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Abstract

We introduce two invariants called the secondary cuspidal curvature and the bias

on 5=2-cuspidal edges, and investigate their basic properties. While the secondary

cuspidal curvature is an analog of the cuspidal curvature of (ordinary) cuspidal edges,

there are no invariants corresponding to the bias. We prove that the product (called the

secondary product curvature) of the secondary cuspidal curvature and the limiting normal

curvature is an intrinsic invariant. Using this intrinsicity, we show that any real

analytic 5=2-cuspidal edges with non-vanishing limiting normal curvature admit non-

trivial isometric deformations, which provides the extrinsicity of various invariants.

1. Introduction

In this paper, we study local di¤erential geometric properties of curves and
surfaces with singular points. Since we look at local properties, we essentially
deal with map-germs: ðR; 0Þ ! ðR2; 0Þ and ðR2; 0Þ ! ðR3; 0Þ. We consider in-
variants under an action that is a di¤eomorphism on the source space and an
orientation preserving isometry of the target Euclidean space: R2 and R3. In
the case of curves, we take a representative and identify a map-germ ðR; 0Þ !
ðR2; 0Þ with a curve I ! R2, where I is an open interval including the origin
of R. Similarly, in the case of surfaces, we take a representative and identify a
map-germ ðR2; 0Þ ! ðR3; 0Þ with a surface U ! R3, where U is an open neigh-
borhood of the origin in R2. We mainly deal with 5=2-cusps and 5=2-cuspidal
edges in this paper.

The ordinary cusp or 3=2-cusp is a map-germ ðR; 0Þ ! ðR2; 0Þ which is
di¤eomorphic (A-equivalent) to the map-germ t 7! ðt2; t3Þ at the origin. It is
known that the 3=2-cusp is the most frequently appearing singularity on plane
curves. A cuspidal edge is a map-germ ðR2; 0Þ ! ðR3; 0Þ which is A-equivalent

496

2010 Mathematics Subject Classification. Primary 57R45; Secondary 53A05, 53A04.

Key words and phrases. 5=2-cusp, rhamphoid cusp, 5=2-cuspidal edge, frontal, spacelike surface

with constant mean curvature, intrinsic invariant, isometric deformation, Kossowski metric.

This work was supported by JSPS KAKENHI Grants numbered 16K17605, JP26400087.

Received October 17, 2017; revised February 18, 2019.



to the map-germ ðu; vÞ 7! ðu; v2; v3Þ at the origin (Figure 1, right), where two
map-germs f ; g : ðRm; 0Þ ! ðRn; 0Þ are A-equivalent if there exist di¤eomor-
phisms fs : ðRm; 0Þ ! ðRm; 0Þ and ft : ðRn; 0Þ ! ðRn; 0Þ such that ft � f � fs ¼ g.
By definition, the image of a cuspidal edge is di¤eomorphic to a direct product of
a 3=2-cusp with an interval (fðx; y; zÞ j y3 � z2 ¼ 0g), and its di¤erential geometric
properties are well studied. In [27] (see also [22]), the cuspidal curvature for 3=2-
cusps is defined. Roughly speaking, the cuspidal curvature measures whether
a 3=2-cusp is narrower or wider. For cuspidal edges, the singular curvature and
the limiting normal curvature are introduced in [20], and their geometric meanings
are studied.

A 5=2-cusp (respectively, 5=2-cuspidal edge) is a map-germ ðR; 0Þ ! ðR2; 0Þ
(respectively, ðR2; 0Þ ! ðR3; 0Þ) which is A-equivalent to the map-germ t 7!
ðt2; t5Þ (respectively, ðu; vÞ 7! ðu; v2; v5Þ) at the origin (Figure 1, left). A 5=2-cusp
is also called a rhamphoid cusp. Although 5=2-cuspidal edges do not generically
appear, it has been pointed out that they naturally appear in various di¤erential
geometric situations [6, 10, 19]. For 5=2-cusps, the cuspidal curvature vanishes.
Hence, to measure the width of 5=2-cusps, we need to consider higher order
invariants. In this paper, we define two curvatures on 5=2-cusps in addition
to the invariants we mentioned above, which are the secondary cuspidal curva-
ture and the bias of cusps. The secondary cuspidal curvature is an analog of
cuspidal curvature of 3=2-cusps, but as we will see in Section 2.1, there is no
corresponding notion of bias for 3=2-cusps. Using these invariants, the sec-
ondary cuspidal curvature and the bias, we also define two curvatures for 5=2-
cuspidal edges.

On the other hand, one fundamental problem is to determine the intrinsicity
and extrinsicity of invariants. It is proved that some basic invariants such as
the singular curvature and the product curvature are intrinsic in [20, 15], and they
have various applications. For example, the intrinsicity of the product curva-

Figure 1. The standard 5=2-cuspidal edge (left) and cuspidal edge (right).
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ture is used to prove existence of isometric deformations of real analytic cuspidal
edges with non-vanishing limiting normal curvature in [16] and [8]. See [4] for
other applications. In [3, 7], several geometric invariants of cross caps are
proved to be intrinsic or extrinsic. In this paper, we determine whether the above
invariants of 5=2-cuspidal edges are intrinsic or extrinsic, proving the existence
of isometric deformations of real analytic 5=2-cuspidal edges with non-vanishing
limiting normal curvature as in [16] and [8].

This paper is organized as follows. In Section 2, we define the secondary
cuspidal curvature and the bias for 5=2-cusps, and study their geometric proper-
ties. In Section 3, we deal with 5=2-cuspidal edges and define two invariants
for them. As an example, in Section 3.6, we calculate the invariants on the
conjugate surfaces of spacelike Delaunay surfaces. In Section 4, we prove that
the product (called the secondary product curvature) of the secondary cuspidal
curvature and the limiting normal curvature is an intrinsic invariant. Using this
intrinsicity, we show the existence of isometric deformations of real analytic 5=2-
cuspidal edges with non-vanishing limiting normal curvature, which yields the
extrinsicity of various invariants, see Table 2. Finally, in Section 5, we provide
an intrinsic formulation of 5=2-cuspidal edges as a singular point of a positive
semi-definite metric, called the Kossowski metric. Using an argument similar to
that in Section 4, we prove the existence of isometric realizations of Kossowski
metrics with intrinsic 5=2-cuspidal edges.

2. Invariants of 5=2-cusps

In this section, we discuss the geometric properties of 5=2-cusps.

2.1. Invariants of 5=2-cusps. Let g : ðR; 0Þ ! ðR2; 0Þ be a map-germ, and
g 0ð0Þ ¼ 0. We say that g is of A-type if g 00ð0Þ0 0. Let g : ðR; 0Þ ! ðR2; 0Þ be
an A-type map-germ. The cuspidal curvature for g at 0 is defined by

oðg; 0Þ ¼ detðg 00ð0Þ; g 000ð0ÞÞ
jg 00ð0Þj5=2

;

which measures a kind of wideness of g at 0 ([22]). We may abbreviate oðg; 0Þ
as oðgÞ, or o, in some cases. It is well known that an A-type map-germ g is a
3=2-cusp if and only if detðg 00ð0Þ; g 000ð0ÞÞ0 0, and hence o0 0.

Let g : ðR; 0Þ ! ðR2; 0Þ be an A-type map-germ with detðg 00ð0Þ; g 000ð0ÞÞ ¼ 0.
Then there exists l A R such that

g 000ð0Þ ¼ lg 00ð0Þ:

Then the secondary cuspidal curvature for g at 0 is defined by

orðg; 0Þ ¼
detðg 00ð0Þ; 3gð5Þð0Þ � 10lgð4Þð0ÞÞ

jg 00ð0Þj7=2
:
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We abbreviate or ¼ orðgÞ ¼ orðg; 0Þ as well. By a direct calculation, one can
see that or does not depend on the parameter of g. The following criterion for
5=2-cusp is known [19]:

Fact 2.1. Let g : ðR; 0Þ ! ðR2; 0Þ be a map-germ with g 0ð0Þ ¼ 0. Then g is
a 5=2-cusp if and only if

(1) detðg 00ð0Þ; g 000ð0ÞÞ ¼ 0,

(2) 3 detðg 00ð0Þ; gð5Þð0ÞÞg 00ð0Þ � 10 detðg 00ð0Þ; gð4Þð0ÞÞg 000ð0Þ0 ð0; 0Þ.

By the condition (2), g 00ð0Þ0 0. When g is of A-type at 0, the conditions
(1) and (2) are written as follows. By (1), there exists l A R such that g 000ð0Þ ¼
lg 00ð0Þ, and then (2) is written as

detðg 00ð0Þ; 3gð5Þð0Þ � 10lgð4Þð0ÞÞ0 0:

Thus an A-type germ g is a 5=2-cusp if and only if o ¼ 0 and or 0 0.
Next we define the bias of cusps. Let g : ðR; 0Þ ! ðR2; 0Þ be an A-type

map-germ which is not a 3=2-cusp (i.e., o ¼ 0). Then

bðg; 0Þ ¼ detðg 00ð0Þ; gð4Þð0ÞÞ
jg 00ð0Þj3

does not depend on the parameter, and it is called the bias of cusps. We
abbreviate b ¼ bðgÞ ¼ bðg; 0Þ as well. Let g be an A-type germ. A line

u lim
t!0

g 0ðtÞ
jg 0ðtÞj ; u A R

� �
¼ fug 00ð0Þ; u A Rg

passing through gð0Þ ¼ 0 is called the tangent line of g at 0. We set two images
of g as

gþ ¼ gðð0; eÞÞ; g� ¼ gðð�e; 0ÞÞ;

for e > 0. We have the following proposition.

Proposition 2.2. Let g be an A-type germ with o ¼ 0. If b0 0, then for
a su‰ciently small e > 0, the images gþ and g� lie on the same side of the tangent
line of g. Moreover, if g is a 5=2-cusp and b ¼ 0, then for a su‰ciently small
e > 0, the images gþ and g� lie on both sides of the tangent line of g.

