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Abstract

We introduce two invariants called the secondary cuspidal curvature and the bias
on 5/2-cuspidal edges, and investigate their basic properties. While the secondary
cuspidal curvature is an analog of the cuspidal curvature of (ordinary) cuspidal edges,
there are no invariants corresponding to the bias. We prove that the product (called the
secondary product curvature) of the secondary cuspidal curvature and the limiting normal
curvature is an intrinsic invariant. Using this intrinsicity, we show that any real
analytic 5/2-cuspidal edges with non-vanishing limiting normal curvature admit non-
trivial isometric deformations, which provides the extrinsicity of various invariants.

1. Introduction

In this paper, we study local differential geometric properties of curves and
surfaces with singular points. Since we look at local properties, we essentially
deal with map-germs: (R,0) — (R?,0) and (R? 0) — (R?,0). We consider in-
variants under an action that is a difftomorphism on the source space and an
orientation preserving isometry of the target Euclidean space: R” and R®. In
the case of curves, we take a representative and identify a map-germ (R,0) —
(R?,0) with a curve I — R?, where [ is an open interval including the origin
of R. Similarly, in the case of surfaces, we take a representative and identify a
map-germ (R 0) — (R* 0) with a surface U — R*, where U is an open neigh-
borhood of the origin in R?>. We mainly deal with 5/2-cusps and 5/2-cuspidal
edges in this paper.

The ordinary cusp or 3/2-cusp is a map-germ (R,0) — (R? 0) which is
diffeomorphic (.«7-equivalent) to the map-germ ¢+ (#2,£°) at the origin. It is
known that the 3/2-cusp is the most frequently appearing singularity on plane
curves. A cuspidal edge is a map-germ (R*,0) — (R?,0) which is .«7-equivalent
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to the map-germ (u,v) — (u,v*,v?) at the origin (Figure 1, right), where two

map-germs f,g: (R",0) — (R",0) are .o/-equivalent if there exist diffeomor-
phisms ¢, : (R™,0) — (R™,0) and ¢, : (R",0) — (R",0) such that ¢, 0 fo¢ =g.
By definition, the image of a cuspidal edge is diffeomorphic to a direct product of
a 3/2-cusp with an interval ({(x, y,z) | »® — z2 = 0}), and its differential geometric
properties are well studied. In [27] (see also [22]), the cuspidal curvature for 3/2-
cusps is defined. Roughly speaking, the cuspidal curvature measures whether
a 3/2-cusp is narrower or wider. For cuspidal edges, the singular curvature and
the limiting normal curvature are introduced in [20], and their geometric meanings
are studied.

A 5/2-cusp (respectively, 5/2-cuspidal edge) is a map-germ (R,0) — (R>,0)
(respectively, (R 0) — (R*,0)) which is .«/-equivalent to the map-germ 7
(£2,1) (respectively, (u,v) — (u,v%,v%)) at the origin (Figure 1, left). A 5/2-cusp
is also called a rhamphoid cusp. Although 5/2-cuspidal edges do not generically
appear, it has been pointed out that they naturally appear in various differential
geometric situations [6, 10, 19]. For 5/2-cusps, the cuspidal curvature vanishes.
Hence, to measure the width of 5/2-cusps, we need to consider higher order
invariants. In this paper, we define two curvatures on 5/2-cusps in addition
to the invariants we mentioned above, which are the secondary cuspidal curva-
ture and the bias of cusps. The secondary cuspidal curvature is an analog of
cuspidal curvature of 3/2-cusps, but as we will see in Section 2.1, there is no
corresponding notion of bias for 3/2-cusps. Using these invariants, the sec-
ondary cuspidal curvature and the bias, we also define two curvatures for 5/2-
cuspidal edges.

FIGURE 1. The standard 5/2-cuspidal edge (left) and cuspidal edge (right).

On the other hand, one fundamental problem is to determine the intrinsicity
and extrinsicity of invariants. It is proved that some basic invariants such as
the singular curvature and the product curvature are intrinsic in [20, 15], and they
have various applications. For example, the intrinsicity of the product curva-
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ture is used to prove existence of isometric deformations of real analytic cuspidal
edges with non-vanishing limiting normal curvature in [16] and [8]. See [4] for
other applications. In [3, 7], several geometric invariants of cross caps are
proved to be intrinsic or extrinsic. In this paper, we determine whether the above
invariants of 5/2-cuspidal edges are intrinsic or extrinsic, proving the existence
of isometric deformations of real analytic 5/2-cuspidal edges with non-vanishing
limiting normal curvature as in [16] and [8].

This paper is organized as follows. In Section 2, we define the secondary
cuspidal curvature and the bias for 5/2-cusps, and study their geometric proper-
ties. In Section 3, we deal with 5/2-cuspidal edges and define two invariants
for them. As an example, in Section 3.6, we calculate the invariants on the
conjugate surfaces of spacelike Delaunay surfaces. In Section 4, we prove that
the product (called the secondary product curvature) of the secondary cuspidal
curvature and the limiting normal curvature is an intrinsic invariant. Using this
intrinsicity, we show the existence of isometric deformations of real analytic 5/2-
cuspidal edges with non-vanishing limiting normal curvature, which yields the
extrinsicity of various invariants, see Table 2. Finally, in Section 5, we provide
an intrinsic formulation of 5/2-cuspidal edges as a singular point of a positive
semi-definite metric, called the Kossowski metric. Using an argument similar to
that in Section 4, we prove the existence of isometric realizations of Kossowski
metrics with intrinsic 5/2-cuspidal edges.

2. Invariants of 5/2-cusps

In this section, we discuss the geometric properties of 5/2-cusps.

2.1. Invariants of 5/2-cusps. Let y:(R,0) — (R?0) be a map-germ, and
y'(0) =0. We say that y is of A-type if ”(0) #0. Let y: (R,0) — (R 0) be
an A-type map-germ. The cuspidal curvature for y at 0 is defined by

_ det(y"(0),7"(0))

o(y,0
00 = )7

Y

which measures a kind of wideness of y at 0 ([22]). We may abbreviate w(y,0)
as o(y), or w, in some cases. It is well known that an A-type map-germ y is a
3/2-cusp if and only if det(y”(0),7"(0)) # 0, and hence w # 0.

Let 7: (R,0) — (R 0) be an A-type map-germ with det(y”(0),7"(0)) = 0.
Then there exists / € R such that

7" (0) = 17"(0).

