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ON A RIGIDITY OF SOME MODULAR GALOIS DEFORMATIONS
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Abstract

Let F be a totally real field and r ¼ ðrlÞl be a compatible system of two dimen-

sional l-adic representations of the Galois group of F . We assume that r has a

residually modular l-adic realization for some l. In this paper, we consider local

behaviors of modular deformations of l-adic realizations of r at unramified primes. In

order to control local deformations at specified unramified primes, we construct certain

Hecke modules. Applying Kisin’s Taylor-Wiles system, we obtain an R ¼ T type result

supplemented with local conditions at specified unramified primes. As a consequence,

we shall show a potential rigidity of some modular deformations of infinitely many

l-adic realizations of r.

1. Introduction

Let F be a totally real field and S be a finite set of places of F which
contains all infinite places. Let GF ;S be the Galois group of the maximum
extension of F which is unramified outside S. We take a rational prime p > 2
and we assume that all primes of F dividing p are contained in S. In this paper,
we consider a two dimensional modular p-adic representation

rf ;l : GF ;S ! GL2ðKf ;lÞ:

Namely it is a continuous representation of GF ;S associated to a Hilbert modular
Hecke eigenform f over F ; here Kf ;l is the completion of the Hecke field Kf of
f at a prime l dividing p, and S is containing all primes dividing a level of f .
In the elliptic modular (i.e. F ¼ Q) case, rf ;l is constructed by Eichler, Shimura
and Deligne as is well known, and in the Hilbert modular (i.e. F 0Q) cases
they are constructed by Shimura [18], Ohta [17], Carayol [2], Taylor [21], Blasius-
Rogawski [1] and others. Moreover, the family rf ¼ ðrf ;lÞl of p-adic represen-
tations of f indexed by primes l of Kf forms the regular and irreducible rank two
strong compatible system; for the detail, see Introduction of [23].

As Fujiwara pointed out in Introduction of [9], modular p-adic representa-
tions play central roles in the theory of Galois representations, so it is important
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to reveal the conditions when a p-adic representation

r : GF ;S ! GL2ðEÞ
is modular; here E is a finite extension of Qp. A piece of remarkable results is
the theory of modularity lifting, which is developed by Wiles [25], Taylor-Wiles
[24], Faltings [loc.cit., Appendix], Diamond [5], [6], Fujiwara [8], Kisin [13] and
others. In his paper Kisin showed the modularity of a two dimensional p-adic
representation r : GF ;S ! GL2ðEÞ which is potentially Barsotti-Tate at primes
p dividing p and whose mod p reduction r is associated to a Hilbert modular
eigenform of parallel weight two. The important ingredient of Kisin’s proof is
the R ¼ T theorem ([13, Proposition (3.4.11)]), which states a structure theorem
of the universal deformation ring of r. We shall review it briefly.

Let O be the ring of integers of E. Taking a GF ;S-stable O-lattice of
the representation r we consider it as a continuous representation r : GF ;S !
GL2ðOÞ. We denote by S the set of finite places vF p at which r is ramified;
we also put Sp :¼ S [ fp : p j pg. Then the symbol R in ‘‘R ¼ T ’’ denotes the
noetherian complete local O -algebra

R ¼ R
c;r
F ;S n ~RRc;s;r

S;p

obtained by tensoring the noetherian complete local O -algebra1)

~RRc;s;r
S;p ¼ n̂nv ASp

~RRc;s;r
v

to the universal framed deformation ring R
c;r
F ;S of r with fixed determinant con-

dition. Here v runs over all primes in Sp and ~RRc;s;r
v denotes the suitable quo-

tient of the framed local deformation ring of rjGFv
; at primes dividing p we have

to take further modification corresponding to the ordinarity data s, see §2.3 and
§2.5. We say a deformation of r is of type ~RRc;s;r

S;p when its local restrictions

at primes v A Sp are controlled by ~RRc;s;r
S;p . On the other hand, the symbol T

means a certain p-adic local Hecke algebra, which controls framed deformations
of r associated to modular forms; in this paper we will denote it by Tr. Then
Kisin’s R ¼ T theorem asserts that the surjective map

R! Tr

obtained by r and s has the p-power torsion kernel.
In this theorem, it seems that the local behavior at ramified primes are dom-

inant for the deforming of r. So we have a following simple question:

Question 1.1. In the situation when Kisin’s R ¼ T is established, how much
local deformations does it permit at unramified primes?

In this paper, we give an answer of this question. The precise statement of
the result is the following:

1)The important ingredient of Kisin’s theorem is that ~RRc; s;r
S; p is a domain; see [13, (2.5), (3.4)].
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Theorem 1.2 (Theorem 3.15). Let F be a totally real number field. Let K
be a number field, S be a finite set of finite primes of F , S be a finite set of finite
primes of K and

R :¼ ðK;S; S ; fQvðXÞgv BS; r ¼ ðrlÞl A jK jyÞ

be a regular and irreducible rank two weakly pre-compatible system of l-adic repre-
sentations of GF ; for the definition, see §2.6. We assume that there is a finite
character c : GF ! O�K such that, for any prime l A jK jy the determinant of rl is
cepl ; here we denote by pl the residue characteristic of Kl and by epl the pl-adic
cyclotomic character of GF . We further assume that there is a prime l B S lying
over a rational prime p ¼ pl > 2 such that the l-adic realization

r ¼ rl : GF ! GL2ðKlÞ

satisfies the conditions in [13, Theorem (3.5.5)]. Namely,
(1) For any prime p dividing p, the restriction rjGFp

is potentially Barsotti-
Tate;

(2) r is strongly residually modular (in the sense of Remark 3.14);
(3) rjGFðzpÞ

is absolutely irreducible;
(4) If p ¼ 5 and the projective image of Im r is isomorphic to PGL2ðF5Þ, then

the kernel of the projectivization of r does not fix F ðz5Þ.
Then, for infinitely many primes m B S we have the following: After taking a
suitable totally real solvable base change Fa of F (and denoting objects of Fa by
the same symbols), each OKm

-deformation r 0m of

rm : GF ! GL2ðFmÞ

of type ~RR
c;sm;r
S;pm

has a field automorphism f A AutðKmÞ satisfying

ðr 0m nKmjGFv
Þss F f�ðrm nKmjGFv

Þss

for almost all unramified primes v of rm. Here sm is the ordinary data associated
to rm and ‘‘ss’’ denotes semi-simplifications.

As a consequence, using the isomorphism criterion by the Chebotarev density
theorem, we obtain the following result.

Corollary 1.3 (Corollary 3.17). Let R be a regular and irreducible rank 2
weakly pre-compatible system of l-adic representations of GF satisfying conditions
in Theorem 1.2. Then, for infinitely many primes m of K , there is a totally real
solvable base change Fa=F such that, after taking it all OKm

-deformations r1, r2 of

rm of type ~RR
c;sm;r
S;pm

are isomorphic to each other modulo an automorphism of Km;

namely, there is a field automorphism f A AutðKmÞ such that

r1 nKmjGFa
F f�ðr2 nKmÞjGFa

:
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The strategy of the main theorem (Theorem 1.2) is as follows: (0) Let R
be a pre-compatible system as in the statement of Theorem 1.2. We put E ¼ Kl

and denote by O the ring of integers of E. We take a GF ;S-stable O-lattice of rl
and consider it as a continuous representation rl : GF ;S ! GL2ðOÞ. Let f be a
Hilbert modular Hecke eigenform of parallel weight two of F such that rl F rf ;l.
Let SM2

2;cðU ;CÞ be the space of Hilbert modular forms over F of parallel weight 2,

adelic level U and character c, which contains f . (1) Taking a suitable totally
real base change due to Langlands, Skinner-Wiles and Kisin, we reduce the
situation to the spacial case when Kisin’s R ¼ T theorem is applicable. By the
Jacquet-Langlands and Shimizu correspondence, we associates f to a ( p-adic)
quaternionic Hecke eigenform f D of some totally definite quaternion algebra D
over F . (2) Let P be a finite set of unramified primes of rl. We focus our
attention to local behaviors of deformations of rl at specified unramified primes
in P . In order to observe these, we define the local conditions of framed defor-
mations of rl which controls local deformations at all primes in P . (3) We
construct Hecke modules MP� and MP�

Qn
for all nb 1 to apply Kisin’s Taylor-

Wiles system supplementing with our local conditions. These Hecke modules
will be constructed from representation spaces of modular Galois deformations of
type ~RRc;s;r

S;p satisfying our local conditions at primes in P . Applying the O ½DQn
�-

freeness result of the localized spaces of quaternionic modular forms due to
Taylor, we will obtain the important property that the augmented quotient of

MP�
Qn

is isormophic to MP� ; see Proposition 3.10. (4) We then apply Kisin’s
Taylor-Wiles system to our Hecke modules. Then under the global condition

dimC SM2

2;cðU ;CÞ < pð1:0:1Þ

we obtain the result that, for any modular O-deformation of r of type ~RRc;s;r
S;p

its local deformations at all primes in P are controlled by local deformations
at ramified primes. We note that the Condition 1.0.1 enables us to control the
growth of p-adic Hecke fields at Taylor-Wiles deformations. (5) We can take a
further totally real base change such that there are infinitely many primes m B S
satisfying the condition (1.0.1) for p ¼ pm, and hence our R ¼ T result is appli-
cable for rm. We take P as a one-point set of an arbitrary prime v B S, and we
obtain the result of Theorem 1.2. Moreover, as a consequence of Chebotarev’s
density theorem, a global rigidity result of deformations of rm of type ~RR

c;sm;r
S;pm

(Corollary 1.3) is obtained.
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2. Preliminaries

Notation and conventions. In this paper, for any global or local field K we
denote by OK the ring of integers of K .

Let F be a totally real field. Let jF j (resp. jF jy) be the set of all places
(resp. all finite places) of F . We fix an algebraic closure F of F and let GF be
the absolutely Galois group. For any v A jF jy, we fix an algebraic closure Fv

of the completion Fv of F at v and fix an embedding F ,! Fv, so that we iden-
tify the absolutely Galois group GFv

:¼ GalðFv=FvÞ with a decomposition group
of GF at v. We denote by Iv the inertia subgroup of GFv

. At a finite place
v, we choose a uniformizer $v of Fv and we normalize the reciprocity map
Artv : F

�
v ! G ab

Fv
of the local class field theory as $v 7! Frobv, where Frobv is

the geometric Frobenius element at v. Let AF (resp. Ay
F ) be the ring of adeles

(resp. of finite adeles) of F . When the base field F is clear, we often omit the
subscript F .

Let S be a finite set of places of F containing all infinite places and let GF ;S

be the Galois group of the maximal extension of F which is unramified outside S.
For any prime v B S, we denote the unique lifting of Frobv in GF ;S by the same
symbol.

For a rational prime p, let E be a finite extension field of Qp. When we
fix E we often write OE as O for simplicity. We denote by F the residue field
of OE . We also fix an algebraic closure E of E and for any place v we
choose an isomorphism of fields iv : EFFv given by the axiom of choice; we
also fix an isomorphism iy : EFC. Let e : GF ! O� be the p-adic cyclotomic
character.

Let ARO be the category consisting of finite local artinian O-algebras
ðA;mAÞ equipped with an isomorphism A=mA !F F and with mA-adic topology.
The morphisms of ARO are local O-algebra homomorphisms. Here we note
that each A A ARO has finite cardinality, so that the topology of A is discrete
and each morphism of ARO is continuous. We also define the category dARARO

consisting of projective limits of objects of ARO .

2.1. Kisin’s Taylor-Wiles system. First of all, we recall the modified
Taylor-Wiles system due to Kisin. We also refer to [26]. In the following of
this section, we fix a rational odd prime p > 2 and fix a finite extension E of Qp.
We fix a uniformizer l of O . Then the statement of Kisin’s Taylor-Wiles system
is as follows.

Proposition 2.1 ([13, Proposition (3.3.1)]). Let B be a complete local and
flat O-algebra, satisfying that:

� B is a domain of relative dimension b over O ,
� B½1=p� is formally smooth over E.

Let R be a complete local B-algebra and H is a non-zero R-module. Suppose that
there exist non-negative integers r and j such that for any integer nb 1, there exist
the following commutative diagrams of O-algebras
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B½½X1; . . . ;Xrþj�b��???y?y
O ½½S1; . . . ;Sr;Y1; . . . ;Yj�� ��������! Rn ��������! EndO ðHnÞ???y?y  

�
�

R EndO ðHÞ;��������!
where Hn is an Rn-module and the dashed arrow means a map between the images
of Rn and R. We further assume the following:

(1) Rn=ðS1; . . . ;SrÞRn !F R and Hn=ðS1; . . . ;SrÞHn !F H,
(2) AnnO ½½S1;...;Sr;Y1;...;Yj ��ðHnÞ is contained in the ideal ððSi þ 1Þp

n

� 1Þ1aiar,
(3) Hn is finite free over O ½½S1; . . . ;Sr;Y1; . . . ;Yj ��=AnnO ½½S1;...;Sr;Y1;...;Yj ��ðHnÞ.

Then, the map

R! EndO ðHÞ

has p-power torsion kernel.

2.2. Global deformation rings and Taylor-Wiles deformations. In the fol-
lowing we assume p > 2 and that the finite set S of places of F contains all
primes p dividing p. Let e be the p-adic cyclotomic character and c : GF ;S !
O� be a continuous character of finite order. Let r : GF ;S ! GL2ðFÞ be an
absolutely irreducible continuous representation of determinatnt ce modulo l.
We denote by VF the representation space of r, and we fix an ordered basis bF
of VF.

