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ON A RIGIDITY OF SOME MODULAR GALOIS DEFORMATIONS
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Abstract

Let F be a totally real field and p = (p,), be a compatible system of two dimen-
sional J-adic representations of the Galois group of F. We assume that p has a
residually modular Z-adic realization for some A. In this paper, we consider local
behaviors of modular deformations of A-adic realizations of p at unramified primes. In
order to control local deformations at specified unramified primes, we construct certain
Hecke modules. Applying Kisin’s Taylor-Wiles system, we obtain an R = T type result
supplemented with local conditions at specified unramified primes. As a consequence,
we shall show a potential rigidity of some modular deformations of infinitely many
A-adic realizations of p.

1. Introduction

Let F be a totally real field and S be a finite set of places of F which
contains all infinite places. Let Gp g be the Galois group of the maximum
extension of F which is unramified outside S. We take a rational prime p > 2
and we assume that all primes of F dividing p are contained in S. In this paper,
we consider a two dimensional modular p-adic representation

pf,;' . GF,S e GLZ (Kﬂ)v)'

Namely it is a continuous representation of Gr s associated to a Hilbert modular
Hecke eigenform f over F; here K, ; is the completion of the Hecke field K of
f at a prime A dividing p, and S is containing all primes dividing a level of f.
In the elliptic modular (i.e. F = Q) case, p; , is constructed by Eichler, Shimura
and Deligne as is well known, and in the Hilbert modular (i.e. F # Q) cases
they are constructed by Shimura [18], Ohta [17], Carayol [2], Taylor [21], Blasius-
Rogawski [1] and others. Moreover, the family p, = (p; ;); of p-adic represen-
tations of f indexed by primes A of Ky forms the regular and irreducible rank two
strong compatible system; for the detail, see Introduction of [23].

As Fujiwara pointed out in Introduction of [9], modular p-adic representa-
tions play central roles in the theory of Galois representations, so it is important

2010 Mathematics Subject Classification. 11F80, 11F41.
Key words and phrases. Galois representations, Hilbert modular forms, modularity lifting.
Received November 29, 2017; revised February 25, 2019.

526



ON A RIGIDITY OF SOME MODULAR GALOIS DEFORMATIONS 527

to reveal the conditions when a p-adic representation
p: GF,S — GLz(E)

is modular; here E is a finite extension of Q,. A piece of remarkable results is
the theory of modularity lifting, which is developed by Wiles [25], Taylor-Wiles
[24], Faltings [loc.cit., Appendix|, Diamond [5], [6], Fujiwara [8], Kisin [13] and
others. In his paper Kisin showed the modularity of a two dimensional p-adic
representation p : Gr,s — GL,(E) which is potentially Barsotti-Tate at primes
p dividing p and whose mod p reduction p is associated to a Hilbert modular
eigenform of parallel weight two. The important ingredient of Kisin’s proof is
the R =T theorem ([13, Proposition (3.4.11)]), which states a structure theorem
of the universal deformation ring of p. We shall review it briefly.

Let O be the ring of integers of E. Taking a Gp s-stable O-lattice of
the representation p we consider it as a continuous representation p: Gp s —
GL,(0). We denote by X the set of finite places vt p at which p is ramified;
we also put £, :=XU{p:p|p}. Then the symbol R in “R= T denotes the
noetherian complete local O-algebra

R=R}S@RYTD
obtained by tensoring the noetherian complete local (O-algebra®
R'//-,J-,D _ ®LE pRl// a,0]

to the universal framed deformation ring Rﬁ 5 of p with fixed determinant con-
dition. Here v runs over all primes in X, and R‘” %0 denotes the suitable quo-
tient of the framed local deformation ring of plg;, ; at primes dividing p we have
to take further modification correspondmg to the ordmarlty data o, see §2.3 and
§2.5. We say a deformation of p is of type R ’”D when its local restrictions
at primes v e X, are controlled by R’/”; 5. On the other hand, the symbol T
means a certaln p-adic local Hecke algebra, which controls framed deformations
of p associated to modular forms; in this paper we will denote it by TH. Then
Kisin’s R =T theorem asserts that the surjective map

R — TU

obtained by p and ¢ has the p-power torsion kernel.
In this theorem, it seems that the local behavior at ramified primes are dom-
inant for the deforming of p. So we have a following simple question:

QUESTION 1.1.  In the situation when Kisin’s R = T is established, how much
local deformations does it permit at unramified primes?

In this paper, we give an answer of this question. The precise statement of
the result is the following:

DThe important ingredient of Kisin’s theorem is that IQ{ Y ‘U is a domain; see [13, (2.5), (3.4)].
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THEOREM 1.2 (Theorem 3.15). Let F be a totally real number field. Let K
be a number field, T be a finite set of finite primes of F, S be a finite set of finite
primes of K and

R = (szv S, {QU(X)}vetZ’p = (p/l),le\K\")

be a regular and irreducible rank two weakly pre-compatible system of A-adic repre-
sentations of Gr; for the definition, see §2.6. We assume that there is a finite
character  : Gp — Of such that, for any prime J. € |K|”™ the determinant of p, is
Ve, ; here we denote by p; the residue characteristic of K; and by ¢,, the p;-adic
cyclotomic character of Gp.  We further assume that there is a prime 1 ¢ S lying
over a rational prime p = p, > 2 such that the A-adic realization

p=p,: Gr — GLy(Kj)

satisfies the conditions in [13, Theorem (3.5.5)]. Namely,
(1) For any prime p dividing p, the restriction p|G is potentially Barsotti-
Tate;
(2) p is strongly residually modular (in the sense of Remark 3.14);
(3) p|Gm is absolutely irreducible;
(4) If p =5 and the projective image of Im p is isomorphic to PGLy(Fs), then
the kernel of the projectivization of p does not fix F({s).
Then, for infinitely many primes u¢ S we have the following: After taking a
suitable totally real solvable base change F* of F (and denoting objects of F* by
the same symbols), each Ok, -deformation p, of

p,u : GF - GLZ(F,U)
of type Rl{";“'m has a field automorphism ¢ € Aut(K,) satisfying

(p/ll ® K!"G[:’,)SS = ¢*(p,u ® Kﬂ'GFv)SS

Jor almost all unramified primes v of p,. Here g, is the ordinary data associated
to p, and “‘ss” denotes semi-simplifications.

As a consequence, using the isomorphism criterion by the Chebotarev density
theorem, we obtain the following result.

CoroLLARY 1.3 (Corollary 3.17). Let R be a regular and irreducible rank 2
weakly pre-compatible system of A-adic representations of Gg satisfying conditions
in Theorem 1.2. Then, for infinitely many primes p of K, there is a totally real
solvable base change F #/F such that, after taking it all Ok, -deformations py, p, of
P, of type R2 p" 5 are isomorphic to each other modulo an automorphism of K ;
namely, there is a field automorphism ¢ € Aut(K,) such that

P1 ®Eﬂ|GF# ~ ¢.(p> ®Eﬂ)|GF#'
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The strategy of the main theorem (Theorem 1.2) is as follows: (0) Let R
be a pre-compatible system as in the statement of Theorem 1.2. We put £ = K,
and denote by O the ring of integers of E. We take a Gr s-stable O-lattice of p;
and consider it as a continuous representation p;, : Gr.s — GL,(0). Let f be a
Hilbert modular Hecke eigenform of parallel Welght two of F such that p; ~ p, ;.
Let SMZ(U C) be the space of Hilbert modular forms over F of parallel weight 2,
adelic level U and character y, which contains f. (1) Taking a suitable totally
real base change due to Langlands, Skinner-Wiles and Kisin, we reduce the
situation to the spacial case when Kisin’s R = T theorem is applicable. By the
Jacquet-Langlands and Shimizu correspondence, we associates f to a (p-adic)
quaternionic Hecke eigenform f? of some totally definite quaternion algebra D
over F. (2) Let P be a finite set of unramified primes of p;,. We focus our
attention to local behaviors of deformations of p, at specified unramified primes
in P. In order to observe these, we define the local conditions of framed defor-
mations of p, which controls local deformatlons at all primes in P. (3) We
construct Hecke modules M7 and M for all n>1 to apply Kisin’s Taylor-
Wiles system supplementing with our local conditions. These Hecke modules
will be constructed from representation spaces of modular Galois deformations of
type R p  satisfying our local conditions at primes in P. Applying the O[Ag,]-
freeness result of the localized spaces of quaternionic modular forms due to
Taylor, we will obtain the important property that the augmented quotient of
MQPZ is isormophic to M"; see Proposition 3.10. (4) We then apply Kisin’s
Taylor-Wiles system to our Hecke modules. Then under the global condition

(1.0.1) dlmcS ;(U,C) <

we obtain the result that, for any modular O-deformation of p of type f?;;ﬂ
its local deformations at all primes in P are controlled by local deformations
at ramified primes. We note that the Condition 1.0.1 enables us to control the
growth of p-adic Hecke fields at Taylor-Wiles deformations. (5) We can take a
further totally real base change such that there are infinitely many primes u ¢ S
satisfying the condition (1.0.1) for p = p,, and hence our R = T result is appli-
cable for p,. We take P as a one-point set of an arbitrary prime v ¢ S, and we
obtain the result of Theorem 1.2. Moreover, as a consequence of Chebotarev’s
density theorem, a global rigidity result of deformations of p, of type Rg" ’;f“D
(Corollary 1.3) is obtained. '
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2. Preliminaries

Notation and conventions. In this paper, for any global or local field K we
denote by Ok the ring of integers of K.

Let F be a totally real field. Let |F| (resp. |F|™) be the set of all places
(resp. all finite places) of F. We fix an algebraic closure F of F and let Gy be
the absolutely Galois group. For any v e |F|”, we fix an algebraic closure F,
of the completion F, of F at v and fix an embedding F — F,, so that we iden-
tify the absolutely Galois group Gf, := Gal(F,/F,) with a decomposition group
of Gr at v. We denote by I, the inertia subgroup of Gp,. At a finite place
v, we choose a uniformizer w, of F, and we normalize the reciprocity map
Art,: F — G;f’ of the local class field theory as w, — Frob,, where Frob, is
the geometric Frobenius element at v. Let Ap (resp. Ay) be the ring of adeles
(resp. of finite adeles) of F. When the base field F is clear, we often omit the
subscript F.

Let S be a finite set of places of F containing all infinite places and let G s
be the Galois group of the maximal extension of F which is unramified outside S.
For any prime v ¢ S, we denote the unique lifting of Frob, in Gr s by the same
symbol.

For a rational prime p, let E be a finite extension field of Q,. When we
fix E we often write O as O for simplicity. We denote by F the residue field
of Op. We also fix an algebraic closure E of E and for any place v we
choose an isomorphism of fields 1, : E ~ F, given by the axiom of choice; we
also fix an isomorphism 1o, : E ~C. Let ¢: Gr — O be the p-adic cyclotomic
character.

Let ARy be the category conmsisting of finite local artinian O-algebras
(4, m,) equipped with an isomorphism 4/m, — F and with my-adic topology.
The morphisms of 2Ry are local D-algebra homomorphisms. Here we note
that each 4 € ARp has finite cardinality, so that the topology of A4 is discrete
and each morphism of ARy is continuous. We also define the category AR
consisting of projective limits of objects of AURe.