Then the secondary cuspidal curvature for y at 0 is defined by

~ det(y"(0),379(0) — 10514 (0))
0= 7(0)7 ’
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We abbreviate o, = w,(y) = »,(,0) as well. By a direct calculation, one can
see that w, does not depend on the parameter of y. The following criterion for
5/2-cusp is known [19]:

Fact 2.1. Let y: (R,0) — (R*,0) be a map-germ with y'(0) = 0. Then y is
a 5/2-cusp if and only if

(1) det(y"(0),7"(0)) =0,

(2) 3 det(3"(0), 75 (0))7"(0) — 10 det(3"(0), 54 (0))"(0) # (0,0).

By the condition (2), y”(0) # 0. When y is of A-type at 0, the conditions
(1) and (2) are written as follows. By (1), there exists / € R such that y"”'(0) =
ly"(0), and then (2) is written as

det(y"(0), 379(0) — 1055“)(0)) # 0.

Thus an A-type germ y is a 5/2-cusp if and only if w =0 and w, # 0.
Next we define the bias of cusps. Let y:(R,0) — (R*0) be an A-type
map-germ which is not a 3/2-cusp (i.e., @ =0). Then
_ det(y"(0),7(0))
["(0)°

does not depend on the parameter, and it is called the bias of cusps. We
abbreviate b = b(y) = b(y,0) as well. Let y be an A-type germ. A line

b(y,0)

i Mu = {uwy"(0); u
iy v R) = o 0 ve )

passing through »(0) = 0 is called the tangent line of y at 0. We set two images
of y as

Y+ = y((O,g)), i y((_‘gv 0))a
for ¢ > 0. We have the following proposition.
ProPOSITION 2.2. Let y be an A-type germ with w =0. If b # 0, then for
a sufficiently small ¢ > 0, the images y, and y_ lie on the same side of the tangent

line of y. Moreover, if y is a 5/2-cusp and b =0, then for a sufficiently small
&> 0, the images y, and y_ lie on both sides of the tangent line of y.

Proof. By rotating y and by a parameter change, we may assume that
ot £
@) 1= (5o 5s0).
where y, € R and ys(¢) is a smooth function. Then b=y, and w, = 3y5(0).

Since the tangent line is the horizontal axis, the claim of the proposition is
obvious by these observations. O
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One can easily see that for 3/2-cusps, the images y, and y_ always lie on
both sides of the tangent line of . Thus there is no similar notion of bias for
3/2-cusps. If an A-type map-germ y with @ = 0 satisfies » = 0, then y is said to
be balanced (see Figure 2).

FIGURE 2. The left figure shows a balanced 5/2-cusp (i.e., » = 0), and the right one is non-balanced
(i.e., b #0). The dotted lines are the tangent lines at each singular point. As we have shown in
Proposition 2.2, the image of a balanced 5/2-cusp extends over the two domains separated by the
tangent line.

2.2. Behavior of the curvature function. Let s, be the arclength function
sg(t):f(;|y’(t)|dt of an A-type germ y:(R,0) — (R*0). It is shown that
(s(1) =) sgn(1)\/|sy(?)] is C*-differentiable and s’(0) # 0 ([24, Theorem 1.1]).
Thus one can take s(¢f) as a parameter, which is called the half-arclength
parameter [24]. We have the following proposition.

PROPOSITION 2.3. Let 7 : (R,0) — (R*,0) be a 5/2-cusp, and t a parameter.
Let k be the curvature defined everywhere except t =0. Then K =sgn(t)x is a
C* function, and

_ b d . V2
K(O) = g, $K(0) = ﬁwr

holds, where s is the half-arclength parameter.

Proof. We may assume that y is given by the form (2.1) without loss of
generality. Then

a3 v5(0) 4
roan — +—=1t + 0(5)
det(y )V ) _ 3 8 — Sgl’l(l) & + yS(O) t+ 0(2)
? 12 38

VZ
04 7410y 0(11)}

12

holds. Here, O(n) stands for the terms whose degrees are greater than or equal
to n. On the other hand, by |y'| = |r\/ 1+ t492/36 + O(5)] = |t + 7264/72 + O(5)]
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and s, = >(1/2 4+ O(4)), it holds that s = t,/1/2+ O(4) and dt/ds =+/2 at 0.
The proposition is then obvious from the above calculations. O

See [2] for another treatment of curvatures of curves with singularities.

2.3. Projection of space curves. Let I': (R,0) — (R> 0) be a regular space
curve, and let ¢ be an arclength parameter of I', and e, n, b the Frenet frame.
We set the orthogonal projection of I' to the normal plane (e(()))L at 0 by

y(1) =T (1) = <I(1), €(0) ye(0).

Note that y’(0) = 0. Then y at 0 is A-type if and only if x(0) # 0, where « is
the curvature of I'. We assume that y is A-type (i.e., x©(0) # 0). Since

_ (0
CO(V, 0) - K(O)

y at 0 is a 3/2-cusp if and only if 7(0) # 0, where 7 is the torsion of T'. If y is
A-type but not a 3/2-cusp (i.e., k(0) # 0, 7(0) = 0), then

b

7/ —x't’ + 3kt”
b(y,0) = ;(O)a w,(7,0) = T(O)'

Thus, under the assumption x(0) # 0, y is a 3/2-cusp if and only if 7(0) # 0, and
y is not a 3/2-cusp and non-balanced if and only if 7(0) = 0, 7/(0) # 0, and y is a
balanced 5/2-cusp if and only if 7(0) = 7/(0) =0, 7"(0) # 0.

3. Invariants of 5/2-cuspidal edges

In this section, we discuss the geometric properties of 5/2-cuspidal edges.

3.1. Frontals. Let f:(R>0)— (R*0) be a map-germ. We call f a
frontal if there exists a map v: (R?0) — S? satisfying {df(X),v> =0 for any
Xe TpR2 and p e (RZ,O), where S? stands for the unit sphere in R?. We call
v a unit normal vector field of f. A frontal is called a front if (f,v) is an

immersion. Let f : (R? 0) — (R*,0) be a frontal, and v a unit normal vector
field of f. We set

(3.1) A= det(fu, fo, V)

by taking a coordinate system (u,v), with f, = df /0u, f, = df/dv. We call 1 a
signed area density function. By the definition, S(f) = A7'(0), where S(f) is the
set of singularities of f. A singular point p of f is said to be non-degenerate if
dl(p) #0. If p is a non-degenerate singular point, then S(f) near p is a regular
curve. Let p be a singular point satisfying rank df, = 1, then there exists a non-
vanishing vector field # on a neighborhood U of p such that <{z,>g = ker df, for
qgeS(f)NU. We call  a null vector field. We note that the notions of non-
degeneracy and null vector field are introduced in [12]. We remark that a non-
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degenerate singular point satisfies rank df, = 1. A non-degenerate singular point
p of f is called first kind (respectively, second kind) if n, is transverse to S(f)
at p (respectively, 7, is tangent to S(f) at p). It is well-known that a singular
point of the first kind on a front is a cuspidal edge ([12, Proposition 1.3], see also
[21, Corollary 2.5]).