Proof. By rotating g and by a parameter change, we may assume that

g ¼ t2

2
;
t4

4!
g4 þ

t5

5!
g5ðtÞ

� �
;ð2:1Þ

where g4 A R and g5ðtÞ is a smooth function. Then b ¼ g4 and or ¼ 3g5ð0Þ.
Since the tangent line is the horizontal axis, the claim of the proposition is
obvious by these observations. r
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One can easily see that for 3=2-cusps, the images gþ and g� always lie on
both sides of the tangent line of g. Thus there is no similar notion of bias for
3=2-cusps. If an A-type map-germ g with o ¼ 0 satisfies b ¼ 0, then g is said to
be balanced (see Figure 2).

2.2. Behavior of the curvature function. Let sg be the arclength function
sgðtÞ ¼

Ð t
0 jg 0ðtÞj dt of an A-type germ g : ðR; 0Þ ! ðR2; 0Þ. It is shown that

ðsðtÞ :¼Þ sgnðtÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
jsgðtÞj

p
is Cy-di¤erentiable and s 0ð0Þ0 0 ([24, Theorem 1.1]).

Thus one can take sðtÞ as a parameter, which is called the half-arclength
parameter [24]. We have the following proposition.

Proposition 2.3. Let g : ðR; 0Þ ! ðR2; 0Þ be a 5=2-cusp, and t a parameter.
Let k be the curvature defined everywhere except t ¼ 0. Then ~kk ¼ sgnðtÞk is a
Cy function, and

~kkð0Þ ¼ b

3
;

d

ds
~kkð0Þ ¼

ffiffiffi
2

p

24
or

holds, where s is the half-arclength parameter.

Proof. We may assume that g is given by the form (2.1) without loss of
generality. Then

detðg 0; g 00Þ
jg 0j3

¼
g4
3
t3 þ g5ð0Þ

8
t4 þOð5Þ

t6 þ g24
12

t10 þOð11Þ
����

����
1=2

¼ sgnðtÞ g4
3
þ g5ð0Þ

8
tþOð2Þ

� �

holds. Here, OðnÞ stands for the terms whose degrees are greater than or equal

to n. On the other hand, by jg 0j ¼ jt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ t4g24=36þOð5Þ

q
j ¼ jtþ g24 t

4=72þOð5Þj

Figure 2. The left figure shows a balanced 5=2-cusp (i.e., b ¼ 0), and the right one is non-balanced

(i.e., b0 0). The dotted lines are the tangent lines at each singular point. As we have shown in

Proposition 2.2, the image of a balanced 5=2-cusp extends over the two domains separated by the

tangent line.
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and sg ¼ t2ð1=2þOð4ÞÞ, it holds that s ¼ t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=2þOð4Þ

p
and dt=ds ¼

ffiffiffi
2

p
at 0.

The proposition is then obvious from the above calculations. r

See [2] for another treatment of curvatures of curves with singularities.

2.3. Projection of space curves. Let G : ðR; 0Þ ! ðR3; 0Þ be a regular space
curve, and let t be an arclength parameter of G, and e, n, b the Frenet frame.
We set the orthogonal projection of G to the normal plane ðeð0ÞÞ? at 0 by

gðtÞ ¼ GðtÞ � hGðtÞ; eð0Þieð0Þ:

Note that g 0ð0Þ ¼ 0. Then g at 0 is A-type if and only if kð0Þ0 0, where k is
the curvature of G. We assume that g is A-type (i.e., kð0Þ0 0). Since

oðg; 0Þ ¼ tð0Þffiffiffiffiffiffiffiffiffi
kð0Þ

p ;

g at 0 is a 3=2-cusp if and only if tð0Þ0 0, where t is the torsion of G. If g is
A-type but not a 3=2-cusp (i.e., kð0Þ0 0, tð0Þ ¼ 0), then

bðg; 0Þ ¼ t 0

k
ð0Þ; orðg; 0Þ ¼

�k 0t 0 þ 3kt 00

k5=2
ð0Þ:

Thus, under the assumption kð0Þ0 0, g is a 3=2-cusp if and only if tð0Þ0 0, and
g is not a 3=2-cusp and non-balanced if and only if tð0Þ ¼ 0, t 0ð0Þ0 0, and g is a
balanced 5=2-cusp if and only if tð0Þ ¼ t 0ð0Þ ¼ 0, t 00ð0Þ0 0.

3. Invariants of 5=2-cuspidal edges

In this section, we discuss the geometric properties of 5=2-cuspidal edges.

3.1. Frontals. Let f : ðR2; 0Þ ! ðR3; 0Þ be a map-germ. We call f a
frontal if there exists a map n : ðR2; 0Þ ! S2 satisfying hdf ðXÞ; ni ¼ 0 for any
X A TpR

2 and p A ðR2; 0Þ, where S2 stands for the unit sphere in R3. We call
n a unit normal vector field of f . A frontal is called a front if ð f ; nÞ is an
immersion. Let f : ðR2; 0Þ ! ðR3; 0Þ be a frontal, and n a unit normal vector
field of f . We set

l ¼ detð fu; fv; nÞð3:1Þ
by taking a coordinate system ðu; vÞ, with fu ¼ qf =qu, fv ¼ qf =qv. We call l a
signed area density function. By the definition, Sð f Þ ¼ l�1ð0Þ, where Sð f Þ is the
set of singularities of f . A singular point p of f is said to be non-degenerate if
dlðpÞ0 0. If p is a non-degenerate singular point, then Sð f Þ near p is a regular
curve. Let p be a singular point satisfying rank dfp ¼ 1, then there exists a non-
vanishing vector field h on a neighborhood U of p such that hhqiR ¼ ker dfq for
q A Sð f Þ \U . We call h a null vector field. We note that the notions of non-
degeneracy and null vector field are introduced in [12]. We remark that a non-
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degenerate singular point satisfies rank dfp ¼ 1. A non-degenerate singular point
p of f is called first kind (respectively, second kind ) if hp is transverse to Sð f Þ
at p (respectively, hp is tangent to Sð f Þ at p). It is well-known that a singular
point of the first kind on a front is a cuspidal edge ([12, Proposition 1.3], see also
[21, Corollary 2.5]).

3.2. Basic invariants for singular points of the first kind. In [20], the
singular curvature and the limiting normal curvature are defined for cuspidal
edges, namely singular points of fronts of the first kind. In [14, 15], the cuspidal
curvature and the cusp-directional torsion are defined. These definitions are also
valid for singular points of frontals of the first kind.

Let f : ðR2; 0Þ ! ðR3; 0Þ be a frontal and n a unit normal vector field. Let
0 be a singular point of the first kind. Taking a parametrization g : ðR; 0Þ !
ðR2; 0Þ of Sð f Þ, the singular curvature ks and the limiting normal curvature kn are
defined by

ksðtÞ ¼ sgnðdlðhÞÞ detðĝg
0; ĝg 00; n � gÞ
jĝg 0j3

ðtÞ; knðtÞ ¼
hĝg 00; n � gi

jĝg 0j2
ðtÞ;

respectively ([20]), where ðg 0; hÞ is taken to be positively oriented. Let x be
a vector field on ðR2; 0Þ such that xq is tangent to Sð f Þ at each point q A Sð f Þ,
and let h be a null vector field. Then the cuspidal curvature kc and the cusp-
directional torsion or the cuspidal torsion kt are defined by

kcðtÞ ¼
jx f j3=2 detðx f ; h2f ; h3f Þ

jx f � h2f j5=2

����
ðu; vÞ¼gðtÞ

;ð3:2Þ

ktðtÞ ¼
detðx f ; h2f ; xh2f Þ

jx f � h2f j2
� detðx f ; h2f ; x2f Þhx f ; h2f i

jx f j2jx f � h2f j2

 !�����
ðu; vÞ¼gðtÞ

;ð3:3Þ

where z if stands for the i’th order directional derivative of f by a vector field z.
The invariant kc measures a kind of ‘‘wideness’’ of the singularity. Furthermore,
it is shown that kP ¼ kckn is an intrinsic invariant. See Section 4 for the
definition of the intrinsicity and the extrinsicity of invariants. See [15] for
details. One can easily see that kcð0Þ0 0 if and only if f is a front at 0. It
is known that for two cuspidal edges f and g, if their invariants ks, k

0
s, kn, k

0
n,

kc, kt coincide at 0, then there exists a coordinate system such that 3-jets j3f
and j3g coincide at 0 ([14, Theorem 6.1]), where 0 ¼ d=dt and t is an arclength
parameter. In [3, 4], intrinsicities and extrinsicities of these invariants are inves-
tigated. See [18, 1, 11] for another approach to investigating cuspidal edges, and
[25] for other applications of the above invariants (see also [26]).

3.3. Criterion and invariants for 5=2-cuspidal edges. First, we review the
criterion for 5=2-cuspidal edges given in [6, Theorem 4.1]. In order to do that,
we recall the following fact:
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Fact 3.1 ([6, Lemma 4.2]). Let f : ðR2; 0Þ ! ðR3; 0Þ be a frontal-germ such
that 0 is a singular point of the first kind. Let x, h be vector fields on ðR2; 0Þ such
that the restriction xjSð f Þ is tangent to Sð f Þ, and h is a null vector field. Then
there exists a null vector field ~hh such that

hx f ; ~hh2f ið0Þ ¼ hx f ; ~hh3f ið0Þ ¼ 0ð3:4Þ

holds. Moreover, if detðx f ; h2f ; h3f Þð0Þ ¼ 0, there exists the constant l A R such
that

~hh3f ð0Þ ¼ l~hh2f ð0Þð3:5Þ

holds.

This fact is also obtained as a corollary of Lemma 3.4. Then the criterion
for 5=2-cuspidal edges is given as follows:

Proposition 3.2 (Criterion for 5=2-cuspidal edges, [6, Theorem 4.1]). The
frontal-germ f : ðR2; 0Þ ! ðR3; 0Þ is a 5=2-cuspidal edge if and only if

(1) hlð0Þ0 0,
(2) detðx f ; h2f ; h3f Þ ¼ 0 on Sð f Þ,
(3) detðx f ; ~hh2f ; 3~hh5f � 10l~hh4f Þð0Þ0 0.

Here, x is a vector field on ðR2; 0Þ such that the restriction xjSð f Þ is tangent to
Sð f Þ, and h is a null vector field. Furthermore, ~hh is a null vector field and l A R
is the constant given in Fact 3:1.

