; znÞ:

Repeating this process, we get

f ðzÞ ¼
Xq
j¼1

hjðzÞ � zj þ gqðzqþ1; . . . ; znÞ:

If z1 ¼ � � � ¼ zq ¼ 0, then f ðzÞ ¼ 0, and so gqðzqþ1; . . . ; znÞ ¼ 0. Therefore,

f ðzÞ ¼
Xq
j¼1

hjðzÞ � zj:

Thus,

IhSijU ¼
Xq
j¼1

OU � zj:ð2:3Þ

(ii) We begin with the following lemma:

Lemma 2.4. With the natural complex coordinate system z ¼ ðz1; . . . ; znÞ A
Cn we consider a relation sheaf Rp ð1a pa nÞ defined by

f1zz1z þ � � � þ fp
z
zp

z
¼ 0; fj

z
A Oz:ð2:5Þ

Then Rp is finitely generated on Cn by

Tij ¼ ð0; . . . ; 0;�zj
i-th

; 0; . . . ; 0; zi
j-th

; 0; . . . ; 0Þ; 1a i < ja p:ð2:6Þ

We call Tij ð1a i < ja pÞ of (2.6) the trivial solutions of (2.5) or of Rp.
In the case of p ¼ 1, we set the trivial solution to be 0 as a convention.

Proof of Lemma 2.4. We use induction on pb 1. The case of p ¼ 1 is
clear.
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Assuming that the case of p� 1 ðpb 2Þ holds, we consider the case of p.
Set

S ¼ fðz1; . . . ; znÞ : z1 ¼ � � � ¼ zp ¼ 0g;

and let a A Cn be an arbitrary point. If a ¼ ðajÞ B S, there is an aj 0 0
ð1a ja pÞ, to say, a1 0 0. In a neighborhood V of a, z1 0 0. Then, (2.5)
is solvable with respect to f1z:

f1z ¼ �f2z �
z2z
z1z

� � � � � fp
z
�
zp

z

z1z
; Efj

z
A Oz ð2a ja pÞ; z A V :

It follows that with z A V ,

ð fj
z
Þ ¼ �

Xp
j¼2

fj
z
�
zj

z

z1z
; f2z; . . . ; fpz

 !
ð2:7Þ

¼
Xp
j¼2

fj
z

z1z
� ð�zj

z
; 0; . . . ; 0; z1z

j-th
; 0; . . . ; 0Þ

¼
Xp
j¼2

�
fj
z

z1z
� T1jðzÞ A

Xp
j¼2

Oz � T1jðzÞ:

Therefore, Rp is generated by the trivial solutions fT1jg2ajap on V .

If a A S, we decompose an element ð fj
a
Þ A Rpa in a polydisk neighborhood U

of a as in (2.2):

fjðz1; z 0Þ ¼ hjðz1; z 0Þz1 þ gjðz 0Þ; z 0 ¼ ðz2; . . . ; znÞ; 1a ja p:

For z A U one gets

ð fj
z
Þ �

Xp
j¼2

hj
z
T1jðzÞ ¼ g1z þ

Xp
j¼1

hj
z
zj

z
; g2z; . . . ; gpz

 !
ð2:8Þ

¼ ð~gg1z; g2z; . . . ; gpzÞ:

Here, ~gg1z ¼ g1z þ
Pp

j¼1 hjz
zj

z
. Since ð~gg1z; g2z; . . . ; gpzÞ A Rpz,

~gg1zz1z þ g2zz2z þ � � � þ gp
z
zp

z
¼ 0:

The second term and so forth of the right-hand side of the equation above do not
contain variable z1, and so ~gg1z ¼ 0 is deduced. Thus,

g2zz2z þ � � � þ gp
z
zp

z
¼ 0:

This is the case of p� 1 after changing the indices of variables. Therefore, the
induction hypothesis implies that ð0; g2z; . . . ; gpzÞ is represented as a linear sum of

TijðzÞ, 2a i < ja p, with coe‰cients in Oz. Combining this with (2.8), we see
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that ð fj
z
Þ is represented as a linear sum of TijðzÞ, 1a i < ja p, with coe‰cients

in Oz. s

Continued proof of (ii). Set R ¼ Rðs1; . . . ; sNÞ. We consider the relation

f1zs1z þ � � � þ fNz
sNz

¼ 0; fj
z
A Oz:ð2:9Þ

We set the trivial solutions of this equation as follows:

tij ¼ ð. . . ;�sj
i-th

; . . . ; si
j-th

; . . .Þ; 1a i < jaN:

We take an arbitrary point a A W. If a B S, then some sjðaÞ0 0, to say,

s1ðaÞ0 0. As in (2.7), one sees that R is generated by ft1jgN
j¼2 on a neigh-

borhood of a.
If a A S, we take a holomorphic local coordinate system z ¼ ðz1; . . . ; znÞ in a

polydisk neighborhood PD as in (2.1):

a ¼ ð0; . . . ; 0Þ;