3.2. Basic invariants for singular points of the first kind. In [20], the
singular curvature and the limiting normal curvature are defined for cuspidal
edges, namely singular points of fronts of the first kind. In [14, 15], the cuspidal
curvature and the cusp-directional torsion are defined. These definitions are also
valid for singular points of frontals of the first kind.

Let f: (R?0) — (R?,0) be a frontal and v a unit normal vector field. Let
0 be a singular point of the first kind. Taking a parametrization y: (R,0) —
(R?,0) of S(f), the singular curvature x, and the limiting normal curvature i, are
defined by

oo o 51 1o
wlt) = sen(@a(n) SUTLVOD () e 2 TVED
7'l 17|
respectively ([20]), where (y’,n) is taken to be positively oriented. Let & be
a vector field on (R? 0) such that ¢, is tangent to S(f) at each point ¢ € S(f),
and let # be a null vector field. Then the cuspidal curvature k. and the cusp-
directional torsion or the cuspidal torsion i, are defined by

_ L&/ det(&f S om)

)

32 o(t )
( ) " ( ) |éf X ’72f|5/2 (u,v)=y(1)
[ det(&f it En?)  det(Ef S ENES D
(33)  w(1) = 2712 2 2712 ’
&S x n?f] IES171ES % nf | (w.0)=3(0)

where ('f stands for the i’th order directional derivative of f by a vector field (.
The invariant x, measures a kind of “wideness” of the singularity. Furthermore,
it is shown that kg = k., IS an intrinsic invariant. See Section 4 for the
definition of the intrinsicity and the extrinsicity of invariants. See [15] for
details. One can easily see that #.(0) # 0 if and only if f is a front at 0. It
is known that for two cuspidal edges f and g, if their invariants x,, x|, x,, K,
K., Kk, coincide at 0, then there exists a coordinate system such that 3-jets j3f
and j3g coincide at 0 ([14, Theorem 6.1]), where ' = d/dt and ¢ is an arclength
parameter. In [3, 4], intrinsicities and extrinsicities of these invariants are inves-
tigated. See [18, 1, 11] for another approach to investigating cuspidal edges, and
[25] for other applications of the above invariants (see also [26]).

3.3. Criterion and invariants for 5/2-cuspidal edges. First, we review the
criterion for 5/2-cuspidal edges given in [6, Theorem 4.1]. In order to do that,
we recall the following fact:
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Fact 3.1 ([6, Lemma 4.2])). Let f: (R*0) — (R*,0) be a frontal-germ such
that 0 is a singular point of the first kind. ~Let &, i be vector fields on (R*,0) such
that the restriction &|gp) is tangent to S(f), and n is a null vector field. Then
there exists a null vector field n such that

(3.4) CELTI0) = EF, 7 H(0) =0

holds.  Moreover, if det(Ef,n*f,n°f)(0) =0, there exists the constant | € R such
that

(3.5) 7’1 (0) = 17 (0)
holds.

This fact is also obtained as a corollary of Lemma 3.4. Then the criterion
for 5/2-cuspidal edges is given as follows:

ProposiTION 3.2 (Criterion for 5/2-cuspidal edges, [6, Theorem 4.1]). The
frontal-germ f : (R*,0) — (R*,0) is a 5/2-cuspidal edge if and only if

(1) 4(0) #0,

(2) det(&f,n*f,n’f) =0 on S(f),

(3) det(&f,7°f,30°f — 1077%f)(0) # 0.
Here, ¢ is a vector field on (R*,0) such that the restriction Cls(y) is tangent to
S(f), and n is a null vector field. Furthermore, 7] is a null vector field and | € R
is the constant given in Fact 3.1.

The condition (1) implies that 0 is a singular point of the first kind.
Moreover, by [15, Proposition 3.11], the condition (2) implies that f is not a
front:

Fact 3.3 ([15, Proposition 3.11]). Let f:(R>0)— (R 0) be a frontal-
germ such that 0 is a singular point of the first kind. Take vector fields &, n on
(R?,0) such that the restriction Cls(y) is tangent to S(f), and n is a null vector
field.  Let qe S(f) be a singular point of the first kind. Then,

det(&f,n’f,m’f)(q) # 0
holds if and only if [ is a front at qe S(f).

Proof. A frontal-germ f at a non-degenerate singular point ¢ € S(f) is a
front if and only if #v(g) # 0, where # is a null vector field and v is a unit normal
vector field. Firstly we show that the condition (2) is equivalent to det(&f, v, nv)
=0. Since (v,&f> =0 and {v,n*f> = —{yv,nf> =0, we see that v is parallel to
Ef xn*f on S(f). Thus

(3.6) [ x qnf|? det(&f,v,qv) = det(Ef, &f x n*f ,n(Ef % n*f))
= det(&f,Ef x [ nlf x p*f + Ef x ’f).
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Since [n,¢] is a vector field and df(7,) is generated by &, (pe S(f)), the

derivative [, & f = néf — &nf is parallel to £f, and #f =0 on S(f). Since ¢ is
tangent to S(f), &nf =0 on S(f). Hence #&f is parallel to £f. Thus the left-
hand side of (3.6) is equal to

(3.7) det(Sf, &f x n’f &f x n’f)(2).

Since det(a,a x b,a x ¢) = |a|* det(a, b, ¢) for vectors a,b,ce R>, (3.7) is a non-
zero multiple of det(¢f,»*f,nf)(¢). Thus (2) is equivalent to det(¢f,v,nv) = 0.
One can write yv=oalf + pv. Then = {yv,v>=0. On the other hand,

|Ef o= Cqv, EF>. Since (v, Ef M(u, v) = <v,nf>(u,v) = 0 for any (u,v), it holds
that {nv, £ ) (u, 0) + v, néf H(u,v) = 0, <&v,nf H(u, v) + v, &nfH(u,v) = 0 for any
(u,v). Since [y,¢] is a vector field, [ Ef is parallel to &f at 0. Thus

O, [1,E/>(0) = 0. Hence we have |&f]%a= (v, Ef> = =, néf > = =, f’?f>
=<&v,nf>=0. This completes the proof.