2.1. Kisin’s Taylor-Wiles system. First of all, we recall the modified
Taylor-Wiles system due to Kisin. We also refer to [26]. In the following of
this section, we fix a rational odd prime p > 2 and fix a finite extension E of Q,.
We fix a uniformizer 4 of O. Then the statement of Kisin’s Taylor-Wiles system
is as follows.

ProposiTION 2.1 ([13, Proposition (3.3.1)]). Let B be a complete local and
flat O-algebra, satisfying that:

* B is a domain of relative dimension b over O,

* B[l/p] is formally smooth over E.
Let R be a complete local B-algebra and H is a non-zero R-module. Suppose that
there exist non-negative integers r and j such that for any integer n > 1, there exist
the following commutative diagrams of O-algebras
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BlX1. ... Xoejy)]

l

O[[S],...,Sr, Y],..., Yj]] Rn Endo(H,,)

l |

R—— Endo(H),

where H, is an R,-module and the dashed arrow means a map between the images
of R, and R. We further assume the following:

(1) R,/(St1,...,S,)R, = R and H,/(Sy,...,S,)H, = H,

(2) Anno[s1 _____ S, V1., v (Hy) is contained in the ideal ((S;+ l)pn —1D)icicps

(3) Hy, is finite free over O[[S1,-- -, Sy, Y1,..., Yi]l/Anngys, .. s, vi..... v} (Ha)-
Then, the map

R — EIld()(H)

has p-power torsion kernel.

2.2. Global deformation rings and Taylor-Wiles deformations. In the fol-
lowing we assume p > 2 and that the finite set S of places of F contains all
primes p dividing p. Let ¢ be the p-adic cyclotomic character and y : Gp s —
O™ be a continuous character of finite order. Let p: Gr, s — GL,(F) be an
absolutely irreducible continuous representation of determinatnt Y& modulo A.
We denote by Vg the representation space of p, and we fix an ordered basis fg
of VF

Now we consider deformations of p. We denote by DF F.s the group01d over
ARy defined as follows: For any A € ARy, objects of the category D (A)
are triples (Vy,¢,[), where V, is a free A-module of rank two prov1ded w1th
a continuous Gy s-action p, : Gr s — Auty(Vy), ¢ is a G s-equivariant F-linear
isomorphism ¢: V; ®,F = Vg and B is an ordered A-basis of V4 which is a
lifting of the fixed basis fy of Vg. In particular we identify f ®,F with fg by
the isomorphism ¢. We call an object of DE s(A) a framed deformation of p to
A. For a given morphism f: 4 — A" of ARp, a covering morphism (VA,¢ p)

— (Vy,¢',p') of [ is a Gp s-equivariant 4’-linear isomorphism V ®, 4" = Vy/
compatible with ¢, ¢’ and which sends S to f'.

We also denote by Dp s the groupoid over Ry obtained by forgetting
the basis data. An object of the category DF s(A4) over A e ARy is called a
deformation of p to A. As is well-known, D% F s is always (i.e. without the irredu-
cibility of p) pro-represented by a complete noetherian local O-algebra RF 55 see
[20] for instance. Under the absolute irreducibility of p, the groupoid Dr s is
also pro- represented by a complete noctherian local O-algebra Rp 5. Let Rﬁ?
(resp. RF 5) be the quotient of RF s (resp. Rp s) corresponding the fixed deter-
minant condition det p, = e.
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When HO(GF s,ad p) F, the algebra Rﬁ 5 1s isomorphic to the formal
power series ring over Ry g; namely RZ g = Rp s[[X1,...,Xj]], where j denotes
4#%, — 1. This follows from the fact that the morphism DE s — Dr s is for-
rnally smooth (cf. [13, p. 1165]). '

Next we consider local deformations. We take and fix a (finite) subset £ of
S which do not meet the set of primes p above p. Put £,:=XU{p|p}. For
any veZX, we consider the groupoid DD| of framed deformations of plg, .
This is pro-represented by a complete noetherian local O- algebra R[. We
denote by R¥'H the quotient of RY corresponding the fixed determinant condltion
det p, = ye.

We define

R&”‘D = ®,cx RV'T, R;//‘D = ®p|p R;//’D
and
RYD = RYE @ RIO

Here all complete tensor products are taken over O.
In order to apply the Kisin’s Taylor-Wlies system in §3.4, we will suppose
the following assumptions for p.

ConprtioN 2.2 ([13, (3.2.3)]). We assume the following conditions:

(1) p is totally odd, namely for any complex conjugate c € Gr, g, det p(c) =

(2) p is unramified at all primes v not dividing p.

(3) The restriction of p to Gr, is absolutely irreducible.

(4) If p =5 and the projective image of Im p is isomorphic to PGL,(Fs), then
the kernel of the projectivization of p does not fix F((s).

(5) If ve S\X, is a finite place, then N(v) # 1 mod p and

(22.1) (14 N(v))* det p(Frob,) — N(v) - (Tr p(Frob,))? % 0 mod A.
Here N(v) denotes the cardinality of OF,/w,.

These conditions are used for the calculation of the Selmer groups. For the
condition (4), see also the proof of [23, Lemma 2.5]; in particular, this condition
holds when [F({s) : F] =4 (cf. [13, p. 1155]).

Next we recall Taylor-Wlies deformations for each n > 1. These deforma-
tions correspond to OI[[Sy,...,S,, 11,..., Yj]]-algebras R, in Proposmon 2.1.
The following proposition shows the existence of the set O, of primes, which
are needed to construct the ring R, in Proposition 2.1.

ProrosiTiON 2.3 ([13, Proposition (3.2.5)]). We assume that a continuous
representation p: Gr.s — GLy(F) is absolutely irreducible and satisfies the condi-
tion 2.2. Then, for any positive integer n > 1, there exists a finite set Q, of primes
of F which do not meet S and satisfying the following:
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* for each ve Q,, N(v)=1mod p" and p(Frob,) has distinct eigenvalues,

* the cardinality of Q, is equal to r:= dimg HI(GF"S,adO p(1)),

* if we take Sg, := S U Q, then the global universal deformation ring Rﬁ:SDQn is
topologically generated by r — [F : Q) + #%, — 1 elements over Rg’pm.

Let RE Sor (resp. Rr,s,,) be the universal deformation ring which pro-
represents the groupoid DE S, (resp. Dr,s,,) and Rl'ﬁ:SDQn (resp. Rl’/p’, SQn) be its
quotient corresponding the fixed determinant condition det =¢. A deforma-
tion of p controlled by Rﬁ Sor is called a deformation of Taylor-Wiles type.
For any prime ve Q, we denote by A, the maximal p-power quotient of
(OF,/w,0F,)", and put Ag, :=[],cp A We now define the O[Ag,|-algebra
structure of R% So, (so that of Rﬁ:?gn) as in [4, §2.8]. In particular, the canonical
map R%’SDQ” — R#’SD of the universal deformation rings gives an isomorphism

w,0 V.0 ~ p¥.O
(2.2.2) RF)SQ”/aAQnRF)SQ” ~ RF7S,

where ap,, is the augmentation ideal of O[Ag,].

2.3. Local deformation rings. In the application of Proposition 2.1 to the
modularity lifting theorem, we take the domain B as the tensor product of local
deformation rings with the suitable conditions. In this subsection, we describe
these according to Kisin [12, §2] and [13, §2]. Firstly we consider the local de-
formation ring at a prime dividing p.

We assume p > 2 and fix a prime p of F dividing p. We consider a con-
tinuous representation p, : Gk, — GLy(F), whose representation space is denoted
by Vg. We assume that the determinant of p, is the mod p cyclotomic character
times the reduction of a character  : G, — W(F).

We also assume p, is flat, and consider its flat deformations. In this paper
a representation p, : G, — Auty (M) ~ GL,(A4) over a finite ring 4 is called flat
if there is a finite flat group scheme G over Of, such that M ® (det /)A)_1 is
isomorphic to G(F,) as Z[Gr,]-modules. Let Rlﬁ,’FD be the quotient of the framed
universal deformation ring R% of p, corresponding to the flatness condition.

Let v be the p-adic Hodge type corresponding to the condition that the
determinant of the restriction of deformations p, of p, to the inertia /, is equal
to the p-adic cyclotomic character. Kisin constructs the moduli of S-modules
(13, (2.1)]), so-called Kisin modules, and the projective morphism

(2.3.1) ®, : : YAy, . — Spec R,

see [13, §2]. Here ¢ means the universal flat and framed deformation of p,,.
Let Spec R}’FD be the closure of the image of ®y, .. By studying 9%y, ., Kisin
showed important properties of R?}FD, so we shall review it. .

ord,[]

If p, is ordinary (resp. non-ordinary), then we denote by R}

(resp.
RII}‘F’“'°rd’D) the quotient of R;FD corresponding to the closure of the image of
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the connected component of 4%y, . consisting of ordinary modules (resp. non-

. . . . 0 . .
ordinary modules). Moreover if Vg is ordinary and Vg ~ ()8 ) with dis-
X2

tinct unramified characters y, and y,, then we define the quotient Ry %7 to be
the closure of the image of the connected component of ¥%j, . correspond-
ing to y; (cf. [13, §2.4, 2.5]). Let Spec RD be a connected spectrum of one of
Ry, R’,}‘;n'ord’m or R;;d’l"’m. Then, by [12 (2.5.15)], [10, Proposition 2.3] and
[11, Main theorem], R% is a domain of relative dimension [F, : Q,] +4 over
W (F) and flat over W(F).

By [13, (2.4.17)], there exists the universal characteristic polynomial P}, (X)
of the linear map ¢*® %! on Kisin modules with coefficients in the ring of global
sections I'(4%y, OWLF.&)’ which we denote by

(2.3.2) P} (X)=X?—1,X +d,.

Now let RD be the sub-W(F)-algebra of ['(9%y, :, Oy f) generated by the

1mage of R under the map (2.3.1) and by the coefficients of Py, (X). Then,
RE is flat over W (F), and the natural map RD — RE is finite; moreover thls
map becomes an isomorphism after inverting p. Now we take a quotient R

of R[,; corresponding to the fixed determinant condmon and let R‘/’rD be the
corresponding quotient of R7. Since RY ~ R};D[[X]], we have:

ProposiTION 2.4 ([13, §2]). The local algebra Rw Uis a domain of relatwe

dimension [F, : Q,] 4 3 over W(F), which is flat over W( ). Moreover, R S /p]
is geometrically integral and formally smooth over W (F)[1/p].

Here we note that a W(F)-algebra R is called geometrically integral if
for any finite extension E of W(F)[l/p], the scalar extension R[1/p]®E is a
domain ([13, p. 1165]). Thus, for any finite and totally ramified extension E
of W( )[1 /p] the similar argument holds for the scalar extension R'{j’F%E =

S ®ww

Next we take a prime v not dividing p. Let g, : Gr, — GL2(F) be a con-
tinuous representation with representation space Vp. As well as dividing p
case, we obtain the suitable quotient of the universal framed deformation ring

of p_v'

ProposITION 2.5 ([13, (2.6.7)]). Let O be the ring of integers of a finite and
totally ramified extension E of W (F)[1/p] with a uniformizer ). Let y: G, — O
be an unramified character We wrzle Y =y> and assume det p, = e mod A
Then there is a quotient R of R ®W(F> O satisfying the following:

(1) A morphism & : RW D — O of QI?RO factors through R‘/’ D if and only if

the associated E- representatlon Ve is an extension of ye@E by y® E.