S \ PD ¼ fðz1; . . . ; znÞ A PD : z1 ¼ � � � ¼ zq ¼ 0g ð1a bqa nÞ:

It follows from (2.3) and the assumption that

IhSijPD ¼
Xq
j¼1

OPD � zj ¼
XN
j¼1

OPD � sj jPD:

Thus, we may assume without loss of generality that

sj ¼ zj ; 1a ja q ðon PDÞ;

si ¼
Xq
j¼1

aijzj; aij A OðPDÞ; qþ 1a iaN ðon PDÞ:

Set

fi ¼ ð�ai1; . . . ;�aiq; 0; . . . ; 0; 1
i-th

; 0; . . . ; 0Þ A GðPD;RÞ; qþ 1a iaN:ð2:10Þ

We deduce from (2.9) with z A PD that

f1z þ
XN
i¼qþ1

fizai1z

 !
z1z þ � � � þ fq

z
þ
XN
i¼qþ1

fizaiqz

 !
zq

z
¼ 0:ð2:11Þ

By Lemma 2.4,

f1z þ
XN
i¼qþ1

fizai1z; . . . ; fqz
þ
XN
i¼qþ1

fizaiqz
; 0; . . . ; 0

 !

is a linear sum of tjkðzÞ, 1a j < ka q, with coe‰cients in Oz. Therefore there
are bjk

z
A Oz, 1a j < ka q, such that
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X
1aj<kaq

bjk
z
tjkðzÞ ¼ f1z þ

XN
i¼qþ1

fizai1z; . . . ; fqz
þ
XN
i¼qþ1

fizaiqz
; 0; . . . ; 0

 !
ð2:12Þ

¼ ð f1z; . . . ; fqz; 0; . . . ; 0Þ þ
XN
i¼qþ1

fizðai1z; . . . ; aiqz; 0; . . . ; 0Þ:

By making use of (2.10) we get

ð f1z; . . . ; fqz; . . . ; fNz
Þ ¼

X
1aj<kaq

bjk
z
tjkðzÞ þ

XN
i¼qþ1

fizfiðzÞ:ð2:13Þ

Thus, R is generated on PD by

tjk; fi; 1a j < ka q; qþ 1a iaN:ð2:14Þ
This finishes the proof. r

Remark 2.15. (i) In the Weak Coherence Theorem 1.2 it is a point to
assume that fsjgN

j¼1 is a generator system of IhSi; otherwise, the proof
above does not work even if S is non-singular.

(ii) It is an advantage of the above method to the general First Coherence
Theorem of Oka that we have an explicit system of generators (2.14).

3. Oka’s Jôku-Ikô

The term ‘‘Jôku-Ikô’’ was used by K. Oka since he wrote the first paper
of the series in 1936 and retained this principle all through his works ([21]–[31])
(see footnote 4)): The aim of the present section is to prove Oka’s Jôku-Ikô,
Lemma 3.11 below only by making use of Theorem 1.2 combined with Cousin’s
integral (3.7). The technics may be essentially similar to those in some refer-
ences, e.g., Nishino [14] and Noguchi [17], but they are not in a suitable form for
our purpose.

3.1. Syzygy for non-singular geometric ideal sheaves
We begin with:

Definition 3.1. A cuboid E is a bounded open or closed subset of Cn with
the boundary parallel to the real and imaginary axes of z ¼ ðz1; . . . ; znÞ A Cn.
In the case of n ¼ 1, E is called a rectangle. When E is a closed cuboid, we
allow the widths of some edges to degenerate to 0, and call the number of edges
of E of positive widths the dimension of E, denoted by dim E.

Let W � Cn ¼ Cn�1 � C be a domain and let E 0;E 00 T W5) be two closed
cuboids as follows (cf. Fig. 1): There are a closed cuboid F T Cn�1 and two

5)The symbol ‘‘T’’ stands for that the inclusion is relatively compact.
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adjacent closed rectangles E 0
n;E

00
n T C sharing a side l, and

E 0 ¼ F � E 0
n; E 00 ¼ F � E 00

n ; l ¼ E 0
n \ E 00

n :ð3:2Þ

We now recall:

Lemma 3.3 (Cartan’s Merging Lemma). Let E 0;E 00 T W be adjacent closed
cuboids as in (3.2), and let F be an analytic sheaf on W. Let fs 0

j A GðE 0;FÞ :
1a ja p 0g (resp. fs 00

k A GðE 00;FÞ; 1a ka p 00g) be a finite generator system of

F on E 0 (resp. E 00).6)
Moreover, assume that there are holomorphic functions ajk; bkj A OðE 0 \ E 00Þ,

1a ja p 0, 1a ka p 00, such that

s 0
j ¼

Xp 00

k¼1

ajk � s 00
k ; s 00

k ¼
Xp 0

j¼1

bkj � s 0
j ðon E 0 \ E 00Þ:

Then, there exists a merged finite generator system fsl A GðE 0 [ E 00;FÞ :
1a la p 0 þ p 00g on E 0 [ E 00.