To define the invariants of 5/2-cuspidal edges, we prepare the following
lemma:

Lemma 3.4. Let f:(R?0) — (R®0) be a frontal-germ such that 0 is a
singular point of the first kind. Assume that each singular point q € S(f) is of the
first kind.  Let y(t) be a parametrization of S(f) such that y(0) =0, and let & be
a vector field on (R*,0) such that the restriction Cls(y) is tangent to S(f).  Then,
there exists a null vector field n such that

(3-8) CELRH0W) = Ef () =0

holds along y(t). Moreover, if f is not a front at each q € S(f), then there exists
a function I(t) such that

(3-9) 7 ()(1) = 107’ ((1))
holds along ().

Proof. We take a coordinate system (u,v) satisfying S(f) = {v =0}, n = 0,.
Set

(3.10) 7 =o(u,v)0, + 0y (o(u,v) = v(og (1) + o2 (u)v)),

where we set
RN 3o (@) o fud + o
M) == g ey W 2 fur f> .

We can check that <f,, 7%/ >(u,0) = {fy,7°f>(u,0) = 0. With respect to the
second assertion, we have det(¢f,7%f,7°f) = 0 along S(f), by Fact 3.3. Hence,
there exist functions /(¢), /(¢) such that

1 (1)) = 7, (7(0) + HOES (1))
Since <&f,73f>(p(t)) =0, we have I(t) = 0. O
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COROLLARY 3.5. Let f: (R*,0) — (R* 0) be a frontal-germ such that 0 is a
singular point of the first kind. Assume that each singular point q € S(f) is of the
first kind.  Then, there exists a coordinate system (u,v) such that S(f) = {v =0},
and

Jo=0, Lfur fod = {Jur for? =0

along the u-axis.

Proof: We take a coordinate system (u,v) satisfying S(f) = {v =0}, n = 0,.
Set # as in (3.10). Then there exists a coordinate system (x, y) such that x = u
and 0, is parallel to 7. Since {fy,72f>(x,0) = {fy,7P*f>(x,0) =0, we have
oo Sy (%,0) = (s, f1yy>(x,0) = 0. Hence (x,y) is the desired coordinate
system. U

Let us assume that S(f) is oriented, and let & be a vector field such that the
restriction &|g ) is tangent to S(f) agreeing with the orientation of S(f), and
let # be a null vector field so that (&,#) is positively oriented. We take a null
vector field # which satisfies the condition (3.4), and (&,#) is positively oriented.
Assuming f is not a front at 0, then by Fact 3.1, there exists a number /€ R
such that 73£(0,0) = /7% (0,0). We define two real numbers at 0, respectively,
by

,, — 17 (0.0)" det(¢£(0,0). 7%/ (0.0),7%/(0,0))
1€/(0,0) x 72/(0,0)"

L _|£/(0.0)°" det(¢/(0,0). 7%/ (0,0). 37/ (0,0) — 10057%/(0,0))

c €£(0,0) x 727(0,0)] "

)

LEMMA 3.6. The two real numbers ry, and r. do not depend on the choices
of ¢ and 1.

Proof. We take the coordinate system (u,v) given in Corollary 3.5. We
set

&= o (u,0)0y + a2 (u,v)0y, 71 = o3(tt,0)0y + 0141, v)0y,

where o;(u,v) (i =1,2,3,4) is a smooth function such that oy,04 > 0, o3(u,0) =
0. By the assumption (3.4), («3), = (23),, =0 holds on the wu-axis. By a
straightforward calculation,

¢f = o fu,

7°f = 4 fuw,

1 = o3 (3() . foo + %afore),
T = 0 foowo + fu % +fru¥
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hold on the w-axis. Thus
\fel? det(&f s s if) _ det(o fus 33 foos o frown) _ et frus Frvw)
Ef % 72| o ful 103 fool? Sl 1fool

holds at 0, which shows the independence of r,. By the above calculation, if
Soow = Ufow, then 77°f = (3(as), + 0al)i7*f. Moreover, we see

ﬁsf = “i(lo(ou)yfvvvv + O‘4flwvvv)~
Hence, setting [ := 3(aq), + o4l

(/1 det(&f m?f, 30°f — 1007%f)
f x 1"
_ det (o fu, “z%fvm 3“2(10(“4)pfvvvv + o4 fovo) — 10(3(04), + 0‘41)“2fvvvv)
- o ful 193 fual 7
_ det(fu, fovs 3fooow — 100fvuwe)
- ful 1Sl 2
holds at 0, which shows the independence of r.. O

DeriNITION 3.7. Let f: (R*,0) — (R?,0) be a frontal-germ such that 0 is
a singular point of the first kind. Assume that each singular point is of the first
kind and is not a front. For example, 5/2-cuspidal edges satisfy this assump-
tion. Then, by Lemma 3.4, we have 7°f(y(¢)) = I(t)i7*f (y(¢)), where y(¢) is a
parametrization of S(f), and # is a null vector field satisfying <{&f, 7% >(y(t)) =
L f((1)) =0. Then we define r,(¢), r.(f) as

/17 det(&/ 7% 7S)
311 A= |
( ) }"b( ) |éf % ﬁ2f|3 (w.0)=r(0)
(3.12) (1) = EF1° det(Ef, 7,35 — 1007%)
&f < wf"”? ()=1(0)

respectively. The invariant r,(¢) is called the bias, and r.(¢) is called the sec-
ondary cuspidal curvature. We also define

rn(p) = r(p)re(p)

for a singular point p =0, which is called the secondary product curvature.

In [17], the bias r, and the secondary cuspidal curvature r. are used to
investigate the cuspidal cross caps.

3.4. Geometric meanings. Here we study geometric meanings of the invari-
ants r, and r,.
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Let f: (R%0) — (R* 0) be a frontal and 0 a singular point of the first kind.
Moreover, let y(¢) (y(0) =0) be a parametrization of S(f), and we set $(¢) :=
f((¢)). Since 0 is a singular point of the first kind, $'(0) # 0, where ' = d/dt.
Denote by Il the normal plane (5(0))" of $(0) passing through 0. We call I1;
the normal plane of f passing through 0.