(2) RV”OEI is a domain of relative dimension 3 over O.

(3) Rl/’ D[l /p| is geometrically integral and formally smooth over E.
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2.4. p-adic quaternionic modular forms. We summarize the notion of
p-adic modular forms of a quaternion algebra over a totally real field. We
only treat the parallel weight two case. For the general definition and the
details, see [13, (3.1)] and [23, §1, 2].

We assume p > 2. Let D be a central quaternionic algebra over F which
is ramified at all infinite places of F. We further assume that D is unramified
at all primes p over p. Let X be the set of all finite places of F on which D
is ramified. Let op be a maximal order of D. For any finite place v of F,
we put (op), :=0p ®p, Or,. Let U=T]], U, be a compact open subgroup of
(D ®rAy)" which is contained in [],(op), satisfying that: (i) for any v e X,
U, = (0p),, (ii) for any p|p, U, = GLy(Op,).

Let E be a finite extension of Q, and O the ring of integers of E. We fix
a continuous character  : ) /F * — O0*. Let 14y be the trivial O-linear
representation of U of rank one whose representation space is denoted by W,
We assume that y satisfies the equation

triv *

-1
(241) Ttriv|ULn(9rX :‘// |Ulﬂ0,fl

for any prime v. Since 7y, is trivial on U N O, such a Y exists (cf. [13, (3.1)]).
We regard W, as a U(AF)”*-module by 7y and ¢

We define a (p-adic) quaternionic modular form of pdrallel weight two, of
level U and of character {y to be a continuous function

f:DX\(D®FA?)X TmVNO
satisfying that:
(1) for any ue U, f(xu) = f(x) (xe (D®rAF)"),
(2) for any ze Ay, f(xz) =y(2)f(x) (xe (D ®rAf)").
For the meaning of “parallel weight two”, see [13, (3.1.9)]. Let
S£¢(Ua O)

be the space of modular forms of parallel weight two, of level U and of character
Y; when D is clear, we omit the symbol D.
Since D*\(D ®r A7) /U(AF)™ is finite, if we write

(DerAf) =[] D uUA

iel

for some representatives #; € (D @y Ay)™ with index set I, then we have

(242)  S,(U.0) QWINPT  (£(1)) e

iel

In particular, S, (U, O) is a free O-module of finite rank. For any O-algebra
A, we will write S5 y(U,0) ®p 4 as $y(U, A).

We denote by SZ‘“"(U A) the subspace of S, w(U A) consisting of functions
which factor through the reduced norm of (D ®rAF)”".
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As [13, (3.1.2)] we assume the following:

CONDITION 2.6. For any te€ (D Q®pAyF)” the cardinality of (U(AfF)”
tD*tVY/F* is prime to p.

As Kisin remarked, if U is sufficiently small then it is satisfied (cf. [13,
p- 1147]). Using Condition 2.6, we can define a perfect pairing <-,->; on
S2.4(U, 0) by

(243) (o= w(dets) ' #((UAF) NuD ) /F*)™f (1)g(n).
iel
Now we define the Hecke algebras. We take a finite set S of places of
F containing TU{p|p} U{v| U, # (0p), }. We also let S?:= S\{p|p}. For
an QO-algebra 4, let Tg") be the commutative ring A[7,,S,],.5. We choose
a uniformizer w, of OF for each ve |F|” and we define an O-algebra homo-
morphism

(2.4.4) Ty" — Endo(S2,4 (U, 0))
by
(24.5) T, [U(é Zg )U} and S, — {U(i” zg )U} (v¢S).

This is independent of the choice of @,. We denote the image of the map (2.4.4)
by T, ,(U) and the image of 7, and S, via (2.4.4) by the same symbol. The
actlon of Tumv by the rule (2.4.5) is called the standard Hecke action. We can

1 0
also define Hecke operator [U( )U] for each p|p ([13, p. 1151]), which

0 w,
is also independent of the choice of w,. Let

T§'o — Endo(S2,4(U, 0))
be the O-algebra homomorphism defined by (2.4.5) and
1 0
(2.4.6) T, — [U(O wp) U]

for each p dividing p. We denote by T, o(U) the image of this. By defini-
tion, Hecke algebras T,, ,(U) and Ty o(U) are finite and flat over 0. For any
(O-algebra A4, we will wrlte

T; 4(U) =T o(U) ® 4

where the symbol x means either () (nothing) or /.
Now we shall recall some basic properties of eigenforms. For sufficiently
large E, the space S, (U, E) has an E-basis consisting of eigenforms for Tuan
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since the Hecke operators T,, S, for each v ¢ S are self-adjoint with respect to
the pairing {-,-)>y. For any eigenform f of S, ,(U,O) we can associate the
O-algebra map

O T&,’O(U) — E

determined by 7T — 9/( ), where 0/(T) is the eigenvalue of 7" associated to /.
The image of this map is the ring Of, of integers of a finite extension E, of E in
E. We denote by 4’ the prime of Er; when we consider f as a C-valued function
via 1., : E ~ C, it corresponds to the prime of the Hecke field Ky := Q({1,6,(T,),
107 (Sy) [ v ¢ S}) of f, which is a number field, corresponding to an embedding
Ky — E.

We also recall that a maximal ideal m’ of T, ,(U) is called Eisenstein
if T,—2em’ for all but not finitely many primes v which split in some
fixed abelian extensmn of F. For a maximal ideal m of Ty o(U), it is called
Eisenstein if m':=mNT) ,(U) is.

At the end of this subsectlon we shall recall the relation between spaces of
p-adic quaternionic modular forms and cuspidal automorphic representations.
For the detail, see [23, §1] and [13, (3.1.14)]. Put

Sy =i S2,(UE) and S = lim S5 (U, E),
v ’ U

where U runs over all compact open subgroups of (D ®x Ay ). These spaces
have the smooth actions of (D ®yAY)*. Moreover, we have the following:

Lemma 2.7 ([23, Lemma 1.3], [13, (3.1.14)]). The space SanE is a semi-
simple admissible representation of (D @ Ay)™ and the U-invariant part of S D

is wa(U ,E).  Under the fixed isomorphism 1, : E ~ C we have
D, D, =
(2.4.7) Sy, E=S ;E ® (—Bzm (1) and Szjfg ~ EPE(X),

where T1 runs over all cuspidal representations of (D ®p AF) having weight 2
and central character lﬂ and y runs over all characters (A7 )™ /F}, — E* satisfy-
ing x> =v. Here FX, denotes the subgroup of F* consisting of totally positive
elements.

> O

2.5. Galois representations associated to modular forms. We keep notation
and assumptions in the previous subsection. In the following, we only consider
the parallel weight two case. We take E sufficiently large.

By [17], [2] and [21], for any eigenform f of S, ,(U,O) we have a two
dimensional continuous representation

pf : GF‘S — GLz(OE/)
which is characterized by
Tr p;(Frob,) = 0¢(T,), det ps(Frob,) = 07(S,)N(v) (v¢S).
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Moreover, by the theory of pseudo-representations, for any non-Eisenstein maxi-
mal ideal m’ of T) ,(U) there exists a Galois representation

(2.5.1) P+ Grs = GLa(T), o(U),y)

satisfying that:

+ for any prime v¢ S, we have Tr p,, (Frob,) = T,,

* the determinant of p,, is Ve,

+ the mod m’ reduction p,,, of p,. is absolutely irreducible.
Furthermore, when we denote by V, g the representation space of p,, ® E we
have the following:

Lemma 2.8 ([13, Lemma (3.4.2)]). Let p be a primes of F above p.

) Viw g is a Barsotti-Tate representation at p. Moreover, the determinant
of the restriction V| 5, S the p-adic cyclotomic character.

(2) Th; Hecke operator Ty e Ty o(U),, is contained in T, »(U),.[1/p],
an

(25.2) Ty = TrTnL,o(U) [1/p)®z, W(K(v))((p[K(p):Fp] | Deris(Vin', E))-

Here i(p) is the residue field of p.

nm

In the following, we put

T =T, o(U)

m’”
If we denote by R% s the universal deformation ring of p,,, with fixed determinant
condition det = iy¢, then we have a morphism in ARy:
Oy - Rﬁ,s — T,
We call a deformation of p,,, which factors through ¢,,, a modular deformation.
We take a maximal ideal m of Ty o(U) above m’, and put

T :=Ty, 0(U)

m*°

Next we define the Hecke algebra Ty, corresponding to modular deforma-
tions of Taylor-Wiles type. We prepare notation for levels of modular forms.
For a prime v¢ X and an integer n > 1, we define
b
d

Ui(w,) = { (a 2) € GL2(OF,)

¢ =0 mod wl’f},

S
—~
g
3
Il
—N
7N
(SN

> € GL2(OF,)

a=1, czOmodw:f}
and

b
Un (=) ;:{(i d) €GLy(Op)|a=d =1, c=0mod wg}.
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For a quotient H, of (Of,/n,OF)" we also define

un (@) ={(§ } ) i

For any n > 1 we take a finite set Q, of primes of F described in Proposition
2.3. For any prime v e Q, we denote by A, the maximal p-power quotient of
(OF,/@,OF,)". Let Ug, C Uy, be the subgroups of U defined as

Up, = H Un, (@) H U, and U, := H Uop(wy) - H U,.

veQ, véEQn veQ, vEQn

aleleH}

When we write Ag, :=[[,co, Av we have U, /Ug, = Ag,. Put

So, :=SUQ, and S} :=So\{p:p|p}.

We define the Hecke algebra T, O(UQ”) (resp. Ty, 0(Up,)) by the image of T”;“"
(resp. T“n“f ) in End(S,(Ug,, 0)) via (2.4.5) (resp. (2.4.5) and (2.4.6)) for the
level UQQ Moreover, for the set O, we define the abstract Hecke algebra

T5 o = Tg)" olus | v e O,
and define the Hecke algebra T&,)O(UQ”) to be the image of the Tunlv -algebra
map

T o — Endo(Ss,4(Ug,, 0))

1 0
Uy — Uwr = |:UQ” (0 > UQrz:|
@y

for all ve Q,. As well, we define T, o(Up,) to be the sub-O-algebra of the
endomorphism ring of S, ,(Uy,,O) generated by Ty o(Up,) and U, for all
ve Q,. We also define the Diamond operator {—) : Ag, — End(S> (Uyp,, 0))
as follows: for any prime v € Q and element a € A,, we take a lifting a € Op, of a

and define {(a) to be
1 0
we[a() )]

Similarly we define T&, o(Ug,) and T¢ o(Ugp,). For a maximal ideal m of
Ty 0(U) we denote the ideal mN ““‘VO of S,)‘V by m again. We take a

determined by

maximal ideal mg of the locallzatlon T,. @(UQ )m which corresponds to the
choice of eigenvalues {0}, q, of Py (Frob ) so that it coincides with the choice

determining the O[Ag,]-structure of RF s,,+ for the detail, see [13, Lemma (3.4.6)].
We will write

(253) Tén = Tl//, (UQ,I)m
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Let mgp, be the maximal ideal of Tx//,O(UQ,,) induced by mg. We also define
(254) TQ = Tlﬁ O(UQn)an and T, - Tx// (’)(UQn)m/ ’

where mg, = myg, ﬂTlp o(Ug,). As Taylor constructed in [23, §3], we have the
Galois representation

pm/Q” : GF,SQ” — GLz(T/Q").