This is due to H. Cartan 1940; a rather simplified proof of it can be found in
[17], ‘‘Added at galley-proof ’’.

Lemma 3.4 (Oka’s Syzygy). Let E T Cn be a closed cuboid.
(i) Every locally finite analytic sheaf F defined on E (i.e., in a neighborhood

of E ) has a finite generator system on E.
(ii) Let F be an analytic sheaf on E with a finite generator system fsjg1ajaN

on E such that the relation sheaf Rðs1; . . . ; sNÞ is locally finite.
Then for every section s A GðE;FÞ there are holomorphic functions

aj A OðEÞ, 1a jaN, such that

s ¼
XN
j¼1

aj � sj ðon EÞ:ð3:5Þ

6)This means that they are defined so in some neighborhoods of E 0 and E 00, respectively; this

expression is the same through the paper.

Figure 1. Adjacent closed cuboids.
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Proof. The proof is carried out in the same way as in [14], or [17] Lemma
4.3.7 except for the use of the vanishing H 1ðU ;OÞ ¼ 0 for an a‰ne convex
cylinder domain U � Cn, which we replace by Cousin’s integral (3.7) as follows.
Suppose that E is a closed cuboid such that

E ¼ F � fzn : j<znjaT ; j=znja yg; T > 0; yb 0:ð3:6Þ

Set E0 ¼ F � fzn : <zn ¼ 0; j=znja yg, and let jðz 0; znÞ A OðE0Þ. Then there is
a small d > 0 such that jðz 0; znÞ is defined on

F � fzn : j<znja d; j=znja yþ dg:
Set

l ¼ fzn : <zn ¼ 0; �y� da=zn a yþ dg;
E1 ¼ F � fzn : �T a<zn a d; j=znja yg;
E2 ¼ F � fzn : �da<zn aT ; j=znja yg;

where l is positively oriented as =zn increases. We define Cousin’s integral of
jðz 0; znÞ along l by

Fðz 0; znÞ ¼
1

2pi

ð
l

jðz 0; znÞ
zn � zn

dzn:ð3:7Þ

Then Fðz 0; znÞ is holomorphic on ðE1 [ E2ÞnðF � lÞ. After analytic continua-
tions we obtain Fjðz 0; znÞ A OðEjÞ ð j ¼ 1; 2Þ satisfying

F1ðz 0; znÞ �F2ðz 0; znÞ ¼ jðz 0; znÞ; ðz 0; znÞ A E1 \ E2:ð3:8Þ

We call this the Cousin decomposition of jðz 0; znÞ.
The rest is the same as in the proof of [17] Lemma 4.3.7. r

By the Weak Coherence Theorem 1.2 and Lemma 3.4 we have:

Theorem 3.9 (Syzygy for IhSi). Let S be a complex submanifold of a
neighborhood of a closed cuboid E ðT CnÞ.

(i) IhSi has a finite generator system on E.
(ii) Let fsjg1ajaN be a finite generator system of IhSi on E with sj A OðEÞ.

Then for every s A GðE;IhSiÞ ðs A OðEÞÞ there are holomorphic func-
tions aj A OðEÞ, 1a jaN, such that

s ¼
XN
j¼1

aj � sj ðon EÞ:ð3:10Þ

3.2. Oka’s Jôku-Ikô
Let P be an open cuboid in Cn, and let S � P be a complex submanifold.

The following is fundamental in the Oka theory.
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Lemma 3.11 (Oka’s Jôku-Ikô). Let E T P be a closed cuboid. Then for
every holomorphic function g on E \ S ðT SÞ7) there exists an element G A OðEÞ
satisfying

GjE\S ¼ gjE\S:
Here, the equality holds in a neighborhood of E \ S in S.8)

Remark. We call G above a solution on E.

Proof. Notice that in the case of E \ S ¼ j, G can be any holomorphic
function on E, and the statement is true. We use induction on dim E.

(a) Case of dim E ¼ 0: Since E consists of one point, the assertion is clear.
(b) Case of dim E ¼ n ðnb 1Þ with the induction hypothesis that the case

of dim E ¼ n� 1 is true: By Theorem 3.9 (i) there is a finite generator system
fsjgN

j¼1 of IhSi on a neighborhood W ð� PÞ of E with sj A OðWÞ.
We may assume that E is taken as in (3.6). We set

Et ¼ fz ¼ ðz 0; znÞ A E : <zn ¼ tg; �T a taT :ð3:12Þ
Since dim Et ¼ n� 1, the induction hypothesis implies that there is a solution
Gt A OðEtÞ satisfying GtjS\Et