Now we consider deformations of r. We denote by Dr
F ;S the groupoid over

ARO defined as follows: For any A A ARO , objects of the category Dr
F ;SðAÞ

are triples ðVA; f; bÞ, where VA is a free A-module of rank two provided with
a continuous GF ;S-action rA : GF ;S ! AutAðVAÞ, f is a GF ;S-equivariant F-linear
isomorphism f : VA nA F!F VF and b is an ordered A-basis of VA which is a
lifting of the fixed basis bF of VF. In particular we identify bnA F with bF by
the isomorphism f. We call an object of Dr

F ;SðAÞ a framed deformation of r to

A. For a given morphism f : A! A 0 of ARO , a covering morphism ðVA; f; bÞ
! ðVA 0 ; f

0; b 0Þ of f is a GF ;S-equivariant A 0-linear isomorphism VA nf A
0 !F VA 0

compatible with f, f 0 and which sends b to b 0.
We also denote by DF ;S the groupoid over ARO obtained by forgetting

the basis data. An object of the category DF ;SðAÞ over A A ARO is called a
deformation of r to A. As is well-known, Dr

F ;S is always (i.e. without the irredu-
cibility of r) pro-represented by a complete noetherian local O-algebra Rr

F ;S; see
[20] for instance. Under the absolute irreducibility of r, the groupoid DF ;S is
also pro-represented by a complete noetherian local O -algebra RF ;S. Let R

c;r
F ;S

(resp. Rc
F ;S) be the quotient of Rr

F ;S (resp. RF ;S) corresponding the fixed deter-
minant condition det rA ¼ ce.
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When H 0ðGF ;S; ad rÞ ¼ F, the algebra R
c;r
F ;S is isomorphic to the formal

power series ring over R
c
F ;S; namely Rr

F ;S GRF ;S½½X1; . . . ;Xj��, where j denotes

4aSp � 1. This follows from the fact that the morphism Dr
F ;S ! DF ;S is for-

mally smooth (cf. [13, p. 1165]).
Next we consider local deformations. We take and fix a (finite) subset S of

S which do not meet the set of primes p above p. Put Sp :¼ S [ fp j pg. For
any v A Sp, we consider the groupoid Dr

rjGFv
of framed deformations of rjGFv

.

This is pro-represented by a complete noetherian local O-algebra Rr
v . We

denote by Rc;r
v the quotient of Rr

v corresponding the fixed determinant condition
det rA ¼ ce.

We define

R
c;r
S :¼ n̂nv AS R

c;r
v ; Rc;r

p :¼ n̂np j p R
c;r
p

and

R
c;r
S;p :¼ R

c;r
S n̂nRc;r

p :

Here all complete tensor products are taken over O .
In order to apply the Kisin’s Taylor-Wlies system in §3.4, we will suppose

the following assumptions for r.

Condition 2.2 ([13, (3.2.3)]). We assume the following conditions:
(1) r is totally odd, namely for any complex conjugate c A GF ;S, det rðcÞ ¼
�1.

(2) r is unramified at all primes v not dividing p.
(3) The restriction of r to GFðzpÞ is absolutely irreducible.
(4) If p ¼ 5 and the projective image of Im r is isomorphic to PGL2ðF5Þ, then

the kernel of the projectivization of r does not fix F ðz5Þ.
(5) If v A SnSp is a finite place, then NðvÞ2 1 mod p and

ð1þNðvÞÞ2 det rðFrobvÞ �NðvÞ � ðTr rðFrobvÞÞ2 2 0 mod l:ð2:2:1Þ

Here NðvÞ denotes the cardinality of OFv
=$v.

These conditions are used for the calculation of the Selmer groups. For the
condition (4), see also the proof of [23, Lemma 2.5]; in particular, this condition
holds when ½F ðz5Þ : F � ¼ 4 (cf. [13, p. 1155]).

Next we recall Taylor-Wlies deformations for each nb 1. These deforma-
tions correspond to O ½½S1; . . . ;Sr;Y1; . . . ;Yj��-algebras Rn in Proposition 2.1.
The following proposition shows the existence of the set Qn of primes, which
are needed to construct the ring Rn in Proposition 2.1.

Proposition 2.3 ([13, Proposition (3.2.5)]). We assume that a continuous
representation r : GF ;S ! GL2ðFÞ is absolutely irreducible and satisfies the condi-
tion 2.2. Then, for any positive integer nb 1, there exists a finite set Qn of primes
of F which do not meet S and satisfying the following:
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� for each v A Qn, NðvÞ1 1 mod pn and rðFrobvÞ has distinct eigenvalues,
� the cardinality of Qn is equal to r :¼ dimF H 1ðGF ;S; ad

0 rð1ÞÞ,
� if we take SQn

:¼ S [Qn then the global universal deformation ring R
c;r
F ;SQn

is

topologically generated by r� ½F : Q� þaSp � 1 elements over R
c;r
S;p .

Let Rr
F ;SQn

(resp. RF ;SQn
) be the universal deformation ring which pro-

represents the groupoid Dr
F ;SQn

(resp. DF ;SQn
) and R

c;r
F ;SQn

(resp. R
c
F ;SQn

) be its

quotient corresponding the fixed determinant condition det ¼ ce. A deforma-
tion of r controlled by R

c
F ;SQn

is called a deformation of Taylor-Wiles type.

For any prime v A Qn we denote by Dv the maximal p-power quotient of
ðOFv

=$vOFv
Þ�, and put DQn

:¼
Q

v AQn
Dv. We now define the O ½DQn

�-algebra
structure of Rc

F ;SQn
(so that of Rc;r

F ;SQn
) as in [4, §2.8]. In particular, the canonical

map R
c;r
F ;SQn

! R
c;r
F ;S of the universal deformation rings gives an isomorphism

R
c;r
F ;SQn

=aDQn
R

c;r
F ;SQn

GR
c;r
F ;S ;ð2:2:2Þ

where aDQn
is the augmentation ideal of O ½DQn

�.

2.3. Local deformation rings. In the application of Proposition 2.1 to the
modularity lifting theorem, we take the domain B as the tensor product of local
deformation rings with the suitable conditions. In this subsection, we describe
these according to Kisin [12, §2] and [13, §2]. Firstly we consider the local de-
formation ring at a prime dividing p.

We assume p > 2 and fix a prime p of F dividing p. We consider a con-
tinuous representation rp : GFp

! GL2ðFÞ, whose representation space is denoted
by VF. We assume that the determinant of rp is the mod p cyclotomic character
times the reduction of a character c : GFp

!WðFÞ.
We also assume rp is flat, and consider its flat deformations. In this paper

a representation rA : GFp
! AutAðMÞFGL2ðAÞ over a finite ring A is called flat

if there is a finite flat group scheme G over OFp
such that Mn ðdet rAÞ

�1 is

isomorphic to GðF pÞ as Z½GFp
�-modules. Let Rfl;r

VF
be the quotient of the framed

universal deformation ring Rr
VF

of rp corresponding to the flatness condition.
Let v be the p-adic Hodge type corresponding to the condition that the

determinant of the restriction of deformations rA of rp to the inertia Ip is equal
to the p-adic cyclotomic character. Kisin constructs the moduli of S-modules
([13, (2.1)]), so-called Kisin modules, and the projective morphism

Yv
VF;x

: GRv
VF;x
! Spec Rfl;r

VF
;ð2:3:1Þ

see [13, §2]. Here x means the universal flat and framed deformation of rp.
Let Spec Rv;r

VF
be the closure of the image of Yv

VF;x
. By studying GRv

VF;x
, Kisin

showed important properties of R
v;r
VF

, so we shall review it.
If rp is ordinary (resp. non-ordinary), then we denote by R

ord;r
VF

(resp.

R
non-ord;r
VF

) the quotient of R
v;r
VF

corresponding to the closure of the image of
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the connected component of GRv
VF;x

consisting of ordinary modules (resp. non-

ordinary modules). Moreover if VF is ordinary and VF F
w1 0

0 w2

� �
with dis-

tinct unramified characters w1 and w2, then we define the quotient R
ord;wi ;r
VF

to be
the closure of the image of the connected component of GRv

VF;x
correspond-

ing to wi (cf. [13, §2.4, 2.5]). Let Spec Rr
VF

be a connected spectrum of one of

Rv;r
VF

, Rnon-ord;r
VF

or R
ord;wi ;r
VF

. Then, by [12, (2.5.15)], [10, Proposition 2.3] and

[11, Main theorem], Rr
VF

is a domain of relative dimension ½Fp : Qp� þ 4 over

WðFÞ and flat over WðFÞ.
By [13, (2.4.17)], there exists the universal characteristic polynomial Pv

VF
ðX Þ

of the linear map j½kðpÞ:Fp� on Kisin modules with coe‰cients in the ring of global
sections GðGRv

VF;x
;OGR v

VF ; x
Þ, which we denote by

Pv
VF
ðX Þ ¼ X 2 � tpX þ dp:ð2:3:2Þ

Now let ~RRr
VF

be the sub-WðFÞ-algebra of GðGRv
VF;x

;OGR v
VF ; x
Þ generated by the

image of Rr
VF

under the map (2.3.1) and by the coe‰cients of Pv
VF
ðXÞ. Then,

~RRr
VF

is flat over WðFÞ, and the natural map Rr
VF
! ~RRr

VF
is finite; moreover this

map becomes an isomorphism after inverting p. Now we take a quotient Rc;r
VF

of Rr
VF

corresponding to the fixed determinant condition and let ~RRc;r
VF

be the
corresponding quotient of ~RRr

VF
. Since Rr

VF
GR

c;r
VF
½½X ��, we have:

Proposition 2.4 ([13, §2]). The local algebra ~RRc;r
VF

is a domain of relative

dimension ½Fp : Qp� þ 3 over WðFÞ, which is flat over WðFÞ. Moreover, ~RRc;r
VF
½1=p�

is geometrically integral and formally smooth over WðFÞ½1=p�.

Here we note that a WðFÞ-algebra R is called geometrically integral if
for any finite extension E of WðFÞ½1=p�, the scalar extension R½1=p�nE is a
domain ([13, p. 1165]). Thus, for any finite and totally ramified extension E
of WðFÞ½1=p�, the similar argument holds for the scalar extension ~RRc;r

VF;OE
:¼

~RRc;r
VF

nW ðFÞ OE .
Next we take a prime v not dividing p. Let rv : GFv

! GL2ðFÞ be a con-
tinuous representation with representation space VF. As well as dividing p
case, we obtain the suitable quotient of the universal framed deformation ring
of rv.

Proposition 2.5 ([13, (2.6.7)]). Let O be the ring of integers of a finite and
totally ramified extension E of WðFÞ½1=p� with a uniformizer l. Let g : GFv

! O�

be an unramified character. We write c ¼ g2 and assume det rv 1ce mod l.
Then there is a quotient R

c; g;r
VF;O

of R
c;r
VF

nW ðFÞ O satisfying the following:

(1) A morphism x : Rc;r
VF;O

! O of dARARO factors through R
c; g;r
VF;O

if and only if
the associated E-representation Vx is an extension of genE by gnE.

(2) R
c; g;r
VF;O

is a domain of relative dimension 3 over O .

(3) R
c; g;r
VF;O

½1=p� is geometrically integral and formally smooth over E.
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2.4. p-adic quaternionic modular forms. We summarize the notion of
p-adic modular forms of a quaternion algebra over a totally real field. We
only treat the parallel weight two case. For the general definition and the
details, see [13, (3.1)] and [23, §1, 2].

We assume p > 2. Let D be a central quaternionic algebra over F which
is ramified at all infinite places of F . We further assume that D is unramified
at all primes p over p. Let S be the set of all finite places of F on which D
is ramified. Let oD be a maximal order of D. For any finite place v of F ,
we put ðoDÞv :¼ oD nOF

OFv
. Let U ¼

Q
v Uv be a compact open subgroup of

ðDnF A
y
F Þ
� which is contained in

Q
vðoDÞ

�
v satisfying that: (i) for any v A S,

Uv ¼ ðoDÞ�v , (ii) for any p j p, Up ¼ GL2ðOFp
Þ.

Let E be a finite extension of Qp and O the ring of integers of E. We fix
a continuous character c : ðAy

F Þ
�=F � ! O�. Let ttriv be the trivial O -linear

representation of U of rank one, whose representation space is denoted by Wttriv .
We assume that c satisfies the equation

ttrivjUv\O �Fv
¼ c�1jUv\O �Fv

ð2:4:1Þ

for any prime v. Since ttriv is trivial on U \ O�F , such a c exists (cf. [13, (3.1)]).
We regard Wttriv as a UðAy

F Þ
�-module by ttriv and c�1.

We define a ( p-adic) quaternionic modular form of parallel weight two, of
level U and of character c to be a continuous function

f : D�nðDnF A
y
F Þ
� !Wttriv GO

satisfying that:
(1) for any u A U , f ðxuÞ ¼ f ðxÞ (x A ðDnF A

y
F Þ
�),

(2) for any z A Ay
F , f ðxzÞ ¼ cðzÞ f ðxÞ (x A ðDnF A

y
F Þ
�).