In particular, T/Q,l is generated by semi-simple operators T, and S, for all v ¢ Sp,,
so that it is reduced; this follows from [23, Lemma 1.6] and its corollaries.
If Py, is its residual representation, then P, = P In particular, Py, is a
modular deformatlon of p,., of Taylor-Wiles type, i.e. a modular deformation of
P controlled by RF Sor

At the end of this sectlon we recall the local structure of p,,, in the language
of deformation theory. Let F be the residual field of T’ =T} ,(U),,, and

P - GF,S — AutF(VF) ~ GLQ(F)

be the residual representation of (2.5.1). Let o := (¢',{x,},c,) be an ordinary
data such that m is g-ordinary®. In the following, for any W(F)-algebra R we
denote by Rp the scalar extension R ® ) O.

For any pr1me v contained in %,, we denote by R'/’ OD the universal framed
deformation ring of Vr|g, over O with fixed determinant 1//5\G

For any v e X, let y, be an unramified character such that y; = |, and let
Rl// O. Rllf s

be the quotient of R‘/’ ) as in Proposition 2.5. Similarly, if p is a prime dividing

p then we define the quotient R"/’ 2 of R’/’ ~ to be Rg’ o oL if né o' and if
ped’ then we deﬁne ;f 75 to be the quotlent
- R Zrdw if VFIGF ~ 1 @ x, with unramified characters y; # x,,
R‘b oL otherwise.
Moreover we denote by R‘/’ %0 the R‘/’ ?H_algebra described as in Proposition

24. LetR“/D Sves RV, RWD—@)p RUOH RVOD = ®,), RV*D and
RWUD R‘/’D®R¢GD B .= R‘/"TD Rl//D®R'l/<7\:|

Here we take completed tensor products over O. Then B = R‘/’ ~'is a domain
of relative dimension b= [F: Q]+ 3#X, over O (see [13, Proof of (3.4.11),
(3.4.12)]), and the local structures of P, and p,, are described as follows.

2 Accoridng to [13, (3.4.4)], we say that m is g-ordinary if it satisfies the following: (i) ¢’ is
the subset of all primes p of F dividing p satisfying T, ¢ m, and (ii) for each p e d’, y, is an un-
ramified character of G, given as a one dimensional subspace of Vg as Gr-modules such that
T, = y,(Frob,) mod m. For any maximal ideal m of Ty o(U), there is an ordinary data o such that
m is g-ordinary.
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Lemma 2.9 ([13, (3.4.9)]). For any n=>1, put T =Tp, Qg, Son ESQ
We assume that p,, is unramified outside the set of prlmes p dividing p. Then
the morphism o

Rz‘pf‘:\ = ®v62) R — TD

given by the restrictions P, |Gp at all veX, factor through R‘/’ @0 Moreover,
the induced morphism

Y000, ¥,.0 W O O

Ry gQ = Rps,, ®R‘1’ s R ;- — T,

is surjective. The similar arguments in the case of the level U (ie. the case
replacing So,with S) also hold.

In this paper, we say that a framed deformatlon of p,. has type Rlzll, ';’D if its
local factors at ve X, are controlled by R

2.6. Compatible systems. We introduce the notion of compatible systems
according to Taylor [23]. For any prime A of a number field K, we denote by p,
the rational prime lying under A.

DEerNITION 2.10 (cf. [23, Introduction]). Let F be a number field and Gp
the absolute Galois group of F. A rank 2 weakly compatible system of A-adic
representations of Gr is a data

R= (Ka 2, 87 {QD(X)}U¢E? (pxi)/le\K\"v {I’l],l’lz})

consisting of:

(1) a number field K;

(2) a finite set X of primes of F;

(3) a finite set S of primes of K containing all primes /4 dividing
HL‘EZNF/Q(U); . . . .

(4) a family of degree 2 monic polynomials Q,(X) in K[X] indexed by
|F|™\X;

(5) a family of continuous representations

Py GF — GLQ(KA)

with coefficients in the A-adic completion K; of K, indexed by finite

places A e |K|™ satisfying that:

(5-) if 2¢S and v¢XZU{p|p;} then p,|s is unramified and the
characteristic polynomial of p,(Frob,) is Q,(X), where p, is the
rational prime lying under /;

(5-ii) for all ¢ S and all ve |F|” satisfying v| p,, the local restriction
Pilgy, 1is crystalline;

(6) ny and n, are 1ntegers such that, for any 1 ¢ S and any prime p| p;, the

restriction /)A|GFp is Hodge-Tate of weights {n;,n,}.
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In this paper, a system without the data of Hodge-Tate weights {n,n,} and
the conditions (5-ii), (6) is called a rank 2 weakly pre-compatible system of A-adic
representations of Gr. According to [loc.cit.], we say R is regular if ny # n, and
p, 1is totally odd for one (and hence for all) primes 4; we say R is reducible if p,
is absolutely reducible for one (and hence for all) primes A, and otherwise R is
called irreducible. R is strongly compatible if for any prime v e |F|” there is a
Weil-Deligne representation WD,(R) of the Weil group Wy, such that for each
prime A¢ SU{u|p,} we have

WD(p;ly,,) " = WD,(R),

where the left hand side is the Frobenius semi-simplification of the Weil-Deligne
representation associated to p,|g,

3. Main result

3.1. Some deformation conditions. Let F be a totally real field and S be a
finite set of primes of F containing all infinite places. Let Gr s be the Galois
group of the maximal extension of F unramified outside S. We fix a rational
odd prime p and assume that all primes p dividing p are contained in S. Let
E/Q, be a finite extension of fields, let O be the ring of integers of E with
uniformizer 4 and let F be its residue field. Let

,5 : GF,S — GLz(F)

be a continuous representation. We assume that its determinant is congruent to
the p-adic cyclotomic character ¢ times a character Y : Gr s — O™ of finite order.
In this subsection, we consider local deformations of p at an unramified prime.

We fix a prime v outside S, and denote by p, the restriction of p to the local
Galois group Gr,. We denote by Vy the representation space of p, and we fix an
ordered F-basis ffp of Vg;

5, Gr. — Aute(Vi) = GLs(F).

We take an unramified character y, : Gr, — O™ of Gr,. Let A be an object
of ARy and p, , : Gr, — GL1(A4) be an unramified deformation of p,. We con-
sider the following conditions;

(P,,) If p: O — A is the structure morphism, then p, , is isomorphic to an

extension of (detp, /) ® (0,7,)”" by p.7,
(Pss) py 4 splits to the copies of an unramified character y, 4; namely,

~ XU,A 0
pv,A - 0 XU,A .

We denote by D‘gb"‘ffﬂ the groupoid over ANy consisting of unramified
framed deformations of p, with fixed determinant ve|; . Let y,: Gr, — O™ be

an unramified character of Gr,. We denote by D};’v'™ (resp. DY;/s™) the full
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subcategory of D'/’ “H consisting of unramified framed deformations satisfying

the condition (Pyu) (resp (Ps)). In the following, when we consider the groupoid
Dw”'ss’m or its objects we always assume the condition y; = y¢|;, . By defini-

tion, we have the morphisms of groupoids D‘/’ 7D D'p un, 0 and

D¢7VL_SSVD N DW-Vw _ D‘ﬁ-,un‘D

Ve, v
when 77 = | Gi,- Asusual, we extend these over AR, and for any object 4 of
QI‘RO, denote by |D¥;F};) Bl(4) (resp. |D$Fj; *0|(4)) the set of isomorphism classes
of objects of D'/' 7B(4) (resp. Dl/,;’F?’;'SS‘D(A)).
Similarly we “define the groupoids ﬁpy; — D" and DY D'l' n

DﬁFu{l over QISR@ by forgetting base data. For any object (4, mA) of QISR@, we
denote by Hom; (Gf,, GL2(4)) the set of unramified 2-dimensional representa-
tions of Gr, over 4 whose mod m, reduction is p,. Then |D‘/’ “1(A4) is bijec-

tively mapped to the set Hom; (Gr,, GL2(A4)) modulo strict equ1valence3). Here

we denote by Gy, the absolute Galois group of the residue field F, of F,.

LemMA 3.1. Let y,: Gk, — O be an unramified character satisfying y? =
Velg, . Then the groupoid D'/’ wSH over AR is pro-representable.  Namely, the
functor QI‘RO — Set defined by A \Dw 7SHI(4) s represented by an object
RY;™E of ARo.

Proof of Lemma 3.1. First we note that

Vs O o V7S Y, un,(]
DVF v DVF v Dw un DVF,U .

Thus, we may show that Dw ™% is pro-representable.
An object p, 4 of DV;“,? (A) satisfies the condition (Pg) if and only if it can
be written as

Poa: Gr, = Z(GLy(A4)) = 47,

where Z(GL,(A)) is the center of GL»(A4). So we have the functorial iso-
morphism

IDY:77>|(4) = Hom;, (G, Z(GLa(A))) /strict equiv.
=~ Hom; (Gf,, A7),

where 7, : Gg, — F* is the mod /4 reduction of y,. Since 1-dimensional deforma-

tions are pro-representable (cf. [16, 1.4]), '{;P}‘U ® is also. O

YLet p: G — GL,(F) be a continuous representation of a profinite group G. Then, two defor-
mations p,, py: G— GL,(A) of p over A€ ARy are strictly equivalent if there is a matrix H e
Ker(GL,(4) — GL,(F)) such that pj = H !'p,H.
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In order to prove that the groupoid Dl/'F* »= is pro-representable, we
introduce some notation according to [13, (2.6)]. First we define the category
Aug,, consisting of pairs (4,I) where A is an O-algebra and I C A4 is a nilpotent
ideal with mpA4 C I, and an arrow (A4,I) — (B,J) of Aug, are maps of rings
A — B taking I into J; for the detail, see [13, (2.1)]. We remark that AR,y is
a full-subcategory of QIugO We can extend a groupoid Dy, over ARy to the
groupoid over 2Aug, in the standard way, see [loc.cit., (2.1.1)].

Next we define a groupord LVF H over Aug, as follows For any object
(4,1) of Aug,y, L%% (4,1) is the category consisting of pairs (Vy, L,), where
V4 is an object of DVun I](A I) and L, is a projective sub-4-module of V; of
rank 1 on which G, acts via y,, and which V,/L, is a projective A-module with
Gr,-action Ye ® y, . we call such a submodule L, a y,-line of Vj.

LEMMA 3.2. Let y,: Gg, — O* be an unramified character. The functor
|L¢ Ea [ |D$FufD| deﬁned by (Va,L4) — Vy is represented by the projective
morphlsm o : .EZIZ — Spec Rw B of schemes over O,

This is an unramrﬁed analogue of [13, Lemma (2.6.2)]; in the proof replacing
D5 with DV“f’ we obtain the result.