PrOPOSITION 3.8. Let f:(R*0) — (R*0) be a frontal and 0 a singular
point of the first kind. Assume that f is not a front. Let ry (respectively, r.) be
the bias (respectively, the secondary cuspidal curvature) of the frontal f at O.
Denote by Iy the normal plane of f passing through 0. Then,

the slice of f by the normal plane 11y is an image of an A-type map-germ
1 (R,0) — (I1f,0). Moreover,
. if we denote by b(¢,0) (respectively, w,(¢,0)) the bias of cusps (respectively,
the secondary cuspidal curvature) of ¢ at 0 as a plane curve in Iy, then we
have

Proof. Let y(t) (y(0) =0) be a parametrization of S(f), and we set (1) :=
f(y(1)). The slice of f by the normal plane Iy = (5/(0))" is given by

C= {(ua U); <f(u7 D),'}A)/(O)> = 0}7

where ' = d/dt. We take a coordinate system satisfying S(f) = {v =0}, n =0,
and <{fy, fowy = {fu, fowy = 0 on S(f) (Corollary 3.5). Then we see that <f(u, v),
7'(0)>, #0 at 0. Thus we can take a parametrization of C as ¢(v) = ( 1(v),0).
We set ¢ = foc. We remark that since <{é(v),’(0)> = 0, it holds that ¢{(0) = 0.
Furthermore, since f,(#,0) =0, it holds that f,,(#,0) = fi.(u,0) = fum( u,0) =
0. Then we have

¢"(0) = fw(0,0) +¢{(0)£:(0,0), ¢"(0) = £uu(0,0) + ¢1"(0) £(0,0).
Since <¢(v),7'(0)) = 0, it holds that ¢{'(0) = —<{£,(0,0), f.,(0,0)> = 0 and ¢{"(0) =
—<{fu(0,0), fur(0,0)> = 0. Furthermore, since

¢9(0) = fun(0,0) + ¢V (0)£(0,0),  &5(0) = fuuuu(0,0) + ¢} (0) £:,(0,0),

we see that
_ det(f, foor foor)

[l
_ det(f,;,fim, 3fi*uvvv B IOlfwm)
- Sl

(0, 0) =Tp,

0,0) =r,. O

3.5. Normal form for 5/2-cuspidal edges. In [14], a normal form for
cuspidal edges is given. See also [1]. We have the following.
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PROPOSITION 3.9. Let f:(R*0) — (R 0) be a 5/2-cuspidal edge. Then
there exist a coordinate system (u,v) on (R*0) and an isometry ® : (R>,0) —
(R3,0) such that

> a; Uz > biO i : bz2
(3.13) ®o f(u,v) = ”72 ’+?, |u’+z u'v?

1
i— - b

b4 o boi
+? +;70 + h(u,v),

where aje R (i=2,...,5), bje R (i+ j <5) are constants satisfying bos # 0, and
h(u,v) consists of the terms whose degrees are greater than or equal to 6, of the
form

(0, ubhy (u), ubha(u) + u*v?hs (u) + u?v*hy(u) + uv’hs(u) + v°he(u, v)).

Although this proposition can be shown by the same method as in the
proof of [14, Theorem 3.1], we give a proof in Appendix A for the sake of
completeness. Under this normal form, the invariants defined above can be
computed as

(K?l (0) K‘/)(O), K‘/)/( ”/ m, m 2612[)12, m 4Cl3b12 — 261%1)20 —
2a2b22 — 31730 — 4[]12[720, m + 146121712 — 7a2b30 — 66141712 — 6a3b22 —
12b12b20b2 — 12b3,b3) — 19b20b30 + ap(—6aszbyy — 2b3s + 24b3, + 32b3,b12)),

* (x5(0), 1,(0), x/(0), x'( m m |a3| + 2b1aba, [as] — 4ar(b}, + b3y) +

2byobyy + 4b12b3g — 3612, — a2(8b12b20 + 19613) - 203(6b%2 + Sbgo) -
3a2(4b|2b22 + 5b20b30) — 24b20b132 + 2b12(3b40 — 13b%0) + 6byyb30 + 2b20b32),

: (Klt(6(}7)3’ K;(0)72’f§/(0)) = (, — axby, +4asbiy — asbyy — 2azb30

- 12 = °Y20712)5
* (r5(0),73(0)) = (bus | [ B1a] — 122012),
* re(0) = \M,

and k. =0, where the prime means differentiation with respect to the arclength
parameter of y. Looking at the boxed entries, we have the following propo-
sition.

PROPOSITION 3.10. Let f g be germs of 5/2- cuspidal edges. If their invari-

ants Ky, x, 1, x), 1, ki, k!, kK, k), K, e, ¥, Te coincide at 0, then there

exist a coordmate system (u v) and an lsometry A of R® such that

Jof (u,0) = jg(4 0 g)(u,v),
where j3 f(u,v) stands for the 5-jet of f with respect to (u,v) at 0.

Moreover, a parametrization of f(S(f)) as a space curve is given by f(u,0).
Since bos, b1a, bos do not appear in f(u,0), they also do not appear in the
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curvature x and the torsion 7 of f(u,0). Thus we believe that the invariants
rp, re for 5/2-cuspidal edges were not paid attention to before.

3.6. Invariants of 5/2-cuspidal edges on conjugate surfaces. We denote
by R; the Lorentz-Minkowski 3-space with signature (—,+,+). A spacelike
Delaunay surface with axis / is a surface in R13 such that the first fundamental
form (that is, the induced metric) is positive definite, it is of constant mean
curvature (CMC, for short), and it is invariant under the action of the group of
motions in Rl3 which fixes each point of the line /. Such spacelike Delaunay
surfaces are classified and they have conelike singularities (see [5], for details).

As in the case of CMC surfaces in R®, for a given (simply-connected)
spacelike CMC surface in Rl3, there exists a spacelike CMC surface called the
conjugate. Any conjugate surface of a spacelike Delaunay surface is a spacelike
helicoidal CMC surface!, and it is shown in [6] that such spacelike helicoidal
CMC surfaces have 5/2-cuspidal edges. We remark that spacelike zero-mean-
curvature surfaces (i.e., maximal surface) never admit 5/2-cuspidal edges (cf. [6],
see also [28]).