For the meaning of ‘‘parallel weight two’’, see [13, (3.1.9)]. Let

SD
2;cðU ;OÞ

be the space of modular forms of parallel weight two, of level U and of character
c; when D is clear, we omit the symbol D.

Since D�nðDnF A
y
F Þ
�=UðAy

F Þ
� is finite, if we write

ðDnF A
y
F Þ
� ¼

a
i A I

D�tiUðAy
F Þ
�

for some representatives ti A ðDnF Ay
F Þ
� with index set I , then we have

S2;cðU ;OÞ !F 0
i A I

W
ðUðAy

F Þ
�\tiD�t�1i Þ=F �

ttriv ; f 7! ð f ðtiÞÞi A I :ð2:4:2Þ

In particular, S2;cðU ;OÞ is a free O-module of finite rank. For any O-algebra
A, we will write S2;cðU ;OÞnO A as S2;cðU ;AÞ.

We denote by S triv
2;cðU ;AÞ the subspace of S2;cðU ;AÞ consisting of functions

which factor through the reduced norm of ðDnF A
y
F Þ
�.
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As [13, (3.1.2)] we assume the following:

Condition 2.6. For any t A ðDnF A
y
F Þ
�

the cardinality of ðUðAy
F Þ
� \

tD�t�1Þ=F � is prime to p.

As Kisin remarked, if U is su‰ciently small then it is satisfied (cf. [13,
p. 1147]). Using Condition 2.6, we can define a perfect pairing h� ; �iU on
S2;cðU ;OÞ by

h f ; giU ¼
X
i A I

cðdet tiÞ�1aððUðAy
F Þ
� \ tiD

�t�1i Þ=F �Þ
�1
f ðtiÞgðtiÞ:ð2:4:3Þ

Now we define the Hecke algebras. We take a finite set S of places of
F containing S [ fp j pg [ fv jUv 0 ðoDÞ�v g. We also let Sp :¼ Snfp j pg. For
an O-algebra A, let Tuniv

S;A be the commutative ring A½Tv;Sv�v BS. We choose

a uniformizer $v of OFv
for each v A jF jy and we define an O -algebra homo-

morphism

Tuniv
S;O ! EndOðS2;cðU ;OÞÞð2:4:4Þ

by

Tv 7! U
1 0

0 $v

� �
U

� �
and Sv 7! U

$v 0

0 $v

� �
U

� �
ðv B SÞ:ð2:4:5Þ

This is independent of the choice of $v. We denote the image of the map (2.4.4)
by T 0c;O ðUÞ and the image of Tv and Sv via (2.4.4) by the same symbol. The
action of Tuniv

S;O by the rule (2.4.5) is called the standard Hecke action. We can

also define Hecke operator U
1 0

0 $p

� �
U

� �
for each p j p ([13, p. 1151]), which

is also independent of the choice of $p. Let

Tuniv
S p;O ! EndO ðS2;cðU ;OÞÞ

be the O-algebra homomorphism defined by (2.4.5) and

Tp 7! U
1 0

0 $p

� �
U

� �
ð2:4:6Þ

for each p dividing p. We denote by Tc;O ðUÞ the image of this. By defini-
tion, Hecke algebras T 0c;O ðUÞ and Tc;O ðUÞ are finite and flat over O . For any
O-algebra A, we will write

T?
c;AðUÞ :¼ T?

c;O ðUÞnO A;

where the symbol ? means either j (nothing) or 0.
Now we shall recall some basic properties of eigenforms. For su‰ciently

large E, the space S2;cðU ;EÞ has an E-basis consisting of eigenforms for Tuniv
S;O
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since the Hecke operators Tv, Sv for each v B S are self-adjoint with respect to
the pairing h� ; �iU . For any eigenform f of S2;cðU ;OÞ we can associate the
O-algebra map

yf : T
0
c;O ðUÞ ! E

determined by T 7! yf ðTÞ, where yf ðTÞ is the eigenvalue of T associated to f .
The image of this map is the ring OEf

of integers of a finite extension Ef of E in
E. We denote by l 0 the prime of Ef ; when we consider f as a C-valued function
via iy : EFC, it corresponds to the prime of the Hecke field Kf :¼ Qðfiyyf ðTvÞ;
iyyf ðSvÞ j v B SgÞ of f , which is a number field, corresponding to an embedding
Kf ! E.

We also recall that a maximal ideal m 0 of T 0c;O ðUÞ is called Eisenstein
if Tv � 2 A m 0 for all but not finitely many primes v which split in some
fixed abelian extension of F . For a maximal ideal m of Tc;O ðUÞ, it is called
Eisenstein if m 0 :¼ m \ T 0c;OðUÞ is.

At the end of this subsection, we shall recall the relation between spaces of
p-adic quaternionic modular forms and cuspidal automorphic representations.
For the detail, see [23, §1] and [13, (3.1.14)]. Put

SD
2;c;E

:¼ lim�!
U

SD
2;cðU ;EÞ and S

D; triv

2;c;E
:¼ lim�!

U

S
D; triv
2;c ðU ;EÞ;

where U runs over all compact open subgroups of ðDnF A
y
F Þ
�. These spaces

have the smooth actions of ðDnF A
y
F Þ
�. Moreover, we have the following:

Lemma 2.7 ([23, Lemma 1.3], [13, (3.1.14)]). The space SD
2;c;E

is a semi-

simple admissible representation of ðDnF A
y
F Þ
�
and the U-invariant part of SD

2;c;E
is SD

2;cðU ;EÞ. Under the fixed isomorphism iy : EFC we have

SD
2;c;E

FSD; triv

2;c;E
l0

P

iyðPyÞ and SD; triv

2;c;E
F0

w

EðwÞ;ð2:4:7Þ

where P runs over all cuspidal representations of ðDnF AF Þ� having weight 2
and central character c, and w runs over all characters ðAy

F Þ
�=F �g0 ! E� satisfy-

ing w2 ¼ c. Here F �g0 denotes the subgroup of F � consisting of totally positive
elements.

2.5. Galois representations associated to modular forms. We keep notation
and assumptions in the previous subsection. In the following, we only consider
the parallel weight two case. We take E su‰ciently large.

By [17], [2] and [21], for any eigenform f of S2;cðU ;OÞ we have a two
dimensional continuous representation

rf : GF ;S ! GL2ðOEf
Þ

which is characterized by

Tr rf ðFrobvÞ ¼ yf ðTvÞ; det rf ðFrobvÞ ¼ yf ðSvÞNðvÞ ðv B SÞ:
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Moreover, by the theory of pseudo-representations, for any non-Eisenstein maxi-
mal ideal m 0 of T 0c;O ðUÞ there exists a Galois representation

rm 0 : GF ;S ! GL2ðT 0c;O ðUÞm 0 Þð2:5:1Þ

satisfying that:
� for any prime v B S, we have Tr rm 0 ðFrobvÞ ¼ Tv,
� the determinant of rm 0 is ce,
� the mod m 0 reduction rm 0 of rm 0 is absolutely irreducible.

Furthermore, when we denote by Vm 0;E the representation space of rm 0 nE we
have the following:

Lemma 2.8 ([13, Lemma (3.4.2)]). Let p be a primes of F above p.
(1) Vm 0;E is a Barsotti-Tate representation at p. Moreover, the determinant

of the restriction Vm 0;E jIp is the p-adic cyclotomic character.

(2) The Hecke operator Tp A Tc;O ðUÞm 0 is contained in T 0c;O ðUÞm 0 ½1=p�,
and

Tp ¼ TrT 0c;O ðUÞm 0 ½1=p�nZpW ðkðpÞÞðj
½kðpÞ:Fp� jDcrisðVm 0;EÞÞ:ð2:5:2Þ

Here kðpÞ is the residue field of p.

In the following, we put

T 0 :¼ T 0c;O ðUÞm 0 :

If we denote by R
c
F ;S the universal deformation ring of rm 0 with fixed determinant

condition det ¼ ce, then we have a morphism in dARARO :

jm 0 : R
c
F ;S ! T 0:

We call a deformation of rm 0 which factors through jm 0 a modular deformation.
We take a maximal ideal m of Tc;O ðUÞ above m 0, and put

T :¼ Tc;O ðUÞm:

Next we define the Hecke algebra TQn
corresponding to modular deforma-

tions of Taylor-Wiles type. We prepare notation for levels of modular forms.
For a prime v B S and an integer nb 1, we define

U0ð$n
v Þ :¼

a b

c d

� �
A GL2ðOFv

Þ
���� c1 0 mod $n

v

� �
;

U1ð$n
v Þ :¼

a b

c d

� �
A GL2ðOFv

Þ
���� a1 1; c1 0 mod $n

v

� �
and

U11ð$n
v Þ :¼

a b

c d

� �
A GL2ðOFv

Þ
���� a1 d1 1; c1 0 mod $n

v

� �
:
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For a quotient Hv of ðOFv
=pvOFv

Þ� we also define

UHv
ð$n

v Þ :¼
a b

c d

� �
A U0ð$n

v Þ
���� ad�1 7! 1 A Hv

� �
:

For any nb 1 we take a finite set Qn of primes of F described in Proposition
2.3. For any prime v A Qn we denote by Dv the maximal p-power quotient of
ðOFv

=$vOFv
Þ�. Let UQn

� U�Qn
be the subgroups of U defined as

UQn
:¼
Y
v AQn

UDv
ð$vÞ �

Y
v BQn

Uv and U�Qn
:¼
Y
v AQn

U0ð$vÞ �
Y
v BQn

Uv:

When we write DQn
:¼
Q

v AQn
Dv we have U�Qn

=UQn
GDQn

. Put

SQn
:¼ S [Qn and S

p
Qn

:¼ SQn
nfp : p j pg:

We define the Hecke algebra T 0c;O ðUQn
Þ (resp. Tc;O ðUQn

Þ) by the image of Tuniv
SQn ;O

(resp. Tuniv
S

p

Qn
;O ) in EndðS2;cðUQn

;OÞÞ via (2.4.5) (resp. (2.4.5) and (2.4.6)) for the
level UQn

. Moreover, for the set Qn we define the abstract Hecke algebra

~TTuniv
SQn ;O

:¼ Tuniv
SQn ;O

½uv j v A Qn�;

and define the Hecke algebra ~TT 0c;O ðUQn
Þ to be the image of the Tuniv

SQn ;O
-algebra

map

~TTuniv
SQn ;O

! EndO ðS2;cðUQn
;OÞÞ

determined by

uv 7! U$v
:¼ UQn

1 0

0 $v

� �
UQn

� �
for all v A Qn. As well, we define ~TTc;O ðUQn

Þ to be the sub-O-algebra of the
endomorphism ring of S2;cðUQn

;OÞ generated by Tc;O ðUQn
Þ and U$v

for all
v A Qn. We also define the Diamond operator h�i : DQn

! EndðS2;cðUQn
;OÞÞ

as follows: for any prime v A Q and element a A Dv, we take a lifting ~aa A OFv
of a

and define hai to be

hai :¼ UQn

1 0

0 ~aa

� �
UQn

� �
:

Similarly we define ~TT 0c;OðU�Qn
Þ and ~TTc;O ðU�Qn

Þ. For a maximal ideal m of

Tc;O ðUÞ we denote the ideal m \ Tuniv
S

p

Qn
;O of Tuniv

S
p

Qn
;O by m again. We take a

maximal ideal m�Qn
of the localization ~TTc;O ðU�Qn

Þm which corresponds to the

choice of eigenvalues favgv AQn
of rm 0 ðFrobvÞ so that it coincides with the choice

determining the O ½DQn
�-structure of Rc

F ;SQn
; for the detail, see [13, Lemma (3.4.6)].

We will write

T�Qn
:¼ ~TTc;OðU�Qn

Þm�
Qn

:ð2:5:3Þ
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Let mQn
be the maximal ideal of ~TTc;OðUQn

Þ induced by m�Qn
. We also define

TQn
:¼ ~TTc;OðUQn

ÞmQn
and T 0Qn

:¼ ~TT 0c;O ðUQn
Þm 0

Qn

;ð2:5:4Þ

where m 0Qn
:¼ mQn

\ ~TT 0c;O ðUQn
Þ. As Taylor constructed in [23, §3], we have the

Galois representation

rm 0
Qn

: GF ;SQn
! GL2ðT 0Qn

Þ:

In particular, T 0Qn
is generated by semi-simple operators Tv and Sv for all v B SQn

,

so that it is reduced; this follows from [23, Lemma 1.6] and its corollaries.
If rm 0

Qn
is its residual representation, then rm 0

Qn
F rm 0 . In particular, rm 0

Qn
is a

modular deformation of rm 0 of Taylor-Wiles type, i.e. a modular deformation of
rm 0 controlled by R

c
F ;SQn

.
At the end of this section, we recall the local structure of rm 0 in the language

of deformation theory. Let F be the residual field of T 0 ¼ T 0c;O ðUÞm 0 and
rm 0 : GF ;S ! AutFðVFÞFGL2ðFÞ

be the residual representation of (2.5.1). Let s :¼ ðs 0; fwpgp A s 0 Þ be an ordinary
data such that m is s-ordinary2). In the following, for any WðFÞ-algebra R we
denote by RO the scalar extension RnWðFÞ O .

For any prime v contained in Sp, we denote by R
c;r
v;O the universal framed

deformation ring of VFjGFv
over O with fixed determinant cejGFv

.