We define the closed subscheme Spec RVF" of Spec Rﬁp”“ 'H to be the
scheme theoretic image of @y : gff v Spec R U in Lemma 3.2. Then,
by [13, Proposition (2.3.5)] we have the followrng

PROPOSITION 3.3. The map & : R‘p’un O 0of QISR@ factors through R‘l’ y’
(resp. RVF v U ywhen N velg, ) if and only if the associated E- represenlatlon
(pe, Ve) is unramified and an extension of (det pe) ® (7, ® E; )by 7, ® E.
(resp. V5®E is the direct product of copies of such a y,® E). In particular,

D}l;F}‘ is pro-represented by le;Fy'
We note that this is a variation of [13, (2.6.6), (2.6.7)].

Proof of Proposition 3.3. First we assume y> = lpe|G For the condition
(Pss), this is clear because the image p:(Frob,) at ve P is a scalar matrix, which
does not depend on lattices of V.

We now consider the condition (P,,). We denote the composite R}; """ 5
O — E by the same symbol ¢. For any noetherian complete local O- algebra R
and continuous local O-algebra map 7 : R — E, we denote by R; the completion
of R®p E along the kernel of # ® 1. Similarly, for any R-scheme X, we denote
the completed fiber at # by X,* — Spf R}.

Then, we know that ¢: R‘I’ .t _, O C E factors through the quotient
Rl,/; y; if and only if the 1nduced map (Rw’lm D) — E factors through the
corresponding quotient (R'/’ " D)g. :

On the other hdnd by [13, Lemma (2.3.3)] and [loc.cit., Proposition (2.3.5)],
the groupoid D ™0 over ARy of unramified framed deformations of Ve with
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fixed determinant ye|g, is pro- -represented by (Rl/,jFuL" 'H)2. Then ¢&: (R'{;F”f o2

Iz

— E factors through ( RV }‘L )¢ if and only if its corresponding point lifts to
(££Vr o D)k, which means that the associated E- -representation V: has a y, ® E-
line. ]

3.2. Preliminaries on the space of modular forms and Hecke algebras. We
use notation in §2.4 and §2.5. In this subsection, we often use the fixed iso-
morphism 1., : E ~ C without the symbol 1.

Let p,. : Gr,s — GLy(F) be the absolutely irreducible and modular residual
representation. In this subsection, we assume that p,,. satisfies Condition 2.2.
In order to construct the Hecke module H in Proposition 2.1 from the repre-
sentation space of the modular deformations of p,,,, we will take auxiliary primes
as in [4]. In this subsection, we describe these.

Recall that X is the set of finite places of F at which D is ramified. We
denote by Suux the complement of £, U{v|co} in S. Let Uy be the maximal
compact open subgroup [,z (oD)X of (D®rAF)™. Let f be a p-adic
quaternionic Hecke eigenform whose residual representation is isomorphic to
Pns We assume that f has level Uy. We note that, under the assumption of
Condition 2.2 (5) the representation p, is unramified at each prime in Syu; this
follows from the result of [3], see the introduction of [7]. Thus, for each prime
r in Saux the r-factor of the cuspidal representation 7y of (D ®p Ap)™ associated
to f is an unramified principal series representation of GL,(F;). We now define
the compact open subgroup U =[], U, contained in U, by putting

Ur = Ull(wf)

if re Sy and U, := (U)), otherwise. In the following, we consider f as an
eigenform in S, (U, O).

As in the section 2, we denote by T}, ,(U) (resp. Ty, o(U)) the image of Tumv
(resp. Tgf}wo) in Endp(S, 4 (U, O)) by the standard Hecke action.

We shall define the Hecke algebra T;'5*(U) (resp. T;"(U)) to be the sub-
O-algebra of Endo(S»,y (U, O)) generated by T, »(U) (resp Ty 0(U)) and the

Hecke operators
1
U, = [u( O)U].
0 w,

Let m’ be the maximal ideal of T.Ip o(U) determmed by f. We take the
maximal ideal m"* of T;*;*(U),, generated by m’ and U, for all € Sux.
We denote by T"*"™* the locahzatlon of T&/‘“‘x( ) by m/aux Wthh is a noetherian
complete local O-algebra whose residue field is F. We take a maximal ideal
m** of the T"**-algebra T)'%(U), .uu-

For any n > 1 we take the set O, of primes as in §2.5. As well as above,
we define the Hecke algebra T,'p“(gx(UQ”) (resp. T},'5(Up,)) as sub-O-algebras of

Endo(S2,y(Ug,, 0)) generated by Tj, ,(Up,) (resp T‘/,,O(UQW)) and the operators
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for all re Sux. Similarly we define the Hecke algebras T” auX(UQ) and
T""“X( Up,)- These Hecke algebras are all finite and flat over O.

We take the maximal ideal m,** of Talux 0(Ug, )yan determined by the choice
of eigenvalues of p,.(Frob,) for all v € Op; see the discussion in §2.5. We denote
by m&™ the maximal ideal of TI“‘“XO(UQn) induced by m,*". We also denote by

méaux 'the ideal ma* T so (Ug,) of Tl’pa(gx(UQn), and put

TE =T e, T =T (Vo

We also put Qp := 0 for our convenience. Then, for any n > 0 we have the
natural maps

TQ — T’ M and T, — Ty

Moreover, we have the following lemma.

Lemma 3.4.  Suppose that p,, is unramified at each prime t € Syx and for
any t € Saux the Condition 2.2 (5) is satzsﬁed Then:
(1) For any n >0, the Hecke algebra T " is generated by Hecke operators
T,, S, for all v¢ S, and Ug, for all ve Q.
(2) We have

T'Q":”X o~ T/Qn and Tp™ =Ty,

The similar arguments hold for the level Uy, cases.

Proof of Lemma 3.4. Put
Thaux . T/ aux E.
Q/l ®
Since T 2% is flat over O, the natural map T i T/Q’auE’f is injective; moreover,
when we put "
5 50 Ol 00
the natural map
/,a /,a
o,z — Endz(Hg %)
is injective.
We shall show Uy, =0 over Hg“%‘. Let g be a Ty, -eigenform of Héa‘%‘.

Since p, is unramified at r € Sy, the restriction of the central character of (7g),
to Op is trivial; it implies that

o\ Uni (@2) _ Ui(w?) _ o\ Un(w?
(”g ). 1 ( )_(nzc)tl( )—(”ZC)rO( ).

Moreover, when we write (7). = n-Ind(y, ;,%,,) as a normahzed induced repre-
sentation, the Hecke operator U, acting on the space (m,” )U“ ) has the char-
acteristic polynomial

(3.2.1) X(X = N, 1 (@) (X = N (0);
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see [23, Lemma 1.6] for instance. In particular, (7,° )rU‘) Z) has the eigenspace of
U, with eigenvalue 0, whose dimension is 1. It implies that U, annihilates g.
Since Hé’a‘g has a Ty, -eigenbasis, by (2.4.7) we deduce that Uy, acts on Héa‘g
as 0. 7"
As a consequence, we obtain T' “* =T, . The remainings are obtained
from this immediately. ]

Let H, = S2,4(Uy,, O)mQ be the localized space of modular forms of level
Ug,. Let g be a Hecke eigenform of H, ® E. Then, as mentioned above, at
each prime r € Syux the r-factor of (x, )UQ" has dimension 1. On the other hand
for any prime v ¢ S,ux the v-factor of (x )UQ" is also of dimension 1, which is
verified as follows: If v ¢ Sg, then =, is unramified at v and (Up,), is maximal.
If ve O, then the v-factor of m, is a principal series and it has two distinct
1-dimensional eigenspaces of U, (cf. [23, Lemma 1.6]). Thus, the local con-
dition Ug, — &, € myp,, where «, e O is a lift of the chosen eigenvalue o, of
Pw(Froby), cuts out the 1-dimensional subspace of i (z; yY " As a conse-
quence, the dimension of each Hecke eigenspace of the E-vector space H, ® E
is less than or equal to 1.

Now we consider the augmented quotient. Let Ag, be the product of the
maximal p-power quotient of (Of,/w,)” for all ve Q,. Recall that U, /Uy, =
Ag, and S, ;(Up,, O) becomes a Ag -module by a+— {a). Let

(322) Y <ay:S2,y(Ug,, 0) = 82,4(Ug,, 0)

HGAQ”

be the augmentation map; we note that this is Tgnwo equivariant. By [23,
Lemma 2.3], the augmentation map (3.2.2) induces an isomorphism

$2.4(Ug,, 0)/any, S2.4(Ug,, 0) = S5 (U, , 0).

Moreover, S, (Uy,,O) is free over O[Ap,].
For any subset Q of 9, and an element v € Q, let us denote by o, the chosen

eigenvalue of j,,,(Frob,) and by A4, the lifting of «, in T}, ,,(U, 0 {b})(m ys f. the
discussion above (2.5.4). Then we have the O-module map “
(3.2.3) n: S27W(UQ77{U}, O)mé,(,, — S, 1//(UQ ) O)m

determined by
, w, 0Y .
f'_)Avf_< Ov l)f
. 0 . . . . , 0 .
Here (z 1> f is the right translation of f by the matrix <w0b 1>. This is
an isomorphism, and it induces the isomorphism
(3.2.4) T, = To (s

sending Uy, to A4, for all ve Q,; see [23, Lemma 2.2]. Combining the local-
ization of (3.2.2) with the isomorphisms (3.2.3) we obtain the following result:
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ProposiTION 3.5 ([23, Corollary 2.4]).
(1) The augmentation map induces an isomorphism

S, l//(UQn’ )mQ /aAQn S, l//(UQn? O)mQ,l = SZ»‘//(U’ O)m‘

This is compatible with the T““W_ -algebra map Ty, — T sending U, to

A, for all ve Q, and {a) to 1 for all aeAyp,.
(2) $2.4(Ug,, O)y, is free over OAg,].
In the following, we put

Hf =5 ,(U;,0),: and H:=S$,,(U,0)

nr nmo

where the symbol + means the Up, case. Over the algebraic closure E of E

we have a natural Tgmvo-equlvarlant splitting

(3.2.5) H ®E= (H,®E)*>.

We take a T““‘V-elgenbasm B of H® E and we denote by B2 the image of B
under the composition of (3.2. 5) and (3.2.3).

By Proposition 3.5, H, ® E is free over E[Ag,]. If we denote by d the
O-rank of H,  then we have a non-canonical isomorphism

H,QE~ @ E(»)®

xE€ Aén

where Ap, is the set of characters of Ap, with values in E*, and E(y) is the
representatlon space of the character y. For each ye A > the y-eigenspace
(H, ® E)(x) has a T -eigenbasis. In particular, if y, is the tr1V1al character of
Ao, then (H, ®E)(ymv) (H, ® E)*% has an eigenbasis B2. Moreover, we
have a (non-canonical) decomposition

(3.2.6) H,®E= @ @ E(x)~ @ ElAg,]

feBA xely, feBA

Now we take a TQ -eigenbasis B, of H, ® E containing BA Using the basis 5,
we can take a decomposition (3.2.6) as Ty, -stable.