The condition (1) implies that 0 is a singular point of the first kind.
Moreover, by [15, Proposition 3.11], the condition (2) implies that f is not a
front:

Fact 3.3 ([15, Proposition 3.11]). Let f : ðR2; 0Þ ! ðR3; 0Þ be a frontal-
germ such that 0 is a singular point of the first kind. Take vector fields x, h on
ðR2; 0Þ such that the restriction xjSð f Þ is tangent to Sð f Þ, and h is a null vector
field. Let q A Sð f Þ be a singular point of the first kind. Then,

detðx f ; h2f ; h3f ÞðqÞ0 0

holds if and only if f is a front at q A Sð f Þ.

Proof. A frontal-germ f at a non-degenerate singular point q A Sð f Þ is a
front if and only if hnðqÞ0 0, where h is a null vector field and n is a unit normal
vector field. Firstly we show that the condition (2) is equivalent to detðx f ; n; hnÞ
¼ 0. Since hn; x f i ¼ 0 and hn; h2f i ¼ �hhn; hf i ¼ 0, we see that n is parallel to
x f � h2f on Sð f Þ. Thus

jx f � hhf j2 detðx f ; n; hnÞ ¼ detðx f ; x f � h2f ; hðx f � h2f ÞÞð3:6Þ

¼ detðx f ; x f � h2f ; hx f � h2f þ x f � h3f Þ:
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Since ½h; x� is a vector field and df ðTpÞ is generated by xp ðp A Sð f ÞÞ, the
derivative ½h; x� f ¼ hx f � xhf is parallel to x f , and hf ¼ 0 on Sð f Þ. Since x is
tangent to Sð f Þ, xhf ¼ 0 on Sð f Þ. Hence hx f is parallel to x f . Thus the left-
hand side of (3.6) is equal to

detðx f ; x f � h2f ; x f � h3f ÞðtÞ:ð3:7Þ
Since detða; a� b; a� cÞ ¼ jaj2 detða; b; cÞ for vectors a; b; c A R3, (3.7) is a non-
zero multiple of detðx f ; h2f ; h3f ÞðtÞ. Thus (2) is equivalent to detðx f ; n; hnÞ ¼ 0.
One can write hn ¼ ax f þ bn. Then b ¼ hhn; ni ¼ 0. On the other hand,
jx f j2a ¼ hhn; x f i. Since hn; x f iðu; vÞ ¼ hn; hf iðu; vÞ ¼ 0 for any ðu; vÞ, it holds
that hhn; x f iðu; vÞ þ hn; hx f iðu; vÞ ¼ 0, hxn; hf iðu; vÞ þ hn; xhf iðu; vÞ ¼ 0 for any
ðu; vÞ. Since ½h; x� is a vector field, ½h; x� f is parallel to x f at 0. Thus

hn; ½h; x� f ið0Þ ¼ 0. Hence we have jx f j2a ¼ hhn; x f i ¼ �hn; hx f i ¼ �hn; xhf i
¼ hxn; hf i ¼ 0. This completes the proof. r

To define the invariants of 5=2-cuspidal edges, we prepare the following
lemma:

Lemma 3.4. Let f : ðR2; 0Þ ! ðR3; 0Þ be a frontal-germ such that 0 is a
singular point of the first kind. Assume that each singular point q A Sð f Þ is of the
first kind. Let gðtÞ be a parametrization of Sð f Þ such that gð0Þ ¼ 0, and let x be
a vector field on ðR2; 0Þ such that the restriction xjSð f Þ is tangent to Sð f Þ. Then,
there exists a null vector field ~hh such that

hx f ; ~hh2f iðgðtÞÞ ¼ hx f ; ~hh3f iðgðtÞÞ ¼ 0ð3:8Þ
holds along gðtÞ. Moreover, if f is not a front at each q A Sð f Þ, then there exists
a function lðtÞ such that

~hh3f ðgðtÞÞ ¼ lðtÞ~hh2f ðgðtÞÞð3:9Þ
holds along gðtÞ.

Proof. We take a coordinate system ðu; vÞ satisfying Sð f Þ ¼ fv ¼ 0g, h ¼ qv.
Set

~hh ¼ aðu; vÞqu þ qv ðaðu; vÞ ¼ vða1ðuÞ þ a2ðuÞvÞÞ;ð3:10Þ
where we set

a1ðuÞ ¼ � h fvv; fui

h fu; fui

����
v¼0

; a2ðuÞ ¼ � 3a1ðuÞh fuv; fuiþ h fvvv; fui

2h fu; fui

����
v¼0

:

We can check that h fu; ~hh2f iðu; 0Þ ¼ h fu; ~hh3f iðu; 0Þ ¼ 0. With respect to the
second assertion, we have detðx f ; ~hh2f ; ~hh3f Þ ¼ 0 along Sð f Þ, by Fact 3.3. Hence,
there exist functions lðtÞ, lðtÞ such that

~hh3f ðgðtÞÞ ¼ lðtÞ~hh2f ðgðtÞÞ þ lðtÞx f ðgðtÞÞ:
Since hx f ; ~hh3f iðgðtÞÞ ¼ 0, we have lðtÞ ¼ 0. r
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Corollary 3.5. Let f : ðR2; 0Þ ! ðR3; 0Þ be a frontal-germ such that 0 is a
singular point of the first kind. Assume that each singular point q A Sð f Þ is of the
first kind. Then, there exists a coordinate system ðu; vÞ such that Sð f Þ ¼ fv ¼ 0g,
and

fv ¼ 0; h fu; fvvi ¼ h fu; fvvvi ¼ 0

along the u-axis.

Proof. We take a coordinate system ðu; vÞ satisfying Sð f Þ ¼ fv ¼ 0g, h ¼ qv.
Set ~hh as in (3.10). Then there exists a coordinate system ðx; yÞ such that x ¼ u
and qy is parallel to ~hh. Since h fx; ~hh2f iðx; 0Þ ¼ h fx; ~hh3f iðx; 0Þ ¼ 0, we have
h fx; fyyiðx; 0Þ ¼ h fx; fyyyiðx; 0Þ ¼ 0. Hence ðx; yÞ is the desired coordinate
system. r

Let us assume that Sð f Þ is oriented, and let x be a vector field such that the
restriction xjSð f Þ is tangent to Sð f Þ agreeing with the orientation of Sð f Þ, and

let h be a null vector field so that ðx; hÞ is positively oriented. We take a null
vector field ~hh which satisfies the condition (3.4), and ðx; ~hhÞ is positively oriented.
Assuming f is not a front at 0, then by Fact 3.1, there exists a number l A R
such that ~hh3f ð0; 0Þ ¼ l~hh2f ð0; 0Þ. We define two real numbers at 0, respectively,
by

rb ¼
jx f ð0; 0Þj2 detðx f ð0; 0Þ; ~hh2f ð0; 0Þ; ~hh4f ð0; 0ÞÞ

jx f ð0; 0Þ � ~hh2f ð0; 0Þj3
;

rc ¼
jx f ð0; 0Þj5=2 detðx f ð0; 0Þ; ~hh2f ð0; 0Þ; 3~hh5f ð0; 0Þ � 10l~hh4f ð0; 0ÞÞ

jx f ð0; 0Þ � ~hh2f ð0; 0Þj7=2
:

Lemma 3.6. The two real numbers rb, and rc do not depend on the choices
of x and ~hh.

Proof. We take the coordinate system ðu; vÞ given in Corollary 3.5. We
set

x ¼ a1ðu; vÞqu þ a2ðu; vÞqv; h ¼ a3ðu; vÞqu þ a4ðu; vÞqv;

where aiðu; vÞ ði ¼ 1; 2; 3; 4Þ is a smooth function such that a1; a4 > 0, a3ðu; 0Þ ¼
0. By the assumption (3.4), ða3Þv ¼ ða3Þvv ¼ 0 holds on the u-axis. By a
straightforward calculation,

x f ¼ a1 fu;

h2f ¼ a24 fvv;

h3f ¼ a24ð3ða4Þv fvv þ a4 fvvvÞ;

h4f ¼ a44 fvvvv þ fu � þ fvv�
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hold on the u-axis. Thus

j fxj2 detðx f ; h2f ; h4f Þ
jx f � h2f j3

¼ detða1 fu; a24 fvv; a44 fvvvvÞ
ja1 fuj ja24 fvvj

3
¼ detð fu; fvv; fvvvvÞ

j fuj j fvvj3

holds at 0, which shows the independence of rb. By the above calculation, if
fvvv ¼ lfvv, then h3f ¼ ð3ða4Þv þ a4lÞh2f . Moreover, we see

h5f ¼ a44ð10ða4Þv fvvvv þ a4 fvvvvvÞ:
Hence, setting l :¼ 3ða4Þv þ a4l,

jx f j5=2 detðx f ; h2f ; 3h5f � 10lh4f Þ
jx f � h2f j7=2

¼ detða1 fu; a24 fvv; 3a44ð10ða4Þv fvvvv þ a4 fvvvvvÞ � 10ð3ða4Þv þ a4lÞa44 fvvvvÞ
ja1 fuj ja24 fvvj

7=2

¼ detð fu; fvv; 3fvvvvv � 10lfvvvvÞ
j fuj j fvvj7=2

holds at 0, which shows the independence of rc. r

Definition 3.7. Let f : ðR2; 0Þ ! ðR3; 0Þ be a frontal-germ such that 0 is
a singular point of the first kind. Assume that each singular point is of the first
kind and is not a front. For example, 5=2-cuspidal edges satisfy this assump-
tion. Then, by Lemma 3.4, we have ~hh3f ðgðtÞÞ ¼ lðtÞ~hh2f ðgðtÞÞ, where gðtÞ is a
parametrization of Sð f Þ, and ~hh is a null vector field satisfying hx f ; ~hh2f iðgðtÞÞ ¼
hx f ; ~hh3f iðgðtÞÞ ¼ 0. Then we define rbðtÞ, rcðtÞ as

rbðtÞ ¼
jx f j2 detðx f ; ~hh2f ; ~hh4f Þ

jx f � ~hh2f j3

����
ðu; vÞ¼gðtÞ

;ð3:11Þ

rcðtÞ ¼
jx f j5=2 detðx f ; ~hh2f ; 3~hh5f � 10l~hh4f Þ

jx f � ~hh2f j7=2

����
ðu; vÞ¼gðtÞ

;ð3:12Þ

respectively. The invariant rbðtÞ is called the bias, and rcðtÞ is called the sec-
ondary cuspidal curvature. We also define

rPðpÞ :¼ knðpÞrcðpÞ

for a singular point p ¼ 0, which is called the secondary product curvature.