¼ gjS\Et
. By the Heine–Borel Theorem there is a

finite partition

�T ¼ t0 < t1 < � � � < tL ¼ T ;ð3:13Þ
Ea :¼ fz ¼ ðz 0; znÞ A E : ta�1 a<zn a tag; 1a aaL;

such that there are solutions Ga A OðEaÞ satisfying

GajS\Ea
¼ gjS\Ea

:

Therefore, Gaþ1 � Ga A GðEa \ Eaþ1;IhSiÞ. It follows from Theorem 3.9 (ii)
that there are aaj A OðEa \ Eaþ1Þ ð1a jaNÞ satisfying

Gaþ1 � Ga ¼
XN
j¼1

aajsj ðon Ea \ Eaþ1Þ:ð3:14Þ

By the Cousin decomposition (3.7) of aaj we write

aaj ¼ baj � baþ1j ðon Ea \ Eaþ1Þ; baj A OðEaÞ; baþ1j A OðEaþ1Þ:ð3:15Þ
Then,

Ga þ
XN
j¼1

bajsj ¼ Gaþ1 þ
XN
j¼1

baþ1jsj ðon Ea \ Eaþ1Þ:ð3:16Þ

7)With this writing we mean that g is a holomorphic function in a neighborhood V of E \ S

in S. The notation will be used in sequel.

8)The formulation of this lemma and the proof below should be new.
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Thus this yields a solution Haþ1 on Ea [ Eaþ1; for this procedure we say that
we merge the solutions Ga and Gaþ1 to obtain a solution Haþ1 on Ea [ Eaþ1.

Starting from a ¼ 1, we merge G1 and G2 to obtain a solution H2 on
E1 [ E2. We then merge H2 and G3 to obtain a solution H3 on E1 [ E2 [ E3.
Repeating this procedure up to a ¼ L� 1, we obtain a solution HL on E ¼SL

a¼1 Ea, and set G ¼ HL: This finishes the proof of Lemma 3.11. r

Remark 3.17. We call the above induction argument cuboid induction on
dimension, which will be used furthermore in the sequel.

It is well-known that Oka’s Jôku-Ikô Lemma 3.11 immediately implies
(cf., e.g., [17] Lemma 4.4.17):

Theorem 3.18 (Runge–Weil–Oka Approximation). Let D T W be an an-
alytic polyhedron of a domain W ð� CnÞ. Then every holomorphic function on the

closure D is uniformly approximated on D by elements of OðWÞ.

4. Cousin I/II, q, extension and Levi’s (Hartogs’ Inverse) Problems

The aim of this section is to show how the result obtained in the previous
section is applied to solve the titled problems.

4.1. Cousin I/II, and q-equation
We will give one unified proof to all of the three problems. We recall them:

Let W � Cn be a domain, let W ¼
S

a AL Ua be an open covering, and let MðUaÞ
denote the set of all meromorphic functions in Ua.

I (Cousin I) For given fa A MðUaÞ ða A LÞ satisfying fa � fb A OðUa \UbÞ
(Cousin-I data), find F A MðWÞ (called a solution) with F jUa

� fa A OðUaÞ
for all a A L.

II (Cousin II, Oka Principle) Here we assume that Ua are simply-
connected. Let fa A M�ðUaÞ ða A LÞ be locally non-zero meromorphic
functions satisfying
(a) fa=fb A O �ðUa \UbÞ (nowhere vanishing holomorphic functions)

(Cousin-II data),
(b) (Topological condition) there are nowhere vanishing continuous func-

tions ca A C�ðUaÞ with ca=cb ¼ fb=fa on Ua \Ub.
Find F A M�ðWÞ with F jUa

=fa A O �ðUaÞ for all a A L.
We may take a continuous branch ha :¼ log ca in each Ua. It

follows that

hajUa\Ub
� hbjUa\Ub

A OðUa \UbÞ:ð4:1Þ

The problem to find the solution F above is reduced to the following
problem:
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ð?Þ For a given family fhag of continuous functions satisfying (4.1),
find a continuous function H (called a solution) in W such that for every
Ua

HjUa
� ha A OðUaÞ:

III (q-Equation) For a given Cy-ð0; 1Þ-form u on W with qu ¼ 0, find a
Cy-function g (called a solution) on W with qg ¼ u.

Locally, by Dolbeault’s lemma, there is a solution f of this problem
in a neighborhood of a point of W. Thus, there are an open covering
fUaga AL of W and Cy-functions ga on Ua such that qga ¼ ujUa

. Then,
the present problem is equivalent to find a Cy-function G (solution) on W
with GjUa

� ga A OðUaÞ for all a A L.

Convention. For a unified treatment for the above problems, we introduce
an ‘‘argument w’’ representing one of I–III above: Problem-w means one of
Problems I–III above, where Problem-II means Problem (?), and a w-solution
means a solution of the corresponding Problem-w.

Remark 4.2. If C is so obtained in Cousin-II Problem above, then F1 ¼
fae

log ca�C A M�ðWÞ satisfies the required property for F . Then we have a
homotopy,

Ft ¼ fae
log ca�tC; 0a ta 1;

from the topological assumed solution F0ð¼ facaÞ to an aimed analytic (mero-
morphic) solution F1.