We shall consider the Galois conjugates of eigenforms and p-adic Hecke
fields. We say eigenforms g, g» in B, are Galois conjugate over E if gg is a
scalar multiple of g, for some o€ Gg. Let B,/r be the set of Galois conjugate
classes of B,; then it is bijective to the set of maximal ideals of TQ [1/p], and for
each [g }GB,,/E we have E, @z E =[], cg E

Let @, be the set of maXImal ideals of E [Ag,]. Then for each Galois con-
jugate class [g] € Bn/E we can associate a maximal ideal m = m(g) € @, as the
kernel of the composite

E[A] — T} [1/p] 25 E.
Moreover, the localization E,, of E[Ap,] by m, which is a finite extension of E,
is contained in the Hecke field E, of g. We put a(g) := [E, : E,,]. Then (3.2.6)
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implies that, for each m € ®, we have

dE,:El= Y [E:El= Y a(g)lEn:E.
[91€ Bk, l9€Byk,
m(g)=m m(g)=m

In particular, a(g) < d for all [g] el?n/E. Thus we have:

LEmMMA 3.6. In the above situation, we further assume d = dimg H @ E < p.
Then there is a finite extension E' of E such that, for any n > 1 and any eigenform
g € B, the Hecke field E’ of g over E' coincides with the localization Em< 9 of
E'[Ag,] by the assoczated maximal ideal m(g) = Ker(p, /) N E'[Ag,].

In this lemma we only use the E[Ag|-freeness of H, ® E, but not the
O[Ap,|-freeness of H,.

Proof of Lemma 3.6. For a moment, we assume that {, € E; then for any
n > 2 and any m € @, the extension E,,/E is wildly ramified. By assumption, for
any g € B, we have a tamely ramified sub-extension E,/E in E, of degree a(g)
such that the composite of E,, and E, ) is Ej:

Aower

We now take E’ as the union of all finite and totally ramified extensions
of E with degree < (p —1)d. Then E’ is an extension of E which contains (,
and E, for all ge B;. By the result of Krasner (cf. [14]) we know that the
number of extensions of E of a fixed degree in E is finite. Thus E’ is finite over
E, and E’ satisfies the condition in the statement. O

/3\

3.3. The Hecke modules. We continue to use notation and assumptions in
§2.4, §2.5 and §3.2. In this subsection, for any O-module M and any O-algebra
R we denote by My its scalar extension by R over O. We assume that the
residual representation p = p,, is associated to an eigenform f of S, 4 (U, O),.,
whose automorphic representation 7, is special with exponential conductor 1 at
each prime in X.

For any n > 1 we take a finite set Q, of primes of F as above For sim-
plicity, T+ denotes either Tg, or T, .  We also denote by T+ the image of the
comp051te map

pY.o.0 +0
RFvSQn - RF,SQ” TQ,,
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Then T* is an object of QIERO, whose maximal ideal is denoted by m+ 5 we
have a modular deformation of ,,:

/)3’7 :GF,SQ — GLQ(Ti"’B).
We denote by V+ 5 the representation space of p* . Even in the level U case
we can define the subalgebra T® of T 51m11ar1y, and denote by (p® V") the
deformation of j corresponding to Ry g — T".

Let P be a finite set of places which do not meet S. Let y = (y,),.p be a
family of unramified local characters y, : Gr, — 0. We shall define the Hecke
modules corresponding to the local condition defined in §3.1. We consider the
following conditions for deformations (p,¢) of p,.:

ConpITION 3.7. For any ve'P, there is a basis f, such that the map
RVDU — 0 of Q[‘RO corresponding to the local framed data (p|Gr b, B,) factors
through Rl/’ 7B (resp. R‘[’ mSH vith vy, satisfying y: = Vel g, )-

By abuse of notation, we often denote the conditions in Condition 3.7 by
(P,) or (Pg) respectively; in the following (P.) denotes the either condition.

Let B be a T““‘V-elgenbams of H® E. We assume that it is contained
in H. If we denote by

I = AutF(O)

the group of continuous automorphisms of @ which associate the identity on F,
then it acts up to scalar multiples on B by the Galois conjugation. We denote
by B)r the set of Galois conjugate classes of B by I'.

We denote by B(P.) the subset of B consisting of eigenforms which associate
deformations of p satisfying the condition (P,). We assume B(P.) is non-empty.
The set B(P,) is stable under the Galois conjugation by I'; we denote by B(P )

the quotient set. For any conjugate class [f] of B(P.), we denote by T the
image of the diagonal map

T H E
f1elf]

Wthh associates T, to the tuple of elgenvalues (Hf( rrel 1 We also denote

by [, [f] the kernel of it. We put V[ = = V5@ T[/]’ this is a modular defor-

matlon of p corresponding to Rp s —)T[] By Lemma 2.8 we have the
T"-algebra map

(3.3.1) T — T/[1/p] = Endg (V4 [1/p))

determined by

Ty = Trrg 1am et (@7 | Deris (V7 [1/0)
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for all p|p. We define the Hecke algebra T, to be the image of (3.3.1) and
define the Hecke module M, to be

18
My = Vi ®qs, Tip)-

By construction, M|, is free of rank 2 over T, and in particular torsion free.
We then put

P
M7= D My,
[/1eB(P.)r
For any n>1 we define T, P and M, P as follows: Firstly we take a

finite set Q, of primes of F glven in Proposition 2 3 so that it does not meet
SUP. For any [f]eB(P )/1-, we denote by /,’ [f] the inverse image of I[ 1l

under the isomorphism T, — T induced by (3. 24) and define

7’13 —
Tolin =To Mgl Voiin=Vo @10 Tolyy

As well as the level U case, we define the Hecke algebra Ty, s to be the image
of
Ty, — Endg(V), [l/p]

and the Hecke module M, |, as
,Yﬁ _
Mo,.in= VYo, 11 ®r,0  Tonin
The isomorphisms (3.2.3) and (3.2.4) induce the natural isomorphisms

Ty, 5= Ty and Mg (= Mg,

which are compatible with each other. We note that the later is Gp s-
equivariant. Now we put

- P _ - .
Mo" = D My,
(/] EB(P*)/I‘
then we have a Gr s-equivariant isomorphism of Hecke modules

—P. = 2,P,
(3.3.2) My = M7

n

In the following we further assume the condition that, for any n > 1 and any
eigenform g of H, ® E we have

Ey = Epg);
P9, E

here m(g) is the kernel of E[Ag,] — Ty, [1/p] ~5 E, cf. Lemma 3.6. Then
Galois conjugates of eigenforms of H, ® E over E are equivalent to that of
characters of Ag,. Now we fix a TQ -stable decomposition (3.2.6) and denote by
BA(P.) the 1mage of B(P.) under the composition of (3.2.5) and (3.2.3). Then,
for any f e B%(P.) we have a non-canonical isomorphism

(3.3.3) ElAg]~ @D Eg(f.x),

/{EA
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where g(f,y) is a T’Q“-eigenform in H, on which Agp, acts as x; this isomor-
phism is obtained from the irreducible decomposition of the regular representa-
tion E[Ag,] of Ag,.

We denote by B,,A(P*)/l- the set of Galois conjugate classes of B2(P,) by T;
we also choose its representative system ( f-f)j. For any eigenform in B2(P,)
we take above isomorphism (3.3.3) as follows: Firstly, for each representative
eigenform f7 of BMA(R)/F we fix above isomorphism (3.3.3) so as g(f/,1) = f7,
g(f7,x) # g(f*, x) if f7 # f*, and for each f = af/ we take (3.3.3) as g(f,y) =
o9(f),077).

For any f e B2(P,) we put

B,(f) :={9(f,0) | x e Ay}

and denote by B,(f )e the set of Galois conjugate classes of B,(f) over E.
Then, under our assumption we have

1 2= I 5= Eo)

lgle Bn(f)/E meam,

Moreover we have the natural O[Ap,]-algebra map

(3.3.4) Ty, — J[  E,=ElA,].
[g] Glg,,(f)/,;
By the following discussion, the image of this map is isomorphic to O[Ap,].

LemmA 3.8.  Let A be a finite abelian p-group and R a finite local sub-O[A]-
algebra of E[A] whose maximal ideal contains A. If R has a specializing local map
¢ : R— O of local O-algebras which sends A to {1} and the maximal ideal of R is
generated by ap and A, then R is isomorphic to O[A].

As usual, a local map A — B of local O-algebras means a ring homomor-
phism between local (O-algebras A4 and B, which maps the maximal ideal of A4
into that of B.

Proof of Lemma 3.8. We note that O[A] is a local ring. By assumption,
the ring R is torsion free and it has an injective local map of local O-algebras
i:O[A] — R,
which becomes an isomorphism after inverting p. We shall prove it is an iso-
morphism. By Nakayama’s lemma, it is sufficient to show that i becomes an

isomorphism after taking modulo mgjy).
By assumption, we have
R/mppaR = R/mp = O//. =F,

which proves the lemma. ]

Let 7 be the image of (3.3.4). 7T is finite and faithful as a O[Ap,]-module,
which is generated by tuples
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Toly = (HPI(TU))[g]eB,,(f)/E (v¢So,),
Ug, |7 = (gg(Uw,,))[g]eBn(f)/E (ve On).

On the other hand, since each eigenform of
HQn ®O[AQ;1] F ; H ®0F

has the same eigenvalue in F for all operators in Tﬁn, we have
Tv|TEQf(TL)(1771) mOdmO[AQn] (U¢SQn)7
Ug,lr = (1,...,1) mod myp,, (ve Q).

Thus T /moa,, T =F-(1,...,1), and so O[Ag ]~ T by Lemma 3.8.

We denote by
pf,AQ” : GFstn - GLZ(O[AQ”])

the deformation associated to (3.3.4) and by Vy a,, its representation space. Let

Pr.ng, Ty, — EndE(Vf,AQ,, (1/p])
be the Tgn-algebra map determined by

Ty = Treing, jowie) (P | Deris (V7. a0, [1/p)))

for all p|p. The image of the map ¢ 5 o is contained in the center of

Endgia,, | (Vr.a0,[1/P]) > Ma(E[Ag,)).

Moreover, we have the Tgn-algebra map

Pr. A aug.
Or.ag, - To, —2 E[Ag,] —~ E

which maps T, to

TrE@ W (k(p)) ((p[h‘(m:Fp] | Dcris( Vf[l/p]))
for all p|p. The image of 0y 4, is a local sub-O-algebra of E whose residue
field is F, so that it coincides with 0. By Lemma 3.8 again, we have:

*)E[AQ”] lS O[AQH]

n

Lemma 3.9. The image of Pr.ap, - To

For each I'-conjugate class [f] of B2(P.), we denote by TBQ’“[ 4] the image of
the diagonal map

H (pf/vAQn ZTg}l — H O[AQn]
17elf] frelf]
and denote by VQﬁ”‘[ /l the modular deformation corresponding to Rr s, —
Tgn.[f]' We then define the Hecke algebra Ty, s to be the image of the Tg,,'

algebra map
Ty, — Tg,,,[f][l/l’] - EndE(VQB,,,[f][l/p])
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determined by

Ty = Tegs  mewie) (@ Des(Vg, 1[1/P)).

and define the Hecke module My, |/ to be
8 .
Mo, 111:= Vo, 1 @5, Tou. 113
this is a free Ty, [-module of rank 2. Finally we put

P _
MQn T @ MQm [f] :
[/1eB)(P)r

PropPoSITION 3.10. Let P be a finite set of places which do not meet S and
7= (V)pep be a family of unramified local characters y,: Gy, — O*. For each
prime ve P we take either deformation condition (P,) or (Ps) of Condition 3.7;
when we consider the condition (Ps) we always assume that for all ve P the
character y, satisfies y> = el G- We also assume that the localized space H =
S> (U, 0),, satisfies

(3.3.9) rankp H < p,

and that there is an eigenform f of H ® E which satisfies (P.) for all veP.
Then, for sufficiently large E we have the following:
(1) The augmentation map induces an isomorphism

MG Jang, MJ = M.
(2) Mgn is free over O[Ag,].