For any v A S, let gv be an unramified character such that g2v ¼ cjGFv
and let

Rc;r
v :¼ R

c; gv;r
v;O

be the quotient of Rc;r
v;O as in Proposition 2.5. Similarly, if p is a prime dividing

p then we define the quotient R
c;s;r
p of R

c;r
p;O to be R

c;non-ord;r
p;O if p B s 0; and if

p A s 0 then we define R
c;s;r
p to be the quotient

� R
c;ord;wp;r
p;O if VFjGFp

F w1 l wp with unramified characters w1 V wp,
� R

c;ord;r
p;O otherwise.

Moreover, we denote by ~RRc;s;r
p the R

c;s;r
p -algebra described as in Proposition

2.4. Let R
c;r
S :¼ n̂nv AS R

c;r
v , Rc;s;r

p :¼ n̂np j p R
c;s;r
p , ~RRc;s;r

p :¼ n̂np j p ~RRc;s;r
p and

R
c;s;r
S;p :¼ R

c;r
S n̂nRc;s;r

p ; B :¼ ~RRc;s;r
S;p :¼ R

c;r
S n̂n ~RRc;s;r

p :

Here we take completed tensor products over O . Then B ¼ ~RRc;r
S;p is a domain

of relative dimension b ¼ ½F : Q� þ 3aSp over O (see [13, Proof of (3.4.11),
(3.4.12)]), and the local structures of rm 0

Qn
and rm 0 are described as follows.

2)Accoridng to [13, (3.4.4)], we say that m is s-ordinary if it satisfies the following: (i) s 0 is

the subset of all primes p of F dividing p satisfying Tp B m, and (ii) for each p A s 0, wp is an un-

ramified character of GFp
given as a one dimensional subspace of VF as GFp

-modules such that

Tp 1 wpðFrobpÞ mod m. For any maximal ideal m of Tc;O ðUÞ, there is an ordinary data s such that

m is s-ordinary.
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Lemma 2.9 ([13, (3.4.9)]). For any nb 1, put Tr
Qn

:¼ TQn
nRF ; SQn

Rr
F ;SQn

.

We assume that rm 0
Qn

is unramified outside the set of primes p dividing p. Then
the morphism

R
c;r
S;p ¼ n̂nv ASp

Rc;r
v ! Tr

Qn

given by the restrictions rm 0
Qn
jGFv

at all v A Sp factor through R
c;s;r
S;p . Moreover,

the induced morphism

~RRc;s;r
F ;SQn

:¼ R
c;r
F ;SQn

n
R

c;r
S; p

~RRc;s;r
S;p ! Tr

Qn

is surjective. The similar arguments in the case of the level U (i.e. the case
replacing SQn

with S ) also hold.

In this paper, we say that a framed deformation of rm 0 has type ~RRc;s;r
S;p if its

local factors at v A Sp are controlled by ~RRc;s;r
S;p .

2.6. Compatible systems. We introduce the notion of compatible systems
according to Taylor [23]. For any prime l of a number field K , we denote by pl
the rational prime lying under l.

Definition 2.10 (cf. [23, Introduction]). Let F be a number field and GF

the absolute Galois group of F . A rank 2 weakly compatible system of l-adic
representations of GF is a data

R ¼ ðK ;S; S ; fQvðX Þgv BS; ðrlÞl A jKjy ; fn1; n2gÞ
consisting of:

(1) a number field K ;
(2) a finite set S of primes of F ;
(3) a finite set S of primes of K containing all primes l dividingQ

v AS NF=QðvÞ;
(4) a family of degree 2 monic polynomials QvðX Þ in K ½X � indexed by
jF jynS;

(5) a family of continuous representations

rl : GF ! GL2ðKlÞ

with coe‰cients in the l-adic completion Kl of K , indexed by finite
places l A jK jy satisfying that:
(5-i) if l B S and v B S [ fp j plg then rljGFv

is unramified and the
characteristic polynomial of rlðFrobvÞ is QvðX Þ, where pl is the
rational prime lying under l;

(5-ii) for all l B S and all v A jF jy satisfying v j pl, the local restriction
rljGFv

is crystalline;
(6) n1 and n2 are integers such that, for any l B S and any prime p j pl, the

restriction rljGFp
is Hodge-Tate of weights fn1; n2g.
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In this paper, a system without the data of Hodge-Tate weights fn1; n2g and
the conditions (5-ii), (6) is called a rank 2 weakly pre-compatible system of l-adic
representations of GF . According to [loc.cit.], we say R is regular if n1 0 n2 and
rl is totally odd for one (and hence for all) primes l; we say R is reducible if rl
is absolutely reducible for one (and hence for all) primes l, and otherwise R is
called irreducible. R is strongly compatible if for any prime v A jF jy there is a
Weil-Deligne representation WDvðRÞ of the Weil group WFv

such that for each
prime l B S [ fm j pvg we have

WDðrljWFv
ÞF -ss GWDvðRÞ;

where the left hand side is the Frobenius semi-simplification of the Weil-Deligne
representation associated to rljGFv

.

3. Main result

3.1. Some deformation conditions. Let F be a totally real field and S be a
finite set of primes of F containing all infinite places. Let GF ;S be the Galois
group of the maximal extension of F unramified outside S. We fix a rational
odd prime p and assume that all primes p dividing p are contained in S. Let
E=Qp be a finite extension of fields, let O be the ring of integers of E with
uniformizer l and let F be its residue field. Let

r : GF ;S ! GL2ðFÞ

be a continuous representation. We assume that its determinant is congruent to
the p-adic cyclotomic character e times a character c : GF ;S ! O� of finite order.
In this subsection, we consider local deformations of r at an unramified prime.

We fix a prime v outside S, and denote by rv the restriction of r to the local
Galois group GFv

. We denote by VF the representation space of rv and we fix an
ordered F-basis bF of VF;

rv : GFv
! AutFðVFÞF

bF
GL2ðFÞ:

We take an unramified character gv : GFv
! O� of GFv

. Let A be an object
of ARO and rv;A : GFv

! GL2ðAÞ be an unramified deformation of rv. We con-
sider the following conditions;
ðPgvÞ If j : O ! A is the structure morphism, then rv;A is isomorphic to an

extension of ðdet rv;AÞn ðj�gvÞ
�1 by j�gv.

ðPssÞ rv;A splits to the copies of an unramified character wv;A; namely,

rv;A F
wv;A 0

0 wv;A

� �
:

We denote by D
c;un;r
VF; v

the groupoid over ARO consisting of unramified
framed deformations of rv with fixed determinant cejGFv

. Let gv : GFv
! O� be

an unramified character of GFv
. We denote by D

c; gv;r
VF; v

(resp. D
c; gv-ss;r
VF; v

) the full
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subcategory of D
c;un;r
VF; v

consisting of unramified framed deformations satisfying

the condition ðPgvÞ (resp. ðPssÞ). In the following, when we consider the groupoid
D

c; gv-ss;r
VF; v

or its objects we always assume the condition g2v ¼ cejGFv
. By defini-

tion, we have the morphisms of groupoids D
c; gv;r
VF; v

! D
c;un;r
VF; v

and

D
c; gv-ss;r
VF; v

! D
c; gv;r
VF; v

! D
c;un;r
VF; v

when g2v ¼ cejGFv
. As usual, we extend these over dARARO , and for any object A ofdARARO , denote by jDc; gv;r

VF; v
jðAÞ (resp. jDc; gv-ss;r

VF; v
jðAÞ) the set of isomorphism classes

of objects of D
c; gv;r
VF; v

ðAÞ (resp. D
c; gv-ss;r
VF; v

ðAÞ).
Similarly we define the groupoids D

c; gv
VF; v
! D

c;un
VF; v

and D
c; gv-ss
VF; v

! D
c; gv
VF; v
!

D
c;un
VF; v

over dARARO by forgetting base data. For any object ðA;mAÞ of dARARO , we
denote by Homrv

ðGFv
;GL2ðAÞÞ the set of unramified 2-dimensional representa-

tions of GFv
over A whose mod mA reduction is rv. Then jDc;un

VF; v
jðAÞ is bijec-

tively mapped to the set Homrv
ðGFv

;GL2ðAÞÞ modulo strict equivalence3). Here
we denote by GFv

the absolute Galois group of the residue field Fv of Fv.

Lemma 3.1. Let gv : GFv
! O� be an unramified character satisfying g2v ¼

cejGFv
. Then the groupoid D

c; gv-ss;r
VF; v

over ARO is pro-representable. Namely, the

functor dARARO ! Set defined by A 7! jDc; gv-ss;r
VF; v

jðAÞ is represented by an object
R

c; gv-ss;r
VF; v

of dARARO .

Proof of Lemma 3.1. First we note that

D
c; gv-ss;r
VF; v

GD
c; gv-ss
VF; v

�
D

c; un
VF ; v

D
c;un;r
VF; v

:

Thus, we may show that D
c; gv-ss
VF; v

is pro-representable.

An object rv;A of Dc;un
VF; v
ðAÞ satisfies the condition ðPssÞ if and only if it can

be written as

rv;A : GFv
! ZðGL2ðAÞÞGA�;

where ZðGL2ðAÞÞ is the center of GL2ðAÞ. So we have the functorial iso-
morphism

jDc; gv-ss
VF; v

jðAÞGHomrv
ðGFv

;ZðGL2ðAÞÞÞ=strict equiv:

GHomgv
ðGFv

;A�Þ;

where gv : GFv
! F� is the mod l reduction of gv. Since 1-dimensional deforma-

tions are pro-representable (cf. [16, 1.4]), D
c; gv-ss
VF; v

is also. r

3)Let r : G ! GLnðFÞ be a continuous representation of a profinite group G. Then, two defor-

mations rA, r 0A : G ! GLnðAÞ of r over A A dARARO are strictly equivalent if there is a matrix H A
KerðGLnðAÞ ! GLnðFÞÞ such that r 0A ¼ H�1rAH.
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In order to prove that the groupoid D
c; gv;r
VF; v

is pro-representable, we
introduce some notation according to [13, (2.6)]. First we define the category
AugO consisting of pairs ðA; IÞ where A is an O -algebra and I � A is a nilpotent
ideal with mOA � I , and an arrow ðA; IÞ ! ðB; JÞ of AugO are maps of rings
A! B taking I into J; for the detail, see [13, (2.1)]. We remark that ARO is
a full-subcategory of AugO . We can extend a groupoid DVF

over ARO to the
groupoid over AugO in the standard way, see [loc.cit., (2.1.1)].

Next we define a groupoid L
c; gv;r
VF; v

over AugO as follows: For any object

ðA; IÞ of AugO , L
c; gv;r
VF; v

ðA; IÞ is the category consisting of pairs ðVA;LAÞ, where
VA is an object of D

c;un;r
VF; v

ðA; IÞ and LA is a projective sub-A-module of VA of
rank 1 on which GFv

acts via gv, and which VA=LA is a projective A-module with
GFv

-action cen g�1v ; we call such a submodule LA a gv-line of VA.

Lemma 3.2. Let gv : GFv
! O� be an unramified character. The functor

jLc; gv;r
VF; v

j ! jDc;un;r
VF; v

j defined by ðVA;LAÞ 7! VA is represented by the projective

morphism Yun
VF

: L
c; gv;r
VF; v

! Spec Rc;un;r
VF; v

of schemes over O .

This is an unramified analogue of [13, Lemma (2.6.2)]; in the proof replacing
D

c;r
VF; v

with D
c;un;r
VF; v

we obtain the result.
We define the closed subscheme Spec R

c; gv;r
VF; v

of Spec Rc;un;r
VF; v

to be the
scheme theoretic image of Yun

VF
: L

c; gv;r
VF; v

! Spec Rc;un;r
VF; v

in Lemma 3.2. Then,
by [13, Proposition (2.3.5)] we have the following:

Proposition 3.3. The map x : Rc;un;r
VF; v

! O of dARARO factors through R
c; gv;r
VF; v

(resp. R
c; gv-ss;r
VF; v

when g2v ¼ cejGFv
) if and only if the associated E-representation

ðrx;VxÞ is unramified and an extension of ðdet rxÞn ðgv nElÞ�1 by gv nE.
(resp. Vx nE is the direct product of copies of such a gv nE). In particular,

D
c; gv;r
VF; v

is pro-represented by R
c; gv;r
VF; v

.

We note that this is a variation of [13, (2.6.6), (2.6.7)].

Proof of Proposition 3.3. First we assume g2v ¼ cejGFv
. For the condition

ðPssÞ, this is clear because the image rxðFrobvÞ at v AP is a scalar matrix, which
does not depend on lattices of Vx.

We now consider the condition ðPgvÞ. We denote the composite R
c;un;r
VF; v

!x

O ,! E by the same symbol x. For any noetherian complete local O-algebra R
and continuous local O -algebra map h : R! E, we denote by R5

h the completion
of RnO E along the kernel of hn 1. Similarly, for any R-scheme X , we denote
the completed fiber at h by X5

h ! Spf R5
h .

Then, we know that x : Rc;un;r
VF; v

! O � E factors through the quotient

R
c; gv;r
VF; v

if and only if the induced map ðRc;un;r
VF; v

Þ5x ! E factors through the
corresponding quotient ðRc; gv;r

VF; v
Þ5x .