In [17], the bias rb and the secondary cuspidal curvature rc are used to
investigate the cuspidal cross caps.

3.4. Geometric meanings. Here we study geometric meanings of the invari-
ants rb and rc.
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Let f : ðR2; 0Þ ! ðR3; 0Þ be a frontal and 0 a singular point of the first kind.
Moreover, let gðtÞ ðgð0Þ ¼ 0Þ be a parametrization of Sð f Þ, and we set ĝgðtÞ :¼
f ðgðtÞÞ. Since 0 is a singular point of the first kind, ĝg 0ð0Þ0 0, where 0 ¼ d=dt.
Denote by Pf the normal plane ðĝg 0ð0ÞÞ? of ĝg 0ð0Þ passing through 0. We call Pf

the normal plane of f passing through 0.

Proposition 3.8. Let f : ðR2; 0Þ ! ðR3; 0Þ be a frontal and 0 a singular
point of the first kind. Assume that f is not a front. Let rb (respectively, rc) be
the bias (respectively, the secondary cuspidal curvature) of the frontal f at 0.
Denote by Pf the normal plane of f passing through 0. Then,

� the slice of f by the normal plane Pf is an image of an A-type map-germ
ĉc : ðR; 0Þ ! ðPf ; 0Þ. Moreover,

� if we denote by bðĉc; 0Þ (respectively, orðĉc; 0Þ) the bias of cusps (respectively,
the secondary cuspidal curvature) of ĉc at 0 as a plane curve in Pf , then we
have

rb ¼ bðĉc; 0Þ; rc ¼ orðĉc; 0Þ:

Proof. Let gðtÞ ðgð0Þ ¼ 0Þ be a parametrization of Sð f Þ, and we set ĝgðtÞ :¼
f ðgðtÞÞ. The slice of f by the normal plane Pf ¼ ðĝg 0ð0ÞÞ? is given by

C ¼ fðu; vÞ; h f ðu; vÞ; ĝg 0ð0Þi ¼ 0g;

where 0 ¼ d=dt. We take a coordinate system satisfying Sð f Þ ¼ fv ¼ 0g, h ¼ qv
and h fu; fvvi ¼ h fu; fvvvi ¼ 0 on Sð f Þ (Corollary 3.5). Then we see that h f ðu; vÞ;
ĝg 0ð0Þiu 0 0 at 0. Thus we can take a parametrization of C as cðvÞ ¼ ðc1ðvÞ; vÞ.
We set ĉc ¼ f � c. We remark that since hĉcðvÞ; ĝg 0ð0Þi ¼ 0, it holds that c 01ð0Þ ¼ 0.
Furthermore, since fvðu; 0Þ ¼ 0, it holds that fuvðu; 0Þ ¼ fuuvðu; 0Þ ¼ fuuuvðu; 0Þ ¼
0. Then we have

ĉc 00ð0Þ ¼ fvvð0; 0Þ þ c 001 ð0Þ fuð0; 0Þ; ĉc 000ð0Þ ¼ fvvvð0; 0Þ þ c 0001 ð0Þ fuð0; 0Þ:

Since hĉcðvÞ; ĝg 0ð0Þi ¼ 0, it holds that c 001 ð0Þ ¼ �h fuð0; 0Þ; fvvð0; 0Þi ¼ 0 and c 0001 ð0Þ ¼
�h fuð0; 0Þ; fvvvð0; 0Þi ¼ 0. Furthermore, since

ĉcð4Þð0Þ ¼ fvvvvð0; 0Þ þ c
ð4Þ
1 ð0Þ fuð0; 0Þ; ĉcð5Þð0Þ ¼ fvvvvvð0; 0Þ þ c

ð5Þ
1 ð0Þ fuð0; 0Þ;

we see that

bðĉc; 0Þ ¼ detð fu; fvv; fvvvvÞ
j fvvj3

ð0; 0Þ ¼ rb;

orðĉc; 0Þ ¼
detð fu; fvv; 3fvvvvv � 10lfvvvvÞ

j fvvj7=2
ð0; 0Þ ¼ rc: r

3.5. Normal form for 5=2-cuspidal edges. In [14], a normal form for
cuspidal edges is given. See also [1]. We have the following.
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Proposition 3.9. Let f : ðR2; 0Þ ! ðR3; 0Þ be a 5=2-cuspidal edge. Then
there exist a coordinate system ðu; vÞ on ðR2; 0Þ and an isometry F : ðR3; 0Þ !
ðR3; 0Þ such that

F � f ðu; vÞ ¼
 
u;
X5
i¼2

ai

i!
ui þ v2

2
;
X5
i¼2

bi0

i!
ui þ

X3
i¼1

bi2

i!
uiv2ð3:13Þ

þ b14

4!
uv4 þ

X5
i¼4

b0i

i!
vi

!
þ hðu; vÞ;

where ai A R ði ¼ 2; . . . ; 5Þ, bij A R ði þ ja 5Þ are constants satisfying b05 0 0, and
hðu; vÞ consists of the terms whose degrees are greater than or equal to 6, of the
form

ð0; u6h1ðuÞ; u6h2ðuÞ þ u4v2h3ðuÞ þ u2v4h4ðuÞ þ uv5h5ðuÞ þ v6h6ðu; vÞÞ:

Although this proposition can be shown by the same method as in the
proof of [14, Theorem 3.1], we give a proof in Appendix A for the sake of
completeness. Under this normal form, the invariants defined above can be
computed as

� ðknð0Þ; k 0
nð0Þ; k 00

n ð0Þ; k 000
n ð0ÞÞ ¼ ð b20 ; b30 � 2a2b12; b40 � 4a3b12 � 2a22b20 �

2a2b22 � 3b320 � 4b212b20; b50 þ 14a32b12 � 7a22b30 � 6a4b12 � 6a3b22 �
12b12b20b22 � 12b212b30 � 19b220b30 þ a2ð�6a3b20 � 2b32 þ 24b312 þ 32b220b12ÞÞ,

� ðksð0Þ; k 0
sð0Þ; k 00

s ð0Þ; k 000
s ð0ÞÞ ¼ ð a2 ; a3 þ 2b12b20; a4 � 4a2ðb212 þ b220Þ þ

2b20b22 þ 4b12b30 � 3a32 ; a5 � a22ð8b12b20 þ 19a3Þ � 2a3ð6b212 þ 5b220Þ �
3a2ð4b12b22 þ 5b20b30Þ � 24b20b

3
12 þ 2b12ð3b40 � 13b320Þ þ 6b22b30 þ 2b20b32Þ,

� ðktð0Þ; k 0
tð0Þ; k 00

t ð0ÞÞ ¼ ð 2b12 ; 2b22 � a2b20; 2b32 þ 4a22b12 � a3b20 � 2a2b30
�16b312 � 8b220b12Þ,

� ðrbð0Þ; r 0bð0ÞÞ ¼ ð b04 ; b14 � 12a2b12Þ,
� rcð0Þ ¼ 3b05 ,

and kc 1 0, where the prime means di¤erentiation with respect to the arclength
parameter of ĝg. Looking at the boxed entries, we have the following propo-
sition.

Proposition 3.10. Let f , g be germs of 5=2-cuspidal edges. If their invari-
ants kn, k

0
n, k

00
n , k

000
n , ks, k

0
s, k

00
s , k

000
s , kt, k

0
t , k

00
t , rb, r

0
b, rc coincide at 0, then there

exist a coordinate system ðu; vÞ and an isometry A of R3 such that

j50 f ðu; vÞ ¼ j50 ðA � gÞðu; vÞ;

where j50 f ðu; vÞ stands for the 5-jet of f with respect to ðu; vÞ at 0.

Moreover, a parametrization of f ðSð f ÞÞ as a space curve is given by f ðu; 0Þ.
Since b04, b14, b05 do not appear in f ðu; 0Þ, they also do not appear in the
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curvature k and the torsion t of f ðu; 0Þ. Thus we believe that the invariants
rb, rc for 5=2-cuspidal edges were not paid attention to before.

3.6. Invariants of 5=2-cuspidal edges on conjugate surfaces. We denote
by R3

1 the Lorentz-Minkowski 3-space with signature ð�;þ;þÞ. A spacelike
Delaunay surface with axis l is a surface in R3

1 such that the first fundamental
form (that is, the induced metric) is positive definite, it is of constant mean
curvature (CMC, for short), and it is invariant under the action of the group of
motions in R3

1 which fixes each point of the line l. Such spacelike Delaunay
surfaces are classified and they have conelike singularities (see [5], for details).

As in the case of CMC surfaces in R3, for a given (simply-connected)
spacelike CMC surface in R3

1 , there exists a spacelike CMC surface called the
conjugate. Any conjugate surface of a spacelike Delaunay surface is a spacelike
helicoidal CMC surface1, and it is shown in [6] that such spacelike helicoidal
CMC surfaces have 5=2-cuspidal edges. We remark that spacelike zero-mean-
curvature surfaces (i.e., maximal surface) never admit 5=2-cuspidal edges (cf. [6],
see also [28]).