In this section, we compute the invariants r, and r. of 5/2-cuspidal edges on
such spacelike helicoidal CMC surfaces, regarding them as surfaces in R>. More
precisely, setting

(3.14) ) = (u® + k +1)* — 4k,
a non-totally-umbilical spacelike Delaunay surface with timelike axis is given by
1 “12 4k —1 .
Del (U, V) = — ——————— dt, ucos(2Hv), u sin(2Hv
foalu1) = 5 (L - (2Ho). usin >>

for some constant k € R (k # 1), where H is the mean curvature (see [6] for more
details). Let f: (R*0) — (R},0) be a spacelike helicoidal CMC surface which
is given as a conjugate surface of the Delaunay surface fpg. Setting A(u) :=
S(u) —u*, such an f can be written as follows (cf. [6]):

() If —1<k<1 orl<k, then f is congruent to
1—k

(3.15) Sr(u,v) = <'//+m

¢, p cos ¢, p sin ¢>,
where

C VR [V
W=y YW= J0 H\/3(1)A(2) o
_ U.

"2+ k)1 — k)7 1+k
Hlu,v) := Jo J50Aw dt 7

YA helicoidal surface is a surface which is invariant under a non-trivial one-parameter subgroup of
the isometry group of R,3 .
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(2) If k < —1, then f is congruent to

(3.16) Ss(u,v) = (ﬂ sinh ¢, p cosh ¢, ‘“%qﬁ)’

where
L A(u) - “/2(—k — )* .
U= a4 k) w()'iL NGO

__[VACk=Du -k kT
d(u,v) == Jo JA0AR d 7 v

(3) If k= —1, then f is congruent to
(3.17) filu,0) = (W — p — pd*, —2pd, b + p — p$?)

3 2¢3
+H<?+¢7¢ 7?_ >7

where p(u) :=u/2,

u 2(. /-4 2 u . /-4 2
lp(u) = J M d’[’ ¢(u’ U) = J w d’[ _|_ V.
0o 4H>/T4+4 0o 2HV7* +4
k=2 k=-2 k=-1
(fr(u,v) given in (3.15)) (fs(u,v) given in (3.16)) (fr (u,v) given in (3.17))

FIGURE 3. Spacelike helicoidal CMC surfaces (H = 1/2) having 5/2-cuspidal edges in Lorentz-
Minkowski 3-space Rl3 . These surfaces are conjugates of spacelike Delaunay surfaces with timelike
axis. See [6] for more details.

Here, we consider the case of f = fr(u,v) given in (3.15). Similar com-
putations can be applied in the cases of fg and f; given in (3.16) and (3.17),
respectively. For simplification, we may assume that H > 0.
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Since (fr),(0,v) =0, the singular set S(f7) is given by S(fr) = {u =0} and
n =0, gives a null vector field. Since the map v: (R? 0) — S? defined by

_ 1 ) UV
e (VO VAT s 6~ Vi 1) s

—/2(k + 1)u? sin ¢ 4+ V(k — 1) cos ¢)

is a unit normal vector field along fr (cf. Section 3.1), fr is a frontal. Then
we can check that 7#4(0,v) = —1/(2H?*Vk + 1) (# 0) holds, where A is the signed
area density function (cf. (3.1)). Thus, we have that fr satisfies (1) in Prop-
osition 3.2. Set &(u,v) :=0J, and

 2sign(k —2 1) 20
(k—1)
(cf. (3.10)). Then we can check that <&f7(0,v),7%f7(0,v)> = 0 and 7f7(0,v) =

0. Hence, fr satisfies (2) in Proposition 3.2. Moreover, the constant / is 0.
Then, by a straightforward calculation, we have

7(u,v) := 9,

v

det(&f i i51)(0,0) = ‘m|;f4_13 (£0).

Therefore, f7 satisfies (3) in Proposition 3.2, and hence fr has 5/2-cuspidal edges
along y(v) = (0,v). The invariants are calculated as

T2V F
Vik=1]

Similarly, in the case of k < —1, the invariants of fg given in (3.16) are calculated
as

re(0,v) = rp(0,v) = 0.

T2H3 2k — 1

V1 —kcosh<ﬂ> |
V2

re(0,v) =

(1+ &) sinh <7V‘k‘1”>

V2
vk = 1u> ’

r(0,0) = 6V2H

V2

and in the case of kK = —1, the invariants of f; given in (3.17) are calculated
as

(1-k) cosh2<

72vH 6v20v

L’Oa e Oa = -
re(0.0) = =177 n0) H(1 +12)?
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4. Intrinsicity and extrinsicity of invariants

Let f:(R?0) — (R*0) be a map-germ. The induced metric or the first
fundamental form of f is the metric on (R?,0) defined by f*(,>. A function
I:(R*0)— R, or I:S(f)— R, is an invariant if I does not depend on the
choice of coordinate system on the source. An invariant I: (R? 0) — R, or
I:S(f)— R, is intrinsic if it can be represented by a C* function of E, F, G
and their derivatives, where

E=fufu, F=Lfwt>, G=<fo,feD

and (u,v) is a coordinate defined in terms of the first fundamental form f*{, .
An invariant 7 : (R*0) — R, or I:S(f) — R, is extrinsic if there exists a map
f such that the first fundamental form of f is the same as f, but I does not
coincide. In [15, 4], it is determined whether some invariants of cuspidal edges
are intrinsic or extrinsic (cf. [3] for invariants of cross caps). In this section, we
show the bias r, is extrinsic.

4.1. Intrinsic criterion for 5/2-cuspidal edges. Let f : (R?0) — (R, 0) be
a frontal-germ and 0 a non-degenerate singular point. Here, we shall show that
the .o7-equivalence class of 5/2-cuspidal edges can be determined intrinsically
among frontal-germs with non-zero limiting normal curvature x, # 0 (Theorem
4.4, Corollary 4.5).

DEFINITION 4.1, Let f: (R*,0) — (R,0) be a frontal-germ such that 0 is
a singular point of the first kind. A coordinate system (u,v) around 0 is called
adjusted at 0 if £,(0,0) =0. A coordinate system (u,v) which is adjusted at 0 is
called normally-adjusted at 0 if (u,v) is compatible with the orientation of (R>,0),
E(0,0) =1 and 4,(0,0) = 1.

The existence of such a normally-adjusted coordinate system can be verified
by the existence of normalized strongly adapted coordinate systems® [4, Definition
2.24, Proposition 2.25] (cf. [20, Lemma 3.2] and [15, Definition 3.7]).