On the other hand, by [13, Lemma (2.3.3)] and [loc.cit., Proposition (2.3.5)],
the groupoid D

c;un;r
Vx

over ARE of unramified framed deformations of Vx with
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fixed determinant cejGFv
is pro-represented by ðRc;un;r

VF; v
Þ5x . Then x : ðRc;un;r

VF; v
Þ5x

! E factors through ðRc; gv;r
VF; v

Þ5x if and only if its corresponding point lifts to
ðLc;un;r

VF; v
Þ5x , which means that the associated E-representation Vx has a gv nE-

line. r

3.2. Preliminaries on the space of modular forms and Hecke algebras. We
use notation in §2.4 and §2.5. In this subsection, we often use the fixed iso-
morphism iy : EFC without the symbol iy.

Let rm 0 : GF ;S ! GL2ðFÞ be the absolutely irreducible and modular residual
representation. In this subsection, we assume that rm 0 satisfies Condition 2.2.
In order to construct the Hecke module H in Proposition 2.1 from the repre-
sentation space of the modular deformations of rm 0 , we will take auxiliary primes
as in [4]. In this subsection, we describe these.

Recall that S is the set of finite places of F at which D is ramified. We
denote by Saux the complement of Sp [ fv jyg in S. Let U0 be the maximal
compact open subgroup

Q
v A jF jyðoDÞ

�
v of ðDnF A

y
F Þ
�. Let f be a p-adic

quaternionic Hecke eigenform whose residual representation is isomorphic to
rm 0 ; we assume that f has level U0. We note that, under the assumption of
Condition 2.2 (5) the representation rf is unramified at each prime in Saux; this
follows from the result of [3], see the introduction of [7]. Thus, for each prime
r in Saux the r-factor of the cuspidal representation pf of ðDnF AF Þ� associated
to f is an unramified principal series representation of GL2ðFrÞ. We now define
the compact open subgroup U ¼

Q
v Uv contained in U0 by putting

Ur :¼ U11ð$2
r Þ

if r A Saux and Uv :¼ ðU0Þv otherwise. In the following, we consider f as an
eigenform in S2;cðU ;OÞ.

As in the section 2, we denote by T 0c;OðUÞ (resp. Tc;O ðUÞ) the image of Tuniv
S;O

(resp. Tuniv
S p;O ) in EndOðS2;cðU ;OÞÞ by the standard Hecke action.

We shall define the Hecke algebra T 0;auxc;O ðUÞ (resp. T
aux
c;O ðUÞ) to be the sub-

O-algebra of EndO ðS2;cðU ;OÞÞ generated by T 0c;O ðUÞ (resp. Tc;O ðUÞ) and the
Hecke operators

U$r
:¼ U

1 0

0 $r

� �
U

� �
:

Let m 0 be the maximal ideal of T 0c;O ðUÞ determined by f . We take the
maximal ideal m 0;aux of T 0;auxc;O ðUÞm 0 generated by m 0 and U$r

for all r A Saux.

We denote by T 0;aux the localization of T 0;auxc;O ðUÞ by m 0;aux, which is a noetherian
complete local O-algebra whose residue field is F. We take a maximal ideal
maux of the T 0;aux-algebra Taux

c;OðUÞm 0; aux .
For any nb 1 we take the set Qn of primes as in §2.5. As well as above,

we define the Hecke algebra ~TT 0;auxc;O ðUQn
Þ (resp. ~TTaux

c;O ðUQn
Þ) as sub-O -algebras of

EndO ðS2;cðUQn
;OÞÞ generated by ~TT 0c;O ðUQn

Þ (resp. ~TTc;O ðUQn
Þ) and the operators
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U$r
for all r A Saux. Similarly we define the Hecke algebras ~TT 0;auxc;O ðU�Qn

Þ and
~TTaux
c;O ðU�Qn

Þ. These Hecke algebras are all finite and flat over O .
We take the maximal ideal m�;auxQn

of ~TTaux
c;OðU�Qn

Þm aux determined by the choice

of eigenvalues of rm 0 ðFrobvÞ for all v A Qn; see the discussion in §2.5. We denote
by maux

Qn
the maximal ideal of ~TTaux

c;O ðUQn
Þ induced by m

�;aux
Qn

. We also denote by

m
0;aux
Qn

the ideal maux
Qn
\ ~TT 0;auxc;O ðUQn

Þ of ~TT 0;auxc;O ðUQn
Þ, and put

T 0;auxQn
:¼ ~TT 0;auxc;O ðUQn

Þm 0; aux
Qn

; Taux
Qn

:¼ ~TTaux
c;O ðUQn

Þm aux
Qn

:

We also put Q0 :¼ j for our convenience. Then, for any nb 0 we have the
natural maps

T 0Qn
! T 0;auxQn

and TQn
! Taux

Qn
:

Moreover, we have the following lemma.

Lemma 3.4. Suppose that rm 0 is unramified at each prime r A Saux and for
any r A Saux the Condition 2.2 (5) is satisfied. Then:

(1) For any nb 0, the Hecke algebra T 0;auxQn
is generated by Hecke operators

Tv, Sv for all v B SQn
and U$v

for all v A Qn.
(2) We have

T 0;auxQn
GT 0Qn

and Taux
Qn

GTQn
:

The similar arguments hold for the level U�Qn
cases.

Proof of Lemma 3.4. Put

T 0;aux
Qn;E

:¼ T 0;auxQn
nO E:

Since T 0;auxQn
is flat over O , the natural map T 0;auxQn

! T 0;aux
Qn;E

is injective; moreover,
when we put

H 0;aux
Qn;E

:¼ S2;cðUQn
;OÞm 0; aux

Qn

nO E

the natural map

T 0;aux
Qn;E
! EndEðH

0;aux
Qn;E
Þ

is injective.
We shall show U$r

¼ 0 over H
0;aux
Qn;E

. Let g be a T 0Qn
-eigenform of H

0;aux
Qn;E

.

Since rg is unramified at r A Saux, the restriction of the central character of ðpgÞr
to O�Fr

is trivial; it implies that

ðpyg Þ
U11ð$2

r Þ
r ¼ ðpyg Þ

U1ð$2
r Þ

r ¼ ðpyg Þ
U0ð$2

r Þ
r :

Moreover, when we write ðpgÞr G n-Indðwr;1; wr;2Þ as a normalized induced repre-
sentation, the Hecke operator U$r

acting on the space ðpyg Þ
U0ð$2

r Þ
r has the char-

acteristic polynomial

X ðX �NðrÞ1=2wr;1ð$rÞÞðX �NðrÞ1=2wr;2ð$rÞÞ;ð3:2:1Þ
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see [23, Lemma 1.6] for instance. In particular, ðpyg Þ
U0ð$rÞ
r has the eigenspace of

U$r
with eigenvalue 0, whose dimension is 1. It implies that U$r

annihilates g.
Since H

0;aux
Qn;E

has a T 0Qn
-eigenbasis, by (2.4.7) we deduce that U$r

acts on H
0;aux
Qn;E

as 0.
As a consequence, we obtain T 0;auxQn

GT 0Qn
. The remainings are obtained

from this immediately. r

Let Hn ¼ S2;cðUQn
;OÞmQn

be the localized space of modular forms of level
UQn

. Let g be a Hecke eigenform of Hn nE. Then, as mentioned above, at
each prime r A Saux the r-factor of ðpyg Þ

UQn has dimension 1. On the other hand,
for any prime v B Saux the v-factor of ðpyg Þ

UQn is also of dimension 1, which is
verified as follows: If v B SQn

then pg is unramified at v and ðUQn
Þv is maximal.

If v A Qn then the v-factor of pg is a principal series and it has two distinct
1-dimensional eigenspaces of U$v

(cf. [23, Lemma 1.6]). Thus, the local con-
dition U$v

� ~aav A mQn
, where ~aav A O is a lift of the chosen eigenvalue av of

rm 0 ðFrobvÞ, cuts out the 1-dimensional subspace of iyðpyg Þ
UQn . As a conse-

quence, the dimension of each Hecke eigenspace of the E-vector space Hn nE
is less than or equal to 1.

Now we consider the augmented quotient. Let DQn
be the product of the

maximal p-power quotient of ðOFv
=$vÞ� for all v A Qn. Recall that U�Qn

=UQn
G

DQn
and S2;cðUQn

;OÞ becomes a DQn
-module by a 7! hai. LetX

a ADQn

hai : S2;cðUQn
;OÞ ! S2;cðU�Qn

;OÞð3:2:2Þ

be the augmentation map; we note that this is ~TTuniv
SQn ;O

-equivariant. By [23,
Lemma 2.3], the augmentation map (3.2.2) induces an isomorphism

S2;cðUQn
;OÞ=aDQn

S2;cðUQn
;OÞ !F S2;cðU�Qn

;OÞ:
Moreover, S2;cðUQn

;OÞ is free over O ½DQn
�.

For any subset Q of Qn and an element v A Q, let us denote by av the chosen
eigenvalue of rm 0 ðFrobvÞ and by Av the lifting of av in T 0c;O ðU�Q�fvgÞðm�

Q�fvgÞ
0 ; cf. the

discussion above (2.5.4). Then we have the O-module map

h : S2;cðU�Q�fvg;OÞm�
Q�fvg
! S2;cðU�Q ;OÞm�

Q
ð3:2:3Þ
determined by

f 7! Av f �
$v 0

0 1

� �
f :

Here
$v 0

0 1

� �
f is the right translation of f by the matrix

$v 0

0 1

� �
. This is

an isomorphism, and it induces the isomorphism

T�Q !
F

T�Q�fvgð3:2:4Þ

sending U$v
to Av for all v A Qn; see [23, Lemma 2.2]. Combining the local-

ization of (3.2.2) with the isomorphisms (3.2.3) we obtain the following result:
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Proposition 3.5 ([23, Corollary 2.4]).
(1) The augmentation map induces an isomorphism

S2;cðUQn
;OÞmQn

=aDQn
S2;cðUQn

;OÞmQn
!F S2;cðU ;OÞm:

This is compatible with the Tuniv
S

p

Qn
;O -algebra map TQn

! T sending U$v
to

Av for all v A Qn and hai to 1 for all a A DQn
.

(2) S2;cðUQn
;OÞmQn

is free over O ½DQn
�.

In the following, we put

HG
n :¼ S2;cðUG

Qn
;OÞmG

Qn

and H :¼ S2;cðU ;OÞm;

where the symbol þ means the UQn
case. Over the algebraic closure E of E

we have a natural Tuniv
SQn ;O

-equivariant splitting

H�n nE !F ðHn nEÞDQn :ð3:2:5Þ

We take a Tuniv
S;O -eigenbasis B of HnE and we denote by B D

n the image of B
under the composition of (3.2.5) and (3.2.3).

By Proposition 3.5, Hn nE is free over E½DQn
�. If we denote by d the

O-rank of H�n then we have a non-canonical isomorphism

Hn nEF 0
w AD4Qn

EðwÞld ;

where D4Qn
is the set of characters of DQn

with values in E�, and EðwÞ is the
representation space of the character w. For each w A D4Qn

, the w-eigenspace
ðHn nEÞðwÞ has a T 0Qn

-eigenbasis. In particular, if wtriv is the trivial character of
DQn

then ðHn nEÞðwtrivÞ ¼ ðHn nEÞDQn has an eigenbasis B D
n . Moreover, we

have a (non-canonical) decomposition

Hn nE ¼ 0
f A B D

n

0
w AD4Qn

EðwÞF 0
f A B D

n

E½DQn
�:ð3:2:6Þ

Now we take a T 0Qn
-eigenbasis B n of Hn nE containing B D

n . Using the basis B n

we can take a decomposition (3.2.6) as T 0Qn
-stable.

We shall consider the Galois conjugates of eigenforms and p-adic Hecke
fields. We say eigenforms g1, g2 in B n are Galois conjugate over E if sg1 is a
scalar multiple of g2 for some s A GE . Let ~BBn=E be the set of Galois conjugate
classes of B n; then it is bijective to the set of maximal ideals of T 0Qn

½1=p�, and for
each ½g� A ~BBn=E we have Eg nE E ¼

Q
h A ½g� E.

Let Fn be the set of maximal ideals of E½DQn
�. Then for each Galois con-

jugate class ½g� A ~BBn=E we can associate a maximal ideal m ¼ mðgÞ A Fn as the
kernel of the composite

E½D� ��! T 0Qn
½1=p� ��!jg; E E:

Moreover, the localization Em of E½DQn
� by m, which is a finite extension of E,

is contained in the Hecke field Eg of g. We put aðgÞ :¼ ½Eg : Em�. Then (3.2.6)
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implies that, for each m A Fn we have

d½Em : E� ¼
X

½g� A ~BBn=E ;

mðgÞ¼m

½Eg : E� ¼
X

½g� A ~BBn=E ;

mðgÞ¼m

aðgÞ½Em : E�:

In particular, aðgÞa d for all ½g� A ~BBn=E . Thus we have:

Lemma 3.6. In the above situation, we further assume d ¼ dimE HnE < p.
Then there is a finite extension E 0 of E such that, for any nb 1 and any eigenform
g A B n the Hecke field E 0g of g over E 0 coincides with the localization E 0mðgÞ of

E 0½DQn
� by the associated maximal ideal mðgÞ ¼ Kerðjg;E 0 Þ \ E 0½DQn

�.

In this lemma we only use the E½DQn
�-freeness of Hn nE, but not the

O ½DQn
�-freeness of Hn.