In this section, we compute the invariants rb and rc of 5=2-cuspidal edges on
such spacelike helicoidal CMC surfaces, regarding them as surfaces in R3. More
precisely, setting

dðuÞ ¼ ðu2 þ k þ 1Þ2 � 4k;ð3:14Þ
a non-totally-umbilical spacelike Delaunay surface with timelike axis is given by

fDelðu; vÞ ¼
1

2H

ð u
0

t2 þ k � 1ffiffiffiffiffiffiffiffi
dðtÞ

p dt; u cosð2HvÞ; u sinð2HvÞ
 !

for some constant k A R ðk0 1Þ, where H is the mean curvature (see [6] for more
details). Let f : ðR2; 0Þ ! ðR3

1 ; 0Þ be a spacelike helicoidal CMC surface which
is given as a conjugate surface of the Delaunay surface fDel. Setting DðuÞ :¼
dðuÞ � u4, such an f can be written as follows (cf. [6]):

(1) If �1 < k < 1 or 1 < k, then f is congruent to

fTðu; vÞ ¼ cþ 1� k

2Hð1þ kÞ f; r cos f; r sin f

� �
;ð3:15Þ

where

rðuÞ :¼
ffiffiffiffiffiffiffiffiffiffi
DðuÞ

p
2Hðk þ 1Þ ; cðuÞ :¼

ð u
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ kÞ

p
t4

H
ffiffiffiffiffiffiffiffi
dðtÞ

p
DðtÞ

dt;

fðu; vÞ :¼
ð u
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ kÞ

p
ð1� kÞt2ffiffiffiffiffiffiffiffi

dðtÞ
p

DðtÞ
dt�

ffiffiffiffiffiffiffiffiffiffiffi
1þ k

2

r
v:

1A helicoidal surface is a surface which is invariant under a non-trivial one-parameter subgroup of

the isometry group of R3
1 .
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(2) If k < �1, then f is congruent to

fSðu; vÞ ¼ r sinh f; r cosh f; cþ k � 1

2Hð1þ kÞ f
� �

;ð3:16Þ

where

rðuÞ :¼ �
ffiffiffiffiffiffiffiffiffiffi
DðuÞ

p
2Hð1þ kÞ ; cðrÞ :¼

ð u
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð�k � 1Þ

p
t4

H
ffiffiffiffiffiffiffiffi
dðtÞ

p
DðtÞ

dt;

fðu; vÞ :¼ �
ð u
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð�k � 1Þ

p
ð1� kÞt2ffiffiffiffiffiffiffiffi

dðtÞ
p

DðtÞ
dt�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�k � 1

2

r
v:

(3) If k ¼ �1, then f is congruent to

fLðu; vÞ ¼ ðc� r� rf2;�2rf;cþ r� rf2Þð3:17Þ

þH
f3

3
þ f; f2;

f3

3
� f

 !
;

where rðuÞ :¼ u=2,

cðuÞ :¼
ð u
0

t2ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
t4 þ 4

p
þ t2Þ

4H 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
t4 þ 4

p dt; fðu; vÞ :¼
ð u
0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
t4 þ 4

p
þ t2

2H
ffiffiffiffiffiffiffiffiffiffiffiffiffi
t4 þ 4

p dtþ v:

Here, we consider the case of f ¼ fTðu; vÞ given in (3.15). Similar com-
putations can be applied in the cases of fS and fL given in (3.16) and (3.17),
respectively. For simplification, we may assume that H > 0.

Figure 3. Spacelike helicoidal CMC surfaces ðH ¼ 1=2Þ having 5=2-cuspidal edges in Lorentz-

Minkowski 3-space R3
1 . These surfaces are conjugates of spacelike Delaunay surfaces with timelike

axis. See [6] for more details.
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Since ð fT Þuð0; vÞ ¼ 0, the singular set Sð fT Þ is given by Sð fTÞ ¼ fu ¼ 0g and
h ¼ qu gives a null vector field. Since the map n : ðR2; 0Þ ! S2 defined by

n ¼ 1ffiffiffiffiffiffi
2D

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d� ðk þ 1Þu2

p ð
ffiffiffiffiffiffi
dD

p
;�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðk þ 1Þ

p
u3 cos f�

ffiffiffi
d

p
ðk � 1Þ sin f;

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðk þ 1Þ

p
u3 sin fþ

ffiffiffi
d

p
ðk � 1Þ cos fÞ

is a unit normal vector field along fT (cf. Section 3.1), fT is a frontal. Then
we can check that hlð0; vÞ ¼ �1=ð2H 2

ffiffiffiffiffiffiffiffiffiffiffi
k þ 1

p
Þ ð0 0Þ holds, where l is the signed

area density function (cf. (3.1)). Thus, we have that fT satisfies (1) in Prop-
osition 3.2. Set xðu; vÞ :¼ qv and

~hhðu; vÞ :¼ qu �
2 signðk � 1Þ

ðk � 1Þ2
u2qv

(cf. (3.10)). Then we can check that hx fTð0; vÞ; ~hh2fTð0; vÞi ¼ 0 and ~hh3fTð0; vÞ ¼
0. Hence, fT satisfies (2) in Proposition 3.2. Moreover, the constant l is 0.
Then, by a straightforward calculation, we have

detðx fT ; ~hh2fT ; ~hh5f Þð0; vÞ ¼ � 24

H 2jk � 1j3
ð0 0Þ:

Therefore, fT satisfies (3) in Proposition 3.2, and hence fT has 5=2-cuspidal edges
along gðvÞ ¼ ð0; vÞ. The invariants are calculated as

rcð0; vÞ ¼
72H 3=2

ffiffiffiffiffiffiffiffiffiffiffi
k þ 1

pffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jk � 1j

p ; rbð0; vÞ ¼ 0:

Similarly, in the case of k < �1, the invariants of fS given in (3.16) are calculated
as

rcð0; vÞ ¼
72H 3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�k � 1

p

ffiffiffiffiffiffiffiffiffiffiffi
1� k

p
cosh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�k � 1

p
vffiffiffi

2
p

 ! ;

rbð0; vÞ ¼ 6
ffiffiffi
2

p
H

ð1þ kÞ sinh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�k � 1

p
vffiffiffi

2
p

 !

ð1� kÞ cosh2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�k � 1

p
vffiffiffi

2
p

 ! ;

and in the case of k ¼ �1, the invariants of fL given in (3.17) are calculated
as

rcð0; vÞ ¼ � 72
ffiffiffiffiffi
H

p

1þ v2
; rbð0; vÞ ¼

6
ffiffiffi
2

p
v

Hð1þ v2Þ2
:
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4. Intrinsicity and extrinsicity of invariants

Let f : ðR2; 0Þ ! ðR3; 0Þ be a map-germ. The induced metric or the first
fundamental form of f is the metric on ðR2; 0Þ defined by f �h ; i. A function
I : ðR2; 0Þ ! R, or I : Sð f Þ ! R, is an invariant if I does not depend on the
choice of coordinate system on the source. An invariant I : ðR2; 0Þ ! R, or
I : Sð f Þ ! R, is intrinsic if it can be represented by a Cy function of E, F , G
and their derivatives, where

E ¼ h fu; fui; F ¼ h fu; fvi; G ¼ h fv; fvi;

and ðu; vÞ is a coordinate defined in terms of the first fundamental form f �h ; i.
An invariant I : ðR2; 0Þ ! R, or I : Sð f Þ ! R, is extrinsic if there exists a map
~ff such that the first fundamental form of ~ff is the same as f , but I does not
coincide. In [15, 4], it is determined whether some invariants of cuspidal edges
are intrinsic or extrinsic (cf. [3] for invariants of cross caps). In this section, we
show the bias rb is extrinsic.

4.1. Intrinsic criterion for 5=2-cuspidal edges. Let f : ðR2; 0Þ ! ðR3; 0Þ be
a frontal-germ and 0 a non-degenerate singular point. Here, we shall show that
the A-equivalence class of 5=2-cuspidal edges can be determined intrinsically
among frontal-germs with non-zero limiting normal curvature kn 0 0 (Theorem
4.4, Corollary 4.5).

Definition 4.1. Let f : ðR2; 0Þ ! ðR3; 0Þ be a frontal-germ such that 0 is
a singular point of the first kind. A coordinate system ðu; vÞ around 0 is called
adjusted at 0 if fvð0; 0Þ ¼ 0. A coordinate system ðu; vÞ which is adjusted at 0 is
called normally-adjusted at 0 if ðu; vÞ is compatible with the orientation of ðR2; 0Þ,
Eð0; 0Þ ¼ 1 and lvð0; 0Þ ¼ 1.

The existence of such a normally-adjusted coordinate system can be verified
by the existence of normalized strongly adapted coordinate systems2 [4, Definition
2.24, Proposition 2.25] (cf. [20, Lemma 3.2] and [15, Definition 3.7]).

It was proved in [15, Corollary 3.14] that the Gaussian curvature K and the
mean curvature H can be extended smoothly across 5=2-cuspidal edges. Then,
we set

Hh :¼ Hvð0; 0Þ; Kh :¼ Kvð0; 0Þ;ð4:1Þ

where ðu; vÞ is a coordinate system normally-adjusted at 0. We call Kh (respec-
tively, Hh) the null-derivative Gaussian curvature (respectively, the null-derivative
mean curvature) of 5=2-cuspidal edge at 0. We shall prove that the definitions

2A coordinate system ðu; vÞ centered at ð0; 0Þ is called normalized strongly adapted if the singular

set is given by the u-axis, qv gives the null vector field along the u-axis, fvðu; 0Þ ¼ 0, j fuðu; 0Þj ¼
j fvvðu; 0Þj ¼ 1, h fuðu; 0Þ; fvvðu; 0Þi ¼ 0 and h fuðu; vÞ; fvðu; vÞi ¼ 0 hold.
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of null-derivative Gaussian and mean curvature do not depend on the choice of
normally-adjusted coordinate systems, as follows.

Lemma 4.2. If two coordinate systems ðu; vÞ and ðU ;VÞ are normally-
adjusted at 0, then

Uu ¼ 1; Uv ¼ 0; Vv ¼ 1ð4:2Þ

holds at ð0; 0Þ. Moreover, the definitions of null-derivative Gaussian and mean
curvatures Hh, Kh are independent of the choice of the coordinate system normally-
adjusted at 0.