Remark 4.3. The common property of Problem-w that we will use is the
following: If f and f 0 are two solutions of Problem-w on an open set U in
general, then f � f 0 A OðUÞ.

We begin with:

Lemma 4.4. Let P be an open cuboid in Cn and let S be a complex sub-
manifold of P. We consider Problem-w defined on S. Let E T P be a closed
cuboid. Then there is a w-solution on E \ SðT SÞ.9)

Proof. We use cuboid induction on dimension.
(a) Case of dim E ¼ 0: It is clear by definition.
(b) Case of dim E ¼ n ðnb 1Þ with the induction hypothesis that the case

of dim E ¼ n� 1 holds: Without loss of generality we may assume that E is
given as in (3.6), and let Et be as in (3.12). Since dim Et ¼ n� 1, the induction
hypothesis implies the existence of a w-solution Ft on Et \ S ðT SÞ. Then, by

9)Cf. footnote 7) at p. 9.
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the Heine-Borel Theorem there are a partition of ½�T ;T �, Ea ð1a aaLÞ as in
(3.13), and w-solutions Fa on Ea \ SðT SÞ.

If Ea \ Eaþ1 \ S0j, we say that Ea and Eaþ1 is pairwise connected on S.
It is su‰cient to prove the existence of a w-solution for each maximal sequence
of Ea pairwise connected on S,

Ea0 [ Ea0þ1 [ � � � [ Ea1 :ð4:5Þ

For simplicity we suppose that a0 ¼ 1. It follows from Remark 4.3 that for
1a aa a1

Faþ1 �Fa A GðEa \ Eaþ1 \ S;OSÞ:ð4:6Þ
By Oka’s Jôku-Ikô Lemma 3.11, there is a holomorphic function Ha A
OðEa \ Eaþ1Þ such that

HajEa\Eaþ1\S ¼ Faþ1 �Fa:ð4:7Þ

By the Cousin decomposition of Ha as in (3.7) we have ~HHa A OðEaÞ and ~HHaþ1 A
OðEaþ1Þ such that

Ha ¼ ~HHa � ~HHaþ1 ðon Ea \ Eaþ1Þ:ð4:8Þ

We infer from (4.8) and (4.7) that

Fa þ ~HHajEa\S ¼ Faþ1 þ ~HHaþ1jEaþ1\S on Ea \ Eaþ1 \ S ðT SÞ:ð4:9Þ

Note that Fa þ ~HHajEa\S (resp. Faþ1 þ ~HHaþ1jEaþ1\S) is a w-solution on Ea \ SðT SÞ
(resp. Eaþ1 \ SðT SÞ). Thus, from (4.9) we obtain a merged w-solution Caþ1 on
ðEa [ Eaþ1Þ \ SðT SÞ from Fa and Faþ1.

Now, from F1 and F2 we obtain a merged w-solution C2 on ðE1 [ E2Þ \
SðT SÞ. We then obtain a merged w-solution C3 on ðE1 [ E2 [ E3Þ \ SðT SÞ
from C2 and F3, and so on; we obtain a w-solution on ð

Sa1
a¼1 EaÞ \ SðT SÞ.

r

Definition 4.10. A complex manifold M is said to be holomorphically
convex if for every compact subset K T M the holomorphically convex hull of
K defined by

K̂KM ¼ fa A M : j f ðaÞjamaxfj f ðxÞj : x A Kg; f A OðMÞg
is again compact.

Theorem 4.11. Let W be a holomorphically convex domain. Then Problem-
w on W has a w-solution on W.

Proof. We take an increasing sequence of analytic polyhedra of W,

D1 T D2 T D3 T � � � ;
[y
n¼1

Dn ¼ W:ð4:12Þ
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For each n we let fn : Dn ! PDn be the Oka map (a holomorphic proper em-
bedding) of Dn into a closed polydisk PDn, which extends from a neighborhood

Un of Dn into a polydisk, biholomorphic to an open cuboid Pn ðU PDnÞ. Then,
the image fnðUnÞ is a complex submanifold of Pn. We identify Un with the
image fnðUnÞ.

By Lemma 4.4 there is a w-solution Gn on every Dn. Put F1 ¼ G1 on D1.
Suppose that w-solutions Fn on Dn, 1a na m, are determined so that

kFnþ1 � FnkDn
<

1

2n
; 1a na m:ð4:13Þ

Let Gmþ1 be a w-solution on Dmþ1. Since Gmþ1jDm
� Fm A OðDmÞ, by Theorem 3.18

there is an element hmþ1 A OðDmþ1Þ with

kGmþ1jDm
� Fm � hmþ1kDm

<
1

2mþ1
:

Setting Fmþ1 ¼ Gmþ1 � hmþ1, we see that (4.13) holds up to mþ 1. Inductively,
we have w-solutions Fn on Dn satisfying (4.13), and the series

F ¼ Fm þ
Xy
n¼m

ðFnþ1 � FnÞ

converges locally uniformly and the limit gives rise to a w-solution on W. r

Remark 4.14. As easily seen, the above proof of Theorem 4.11 works on
Stein manifolds, which is defined by:

Definition 4.15. A complex manifold M is said to be Stein if the following
conditions are satisfied.