It was proved in [15, Corollary 3.14] that the Gaussian curvature K and the
mean curvature H can be extended smoothly across 5/2-cuspidal edges. Then,
we set

4.1) H, = H,0,0), K,:=K,0,0),

where (u,v) is a coordinate system normally-adjusted at 0. We call K, (respec-
tively, H,) the null-derivative Gaussian curvature (respectively, the null-derivative
mean curvature) of 5/2-cuspidal edge at 0. We shall prove that the definitions

2 A coordinate system (u,v) centered at (0,0) is called normalized strongly adapted if the singular
set is given by the w-axis, 0, gives the null vector field along the wu-axis, f,(u,0) =0, |f,(4,0)|=
| foo(u, 0)| = 1, {fu(u,0), for(u,0)> =0 and {fu(u,v), fo(u,v)> =0 hold.
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of null-derivative Gaussian and mean curvature do not depend on the choice of
normally-adjusted coordinate systems, as follows.

Lemma 4.2. If two coordinate systems (u,v) and (U,V) are normally-
adjusted at 0, then

(4.2) U,=1, U =0 V,=1

holds at (0,0). Moreover, the definitions of null-derivative Gaussian and mean
curvatures H,, K, are independent of the choice of the coordinate system normally-
adjusted at 0.

Proof. Since f, = fy =0 at (0,0),

fv: vaU+ vaV: vaU

yields U,(0,0) = 0. Since (u,v) — (U, V) is orientation-preserving, J := U,V, —
U,V, is positive-valued. In particular, J(0,0) = U,(0,0)7,(0,0) >0 holds.
Setting A := det(f,, f;,v) and A :=det(fy, fi,v), we have A =JA. Then

by =T N+ TN, = T A+ T (AU, + AyVy)
holds, and evaluating this at (0,0) we have
(4.3) 1 = U,(0,0)72(0,0),

which yields U,(0,0) >0. Since J=U,V, >0 at (0,0), 7,(0,0) >0 holds.
Moreover, by 1= E = {f,, fu,> = U fv, fuy = U? at (0,0), we have U,(0,0)
= 1. Substituting this into (4.3), V,(0,0) =1 holds. Hence we have (4.2).
Moreover, then

0 0 0 0

w o Tar

holds at (0,0). In particular, the definition of H,, K, as in (4.1) is independent
of choice of the coordinate system normally-adjusted at 0. O

Since the Gaussian curvature K and the definition of normally-adjusted co-
ordinate systems are intrinsic, the null-derivative Gaussian curvature K, is an
intrinsic invariant for 5/2-cuspidal edges. Now, we shall check the relationships
amongst K, H, K,, H, and other invariants.

Lemma 4.3. Let f:(R*0)— (R*0) be a germ of a 5/2-cuspidal edge.
Then the Gaussian curvature K and the mean curvature H of [ satisfy

1
(4.4) L
1 1
(45) H:_Kv‘i‘_rb

2 6
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along the singular set, respectively. Moreover, the null-derivative Gaussian curva-
ture K, and the null-derivative mean curvature Hy, of f satisfy

|
(46) K” = ﬂrn,

1
(47) Hq = @7(:

along the singular set, respectively.

Proof. By Proposition 3.9, without loss of generality, we may assume that
f is given by the form in (3.13). A direct calculation yields

K(0) =2b12, 15(0) =bos, x,(0) =brg, 1.(0) =3bos, rm(0) = 3brbos

and

1 1 1
K=~ —4b?,, H== -
3bzobo4 biss 2bzo + 6b04
hold at (0,0). Hence, (4.4) and (4.5) hold. On the other hand, since the coor-
dinate system (u,v) of f(u,v) given by the form in (3.13) is normally-adjusted at
(0,0), we have H, = H, and K, = K,, at (0,0). By a direct calculation, we have
that

1 1
H,(0,0) = Ebosy K.(0,0) = gbzobos,

and hence, (4.6) and (4.7) hold. U

THEOREM 4.4. For 5/2-cuspidal edges, the secondary product curvature ryy is
an intrinsic invariant.

Proof. By (4.6) in Lemma 4.3 and the fact that K, is intrinsic, rr is
intrinsic as well. O

Let f: (R?*0) — (R*0) be a frontal-germ such that 0 is a non-degenerate
singular point. If #,(0) # 0, then f is called non-v-flaz. The following corollary
implies that the .o/-equivalence class of 5/2-cuspidal edges can be determined
intrinsically amongst non-v-flat frontal-germs.

COROLLARY 4.5. Let f:(R*0) — (R?,0) be a frontal-germ such that 0 is
a singular point of the first kind.  Assume that f is non-v-flat. Then, [ at 0 is a
5/2-cuspidal edge if and only if k=0 along S(f) and ri(0) # 0.

Proof. By the definitions of x,. given in (3.2), r. given in (3.12) and the
criterion (Proposition 3.2), f at 0 is a 5/2-cuspidal edge if and only if x. =0
along S(f) and r.(0) #0. Therefore, imposing the non-v-flatness x, # 0, we
have that 0 is a non-v-flat 5/2-cuspidal edge if and only if xy = 0 along S(f) and
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Following Corollary 4.5, we give a definition of intrinsic 5/2-cuspidal edges
for singular points of a certain metric, called the Kossowski metric in Section 5
(cf. Definition 5.3).

4.2. Isometric deformations of 5/2-cuspidal edges. The following fact is a
direct conclusion of [8, Theorem B]:

Fact 4.6 ((8]). Let f:(R?*0)— (R*0) be an analytic frontal-germ such
that 0 is a singular point of the first kind, and y: (R,0) — (R*,0) a singular
curve. Assume that f has non-vanishing limiting normal curvature. Then, for
given analytic functions germs w(t), t(t) at t =0, there exists an analytic frontal-
germ g = go,  such that

(1) the first fundamental form of g, . coincides with that of f,

(2) the limiting normal curvature function of g., . along y coincides with e

for a suitable choice of a unit normal vector field, and

(3) ©(2) gives the torsion function of §,(t), where j,(t) := g o y(?).

The possibilities for congruence classes of such a g are at most two unless t
vanishes identically.  On the other hand, if t© vanishes identically (i.e., j, is a
planar curve), then the congruence class of g is uniquely determined.

Using Fact 4.6, we shall prove the following, which is an analog of a result
of [16, Theorem A] and [§8, Corollary D].