_ Let f'e H be an eigenform satisfying the conditions (P.) for all ve P and
f the corresponding Hilbert modular eigenform. Let U be the level of f. As
each Hecke eigenspace of H has dimension 1 we have

rankp H < dimc Szjt’[j(U, O).

Thus the condition (3.3.5) follows from the global condition dimc S%;((? ,C) <
p, which is introduced in (1.0.1).

Proof of Proposition 3.10. Put A := Ag, and d’' = #B(P.) for simplicity. It
is sufficient to show the case when B(P.) consists of single I'-orbit; we shall put

By assumption M” is a nonzero module. Enlarging E if necessary we may
assume that:

+ Galois conjugates of each eigenform f € B(P.) over E are only itself;

+ we can take an extension of E in Lemma 3.6 as itself.
As mentioned at (3.3.2) we have the Gr s-equivariant isomorphism

— P = 2P
My" =S M,
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which is compatible with the isomorphism of Hecke algebras Té;P* = T” sending
Uy, to 4, for all ve Q,.

We shall show that the augmented quotient of Mg: is Mé”’P*. Identifying
BA(P,) with B(P.), we have

(3.3.6) Mppl=vyh~ @ EN®
feB(P)

We consider the (normalized) augmentation map

1 8, 7. —,8,P.
(3.3.7) %Z ay Vo g — Vo'
ael
Then it induces an isomorphism VS;Z}/% VQB;% =V, e
the following commutative diagram:

Moreover, we have

To, —— Endgy(Vg;)
(3.3.8) augl linduced by (3.3.7)

T, —— EndE(VQ]%P*).

Here ““aug.” means the augmentation map. In particular we obtain the surjec-
tive map of Hecke algebras

(3.3.9) T, —Ty"
which sends {a) to 1 for all ae A. We also note that the right vertical arrow in
(3.3.8) is equivalent to the augmentation map of matrix algebras
Mzdr(E[A]) — M2d'(E)~

The kernel of (3.3.9) is aAMgd«(E[A})ﬂTZ*H, which contains aATg*;. We shall
prove that it coincides with aATg*n. Let x be an element of ay My (E[A]) N TZ‘;.
Then, under the decomposition (3.3.6), the element x can be written as
@7 (1)

@740

s, a0

s, a0
for some 7€ Tp,. By Lemma 3.9 the component ¢ 4(7) is contained in
aAE[A} N O[A] = Qap

for each j.  We shall write ¢, 4(f) = >_,.a(a — 1)y, for some y, € O[A]. Since
each f; in BA(P.) is written as f; = g, f; for some o; € ' we can decompose Pf.a
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as ¢, o =0;0¢; A Thus gy (1) can be expressed as ¢, A(1) = > ca(a — 1)oya.
It implies that x is the image of the element

S (@~ 1)i(za)

aeA

of Ty,, where each z, is a (unique) element of O[A] whose image under the

composite
Pf.A

O[A] —— Ty, =% O[A]
is y,. Thus x is contained in aATg*”. Therefore we have
QAMZd/(E[A]) n Tg*n = C(ATP;,
and we obtain TZ;/aATg*n Bt Tél’lp*. Since Mézp* is free over TE;P*, we deduce
that
Mp JaaM[ = My "
Now we prove the freeness. We note that Méip*[l /p] = VQJ—r”’ﬁ’P*[l /p] since
Tap*[l/p] = Ta’ﬁ’n[l/p]. Thus we have an equation
dimp (M [1/p]) = 2(#A - #B(P.)) = #A - dimp(My " [1/p)).
By Lemma 3.11 below we obtain the result. O

LemMma 3.11. Let O be a complete discrete valuation ring of mixed charac-
teristic (0, p). Let A be a finite abelian p-group. Let M be a finitely generated
O[A]-module.  We assume the following:

(1) M is free over O.

(2) M/aaM is a free O-module of finite rank. Here ap is the augmentation

ideal of O[A].
(3) We have the equation for O-ranks:

rankp M = #A - ranko(M /aaM).
Then M is free over O[A].
Proof of Lemma 3.11. First note that O[A] is a local ring. Let (%), _;_,,
be a O-basis of M/apM. By Nakayama’s lemma, we have a lifting (x;), of
(X;);, which generates M over O[A]. We note that (x;), is a linearly independent

system over O. By construction, (£x;); ;. ,ca is an O-generating system of M
and we have the inequality

ranko M < #(1Xi) | cicpm en < #A-m.
By assumption, this is an equation. Thus (7x;); . is a O-basis of M and we
know that (x;); is a O[A]-basis of M. O

34. R=T type result. We use the notation in §2.5. We also keep
assumptions in the previous sections.
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Let P be a finite set of places which do not meet S. Let y = (y,),.p be a
family of local unramified characters y, : Gg, — O*. Let (P.) be either condition
(P;) or (Ps). We assume that there is an eigenform f €S, (U, 0),, satisfying
Condition 3.7 with respect to P and p; when we consider the condition (Pss), we
will assume that for any primes v e P the local character y, satisfies y> = e Gr, -
Let p;: Gp s — GL2(O) be the deformation of p,, corresponding to f. Let
o = (0',{Xp}ye,r) be the ordinary data given by p,. Let m be a maximal ideal
of Ty o(U) determined by f. For any n > 1 we take a finite set O, of primes of
F given in Proposition 2.3 so that it does not meet SUP. We write Qo = for
our convenience, and for any n > 0 we consider the Hecke module M defined
in §3.3. We put

P \:| 0
M Qu ®RF Son RF‘VSQW'

As usual we will write MPH = =M, P D. The following proposition, which is the
key of our result, is a variation of [13, Proposition (3.4.11)].

ProOPOSITION 3.12.  Let p: G, s — GLo(F) be an absolutely irreducible con-
tinuous representation satisfying Coniditon 2.2.  We assume that p ~ p,,, for some
modular representation (2.5.1). Let P be a finite set of primes of F which do not
meet S and let y = (y,),.p be a family of local unramified characters y,: G, —
O*. Let (P,) be either condition (P,) or (Ps) of Condition 3.7 with respect to
(P,y); when we consider the condition (Pg) we further assume that for any ve P
the character vy, satisfies y? = yelg, . We also assume that there is an eigenform
f€S8y(U,0),, satisfying (P,) and that the inequality (3.3.5) holds for the
maximal ideal w of Ty o(U),,, associated to the ordinary data o determined by p;.
Then, the kernel of the map

R} — Endo(M™D)

is p-power torsion. In particular, if some modular deformation satisfies (P.) on a
finite set P of unramifimed primes, then every modular deformation of type e RV If
also satisfies (P.) on P.

Proof of Proposition 3.12. Let B = Rgl‘: O R= Rﬁ 78 R, = Rﬁ g O H=
MPU and H, = M, PO By our hypothesis, H is a non-zero module. Then by
(2.2.2) and Proposmon 3.10, we can apply Proposition 2.1 and we obtain the
result. O

3.5. A rigidity of deformations of a mod p Galois representation associated
to a Hilbert modular form. Let F be a totally real number field, / be a Hilbert
modular Hecke-eigen cuspform over F. Let A be a prime of the Hecke field K
of f above a rational prime p, Ky ; be its A-adic completion and Oy ; be the ring
of integers of Ky ;. Then, we have a two dimensional Z-adic representation

pf‘ﬂ : GF — GLZ(I(]A)
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Let X be the finite set of primes of F at which 7y is ramified; we assume that each
prime in ¥ does not divide p. If we denote by S a finite set of places of F
containing X, all primes dividing p and all infinite places, then p, ; is unramified
outside S. Namely it factors through the Galois group Gr s of the maximum
extension of F which is unramified outside S. Let V7 ; be the representation
space of p, ;. Taking its Gp-stable lattice Ty ; of Vy ;, we have a continuous
representation (denoting by the same symbol)

,Df I GF‘S — GLZ(Of ,1).

When we denote by F, the residue field of Oy ;, composing p, ; with the natural
reduction map, we have the continuous representation Gr — GLz(F 1), whose
semi-simplification is independent of choice of lattices T ;, and which is denoted
by

By Ribet’s work described in [22], p,; is irreducible for all A and p,; is
absolutely irreducible for almost all 4. Thus we take 4 so that p, ; is absolutely
irreducible.

In the following, we suppose f has parallel weight two. By the results
of Carayol, Faltings and Taylor (cf. [22, Theorems 1.2, 1.4]), the family p, =
(Pr.2) ek, > of A-adic representations fit into a regular and irreducible rank 2
weakly compatible system

Rf' = (](}"2’ S, {Q/ U<X)}u¢27pf'7 {07 1})a

where S is the (ﬁmte) set of primes A of K, which divides the level of f, or A
at which the semi-simplification of p, ; is absolutely reducible. In partlcular by
[22, Proposition 1.6] for any primes 4 ¢ S the i-adic realization p; ; is Barsotti-
Tate. Moreover, the local-global compatibilities of Langlands correspondences
for p, ;’s are none other than that R, is strongly compatible.

LeEMMA 3.13. Let F be a totally real field of even degree and f be a Hilbert
modular Hecke-eigen cuspform of parallel weight two. Let Ry be the reqular and
irreducible strong compatible system associated to f. Let L be the set of all
primes A of Ky lying over a rational prime p, satisfying that:

(1) the mod 4 representation p; ; is absolutely irreducible,

(2) FNQ(,) = Q.

(3) ps =1mod 4.

Then, for all but not finitely many primes /. € L, py ; remains absolutely irreducible
after restricting to the subgroup GF(é’p)).

Proof of Lemma 3.13. We note that such a £ is an infinite set. As Kisin
remarked in [13, p. 1155], by the condition (2) the absolute irreducibility of

s, A|GF | is equivalent to that of Pr.ilg,» where L = F(4y/ (_1)(“71)/2172)' More-
over, by the condition (3), L is totally real, and so by [22, Proposition 3.1] the
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modular Galois representation

p.f;/1|GL = pBCL/F(n/)ﬁ}L’

is irreducible for all 4 € £; here BCyr(n7) means the base change of 7y via L/F.
Therefore, by [loc.cit., Proposition 3.3], for all but not finitely many primes 1 € L,
the restriction p; ;|;, must be absolutely irreducible. O

In order to state our main theorem, we prepare the following notion of
residual modularity.

Remark 3.14 ([13, (3.5.4)], [26, §4]). Let O be the ring of integers of a finite
extension £/Q, and p : Gr s — GL(O) be a continuous representation. We call
p is strongly residually modular of parallel weight two if there exists a Hilbert
modular Hecke-eigen cuspform f over F of parallel weight two such that®:

* There is an isomorphism p =~ p, ;/, where 2" is a suitable prime of K,

* The automorphic representation 7y of GL,(Ar) generated by f is not

special at any place dividing p,
* For any p|p, the restriction p, MGF” is potentially ordinary if and only if

P|GF‘, 18

We note that for almost all v, 7y is not special at v; this follows from the fact
that automorphic representations 7 are admissible, and so that = is unramified at
almost all v.