Proof of Lemma 3.6. For a moment, we assume that zp A E; then for any
nb 2 and any m A Fn the extension Em=E is wildly ramified. By assumption, for
any g A B n we have a tamely ramified sub-extension EaðgÞ=E in Eg of degree aðgÞ
such that the composite of EaðgÞ and EmðgÞ is Eg:

Eg

aðgÞ

EaðgÞ EmðgÞ

E:

aðgÞ p-power

We now take E 0 as the union of all finite and totally ramified extensions
of E with degreea ðp� 1Þd. Then E 0 is an extension of E which contains zp
and Eg for all g A B1. By the result of Krasner (cf. [14]) we know that the
number of extensions of E of a fixed degree in E is finite. Thus E 0 is finite over
E, and E 0 satisfies the condition in the statement. r

3.3. The Hecke modules. We continue to use notation and assumptions in
§2.4, §2.5 and §3.2. In this subsection, for any O-module M and any O-algebra
R we denote by MR its scalar extension by R over O . We assume that the
residual representation r ¼ rm 0 is associated to an eigenform f of S2;cðU ;OÞm 0 ,
whose automorphic representation pf is special with exponential conductor 1 at
each prime in S.

For any nb 1 we take a finite set Qn of primes of F as above. For sim-
plicity, TG

Qn
denotes either TQn

or T�Qn
. We also denote by TG;�

Qn
the image of the

composite map

RF ;SQn
! ~RRc;s;r

F ;SQn
! TG;r

Qn
:
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Then TG;�
Qn

is an object of dARARO , whose maximal ideal is denoted by m
G;�
Qn

. We
have a modular deformation of rm 0 :

rG;�
Qn

: GF ;SQn
! GL2ðTG;�

Qn
Þ:

We denote by VG;�
Qn

the representation space of rG;�
Qn

. Even in the level U case

we can define the subalgebra T� of T similarly, and denote by ðr�;V �Þ the
deformation of r corresponding to RF ;S ! T�.

Let P be a finite set of places which do not meet S. Let g ¼ ðgvÞv AP be a
family of unramified local characters gv : GFv

! O�. We shall define the Hecke
modules corresponding to the local condition defined in §3.1. We consider the
following conditions for deformations ðr; fÞ of rm 0 :

Condition 3.7. For any v AP , there is a basis bv such that the map

R
c;r
VF; v
! O of dARARO corresponding to the local framed data ðrjGFv

; f; bvÞ factors

through R
c; gv;r
VF; v

(resp. R
c; gv-ss;r
VF; v

with gv satisfying g2v ¼ cejGFv
).

By abuse of notation, we often denote the conditions in Condition 3.7 by
ðPgÞ or ðPssÞ respectively; in the following ðP�Þ denotes the either condition.

Let B be a Tuniv
S;O -eigenbasis of HnE. We assume that it is contained

in H. If we denote by

G ¼ AutFðOÞ

the group of continuous automorphisms of O which associate the identity on F,
then it acts up to scalar multiples on B by the Galois conjugation. We denote
by ~BB=G the set of Galois conjugate classes of B by G.

We denote by BðP�Þ the subset of B consisting of eigenforms which associate
deformations of r satisfying the condition ðP�Þ. We assume BðP�Þ is non-empty.
The set BðP�Þ is stable under the Galois conjugation by G; we denote by ~BBðP�Þ=G
the quotient set. For any conjugate class ½ f � of BðP�Þ, we denote by T�

½ f � the
image of the diagonal map

T� !
Y

f 0 A ½ f �
E

which associates Tv to the tuple of eigenvalues ðyf 0 ðTvÞÞf 0 A ½ f �. We also denote

by I �½ f � the kernel of it. We put V �
½ f � :¼ V � nT � T�

½ f �; this is a modular defor-

mation of r corresponding to RF ;S ! T�
½ f �. By Lemma 2.8 we have the

T�-algebra map

T! T�
½ f �½1=p� ,! EndEðV �

½ f �½1=p�Þð3:3:1Þ

determined by

Tp 7! TrT �
½ f �½1=p�nW ðkðpÞÞðj½kðpÞ:Fp� jDcrisðV �

½ f �½1=p�ÞÞ
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for all p j p. We define the Hecke algebra T½ f � to be the image of (3.3.1) and
define the Hecke module M½ f � to be

M½ f � :¼ V �
½ f �nT�

½ f �
T½ f �:

By construction, M½ f � is free of rank 2 over T½ f � and in particular torsion free.
We then put

MP� :¼ 0
½ f � A ~BBðP�Þ=G

M½ f �:

For any nb 1 we define T�;P�Qn
and M

�;P�
Qn

as follows: Firstly we take a

finite set Qn of primes of F given in Proposition 2.3 so that it does not meet
S [P . For any ½ f � A ~BBðP�Þ=G, we denote by I�;�

Qn; ½ f � the inverse image of I �½ f �
under the isomorphism T�Qn

!F T induced by (3.2.4), and define

T�;�
Qn; ½ f � :¼ T�;�Qn

=I�;�
Qn; ½ f �; V�;�

Qn; ½ f � :¼ V�;�Qn
n

T
�; �
Qn

T�;�
Qn; ½ f �:

As well as the level U case, we define the Hecke algebra T�Qn; ½ f � to be the image
of

T�Qn
! EndEðV�;�Qn; ½ f �½1=p�Þ

and the Hecke module M�
Qn; ½ f � as

M�
Qn; ½ f � :¼ V

�;�
Qn; ½ f �nT

�; �
Qn ; ½ f �

T�Qn; ½ f �:

The isomorphisms (3.2.3) and (3.2.4) induce the natural isomorphisms

T�Qn; ½ f � !
F

T½ f � and M�
Qn; ½ f � !

F
M½ f �;

which are compatible with each other. We note that the later is GF ;S-
equivariant. Now we put

M
�;P�
Qn

:¼ 0
½ f � A ~BBðP�Þ=G

M�
Qn; ½ f �;

then we have a GF ;S-equivariant isomorphism of Hecke modules

M
�;P�
Qn
!F MP� :ð3:3:2Þ

In the following we further assume the condition that, for any nb 1 and any
eigenform g of Hn nE we have

Eg ¼ EmðgÞ;

here mðgÞ is the kernel of E½DQn
� �! T 0Qn

½1=p� �!
jg;E

E, cf. Lemma 3.6. Then

Galois conjugates of eigenforms of Hn nE over E are equivalent to that of
characters of DQn

. Now we fix a T 0Qn
-stable decomposition (3.2.6) and denote by

B D
n ðP�Þ the image of BðP�Þ under the composition of (3.2.5) and (3.2.3). Then,

for any f A B D
n ðP�Þ we have a non-canonical isomorphism

E½DQn
�F 0

w AD4Qn

Egð f ; wÞ;ð3:3:3Þ
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where gð f ; wÞ is a T 0Qn
-eigenform in Hn on which DQn

acts as w; this isomor-
phism is obtained from the irreducible decomposition of the regular representa-
tion E½DQn

� of DQn
.

We denote by ~BB D
n ðP�Þ=G the set of Galois conjugate classes of B D

n ðP�Þ by G;
we also choose its representative system ð f jÞj. For any eigenform in B D

n ðP�Þ
we take above isomorphism (3.3.3) as follows: Firstly, for each representative
eigenform f j of ~BB D

n ðP�Þ=G we fix above isomorphism (3.3.3) so as gð f j; 1Þ ¼ f j,

gð f j; wÞ0 gð f k; wÞ if f j 0 f k, and for each f ¼ sf j we take (3.3.3) as gð f ; wÞ ¼
sgð f j; s�1wÞ.

For any f A B D
n ðP�Þ we put

B nð f Þ :¼ fgð f ; wÞ j w A D4Qn
g

and denote by ~BBnð f Þ=E the set of Galois conjugate classes of B nð f Þ over E.
Then, under our assumption we haveY

½g� A ~BBnð f Þ=E

Eg ¼
Y
m AFn

Em GE½DQn
�:

Moreover we have the natural O ½DQn
�-algebra map

T�
Qn
!

Y
½g� A ~BBnð f Þ=E

Eg GE½DQn
�:ð3:3:4Þ

By the following discussion, the image of this map is isomorphic to O ½DQn
�.

Lemma 3.8. Let D be a finite abelian p-group and R a finite local sub-O ½D�-
algebra of E½D� whose maximal ideal contains l. If R has a specializing local map
j : R! O of local O-algebras which sends D to f1g and the maximal ideal of R is
generated by aD and l, then R is isomorphic to O ½D�.

As usual, a local map A! B of local O-algebras means a ring homomor-
phism between local O -algebras A and B, which maps the maximal ideal of A
into that of B.

Proof of Lemma 3.8. We note that O ½D� is a local ring. By assumption,
the ring R is torsion free and it has an injective local map of local O-algebras

i : O ½D� ,! R;

which becomes an isomorphism after inverting p. We shall prove it is an iso-
morphism. By Nakayama’s lemma, it is su‰cient to show that i becomes an
isomorphism after taking modulo mO ½D�.

By assumption, we have

R=mO ½D�R ¼ R=mR GO=l ¼ F;

which proves the lemma. r

Let T be the image of (3.3.4). T is finite and faithful as a O ½DQn
�-module,

which is generated by tuples
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TvjT :¼ ðygðTvÞÞ½g� A ~BBnð f Þ=E
ðv B SQn

Þ;

U$v
jT :¼ ðygðU$v

ÞÞ½g� A ~BBnð f Þ=E
ðv A QnÞ:

On the other hand, since each eigenform of

HQn
nO ½DQn � FGHnO F

has the same eigenvalue in F for all operators in T�
Qn
, we have

TvjT 1 yf ðTvÞ � ð1; . . . ; 1Þ mod mO ½DQn � ðv B SQn
Þ;

U$v
jT 1 av � ð1; . . . ; 1Þ mod mO ½DQn � ðv A QnÞ:

Thus T =mO ½DQn �T ¼ F � ð1; . . . ; 1Þ, and so O ½DQn
�FT by Lemma 3.8.

We denote by

rf ;DQn
: GF ;SQn

! GL2ðO ½DQn
�Þ

the deformation associated to (3.3.4) and by Vf ;DQn
its representation space. Let

jf ;DQn
: TQn

! EndEðVf ;DQn
½1=p�Þ

be the T�
Qn
-algebra map determined by

Tp 7! TrE½DQn �nW ðkðpÞÞðj½kðpÞ:Fp� jDcrisðVf ;DQn
½1=p�ÞÞ

for all p j p. The image of the map jf ;DQn
is contained in the center of

EndE½DQn �ðVf ;DQn
½1=p�ÞFM2ðE½DQn

�Þ:
Moreover, we have the T�

Qn
-algebra map

yf ;DQn
: TQn ���!jf ; DQn

E½DQn
� ���!aug:

E

which maps Tp to

TrEnW ðkðpÞÞðj½kðpÞ:Fp� jDcrisðVf ½1=p�ÞÞ
for all p j p. The image of yf ;DQn

is a local sub-O -algebra of E whose residue
field is F, so that it coincides with O . By Lemma 3.8 again, we have:

Lemma 3.9. The image of jf ;DQn
: TQn

! E½DQn
� is O ½DQn

�.

For each G-conjugate class ½ f � of B D
n ðP�Þ, we denote by T�

Qn; ½ f � the image of
the diagonal map Y

f 0 A ½ f �
jf 0;DQn

: T�
Qn
!

Y
f 0 A ½ f �

O ½DQn
�

and denote by V �
Qn; ½ f � the modular deformation corresponding to RF ;SQn

!
T�
Qn; ½ f �. We then define the Hecke algebra TQn; ½ f � to be the image of the T�

Qn
-

algebra map

TQn
! T�

Qn; ½ f �½1=p� ,! EndEðV �
Qn; ½ f �½1=p�Þ
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determined by

Tp 7! TrT�
Qn ; ½ f � ½1=p�nW ðkðpÞÞðj½kðpÞ:Fp� jDcrisðV �

Qn; ½ f �½1=p�ÞÞ;

and define the Hecke module MQn; ½ f � to be

MQn; ½ f � :¼ V �
Qn; ½ f �nT�

Qn ; ½ f �
TQn; ½ f �;

this is a free TQn; ½ f �-module of rank 2. Finally we put

MP�
Qn

:¼ 0
½ f � A ~BB D

n ðP�Þ=G

MQn; ½ f �:

Proposition 3.10. Let P be a finite set of places which do not meet S and
g ¼ ðgvÞv AP be a family of unramified local characters gv : GFv

! O�. For each
prime v AP we take either deformation condition ðPgÞ or ðPssÞ of Condition 3.7;
when we consider the condition ðPssÞ we always assume that for all v AP the
character gv satisfies g2v ¼ cejGFv

. We also assume that the localized space H ¼
S2;cðU ;OÞm satisfies

rankO H < p;ð3:3:5Þ

and that there is an eigenform f of HnE which satisfies ðP�Þ for all v AP .
Then, for su‰ciently large E we have the following:

(1) The augmentation map induces an isomorphism

MP�
Qn
=aDQn

MP�
Qn
!F MP� :

(2) MP�
Qn

is free over O ½DQn
�.

Let f A H be an eigenform satisfying the conditions ðP�Þ for all v AP and
~ff the corresponding Hilbert modular eigenform. Let ~UU be the level of ~ff . As
each Hecke eigenspace of H has dimension 1 we have

rankO Ha dimC SM2

2;cð ~UU ;CÞ:

Thus the condition (3.3.5) follows from the global condition dimC SM2

2;cð ~UU ;CÞ <
p, which is introduced in (1.0.1).