Proof. Since fv ¼ fV ¼ 0 at ð0; 0Þ,

fv ¼ Uv fU þ Vv fV ¼ Uv fU

yields Uvð0; 0Þ ¼ 0. Since ðu; vÞ 7! ðU ;VÞ is orientation-preserving, J :¼ UuVv �
UvVu is positive-valued. In particular, Jð0; 0Þ ¼ Uuð0; 0ÞVvð0; 0Þ > 0 holds.
Setting l :¼ detð fu; fv; nÞ and L :¼ detð fU ; fV ; nÞ, we have l ¼ JL. Then

lv ¼ JvLþ JLv ¼ JvLþ JðLUUv þLVVvÞ

holds, and evaluating this at ð0; 0Þ we have

1 ¼ Uuð0; 0ÞV 2
v ð0; 0Þ;ð4:3Þ

which yields Uuð0; 0Þ > 0. Since J ¼ UuVv > 0 at ð0; 0Þ, Vvð0; 0Þ > 0 holds.
Moreover, by 1 ¼ E ¼ h fu; fui ¼ U 2

u h fU ; fUi ¼ U 2
u at ð0; 0Þ, we have Uuð0; 0Þ

¼ 1. Substituting this into (4.3), Vvð0; 0Þ ¼ 1 holds. Hence we have (4.2).
Moreover, then

q

qv
¼ Uv

q

qU
þ Vv

q

qV
¼ q

qV

holds at ð0; 0Þ. In particular, the definition of Hh, Kh as in (4.1) is independent
of choice of the coordinate system normally-adjusted at 0. r

Since the Gaussian curvature K and the definition of normally-adjusted co-
ordinate systems are intrinsic, the null-derivative Gaussian curvature Kh is an
intrinsic invariant for 5=2-cuspidal edges. Now, we shall check the relationships
amongst K , H, Kh, Hh and other invariants.

Lemma 4.3. Let f : ðR2; 0Þ ! ðR3; 0Þ be a germ of a 5=2-cuspidal edge.
Then the Gaussian curvature K and the mean curvature H of f satisfy

K ¼ 1

3
knrb � k2

t ;ð4:4Þ

H ¼ 1

2
kn þ

1

6
rbð4:5Þ
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along the singular set, respectively. Moreover, the null-derivative Gaussian curva-
ture Kh and the null-derivative mean curvature Hh of f satisfy

Kh ¼
1

24
rP;ð4:6Þ

Hh ¼
1

48
rcð4:7Þ

along the singular set, respectively.

Proof. By Proposition 3.9, without loss of generality, we may assume that
f is given by the form in (3.13). A direct calculation yields

ktð0Þ ¼ 2b12; rbð0Þ ¼ b04; knð0Þ ¼ b20; rcð0Þ ¼ 3b05; rPð0Þ ¼ 3b20b05

and

K ¼ 1

3
b20b04 � 4b212; H ¼ 1

2
b20 þ

1

6
b04

hold at ð0; 0Þ. Hence, (4.4) and (4.5) hold. On the other hand, since the coor-
dinate system ðu; vÞ of f ðu; vÞ given by the form in (3.13) is normally-adjusted at
ð0; 0Þ, we have Hv ¼ Hh and Kv ¼ Kh at ð0; 0Þ. By a direct calculation, we have
that

Hvð0; 0Þ ¼
1

16
b05; Kvð0; 0Þ ¼

1

8
b20b05;

and hence, (4.6) and (4.7) hold. r

Theorem 4.4. For 5=2-cuspidal edges, the secondary product curvature rP is
an intrinsic invariant.

Proof. By (4.6) in Lemma 4.3 and the fact that Kh is intrinsic, rP is
intrinsic as well. r

Let f : ðR2; 0Þ ! ðR3; 0Þ be a frontal-germ such that 0 is a non-degenerate
singular point. If knð0Þ0 0, then f is called non-n-flat. The following corollary
implies that the A-equivalence class of 5=2-cuspidal edges can be determined
intrinsically amongst non-n-flat frontal-germs.

Corollary 4.5. Let f : ðR2; 0Þ ! ðR3; 0Þ be a frontal-germ such that 0 is
a singular point of the first kind. Assume that f is non-n-flat. Then, f at 0 is a
5=2-cuspidal edge if and only if kP ¼ 0 along Sð f Þ and rPð0Þ0 0.

Proof. By the definitions of kc given in (3.2), rc given in (3.12) and the
criterion (Proposition 3.2), f at 0 is a 5=2-cuspidal edge if and only if kc ¼ 0
along Sð f Þ and rcð0Þ0 0. Therefore, imposing the non-n-flatness kn 0 0, we
have that 0 is a non-n-flat 5=2-cuspidal edge if and only if kP ¼ 0 along Sð f Þ and
rPð0Þ0 0. r
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Following Corollary 4.5, we give a definition of intrinsic 5=2-cuspidal edges
for singular points of a certain metric, called the Kossowski metric in Section 5
(cf. Definition 5.3).

4.2. Isometric deformations of 5=2-cuspidal edges. The following fact is a
direct conclusion of [8, Theorem B]:

Fact 4.6 ([8]). Let f : ðR2; 0Þ ! ðR3; 0Þ be an analytic frontal-germ such
that 0 is a singular point of the first kind, and g : ðR; 0Þ ! ðR2; 0Þ a singular
curve. Assume that f has non-vanishing limiting normal curvature. Then, for
given analytic functions germs oðtÞ, tðtÞ at t ¼ 0, there exists an analytic frontal-
germ g ¼ go; t such that

(1) the first fundamental form of go; t coincides with that of f ,
(2) the limiting normal curvature function of go; t along g coincides with eoðtÞ

for a suitable choice of a unit normal vector field, and
(3) tðtÞ gives the torsion function of ĝggðtÞ, where ĝggðtÞ :¼ g � gðtÞ.

The possibilities for congruence classes of such a g are at most two unless t
vanishes identically. On the other hand, if t vanishes identically (i.e., ĝgg is a
planar curve), then the congruence class of g is uniquely determined.

Using Fact 4.6, we shall prove the following, which is an analog of a result
of [16, Theorem A] and [8, Corollary D].

Theorem 4.7 (Isometric deformation of 5=2-cuspidal edges). Let f : ðR2; 0Þ
! ðR3; 0Þ be a germ of an analytic 5=2-cuspidal edge with non-vanishing limiting
normal curvature, and let ksðtÞ be the singular curvature function along the singular
curve gðtÞ. Take a germ of an analytic regular space curve sðtÞ such that its
curvature function kðtÞ satisfies

k > jksj

at 0. Then, there exists a germ of an analytic 5=2-cuspidal edge gs : ðR2; 0Þ !
ðR3; 0Þ with non-vanishing limiting normal curvature such that

(1) the first fundamental form of gs coincides with that of f ,
(2) the singular image gs � g coincides with s.

The possibilities for congruence classes of such a gs are at most two unless t
vanishes identically. On the other hand, if t vanishes identically (i.e., s is a planar
curve), then the congruence class of gs is uniquely determined.

Proof. Set oðtÞ as

oðtÞ :¼ 1

2
logðkðtÞ2 � ksðtÞ2Þ:

Let tðtÞ be the torsion function of sðtÞ. By Fact 4.6, there exists an analytic
frontal-germ gs :¼ go; t : ðR2; 0Þ ! ðR3; 0Þ such that the items (1)–(3) in Fact 4.6
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hold. Thus, it su‰ces to show that gs has a 5=2-cuspidal edge at 0. Since the
first fundamental form of f coincides with that of gs, the product curvature
kP and the secondary product curvature rP of f coincide with those of gs,
respectively. Therefore, by Corollary 4.5, we have that gs : ðR2; 0Þ ! ðR3; 0Þ has
a 5=2-cuspidal edge at 0. r

In [8], the following is also proved.

Fact 4.8 ([8, Corollary E]). Let f0, f1 be two analytic frontal germs
with non-degenerate singularities whose limiting normal curvatures do not vanish.
Suppose that they are isometric to each other. Then there exists a continuous
1-parameter family of frontal germs gt ð0a ta 1Þ satisfying the following prop-
erties:

(1) g0 ¼ f0 and g1 ¼ f1,
(2) gt is isometric to g0,
(3) the limiting normal curvature of each gt does not vanish.

Moreover, if both f0 and f1 are germs of cuspidal edges, swallowtails or cuspidal
cross caps, then so are gt for 0a ta 1.

By this fact and Corollary 4.5, we also have the following result analogous
to [8, Corollary E].

Corollary 4.9. Let f0, f1 be two analytic germs of 5=2-cuspidal edges
whose limiting normal curvatures do not vanish. Suppose that they are isometric
to each other. Then there exists a continuous 1-parameter family of germs gt of
5=2-cuspidal edges ð0a ta 1Þ satisfying the following properties:

(1) g0 ¼ f0 and g1 ¼ f1,
(2) gt is isometric to g0,
(3) the limiting normal curvature of each gt does not vanish.

Proof. By Fact 4.8, there exists a continuous 1-parameter family of frontal
germs gt ð0a ta 1Þ such that the items (1)–(3) in Fact 4.8 hold. Since the
limiting normal curvature of each gt does not vanish and gt is isometric to g0
for each t A ½0; 1�, Corollary 4.5 yields that gt has 5=2-cuspidal edges. Hence, the
family fgtgt A ½0;1� is the desired one. r

4.3. Extrinsicity of invariants. Let f : ðR2; 0Þ ! ðR3; 0Þ be a germ of a
non-n-flat 5=2-cuspidal edge, and let g : ðR; 0Þ ! ðR2; 0Þ be a germ of a singular

curve of f . Let ĝg be the regular curve in R3 given by ĝg :¼ f � g, with arclength
parameter t. Set eðtÞ :¼ ĝg 0ðtÞ and bðtÞ :¼ �eðtÞ � n̂nðtÞ, where n̂nðtÞ :¼ nðgðtÞÞ.
Then fe; b; n̂ng is an orthonormal frame along g. Remark that, in general, b
may not coincide with the binormal vector field of ĝg as a space curve. Moreover
we have

ĝg 00 ¼ ksbþ knn̂n; b 0 ¼ �kseþ ktn̂n; n̂n 0 ¼ �kne� ktb:ð4:8Þ
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Let k, t be the curvature and torsion functions of ĝg, respectively. Substituting
(4.8) into k2t ¼ detðĝg 0; ĝg 00; ĝg 000Þ, we have the following.

Lemma 4.10. It holds that

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
s þ k2

n

q
; t ¼ k 0

skn � ksk
0
n

k2
� kt:

In particular, if ksðtÞ ¼ 0 along gðtÞ, then ktðtÞ ¼ �tðtÞ holds.

As a corollary of Theorem 4.7, we prove the extrinsicity of the limiting
normal curvature kn (Corollary 4.11), the cuspidal torsion kt (Corollary 4.12), and
the bias rb (Corollary 4.13). We remark that the proof of Corollary 4.11 is
analogous to that of [16, Corollary D].