(i) M satisfies the second countability axiom:
(ii) (Holomorphic separation) For every two distinct two point a; b A M

there is a holomorphic function f A OðMÞ on M with f ðaÞ0 f ðbÞ:
(iii) For every point a A M there are holomorphic functions fj A OðMÞ,

1a ja n ¼ dima M, such that df1ðaÞ5� � �5dfnðaÞ0 0:
(iv) M is holomorphically convex (see Definition 4.10).

4.2. Extension problem
By means of the Weak Coherence Theorem 1.2 we consider the extension

problem (interpolation problem) from a complex submanifold in a holomorph-
ically convex domain.

Theorem 4.16. Let W � Cn be a holomorphically convex domain and let
S � W be a complex submanifold. Then the restriction map

F A OðWÞ ! F jS A OðSÞ
is a surjection.
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Proof. We take analytic polyhedra Dn T W and Oka maps fn : DnðT UnÞ !
PDnðT PnÞ ðn ¼ 1; 2; . . .Þ as in the proof of Theorem 4.11. By Theorem 3.9 (i)
there is a finite generator system fsnjgNn

j¼1 of IhS \ Pni on each PDn ðT PnÞ,
where Un is identified with fnðUnÞ.

Let f A OðSÞ be any element. By Oka’s Jôku-Ikô Lemma 3.11 there are
Gn A OðPDnÞ with GnjDn\S ¼ f j

Dn\S ðn ¼ 1; 2; . . .Þ.
We set F1 ¼ G1jD1

. Suppose that Fn A OðDnÞ, 1a na m, are determined so
that

Fn ¼ f j
Dn\S; kFnþ1 � FnkPDn

<
1

2n
; 1a na m� 1:ð4:17Þ

For n ¼ mþ 1 we first note that ðGmþ1jDm
� FmÞjDm\S ¼ 0. By Lemma 3.11 there is

an element Hm A OðPDmÞ with HmjDm
¼ Gmþ1jDm

� Fm. Since Hm A GðPDn;IhSiÞ,
by Theorem 3.9 (ii) there are hmj A OðPDmÞ, 1a jaNmþ1, such that

Hm ¼
XNmþ1

j¼1

hmj � smþ1j on PDm:

Restricting this to Dn, we have

Gmþ1jDm
¼ Fm þ

XNmþ1

j¼1

hmj � smþ1jjDm
:

Approximating hmj su‰ciently close by ~hhmj A OðWÞ on Dm (Theorem 3.18), and
setting

Fmþ1 ¼ Gmþ1 �
XNmþ1

j¼1

~hhmj � smþ1j A OðDmþ1Þ;

we have

Fmþ1jDmþ1\S ¼ f j
Dmþ1\S; kFmþ1 � FmkDm

<
1

2m
:

Then the series

F ¼ Fm þ
Xy
n¼m

ðFnþ1 � FnÞ

converges locally uniformly to the limit F A OðWÞ with F jS ¼ f . r

Remark 4.18. The above proof of Theorem 4.16 works on Stein mani-
folds.
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4.3. Levi’s (Hartogs’ Inverse) Problem

4.3.1. Levi’s (Hartogs’ Inverse) Problem. We first recall some basic termi-
nologies (see, e.g., [9], [12], [17] for more details). Let M be a connected com-
plex manifold.

An upper semi-continuous function c on M is said to be plurisubharmonic if
every restriction of c to a 1-dimensional complex submanifold of any holomor-
phic local chart of M is subharmonic. If c is of C2-class, it is plurisubharmonic
if and only if the hermitian matrix

q2c

qzjqzk

 !
b 0 ðsemi-positive definiteÞ;

where z ¼ ðzjÞ is a holomorphic local coordinate system of M; moreover, if

q2c

qzjqzk

 !
g 0 ðpositive definiteÞ;

then c is said to be strongly plurisubharmonic.
If M carries a continuous plurisubharmonic exhaustion c10), then M is said

to be pseudoconvex. Note that there are several equivalent definitions of being
‘‘pseudoconvex’’ (cf. [10], [9], [12], [14], [17], etc.).

A relatively compact domain W T M is said to be strongly pseudoconvex if
for every boundary point b A qW there are a neighborhood U of b in M and a
strongly plurisubharmonic function f on U satisfying

W \U ¼ fx A U : fðxÞ < 0g:
It is known that a strongly pseudoconvex domain is pseudoconvex.