THEOREM 3.15. Let F be a totally real number field Let K be a number
field, T be a finite set of finite primes of F, S be a finite set of finite primes of K
and

R:= (Ka Ea Sa {QU(X)}vezZap = (p/l)/le\K\“)

be a regular and irreducible rank 2 weakly pre-compatible system of A-adic rep-
resentations of Gp. We assume that there is a finite character  : Gp — O
such that, for any primes ). € |K|” the determinant of p, is \ye,,; here we denote by
D, the residue characteristic of K;,. We further assume that there is a prime 1 ¢ S
lying over a rational prime p = p; > 2 such that the A-adic realization

p=p;: Gr — GLy(K})

satisfies the conditions in [13, Theorem (3.5.5)]. Namely,
(1) For any prime p dividing p, the restriction p|GFp is potentially Barsotti-
Tate;
(2) p is strongly residually modular (in the sense of Remark 3.14);
(3) '5|GF<E) is absolutely irreducible;
(4) If p =5 and the projective image of Im p is isomorphic to PGLy(Fs), then
the kernel of the projectivization of p does not fix F((s).

“We use the definition of [26, §4] which is slightly modified from [13, (3.5.4)].
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Then, for infinitely many primes u¢ S we have the following: After taking a
suitable totally real solvable base change F* of F (and denoting objects of F* by
the same symbols), each Ok, -deformation p, of

ﬁﬂ : GF — GLQ(F[U)
of type Rd’ “Y has a field automorphism ¢ e Aut(K,) satisfying

(p,l/t ® K/1|GF")SS = ¢*(p,u ® Kﬂ'Gpv)Ss

Jor almost all unramified primes v of p,. Here g, is the ordinary data associated
to p,.
U

n [13, Theorem (3.5.5)], Kisin proved the modularity of p satisfying con-
ditions (1)—(4) as above. As a consequence, after a suitable base change the
restriction of p can be fit into an irreducible strongly compatible system of
Hodge-Tate weights {0,1}. Since the proof of Theorem 3.15 is based on his
proof, we shall review it briefly (with a slight modification for our proof).

Let O be the ring of integers of £ = K;. Let f be a Hilbert modular
eigenforms of F of parallel weight two satisfying p ~ p, ;». Let X be the set of
primes at which p is ramified and not dividing p. By base change arguments
([15], [19, Main Theorem] and [13, Lemmas (3.5.2), (3.5.3)]), replacing F with its
suitable totally real and solvable extension and f with its base change, we may
prove the modularity under the following conditions for p:

) p|G is Barsotti-Tate at all primes p dividing p,

(2) If p divides p and p|G is ordinary, then P_|GF,, is either indecomsable or

has the trivial image,
3) p is unramified outside the primes dividing p,
4) If veX then the restriction p|; is unipotent,
5) [F: Q] is even and p|G remains absolutey irreducible;
and conditions for the pair f and 2

(i) 7= is unramified at all v ¢ X; in particular at all primes p dividing p,

(ii) 7y is special with conductor 1 at v if veX.

Then p satisfies (1)—(4) of Condition 2.2. Moreover, by [4, Lemma 4.11] we
can take an auxiliary prime r so that Condition 2.2 (5) is satisfied for the
set

—~

S:=2U{p|p}U{vfoo}U{r}.

By further base change if necessary, we may assume that the cardinality of
¥ is even. Twisting by a character we assume that p and p, ;» have the same
determinant. Now let D be the quaternion algebra over F which is ramified
at XU {v|oo}. We fix a maximal order op of D and define a compact open
subgroup Up = [[,(Up), of (D®rAF)”" by (Uy),:= (op),. By the Jacquet-
Langlands and Shimizu correspondence, after enlarging O if necessary, there is a
Hecke eigenform f? of Sz{)w(Uo, 0) corresponding to f. Here y is determined
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by the central character of f. We define a subgroup U =[], U, by setting®
U, = Ull(wf)

and U, := (Up), for all v#r. Taking r as N(r) is sufficiently large, we can
assume U satisfies Condition 2.6. We now regard f” as an eigenform of
SP,(U,0). Then we take the maximal ideal m of T, o(U) associated to f°.
We take the set S of places of F as above. Then, by [13, (3.4.11)] we have a
surjective map

Ry Y — 10

with p-power torsion kernel, where TH := T®R” R In particular p is
modular, namely there is an eigenform g e S? ¢(U O) such that p is associated
to g.

Proof of Theorem 3.15. Let

Ty = H Up(w,) X HGLz(OE)

veX vgx

be the compact open subgroup of GL,(Af). Put

do := [ [ #(GL2(Or,)/ Un());

veX

here GL, (O, )/Us(w,) is bijective to the set of cyclic subgroups of (O /w,)?
isomorphic to Of,/w, We note that dy is greater than or equal to the car-
dinality of the finite set GLy(F)\GLy(Af)/Us. We will use dy to bound the
dimension of the localized space of modular forms.

Let u ¢ S be a prime of K lying over a rational odd prime p, such that: (i)
pu > max(5,dy) and (i) the restriction of p, to G, ) remains absolutely irre-
ducible; by Lemma 3.13 such g are infinitely many ex1st

Let K, be the p-adic completion of K and O, be the ring of integers of
K, We con51der u-adic quaternionic modular forms 52 (Uo, O,).

Now we know that p, = p, , satisfies the following COIldlthIlS

(1) the local restriction pﬂ|G is Barsotti-Tate at each prime p dividing p,,

(2) If v ¢ %, then p, is unramified at v, and if v € T then the restriction Pulr,

is unipotent,

(3) [F:Q] is even and p_ﬂ|GF<%> remains absolutely irreducible.

In particular, for any prime v in X the restriction of p, to the inertia /, is
1 a
0 1)’

S1n [13] Kisin take U, as Uj|(w,). We refer to the method of [4] for our proof.

Pull,
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where a is the additive character of I, which factors through ¢#,: 1, — Z, (1).
We take a totally real cyclic extension F #/F of degree p, such that:
+ the restriction of Py to Gy G remains absolutely irreducible,
* each prlme veX is ramified at F*/F, so that p,| G,, 1s unramified outside
the primes d1V1d1ng DPu-
Since p, is an odd prime, the base change

Hg = BCF#/F(ﬂg)

of my is a cuspidal representation of GLy(Ap#) (cf. [15]). Moreover, p,lg .
satisfies (1)—(3) as above and the condition that:

(4) Pulg,, is unramified outside primes dividing py.

In the followmg, we replace objects of F with that of F# lying over those, and
denote these as (—)”. Then the set X* of primes of F# lying over X has even
cardinality.

We take a totally definite quaternion algebra D# over F# which is ramified
exactly at ¥#*. We fix a maximal order op+ of D* and define a subgroup of
(D* @A) as UF :=][,(op#),. As remarked at (2.4.7), under the fixed
isomorphism 7, : K, ~ C we have the decomposition

# D# triv.
SzD v, K 2 WK, @ l“ (I1%),
where IT runs over all cuspidal representations of (D* ®y+Ar+)” having weight
2 and central character . By assumptlon the finite part of I, occurs in
the decomposition, and we have (H;O) 7 #£0. We take an elgenform g* in
SPL(U§, 0,) which generates IT,.
v We take a prime 1, ¢Z# *#U{p|p,} as before and define a subgroup

U = U11 >< H 0]_)# 0
b*r,u
moreover we may take it so that U# satisfies Condition 2.6 and the set
§%:=3%F U{v|oo} U {r,}

satisfies Condition 2.2 (5). We regard g# as an elgenform in S DI//(U Ou). Let

m” be the maximal ideal of Ty ¢,(U”) determined by ¢ and
H# = 2.1//(U 70#)

m#

the corresponding localized space.
LEMMA 3.16.  Under the above notation, the dimension of H* ® K, satisfies
dimlgﬂ H” ® K, < dp.

Proof of Lemma 3.16. Let D be a quaternion algebra over F# which is
ramified exactly at all infinite places. By the Jacquet-Langlands-Shimizu cor-
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respondence, for any eigenform / in H #® K, there is a cuspidal representation
IT of (D* ®p+Ap+)" such that

JLp#(T0;) = JL5(T0).
If we take the compact open subgroup 05# of GLy(Af,) to be

Ut = H Up(w,,) x H GL2(Opz),

weX# we¢X#
then (I:IOC)U(?A # 0. Thus, for any eigenform 7 € H* ® K, we have an eigenform
of
o
S2Dl//(U(;¢7 KM)'
Since each Hecke eigenspace of H* ® K, has dimension one (cf. the discussion
of Proof of Lemma 3.4), we have
dimg H*®K, < dimg SP,(Uf,K,).

Moreover, by assumption the dimension of SzﬁZ( ~f ,K,) is less than or equal
to

#(GLy(FF)\GL2(A7)/UF) < [] #(GL2(Op)/ Uo (7))
v#es#
= [[#(GL:(OF)/ Uo()) = db,
veX

which completes the proof. Ul

We back to the proof of the theorem. By this lemma, the localized space
H* = SPI(U#,0,),, satisfies the inequality (3.3.5);

rankg, H* < p,.

Let vy be a prime of F# not contained in S#. Let P be the one-point set
consisting of vyp. We enlarge K, so that the matrix p,(Frob,,) is triangularizable,
and take an unramified local character y, : Gz — O, such that

vo

Pyl e )
G,. — —
I 1-(7’5 0 ‘//5p,1 . V*yvol ’

Ppu ..
where v is the structure map 0, — Rp+ s+ —> O,. We now apply Proposition
3.12 for g* € H” and the condition (P,) with respect to ({vo},7,). Then we
obtain _the result that, after enlarging K, every O,-deformation p;t of p, of type

RY,%"D satisfies this condition. Namely, we have

= pu
’
' ViV *
Pl . = ro—1
G . -
Fiy 0 l//817;1 v*yvo
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where v’ is the structure morphlsm of the O,-rational point P of Rﬁfg’# . Since
v,V € Autp(0,), taking ¢ =1 ov~! we obtain

(p;;|GF#)SS = (¢*p,u|GF# )SS’
i 4
where “ss” means the semi-simplification of the representation. Since v and v’
are independent from the choice of vy, we complete the proof. O

Moreover, since the way of taking v=uvy¢ S is arbitrary, by the
Chebotarev’s density theorem we know that p, ® K, is equivalent to Pu®y Ky
Consequently, we have:

COROLLARY 3.17. Let R be a regular and irreducible rank 2 weakly pre-
compatible system of A-adic representations of Gr satisfying conditions in Theorem
3.15. Then, for infinitely many primes u of K, there is a suitable totally real
solvable base change F#/F such that, after taking it all Ok, -deformations py, p, of

P of type R2 p’"D are isomorphic to each other modulo an automorphism of K;
namely, there is a field automorphism ¢ € Aut(K,) such that

P ®I?;1|GF# =~ ¢*(p2 ®Kﬂ)|GF#'
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