Corollary 4.11. For 5=2-cuspidal edges, the limiting normal curvature kn is
an extrinsic invariant.

Proof. Let us take a real-analytic germ of a non-n-flat 5=2-cuspidal edge
f : ðR2; 0Þ ! ðR3; 0Þ. Denote by kðtÞ and tðtÞ the curvature and torsion of
ĝgðtÞ :¼ f ðgðtÞÞ, respectively. By Fact 4.6, for a given analytic function oðtÞ,
there exists a non-n-flat real-analytic frontal-germ go; t such that go; t is isometric
to f , the limiting normal curvature function of go; t is eoðtÞ, and tðtÞ gives the
torsion function of go; tðgðtÞÞ. Moreover, by Corollary 4.5, go; t is a 5=2-cuspidal
edge. Since we can choose oðtÞ arbitrarily, the limiting normal curvature is
extrinsic. r

Corollary 4.12. For 5=2-cuspidal edges, the cuspidal torsion kt is an
extrinsic invariant.

Proof. Let us take a real-analytic germ of a non-n-flat 5=2-cuspidal edge
f : ðR2; 0Þ ! ðR3; 0Þ satisfying ks 1 0 along the singular curve gðtÞ. Denote
by kðtÞ and tðtÞ the curvature and torsion of ĝgðtÞ :¼ f ðgðtÞÞ, respectively. By
Lemma 4.10, tðtÞ ¼ �ktðtÞ. Take an arbitrary analytic function ~ttðtÞ. Then, by
the fundamental theorem of space curves, there exists an analytic regular space
curve sðtÞ in R3 whose curvature and torsion functions are given by kðtÞ and ~ttðtÞ,
respectively. Applying Theorem 4.7 to sðtÞ, there exists a real-analytic germ of a
non-n-flat 5=2-cuspidal edge gs : ðR2; 0Þ ! ðR3; 0Þ such that gs is isometric to f
and s gives the image of the singular set of gs. Since ks 1 0 along the singular
curve gðtÞ, Lemma 4.10 yields that the cuspidal torsion of gs is �~ttðtÞ. Since we
can choose ~ttðtÞ arbitrarily, the cuspidal torsion is extrinsic. r

We remark that an analytic non-n-flat 5=2-cuspidal edge f satisfying ks 1 0
along Sð f Þ exists. In fact, by rotating the plane curve ðxðtÞ; zðtÞÞ :¼ ð1þ t5; t2Þ
with respect to the z-axis, we have such an example.
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Corollary 4.13. For 5=2-cuspidal edges, the bias rb is an extrinsic invariant.

Proof. Let us take a non-n-flat real-analytic 5=2-cuspidal edge satisfying
ks 1 0 along the singular curve gðtÞ. Moreover, assuming t1 0, then by Lemma
4.10, it holds that kt 1 0. By Lemma 4.3,

KðgðtÞÞ ¼ 1

3
rbðtÞknðtÞ:

Let kb 0 be a non-negative real number. Since kn 0 0, then by Theorem 4.7,
there exists a family fgkgkb0 of real-analytic germs of 5=2-cuspidal edges such
that, for each kb 0, gk is non-n-flat, gk has the same first fundamental form of
f , and the curvature function kkðtÞ of gkðgðtÞÞ is given by kkðtÞ ¼ kðtÞ þ k and
the torsion is 0. Since f and gk have the same first fundamental form for each
kb 0, the singular curvature kk

s ðtÞ of gk vanishes identically along gðtÞ. Thus
the limiting normal curvature of gk is kk

n ðtÞ ¼ kðtÞ þ k ð> 0Þ. Hence the bias rkb
for gk is given by

rkb ðtÞ ¼ 3
KðgðtÞÞ

kk
n

¼ 3
KðgðtÞÞ
kðtÞ þ k

:

In particular, the bias is extrinsic. r

Remark 4.14. The secondary cuspidal curvature rc is also extrinsic, since
rP is intrinsic (Theorem 4.4), kn is extrinsic (Corollary 4.11), and rc is written
as rc ¼ rP=kn when kn 0 0. Moreover, the product knrb is also extrinsic, since
knrb ¼ 3ðK þ k2

t Þ holds by (4.4) and kt is extrinsic (Corollary 4.12). Further-
more, by a proof similar to that of Corollary 4.12, we can prove that the cuspidal
torsion kt for cuspidal edges is also extrinsic.

4.4. Summary of intrinsicity and extrinsicity. We can summarize the intrin-
sicity and extrinsicity as follows. As seen in Section 2.1, the corresponding
invariant of the bias of cusps rb does not exist for cuspidal edges.

invariants ks kn kt kc kP ¼ kckn
int/ext intrinsic extrinsic extrinsic extrinsic intrinsic

Table 1. Intrinsicity and extrinsicity for cuspidal edges.

invariants ks kn kt rb rc knrb knrb � 3k2
t rP ¼ knrc

int/ext int ext ext ext ext ext int int

Table 2. Intrinsicity (int) and extrinsicity (ext) for 5=2-cuspidal edges. Here, we remark that the

intrinsicity of the invariant in the seventh slot can be verified by the identity knrb � 3k2
t ¼ 3K

(cf. (4.4)). With respect to the eighth slot, see Theorem 4.4.
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5. Isometric realizations of intrinsic 5=2-cuspidal edges

In this section, we deal with 5=2-cuspidal edge singularities without ambient
spaces. We give a definition of intrinsic 5=2-cuspidal edges for singular points
of Kossowski metrics, and prove the existence of their isometric realizations
(Theorem 5.7) as in [16] and [8].

First, we briefly introduce the basic properties of Kossowski metrics.
Further systematic treatments of Kossowski metrics are given in [4, 23, 8].
Let ds2 be a germ of a positive semi-definite metric on ðR2; 0Þ. Assume that 0 is
a singular point of ds2, that is, ds2 is not positive-definite at 0. Denote by Sðds2Þ
the set of singular points. A non-zero tangent vector v at 0 is called a null vector
at 0 if ds2ðv; xÞ ¼ 0 holds for every tangent vector x at 0. A local coordinate
neighborhood ðU ; u; vÞ is called adjusted at 0 if qv ¼ q=qv gives a null vector at
ð0; 0Þ.

If ðU ; u; vÞ is a local coordinate neighborhood adjusted at 0, then F ¼ G ¼ 0
holds at ð0; 0Þ, where

ds2 ¼ E du2 þ 2F dudvþ G dv2:ð5:1Þ

A singular point 0 is called admissible if there exists an local coordinate neigh-
borhood ðU ; u; vÞ adjusted at 0 such that Ev ¼ 2Fu, Gu ¼ Gv ¼ 0 hold at ð0; 0Þ.

Definition 5.1 (Kossowski metric). If each singular point is admissible, and
there exists a smooth function l defined on a neighborhood ðU ; u; vÞ of 0 such
that

EG � F 2 ¼ l2

on U , and dl0 0 holds at ð0; 0Þ, then ds2 is called a (germ of a) Kossowski
metric, where E, F , G are smooth functions on U satisfying (5.1). Moreover, if
we can choose E, F , G, and l to be analytic functions, then the Kossowski metric
is called analytic.

As shown in [4], the first fundamental form of a frontal-germ f : ðR2; 0Þ !
ðR3; 0Þ whose singular points are all non-degenerate is a Kossowski metric.

Let ds2 be a germ of a Kossowski metric having a singular point at 0. By
the condition dl0 0 at ð0; 0Þ, the implicit function theorem yields that there
exists a regular curve gðtÞ ðjtj < eÞ in the uv-plane (called the singular curve)
parametrizing Sðds2Þ. Then there exists a smooth non-zero vector field h such
that hq gives a null vector for each q A Sðds2Þ near ð0; 0Þ. We call h a null vector
field.

Definition 5.2. If h is transversal to Sðds2Þ at 0, the singular point 0 is
called type I (or an A2 point).

For a Kossowski metric ds2 induced from a frontal-germ f , type I singular
points of ds2 correspond to singular points of the first kind of f .
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According to [4, Proposition 2.25], for a type I singular point, there exists a
coordinate system ðU ; u; vÞ centered at 0, such that

� the singular set Sðds2Þ is given by the u-axis,
� qv gives the null vector field,
� F ¼ 0 on U , and
� Eðu; 0Þ ¼ 1, Evðu; 0Þ ¼ Gvðu; 0Þ ¼ 0, Gvvðu; 0Þ ¼ 2

hold, where E, F , G are smooth functions as in (5.1). Such a coordinate system
is called a normalized strongly adapted coordinate system. Since Gvvðu; 0Þ ¼ 2 is
equivalent to lvðu; 0Þ ¼G1, by changing v 7! �v if necessary, we may assume
that lvðu; 0Þ ¼ 1. (Hence, in the case of Kossowski metrics induced from frontals
in R3, the normalized strongly adapted coordinate systems are normally-adjusted,
cf. Definition 4.1.)

We shall review the definition of the product curvature for type I singular
points defined in [4]. Let ðU ; u; vÞ be a normalized strongly adapted coordinate
system centered at a type I singular point 0. Denote by K the Gaussian curva-
ture of ds2 on Unfv ¼ 0g. By [4, Proposition 2.27], vKðu; vÞ is a smooth func-
tion on U . Then

~kkP :¼ lim
v!0

vKðu; vÞ

does not depend on the choice of the normalized strongly adapted coordinate
system satisfying lvð0; 0Þ ¼ 1, and is called the product curvature.

Now, assume that ~kkP vanishes along the u-axis. Then, K is a bounded
smooth function on U , and

~KKh :¼ lim
v!0

Kvðu; vÞ

does not depend on the choice of the normalized strongly adapted coordinate
system satisfying lvð0; 0Þ ¼ 1. We call ~KKh the secondary product curvature or the
null-derivative Gaussian curvature.

Definition 5.3. Let ds2 be a germ of a Kossowski metric at a type I
singular point 0. If the product curvature ~kkP vanishes along Sðds2Þ, and the
secondary product curvature ~KKh does not vanish at 0, then the singular point 0
is called an intrinsic 5=2-cuspidal edge.