If M is connected and there is a locally finite holomorphic map p : M ! Cn

with dim M ¼ n, then we call M a Riemann domain, in general; furthermore, if
p is (resp. not) locally biholomorphic, we call M a (resp. ramified) unramified
Riemann domain; in this case, M carries a distance function induced from
the euclidean metric on Cn through p, so that M satisfies the second countability
axiom.

It had been known that a Stein manifold is pseudoconvex: Levi’s (Hartogs’
Inverse) Problem had asked originally the converse for univalent domains of Cn.
K. Oka extended the problem for Riemann domains. (There was a necessity to
do so (cf., e.g., [17] §5.1).)

4.3.2. Oka’s method. Notice that Oka’s Jôku-Ikô Lemma 3.11 is su‰cient
to deduce Oka’s Heftungslemma which, together with a method of an integral
equation and the construction of a plurisubharmonic exhaustion on a pseudo-
convex unramified Riemann domain, implies Levi’s (Hartogs’ Inverse) Problem
(cf. Oka [26], [27], [32], [31], Andreotti-Narasimhan [1], Nishino [14]):

10)A functions c is called an exhaustion if fx A M : cðxÞ < cg T M for all c A R.
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Theorem 4.19 (Oka, 1941/42/43/53; cf. §5). Let M be an unramified
Riemann domain. If M is pseudoconvex, then M is Stein.

4.3.3. Grauert’s method. In 1958 H. Grauert [8] gave another proof of
Theorem 4.19 by proving the finite dimensionality of the first cohomology of
coherent sheaves which was inspired by the Cartan–Serre Theorem for coherent
sheaves on compact analytic spaces.11) We shall observe that the Weak Coher-
ence Theorem 1.2 su‰ces for Grauert’s method to prove Theorem 4.19.

We use the first Čech cohomology H 1ð�;OÞ. The following immediately
follows from Theorem 4.11:

Lemma 4.20. (i) If W be a holomorphically convex domain of Cn, then
H 1ðW;OÞ ¼ 0.

(ii) Let M be a complex manifold with the second countability axiom, and let
U ¼ fUng be a Stein covering of M (i.e., every Un is open and Stein).
Then we have

H 1ðU;OÞGH 1ðM;OÞ:

Then we can apply Grauert’s bumping method [8] to prove:

Theorem 4.21 (Grauert). Let W T M be a relatively compact domain of a
complex manifold M with strongly pseudoconvex boundary. Then we have

dimC H 1ðW;OÞ < y:

Proof of Theorem 4.19. (i) The key of the proof is to show that a strongly
pseudoconvex domain W T M is Stein. Let b A qW be a boundary point. By
the definition of strong pseudoconvexity there are a neighborhood U of b in
M and a quadratic polynomial Pbðz1; . . . ; znÞ such that U \W \ fPb ¼ 0g ¼ fbg.
Then there is a little bit larger strongly pseudoconvex domain We U W such that
We \ fPb ¼ 0g is closed in We. We consider Cousin-I data ðU0; fn0Þ and ðU1; fn1Þ
of We such that for n ¼ 1; 2; . . . ,

fn0 ¼
1

PbðzÞn
on U0 ¼ We \U ;

fn1 ¼ 0 on U1 ¼ WenfPb ¼ 0g:

Theorem 4.21 applied to these Cousin-I data on We yields a meromorphic func-
tion Fb on We such that Fb is holomorphic in U1, and in U0, Fb is written as

FbðzÞ ¼
cn

PbðzÞn
þ � � � þ c1

PbðzÞ
þ holomorphic term;ð4:22Þ

11)Cf. the footnote of [8] p. 466. The proof relies on L. Schwartz’s finiteness theorem, whose

rather simple, short and complete proof is found in [5] and [17] pp. 313–315.
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where cm A C ð1a ma nÞ and cn 0 0. Thus FbjW A OðWÞ and W being holomor-
phically convex is deduced.

(ii) To show the holomorphic separation of W, we take two distinct points
Q1;Q2 A W. We may assume that pðQ1Þ ¼ pðQ2Þ ¼ a A Cn. Let fðtÞ, tb 0, be
any a‰ne linear curve with fð0Þ ¼ a. Then there is a unique lifting fjðtÞ A W,
j ¼ 1; 2, such that fjð0Þ ¼ Qj and p � fjðtÞ ¼ fðtÞ. Since W is relatively compact,
fjðtÞ hits the boundary qW. We may assume that f1ðtÞ hits qW first with t ¼ T A
R, so that fjð½0;T �Þ � W ð j ¼ 1; 2Þ and f1ðTÞ A qW. Note that f1ðTÞ0 f2ðTÞ.
With setting b ¼ f1ðTÞ we have by (4.22) a meromorphic function Fb in We which
is holomorphic in W.