Proof of Proposition 3.10. Put D :¼ DQn
and d 0 ¼aBðP�Þ for simplicity. It

is su‰cient to show the case when BðP�Þ consists of single G-orbit; we shall put
BðP�Þ ¼ f f0; . . . ; fd 0�1g ¼ ½ f0�.

By assumption MP� is a nonzero module. Enlarging E if necessary we may
assume that:

� Galois conjugates of each eigenform f A BðP�Þ over E are only itself;
� we can take an extension of E in Lemma 3.6 as itself.

As mentioned at (3.3.2) we have the GF ;S-equivariant isomorphism

M
�;P�
Qn
!F MP� ;
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which is compatible with the isomorphism of Hecke algebras T�;P�Qn
!F TP� sending

U$v
to Av for all v A Qn.
We shall show that the augmented quotient of MP�

Qn
is M

�;P�
Qn

. Identifying
B D
n ðP�Þ with BðP�Þ, we have

MP�
Qn
½1=p� ¼ V �;P�

Qn;E
F 0

fj A B
D
n ðP�Þ

E½D�l2:ð3:3:6Þ

We consider the (normalized) augmentation map

1

aD

X
a AD

hai : V �;P�
Qn;E
! V

�;�;P�
Qn;E

:ð3:3:7Þ

Then it induces an isomorphism V
�;P�
Qn;E

=aDV
�;P�
Qn;E
!F V

�;�;P�
Qn;E

. Moreover, we have
the following commutative diagram:

TQn ���! EndE½D�ðV �;P�
Qn;E
Þ

aug:

???y ???yinduced by ð3:3:7Þ

T�Qn
���! EndEðV�;�;P�Qn;E

Þ:

ð3:3:8Þ

Here ‘‘aug:’’ means the augmentation map. In particular we obtain the surjec-
tive map of Hecke algebras

TP�
Qn
! T�;P�Qn

ð3:3:9Þ

which sends hai to 1 for all a A D. We also note that the right vertical arrow in
(3.3.8) is equivalent to the augmentation map of matrix algebras

M2d 0 ðE½D�Þ !M2d 0 ðEÞ:

The kernel of (3.3.9) is aDM2d 0 ðE½D�Þ \ TP�
Qn
, which contains aDT

P�
Qn
. We shall

prove that it coincides with aDT
P�
Qn
. Let x be an element of aDM2d 0 ðE½D�Þ \ TP�

Qn
.

Then, under the decomposition (3.3.6), the element x can be written as

jf0;DðtÞ
jf0;DðtÞ

. .
.

. .
.

jfd 0�1;DðtÞ
jfd 0�1;DðtÞ

0BBBBBBBBBBB@

1CCCCCCCCCCCA
for some t A TQn

. By Lemma 3.9 the component jfj ;DðtÞ is contained in

aDE½D� \ O ½D� ¼ aD

for each j. We shall write jf0;DðtÞ ¼
P

a ADða� 1Þya for some ya A O ½D�. Since
each fj in B D

n ðP�Þ is written as fj ¼ sj f0 for some sj A G we can decompose jfj ;D
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as jfj ;D ¼ sj 	 jf0;D. Thus jfj ;DðtÞ can be expressed as jfj ;DðtÞ ¼
P

a ADða� 1Þsya.
It implies that x is the image of the elementX

a AD

ða� 1ÞiðzaÞ

of TQn
, where each za is a (unique) element of O ½D� whose image under the

composite

O ½D� ��!i TQn ��!jf0 ; D
O ½D�

is ya. Thus x is contained in aDT
P�
Qn
. Therefore we have

aDM2d 0 ðE½D�Þ \ TP�
Qn
¼ aDT

P�
Qn
;

and we obtain TP�
Qn
=aDT

P�
Qn
!F T�;P�Qn

. Since M
G;P�
Qn

is free over TG;P�
Qn

, we deduce
that

MP�
Qn
=aDM

P�
Qn
!F M

�;P�
Qn

:

Now we prove the freeness. We note that M
G;P�
Qn
½1=p� ¼ V

G;�;P�
Qn

½1=p� since
TG;P�
Qn
½1=p� ¼ TG;�;P�

Qn
½1=p�. Thus we have an equation

dimEðMP�
Qn
½1=p�Þ ¼ 2ðaD �aBðP�ÞÞ ¼aD � dimEðM�;P�

Qn
½1=p�Þ:

By Lemma 3.11 below we obtain the result. r

Lemma 3.11. Let O be a complete discrete valuation ring of mixed charac-
teristic ð0; pÞ. Let D be a finite abelian p-group. Let M be a finitely generated
O ½D�-module. We assume the following:

(1) M is free over O .
(2) M=aDM is a free O -module of finite rank. Here aD is the augmentation

ideal of O ½D�.
(3) We have the equation for O-ranks:

rankO M ¼aD � rankO ðM=aDMÞ:
Then M is free over O ½D�.

Proof of Lemma 3.11. First note that O ½D� is a local ring. Let ðxiÞ1aiam

be a O-basis of M=aDM. By Nakayama’s lemma, we have a lifting ðxiÞi of
ðxiÞi, which generates M over O ½D�. We note that ðxiÞi is a linearly independent
system over O . By construction, ðtxiÞ1aiam; t AD is an O -generating system of M
and we have the inequality

rankO MaaðtxiÞ1aiam; t AD aaD �m:

By assumption, this is an equation. Thus ðtxiÞi; t AD is a O-basis of M and we
know that ðxiÞi is a O ½D�-basis of M. r

3.4. R ¼ T type result. We use the notation in §2.5. We also keep
assumptions in the previous sections.
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Let P be a finite set of places which do not meet S. Let g ¼ ðgvÞv AP be a
family of local unramified characters gv : GFv

! O�. Let ðP�Þ be either condition
ðPgÞ or ðPssÞ. We assume that there is an eigenform f A S2;cðU ;OÞm 0 satisfying
Condition 3.7 with respect to P and g; when we consider the condition ðPssÞ, we
will assume that for any primes v AP the local character gv satisfies g2v ¼ cejGFv

.
Let rf : GF ;S ! GL2ðOÞ be the deformation of rm 0 corresponding to f . Let
s ¼ ðs 0; fwpgp A s 0 Þ be the ordinary data given by rf . Let m be a maximal ideal

of Tc;O ðUÞ determined by f . For any nb 1 we take a finite set Qn of primes of
F given in Proposition 2.3 so that it does not meet S [P . We write Q0 :¼ j for

our convenience, and for any nb 0 we consider the Hecke module MP�
Qn

defined
in §3.3. We put

M
P�;r
Qn

:¼MP�
Qn

nRF ; SQn
Rr

F ;SQn
:

As usual we will write MP�;r ¼M
P�;r
Q0

. The following proposition, which is the

key of our result, is a variation of [13, Proposition (3.4.11)].

Proposition 3.12. Let r : GF ;S ! GL2ðFÞ be an absolutely irreducible con-
tinuous representation satisfying Coniditon 2.2. We assume that rF rm 0 for some
modular representation (2.5.1). Let P be a finite set of primes of F which do not
meet S and let g ¼ ðgvÞv AP be a family of local unramified characters gv : GFv

!
O�. Let ðP�Þ be either condition ðPgÞ or ðPssÞ of Condition 3.7 with respect to
ðP ; gÞ; when we consider the condition ðPssÞ we further assume that for any v AP
the character gv satisfies g2v ¼ cejGFv

. We also assume that there is an eigenform
f A S2;cðU ;OÞm 0 satisfying ðP�Þ and that the inequality (3.3.5) holds for the
maximal ideal m of Tc;O ðUÞm 0 associated to the ordinary data s determined by rf .
Then, the kernel of the map

~RRc;s;r
F ;S ! EndO ðMP�;rÞ

is p-power torsion. In particular, if some modular deformation satisfies ðP�Þ on a

finite set P of unramifimed primes, then every modular deformation of type ~RRc;s;r
S;p

also satisfies ðP�Þ on P .

Proof of Proposition 3.12. Let B ¼ ~RRc;s;r
S;p , R ¼ ~RRc;s;r

F ;S , Rn ¼ ~RRc;s;r
F ;SQn

, H ¼
MP�;r and Hn ¼M

P�;r
Qn

. By our hypothesis, H is a non-zero module. Then by

(2.2.2) and Proposition 3.10, we can apply Proposition 2.1 and we obtain the
result. r

3.5. A rigidity of deformations of a mod p Galois representation associated
to a Hilbert modular form. Let F be a totally real number field, f be a Hilbert
modular Hecke-eigen cuspform over F . Let l be a prime of the Hecke field Kf

of f above a rational prime p, Kf ;l be its l-adic completion and O f ;l be the ring
of integers of Kf ;l. Then, we have a two dimensional l-adic representation

rf ;l : GF ! GL2ðKf ;lÞ:
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Let S be the finite set of primes of F at which pf is ramified; we assume that each
prime in S does not divide p. If we denote by S a finite set of places of F
containing S, all primes dividing p and all infinite places, then rf ;l is unramified
outside S. Namely it factors through the Galois group GF ;S of the maximum
extension of F which is unramified outside S. Let Vf ;l be the representation
space of rf ;l. Taking its GF -stable lattice Tf ;l of Vf ;l, we have a continuous
representation (denoting by the same symbol)

rf ;l : GF ;S ! GL2ðO f ;lÞ:

When we denote by Fl the residue field of O f ;l, composing rf ;l with the natural
reduction map, we have the continuous representation GF ! GL2ðFlÞ, whose
semi-simplification is independent of choice of lattices Tf ;l, and which is denoted
by

rf ;l : GF ;S ! GL2ðFlÞ:ð3:5:1Þ

By Ribet’s work described in [22], rf ;l is irreducible for all l and rf ;l is
absolutely irreducible for almost all l. Thus we take l so that rf ;l is absolutely
irreducible.

In the following, we suppose f has parallel weight two. By the results
of Carayol, Faltings and Taylor (cf. [22, Theorems 1.2, 1.4]), the family rf ¼
ðrf ;lÞl A jKf jy of l-adic representations fit into a regular and irreducible rank 2
weakly compatible system

Rf :¼ ðKf ;S; S ; fQf ; vðX Þgv BS; rf ; f0; 1gÞ;

where S is the (finite) set of primes l of Kf which divides the level of f , or l
at which the semi-simplification of rf ;l is absolutely reducible. In particular, by
[22, Proposition 1.6] for any primes l B S the l-adic realization rf ;l is Barsotti-
Tate. Moreover, the local-global compatibilities of Langlands correspondences
for rf ;l’s are none other than that Rf is strongly compatible.

Lemma 3.13. Let F be a totally real field of even degree and f be a Hilbert
modular Hecke-eigen cuspform of parallel weight two. Let Rf be the regular and
irreducible strong compatible system associated to f . Let L be the set of all
primes l of Kf lying over a rational prime pl satisfying that:

(1) the mod l representation rf ;l is absolutely irreducible,
(2) F \QðzplÞ ¼ Q,
(3) pl 1 1 mod 4.

Then, for all but not finitely many primes l A L, rf ;l remains absolutely irreducible
after restricting to the subgroup GFðzpl Þ.

Proof of Lemma 3.13. We note that such a L is an infinite set. As Kisin
remarked in [13, p. 1155], by the condition (2) the absolute irreducibility of

rf ;ljGFðzpl Þ
is equivalent to that of rf ;ljGL

, where L ¼ Fð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�1Þðpl�1Þ=2pl

q
Þ. More-

over, by the condition (3), L is totally real, and so by [22, Proposition 3.1] the
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modular Galois representation

rf ;ljGL
G rBCL=F ðpf Þ;l 0

is irreducible for all l A L; here BCL=F ðpf Þ means the base change of pf via L=F .
Therefore, by [loc.cit., Proposition 3.3], for all but not finitely many primes l A L,
the restriction rf ;ljGL

must be absolutely irreducible. r

In order to state our main theorem, we prepare the following notion of
residual modularity.

Remark 3.14 ([13, (3.5.4)], [26, §4]). Let O be the ring of integers of a finite
extension E=Qp and r : GF ;S ! GL2ðOÞ be a continuous representation. We call
r is strongly residually modular of parallel weight two if there exists a Hilbert
modular Hecke-eigen cuspform f over F of parallel weight two such that4):

� There is an isomorphism rF rf ;l 0 , where l 0 is a suitable prime of Kf ,
� The automorphic representation pf of GL2ðAF Þ generated by f is not
special at any place dividing p,

� For any p j p, the restriction rf ;l 0 jGFp
is potentially ordinary if and only if

rjGFp
is.

We note that for almost all v, pf is not special at v; this follows from the fact
that automorphic representations p are admissible, and so that p is unramified at
almost all v.

Theorem 3.15. Let F be a totally real number field. Let K be a number
field, S be a finite set of finite primes of F , S be a finite set of finite primes of K
and

R :¼ ðK;S; S ; fQvðXÞgv BS; r ¼ ðrlÞl A jK jyÞ

be a regular and irreducible rank 2 weakly pre-compatible system of l-adic rep-
resentations of GF . We assume that there is a finite character c : GF ! O�K
such that, for any primes l A jK jy the determinant of rl is cepl ; here we denote by
pl the residue characteristic of Kl. We further assume that there is a prime l B S
lying over a rational prime p ¼ pl > 2 such that the l-adic realization

r ¼ rl : GF ! GL2ðKlÞ

satisfies the conditions in [13, Theorem (3.5.5)]. Namely,
(1) For any prime p dividing p, the restriction rjGFp

is potentially Barsotti-
Tate;

(2) r is strongly residually modular (in the sense of Remark 3.14);
(3) rjGFðzpÞ

is absolutely irreducible;
(4) If p ¼ 5 and the projective image of Im r is isomorphic to PGL2ðF5Þ, then

the kernel of the projectivization of r does not fix F ðz5Þ.