The following lemma is a direct conclusion of Lemma 4.3 and Corollary 4.5.

Lemma 5.4. Let f : ðR2; 0Þ ! ðR3; 0Þ be a non-n-flat frontal-germ having a
singular point 0 of the first kind. Denote by ds2 the first fundamental form of f .
Then, f at 0 is a 5=2-cuspidal edge if and only if 0 is an intrinsic 5=2-cuspidal edge
(as a singular point of the Kossowski metric ds2).

We remark that the assumption of the non-n-flatness cannot be removed,
since there exists a cuspidal edge with vanishing limiting normal curvature such
that the corresponding singular points of ds2 are intrinsic 5=2-cuspidal edges.
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Example 5.5. Let f : ðR2; 0Þ ! ðR3; 0Þ be a map-germ defined by f ðu; vÞ ¼
ðu; u2 þ v2; v3 þ v4Þ. The first fundamental form ds2 is written as

ds2 ¼ ð4u2 þ 1Þ du2 þ 8uv dudvþ v2ð4þ v2ð4vþ 3Þ2Þ dv2:

We can check that f is a front with a unit normal nðu; vÞ ¼ l̂l�1ð2uvð4vþ 3Þ;
�vð4vþ 3Þ; 2Þ, where we set l̂l :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ v2ð4u2 þ 1Þð4vþ 3Þ2

q
. Since the signed

area density function l is written as l ¼ vl̂l, the u-axis gives the singular set
fðu; 0Þ; u A Rg. As every singular point ðu; 0Þ is of the first kind, f is a cuspidal
edge. The limiting normal curvature knðuÞ is identically zero along the u-axis,
so the product curvature is too. The Gaussian curvature K is given by K ¼
�4ð4vþ 3Þð8vþ 3Þ=l̂l4, which satisfies Kvðu; 0Þ ¼ �9. Hence, the corresponding
singular points of ds2 are intrinsic 5=2-cuspidal edges, although f is a cuspidal
edge.

Kossowski [13] proved a realization theorem of Kossowski metrics which
admit only singular points satisfying K dA0 0. In [8], a realization theorem of
Kossowski metrics at an arbitrary singular point is proved. In the following
Fact 5.6, we introduce the realization theorem, which is a restricted version of
[8, Theorem B] so that gðtÞ is chosen to be the singular curve

Fact 5.6 (cf. [8, Theorem B]). Let ds2 be a germ of an analytic Kossowski
metric on ðR2; 0Þ, and let gðtÞ ðjtj < eÞ be a singular curve passing through a
singular point 0 ¼ gð0Þ. Assume that 0 is a type I singular point of ds2. Then,
for given analytic function-germs oðtÞ, tðtÞ at t ¼ 0, there exists an analytic
frontal-germ f ¼ fo; t : ðR2; 0Þ ! ðR3; 0Þ satisfying the following properties:

(1) ds2 is the first fundamental form of f ,
(2) the limiting normal curvature function germ along the singular curve g

coincides with eoðtÞ for a suitable choice of a unit normal vector field n,
(3) tðtÞ gives the torsion function germ of ĝgðtÞ :¼ f � gðtÞ.

The possibilities for the congruence classes of such an f are at most two. More-
over, if t vanishes identically (i.e., ĝg is a planar curve), then the congruence class
of f is uniquely determined.

Using Fact 5.6 and an argument similar to that of Theorem 4.7, we have
the following realization theorem of Kossowski metrics with intrinsic 5=2-
cuspidal edges with prescribed singular images, which is an analogous to a
result of [16, Theorem 12] for cuspidal edges and [8, Corollary D] for cuspidal
cross caps.

Theorem 5.7. Let ds2 be a germ of an analytic Kossowski metric on ðR2; 0Þ.
Assume that 0 is an intrinsic 5=2-cuspidal edge. Take a germ of an analytic
regular space curve sðtÞ such that its curvature function kðtÞ satisfies

k > jksj
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at 0, where ks is the singular curvature of ds2 along the singular curve g. Then
there exists a germ of an analytic 5=2-cuspidal edge fs : ðR2; 0Þ ! ðR3; 0Þ with non-
vanishing limiting normal curvature such that

(1) the first fundamental form of fs coincides with ds2,
(2) the singular image fs � g coincides with s.

The possibilities for congruence classes of such an fs are at most two unless t
vanishes identically. On the other hand, if t vanishes identically (i.e., s is a planar
curve), then the congruence class of fs is uniquely determined.

Proof. Set oðtÞ to be oðtÞ :¼ log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðtÞ2 � ksðtÞ2

q
: Let tðtÞ be the torsion

function of sðtÞ. By Fact 5.6, there exists an analytic frontal-germ fs :¼
fo; t : ðR2; 0Þ ! ðR3; 0Þ such that the items (1)–(3) in Fact 5.6 hold. Thus, it
su‰ces to show that fs has a 5=2-cuspidal edge at 0. Since the first funda-
mental form of fs coincides with ds2, the product curvature kP and the secondary
product curvature rP of fs coincide with those of ds2, respectively. Therefore,
by Corollary 4.5, we have that fs : ðR2; 0Þ ! ðR3; 0Þ has a 5=2-cuspidal edge at 0.

r

Remark 5.8. We may suppose that sðtÞ is defined for jtj < e. By Theorem
5.7, there exists a frontal fG : ðR2; 0Þ ! ðR3; 0Þ having a 5=2-cuspidal edge at
p ¼ sð0Þ such that f� is isometric to fþ and sðtÞ ¼ fG � gðtÞ. On the other hand,
reversing the orientation of sðtÞ, there exists a frontal gG : ðR2; 0Þ ! ðR3; 0Þ
having a 5=2-cuspidal edge at p ¼ sð0Þ such that g� is isometric to gþ and
sð�tÞ ¼ g � gð�tÞ. Thus if s is not planar, there are totally four distinct 5=2-
cuspidal edges fþ, f�, gþ and g� with the common first fundamental form
whose image of the singular curve coincides with sðð�e; eÞÞ in general, see [9] for
details.

Appendix A. Proofs of propositions

A.1. Proof of Proposition 3.9. We show the following proposition, which
is a normal form of a singular point of the first kind.

Proposition A.1. Let f : ðR2; 0Þ ! ðR3; 0Þ be a frontal and 0 a singular
point of the first kind. Then there exist a coordinate system ðu; vÞ and an isometry
A of R3 such that

A � f ðu; vÞ ¼ ðu; a2ðuÞ þ v2=2; a3ðuÞ þ v2b3ðu; vÞÞ

for some functions a2, a3, b3. If 0 is a 5=2-cuspidal edge, b3 has the form b3 ¼
c3ðuÞ þ v2c4ðuÞ þ v3c5ðu; vÞ for some functions c3, c4, c5.

Proof. Let n be a unit normal vector field along f . Since rank df0 ¼ 1, by
an isometry A on R3, we may assume df0ðXÞ ¼ ð�; 0; 0Þ for any X A T0R

2 and
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nð0; 0Þ ¼ ð0; 0; 1Þ, where � stands for a real number. Since 0 is a singular point
of the first kind, Sð f Þ is a regular curve in ðR2; 0Þ, and h is transversal to Sð f Þ.
Thus there exists a coordinate system ðu; vÞ satisfying Sð f Þ ¼ fv ¼ 0g and h ¼ qv.
Since fuð0; 0Þ ¼ ða; 0; 0Þ ða0 0Þ, setting u ¼ f1ðu; vÞ, v ¼ v, the coordinate system
ðu; vÞ satisfies

f ðu; vÞ ¼ ðu; f2ðu; vÞ; f3ðu; vÞÞ;ðA:1Þ
ð f2Þuð0; 0Þ ¼ ð f3Þuð0; 0Þ ¼ 0; nð0; 0Þ ¼ ð0; 0; 1Þ;

where f1ðu; vÞ is the first component of f . Since fvðu; 0Þ ¼ 0, there exist func-
tions a2, a3, b2, b3 such that fiðu; vÞ ¼ aiðuÞ þ v2biðu; vÞ=2 ði ¼ 2; 3Þ. Since 0
is non-degenerate, lvð0; 0Þ0 0. Thus detð fu; fvv; nÞð0; 0Þ ¼ b2ð0; 0Þ0 0. Setting
~uu ¼ u, ~vv ¼ v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jb2ðu; vÞj

p
, (A.1) is

f ðu; ~vvÞ ¼ ðu; a2ðuÞG ~vv2=2; a3ðuÞ þ ~vv2~bb3ðu; ~vvÞÞ:

This shows the first assertion.
If 0 is a 5=2-cuspidal edge, then by Lemma 3.2, detð fu; fvv; fvvvÞðu; 0Þ ¼ 0

holds. Thus we have the second assertion. r

Proposition 3.9 is now obvious by Proposition A.1.

A.2. Proof of Proposition 3.2.

Proof of Proposition 3.2. To show Proposition 3.2, firstly we show the
independence of the condition on the choice of the vector fields. Obviously,
the condition (1) does not depend on the choice of the vector fields. Since the
condition (2) is equivalent to f not being a front (Fact 3.3), the condition (2)
does not depend on the choice of the vector fields. Moreover, by the proof of
Lemma 3.6, we see the independence of the condition (3) on the choice of the
vector fields.

By Proposition A.1, we may assume that f is written in the form
f ðu; vÞ ¼ ðu; v2; v5c5ðu; vÞÞ. There exist functions c6, c7 such that c5ðu; vÞ ¼
c6ðu; v2Þ þ vc7ðu; v2Þ. Considering F1 � f ðu; vÞ, where F1ðX ;Y ;ZÞ ¼ ðX ;Y ;Z �
Y 3c7ðX ;YÞÞ, we may assume that f has the form f ðu; vÞ ¼ ðu; v2; v5c6ðu; v2ÞÞ.
Then a pair of vector fields x ¼ qu, h ¼ qv satisfies the condition of Proposi-
tion 3.2 with (3.4), and we see that l ¼ 0. By condition (3) of Proposition 3.2,
we see c6ð0; 0Þ0 0. We set F2ðX ;Y ;ZÞ ¼ ðX ;Y ;Z=c6ðX ;YÞÞ. Then F2 � f ¼
ðu; v2; v5Þ, which shows the assertion. r
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