We consider the Taylor expansions of Fb at Q1 and Q2 in coordinates
ðz1; . . . ; znÞ. Since Fb has a pole at f1ðTÞ and no pole at f2ðTÞ, those two
expansions must be di¤erent. Therefore, there is some partial di¤erential op-
erator qa ¼ qjaj=qza11 � � � qzann with a multi-index a such that

qaFbðQ1Þ0 qaFbðQ2Þ:

Since qaFb is holomorphic in W, this finishes the proof. r

Remark 4.23. (i) The idea of the proof above is inspired by Oka’s un-
published paper in 1943 ([33]). Note that it is subtle how to deal with
the holomorphic separation of an unramified Riemann domain. In
Hörmander [12] the holomorphic separation is included in the definition
of Riemann domains. In [17] Chap. 7 we used Grauert’s Theorem 4.21
for a non-singular geometric ideal sheaves, which can be also deduced
from our Weak Coherence Theorem, but then it involves a sheaf-
cohomological argument. In Gunning–Rossi [10] and in Nishino [14]
they gave their own proofs.

(ii) The proof presented above provides a complete proof of Levi’s (Hartogs’
Inverse) Problem without the sheaf cohomology theory nor L2-q method.

5. Historical remarks

Here, cf. [17] Chap. 9 ‘‘On Coherence’’ and [19] for more details, and cf.,
e.g., Lieb [13] for the general background.

Oka’s Theorem 4.19 was first proved for univalent domains W � C2 by Oka
[26] (announcement) in 1941, and the full paper [27] was published in 1942 with
a comment of the validity for nb 3.

In 1943 Oka proved Theorem 4.19 for unramified Riemann domains of gen-
eral dimensionb 2 in a series of research reports of p. 109 in total, sent to Teiji
Takagi: The reports were written in Japanese and unpublished (see [32], [33]).
He remarked this fact three times, first in his survey note [28] (1949), VIII [30]
(1951) and IX [31] (1953). The paper [28] has not been referred very much, but
it should have a significant interest, for it was written during the submission of
VII [29] before the publication; he had sent it to H. Cartan 1948 one year ago
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(through the hands of S. Kakutani and A. Weil), and in return he had received
Cartan’s conjectural (or experimental) paper [3] referred in [28]. He surveyed the
state of the development of analytic function theory of several variables at the
time.

In the 1943 reports to Takagi he did not use Weierstrass’ Preparation
Theorem, but he was writing a primitive form of the notion of coherence and non-
reduced structures of analytic subsets; the study later led to the notion ‘‘idéaux
de domaines indéterminés’’, coherence in 1948 ([29]). The key of Oka’s proof of
Theorem 4.19 was his ‘‘Heftungslemma’’. In [26] and [27] he proved Heftung-
slemma by Weil’s integral, but in 1943 ([32] no. 1, [33]) he replaced Weil’s
integral by simple Cauchy’s integral, proving ‘‘Oka’s Jôku-Ikô’’ for unramified
Riemann domains.

In 1949 S. Hitotsumatsu [11] written in Japanese gave a proof of Oka’s
Heftungslemma by Weil’s integral to solve Levi’s (Hartogs’ Inverse) Problem in
general dimension nb 2; here he gave no argument of plurisubharmonic exhaus-
tions on pseudoconvex unramified Riemann domains, and so the result might
hold only for univalent domains.

In 1953 Oka [31] proved Theorem 4.19 above by making use of his First and
Second Coherence Theorems obtained in [29]: the Third Coherence Theorem was
not used there.

In 1954 Bremermann [2] and Norguet [20] independently proved Theorem
4.19 for univalent domains W � Cn with general nb 2, generalizing Oka’s Hef-
tungslemma by means of Weil’s integral, similarly to Hitotsumatsu [11].

Concluding Remark (Oka’s Problem). It is interesting to learn that Oka
invented and proved three fundamental coherence theorems by means of Weier-
strass’ Preparation Theorem in order to treat the pseudoconvexity problem on
singular ramified Riemann domains. Levi’s (Hartogs’ Inverse) Problem for rami-
fied Riemann domains has a counter-example (Fornæss [7]), but in the same
time there is a positive case for which Levi’s (Hartogs’ Inverse) Problem is
a‰rmative ([18]). Because of the above historical facts we may call the following
question

Oka’s Problem: What is necessary and/or su‰cient for the validity of Levi’s
(Hartogs’ Inverse) Problem on a ramified Riemann domain X (over Cn)?:

This is open even when X is non-singular.
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[ 6 ] J. Dieudonné, Abrégé d’histoire des mathématiques: 1700–1900, I, Hermann, Paris, 1986.

[ 7 ] J. E. Fornss, A counterexample for the Levi problem for branched Riemann domains over

Cn, Math. Ann. 234 (1978), 275–277.

[ 8 ] H. Grauert, On Levi’s problem and the imbedding of real-analytic manifolds, Ann. Math.

68 (1958), 460–472.

[ 9 ] H. Grauert and R. Remmert, Theorie der Steinschen Räume, Grundl. math. Wiss. 227,
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