4)We use the definition of [26, §4] which is slightly modified from [13, (3.5.4)].
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Then, for infinitely many primes m B S we have the following: After taking a
suitable totally real solvable base change Fa of F (and denoting objects of Fa by
the same symbols), each OKm

-deformation r 0m of

rm : GF ! GL2ðFmÞ

of type ~RR
c;sm;r
S;pm

has a field automorphism f A AutðKmÞ satisfying

ðr 0m nKmjGFv
Þss F f�ðrm nKmjGFv

Þss

for almost all unramified primes v of rm. Here sm is the ordinary data associated
to rm.

In [13, Theorem (3.5.5)], Kisin proved the modularity of r satisfying con-
ditions (1)–(4) as above. As a consequence, after a suitable base change the
restriction of r can be fit into an irreducible strongly compatible system of
Hodge-Tate weights f0; 1g. Since the proof of Theorem 3.15 is based on his
proof, we shall review it briefly (with a slight modification for our proof ).

Let O be the ring of integers of E ¼ Kl. Let f be a Hilbert modular
eigenforms of F of parallel weight two satisfying rF rf ;l 0 . Let S be the set of
primes at which r is ramified and not dividing p. By base change arguments
([15], [19, Main Theorem] and [13, Lemmas (3.5.2), (3.5.3)]), replacing F with its
suitable totally real and solvable extension and f with its base change, we may
prove the modularity under the following conditions for r:

(1) rjGFp
is Barsotti-Tate at all primes p dividing p,

(2) If p divides p and rjGFp
is ordinary, then rjGFp

is either indecomsable or
has the trivial image,

(3) r is unramified outside the primes dividing p,
(4) If v A S then the restriction rjIv is unipotent,
(5) ½F : Q� is even and rjGFðzpÞ

remains absolutey irreducible;

and conditions for the pair f and S:
(i) pf is unramified at all v B S; in particular at all primes p dividing p,
(ii) pf is special with conductor 1 at v if v A S.

Then r satisfies (1)–(4) of Condition 2.2. Moreover, by [4, Lemma 4.11] we
can take an auxiliary prime r so that Condition 2.2 (5) is satisfied for the
set

S :¼ S [ fp j pg [ fv jyg [ frg:

By further base change if necessary, we may assume that the cardinality of
S is even. Twisting by a character we assume that r and rf ;l 0 have the same
determinant. Now let D be the quaternion algebra over F which is ramified
at S [ fv jyg. We fix a maximal order oD of D and define a compact open
subgroup U0 ¼

Q
vðU0Þv of ðDnF A

y
F Þ
� by ðU0Þv :¼ ðoDÞ

�
v . By the Jacquet-

Langlands and Shimizu correspondence, after enlarging O if necessary, there is a
Hecke eigenform f D of SD

2;cðU0;OÞ corresponding to f . Here c is determined
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by the central character of f . We define a subgroup U ¼
Q

v Uv by setting5)

Ur :¼ U11ð$2
r Þ

and Uv :¼ ðU0Þv for all v0 r. Taking r as NðrÞ is su‰ciently large, we can
assume U satisfies Condition 2.6. We now regard f D as an eigenform of
SD
2;cðU ;OÞ. Then we take the maximal ideal m of Tc;O ðUÞ associated to f D.

We take the set S of places of F as above. Then, by [13, (3.4.11)] we have a
surjective map

~RRc;s;r
F ;S ! Tr

with p-power torsion kernel, where Tr :¼ TnRF ; S
Rr

F ;S. In particular r is
modular, namely there is an eigenform g A SD

2;cðU ;OÞ such that r is associated
to g.

Proof of Theorem 3.15. Let

~UU0 ¼
Y
v AS

U0ð$vÞ �
Y
v BS

GL2ðOFv
Þ

be the compact open subgroup of GL2ðAy
F Þ. Put

d0 :¼
Y
v AS

aðGL2ðOFv
Þ=U0ð$vÞÞ;

here GL2ðOFv
Þ=U0ð$vÞ is bijective to the set of cyclic subgroups of ðOFv

=$vÞ2
isomorphic to OFv

=$v. We note that d0 is greater than or equal to the car-

dinality of the finite set GL2ðFÞnGL2ðAy
F Þ= ~UU0. We will use d0 to bound the

dimension of the localized space of modular forms.
Let m B S be a prime of K lying over a rational odd prime pm such that: (i)

pm > maxð5; d0Þ and (ii) the restriction of rm to GF ðzpm Þ remains absolutely irre-
ducible; by Lemma 3.13 such m are infinitely many exist.

Let Km be the m-adic completion of K and Om be the ring of integers of
Km. We consider m-adic quaternionic modular forms SD

2;cðU0;OmÞ.
Now we know that rm ¼ rg;m satisfies the following conditions:
(1) the local restriction rmjGFp

is Barsotti-Tate at each prime p dividing pm,
(2) If v B Spm then rm is unramified at v, and if v A S then the restriction rmjIv

is unipotent,
(3) ½F : Q� is even and rmjGFðzpm Þ

remains absolutely irreducible.

In particular, for any prime v in S the restriction of rm to the inertia Iv is

rmjIv @
1 a

0 1

� �
;

5) In [13] Kisin take Ur as U11ð$rÞ. We refer to the method of [4] for our proof.
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where a is the additive character of Iv which factors through tv : Iv ! Zpmð1Þ.
We take a totally real cyclic extension Fa=F of degree pm such that:

� the restriction of rm to GFaðzpm Þ remains absolutely irreducible,
� each prime v A S is ramified at Fa=F , so that rmjGFa

is unramified outside
the primes dividing pm.

Since pm is an odd prime, the base change

Pg :¼ BCFa=F ðpgÞ

of pg is a cuspidal representation of GL2ðAFaÞ (cf. [15]). Moreover, rmjGFa

satisfies (1)–(3) as above and the condition that:
(4) rmjGFa

is unramified outside primes dividing pm.

In the following, we replace objects of F with that of Fa lying over those, and
denote these as ð�Þa. Then the set Sa of primes of Fa lying over S has even
cardinality.

We take a totally definite quaternion algebra Da over Fa which is ramified
exactly at Sa. We fix a maximal order oDa of Da and define a subgroup of
ðDanAy

FaÞ� as Ua
0 :¼

Q
vðoDaÞ�v . As remarked at (2.4.7), under the fixed

isomorphism im : Km FC we have the decomposition

SDa

2;c;Km
=SDa; triv

2;c;Km
F 0

P

imðPyÞ;

where P runs over all cuspidal representations of ðDanFaAFaÞ� having weight
2 and central character c. By assumption, the finite part of Pg occurs in

the decomposition, and we have ðPy
g Þ

Ua
0 0 0. We take an eigenform ga in

SDa

2;cðUa
0 ;OmÞ which generates Pg.

We take a prime rm B Sapm ¼ Sa[ fp j pmg as before and define a subgroup

Ua :¼ U11ð$2
rm
Þ �

Y
vF rm

ðoDaÞ�v ;

moreover we may take it so that Ua satisfies Condition 2.6 and the set

Sa :¼ Sapm [ fv jyg [ frmg

satisfies Condition 2.2 (5). We regard ga as an eigenform in SDa

2;cðUa;OmÞ. Let
ma be the maximal ideal of Tc;Om

ðUaÞ determined by ga and

Ha :¼ SDa

2;cðUa;OmÞma

the corresponding localized space.

Lemma 3.16. Under the above notation, the dimension of HanKm satisfies

dimKm
HanKm a d0:

Proof of Lemma 3.16. Let ~DDa be a quaternion algebra over Fa which is
ramified exactly at all infinite places. By the Jacquet-Langlands-Shimizu cor-
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respondence, for any eigenform h in HanKm there is a cuspidal representation
~PP of ð ~DDanFaAFaÞ� such that

JLDaðPhÞG JL ~DDað ~PPÞ:

If we take the compact open subgroup ~UUa
0 of GL2ðAy

FaÞ to be

~UUa
0 :¼

Y
w ASa

U0ð$wÞ �
Y

w B Sa

GL2ðOFa
w
Þ;

then ð ~PPyÞ ~UUa
0 0 0. Thus, for any eigenform h A HanKm we have an eigenform

of

S
~DDa

2;cð ~UUa
0 ;KmÞ:

Since each Hecke eigenspace of HanKm has dimension one (cf. the discussion
of Proof of Lemma 3.4), we have

dimKm
HanKm a dimKm

S
~DDa

2;cð ~UUa
0 ;KmÞ:

Moreover, by assumption the dimension of S
~DDa

2;cð ~UUa
0 ;KmÞ is less than or equal

to

aðGL2ðFaÞnGL2ðAy
FaÞ= ~UUa

0 Þa
Y

vaASa
aðGL2ðOFa

va
Þ=U0ð$vaÞÞ

¼
Y
v AS

aðGL2ðOFv
Þ=U0ð$vÞÞ ¼ d0;

which completes the proof. r

We back to the proof of the theorem. By this lemma, the localized space
Ha¼ SDa

2;cðUa;OmÞma satisfies the inequality (3.3.5);

rankOm
Ha< pm:

Let v0 be a prime of Fa not contained in Sa. Let P be the one-point set
consisting of v0. We enlarge Km so that the matrix rmðFrobv0Þ is triangularizable,
and take an unramified local character gv0 : GFa

v0
! O�m such that

rmjG
Fav0

F
n�gv0 �
0 cepm � n�g�1v0

 !
;

where n is the structure map Om �! RFa;Sa�!
jrm

Om. We now apply Proposition
3.12 for gaA Ha and the condition ðP�Þ with respect to ðfv0g; gv0Þ. Then we
obtain the result that, after enlarging Km, every Om-deformation r 0m of rm of type
~RR
c;sm;r

Sa;pm
satisfies this condition. Namely, we have

r 0mjG
Fav0

F
n 0�gv0 �
0 cepm � n 0�g�1v0

 !
;
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where n 0 is the structure morphism of the Om-rational point jr 0m of R
c;sm;r
Fa;Sa . Since

n; n 0 A AutFðOmÞ, taking f ¼ n 0 	 n�1 we obtain

ðr 0mjG
Fav0

Þss F ðf�rmjG
Fav0

Þss;

where ‘‘ss’’ means the semi-simplification of the representation. Since n and n 0

are independent from the choice of v0, we complete the proof. r

Moreover, since the way of taking v ¼ v0 B Sa is arbitrary, by the
Chebotarev’s density theorem we know that r 0m nKm is equivalent to rm nf Km.
Consequently, we have:

Corollary 3.17. Let R be a regular and irreducible rank 2 weakly pre-
compatible system of l-adic representations of GF satisfying conditions in Theorem
3.15. Then, for infinitely many primes m of K , there is a suitable totally real
solvable base change Fa=F such that, after taking it all OKm

-deformations r1, r2 of

rm of type ~RR
c;sm;r
S;pm

are isomorphic to each other modulo an automorphism of Km;

namely, there is a field automorphism f A AutðKmÞ such that

r1 nKmjGFa
F f�ðr2 nKmÞjGFa

:
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Géom. en Algèbre et Théorie des Nombres, Colloques internationaux du Centre national de

la recherche scientifique 143, Ed. CNRS, Paris, 1966, 143–169.

[15] R. Langlands, Base change for GLð2Þ, Ann. Math. Studies 96, Princeton Univ. Press,

Princeton, N.J., 1980.

[16] B. Mazur, Deforming Galois representations, Galois groups over Q, Math. Sci. Res. Inst.

Publ. 16, Springer, New York, 1989, 385–437.

[17] M. Ohta, On the zeta function of an abelian scheme over the Shimura curve, Japan. J.

Math. (N.S.) 9 (1983), 1–25.

[18] G. Shimura, An l-adic method in the theory of modular forms, Goro Shimura collected

papers 2, Springer, New York, 2002.

[19] C. Skinner and A. Wiles, Base change and a problem of Serre, Duke Math. J. 107 (2001),

15–25.

[20] B. de Smit and H. W. Lenstra jr., Explicit construction of universal deformation rings,

Modular forms and Fermat’s last theorem, Springer, New York, 1997, 313–326.

[21] R. Taylor, On Galois representations associated to Hilbert modular forms, Invent. Math. 98

(1989), 265–280.

[22] R. Taylor, On Galois representations associated to Hilbert modular forms II, Elliptic curves,

modular forms and Fermat’s last theorem, Ser. number theory 1, Int. Press, Cambridge, MA,

1995, 185–191.

[23] R. Taylor, On the meromorphic continuation of degree two L-functions, Documenta Math.

Extra vol. (2006), 729–779.

[24] R. Taylor and A. Wiles, Ring theoretic properties of certain Hecke algebras, Ann. of Math.

141 (1995), 553–572.

[25] A. Wiles, Modular elliptic curves and Fermat’s last theorem, Ann. of Math. 141 (1995),

443–551.
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