THEOREM 4.7 (Isometric deformation of 5/2-cuspidal edges). Let f : (R>,0)
— (R?,0) be a germ of an analytic 5/2-cuspidal edge with non-vanishing limiting
normal curvature, and let k() be the singular curvature function along the singular
curve y(t). Take a germ of an analytic regular space curve ao(t) such that its
curvature function k(t) satisfies

K> i

at 0. Then, there exists a germ of an analytic 5/2-cuspidal edge g, (R270) —
(R*,0) with non-vanishing limiting normal curvature such that

(1) the first fundamental form of g, coincides with that of f,

(2) the singular image g, oy coincides with o.
The possibilities for congruence classes of such a g, are at most two unless ©
vanishes identically.  On the other hand, if v vanishes identically (i.e., o is a planar
curve), then the congruence class of g, is uniquely determined.

Proof.  Set w(t) as

1

(1) = 5 log(k(1)” — K4(1)%).

Let 7(7) be the torsion function of ¢(z). By Fact 4.6, there exists an analytic
frontal-germ g, := g, - : (R*,0) — (R*,0) such that the items (1)—(3) in Fact 4.6
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hold. Thus, it suffices to show that g, has a 5/2-cuspidal edge at 0. Since the
first fundamental form of f coincides with that of g,, the product curvature
xrn and the secondary product curvature rp of f coincide with those of g,
respectively. Therefore, by Corollary 4.5, we have that g, : (R*,0) — (R>,0) has
a 5/2-cuspidal edge at 0. O

In [8], the following is also proved.

Fact 4.8 ([8, Corollary E]). Let fy, fi be two analytic frontal germs
with non-degenerate singularities whose limiting normal curvatures do not vanish.
Suppose that they are isometric to each other. Then there exists a continuous
1-parameter family of frontal germs g, (0 <t < 1) satisfying the following prop-
erties:

(1) go = fo and g1 = fi,

(2) g, is isometric to go,

(3) the limiting normal curvature of each g, does not vanish.

Moreover, if both fy and fi are germs of cuspidal edges, swallowtails or cuspidal
cross caps, then so are g, for 0 <t < 1.

By this fact and Corollary 4.5, we also have the following result analogous
to [8, Corollary EJ.

COROLLARY 4.9. Let fy, fi be two analytic germs of 5/2-cuspidal edges
whose limiting normal curvatures do not vanish. Suppose that they are isometric
to each other. Then there exists a continuous l-parameter family of germs g, of
5/2-cuspidal edges (0 <t < 1) satisfying the following properties:

(1) go = fo and g1 = fi,

(2) g, is isometric to go,

(3) the limiting normal curvature of each g, does not vanish.

Proof. By Fact 4.8, there exists a continuous 1-parameter family of frontal
germs ¢, (0 <¢<1) such that the items (1)—(3) in Fact 4.8 hold. Since the
limiting normal curvature of each g, does not vanish and g, is isometric to g
for each ¢ € [0, 1], Corollary 4.5 yields that g, has 5/2-cuspidal edges. Hence, the
family {g;},c( 1) is the desired one. O

4.3. Extrinsicity of invariants. Let f : (R 0) — (R?0) be a germ of a
non-v-flat 5/2-cuspidal edge, and let y : (R,0) — (R? 0) be a germ of a singular
curve of f. Let 7 be the regular curve in R® given by j := f oy, with arclength
parameter 7. Set e(f):=9'(¢) and b(¢) := —e(?) x ¥(¢), where ¥(¢) := v(p(?)).
Then {e,b,v} is an orthonormal frame along y. Remark that, in general, b
may not coincide with the binormal vector field of y as a space curve. Moreover
we have

(4.8) ' =Kkb+ K9, b =—xet+ry, IV =—i,e—xb.
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Let x, © be the curvature and torsion functions of j, respectively. Substituting
(4.8) into 27 = det(§’,9"”,9"), we have the following.

LemMA 4.10. It holds that

[ 5 KK, — Kk,
K =\/K; T K;, T:T—Kt.
In particular, if 1,(t) =0 along y(t), then 1,(t) = —z(t) holds.

As a corollary of Theorem 4.7, we prove the extrinsicity of the limiting
normal curvature x, (Corollary 4.11), the cuspidal torsion «, (Corollary 4.12), and
the bias r, (Corollary 4.13). We remark that the proof of Corollary 4.11 is
analogous to that of [16, Corollary D].

CoOROLLARY 4.11.  For 5/2-cuspidal edges, the limiting normal curvature i, is
an extrinsic invariant.

Proof. Let us take a real-analytic germ of a non-v-flat 5/2-cuspidal edge
f:(R*0) — (R*0). Denote by x() and 7(¢) the curvature and torsion of
7(t) := f(y(¢)), respectively. By Fact 4.6, for a given analytic function w(¢),
there exists a non-v-flat real-analytic frontal-germ g,, . such that g, , is isometric
to f, the limiting normal curvature function of g,, . is e“(, and () gives the
torsion function of g, .(y(¢)). Moreover, by Corollary 4.5, g, . is a 5/2-cuspidal
edge. Since we can choose w(f) arbitrarily, the limiting normal curvature is
extrinsic. O

COROLLARY 4.12. For 5/2-cuspidal edges, the cuspidal torsion i, is an
extrinsic invariant.

Proof. Let us take a real-analytic germ of a non-v-flat 5/2-cuspidal edge
f:(R*0) — (R*0) satisfying x, =0 along the singular curve y(¢). Denote
by x(¢) and 7(¢) the curvature and torsion of §(¢) := f(y(t)), respectively. By
Lemma 4.10, 7(t) = —k,(¢f). Take an arbitrary analytic function 7(¢z). Then, by
the fundamental theorem of space curves, there exists an analytic regular space
curve a(f) in R® whose curvature and torsion functions are given by #(z) and %(z),
respectively. Applying Theorem 4.7 to o(¢), there exists a real-analytic germ of a
non-v-flat 5/2-cuspidal edge g, : (R?,0) — (R>,0) such that g, is isometric to f
and o gives the image of the singular set of g,. Since x; = 0 along the singular
curve y(f), Lemma 4.10 yields that the cuspidal torsion of g, is —7(¢). Since we
can choose 7(¢) arbitrarily, the cuspidal torsion is extrinsic. O

We remark that an analytic non-v-flat 5/2-cuspidal edge f satisfying xc; =0
along S(f) exists. In fact, by rotating the plane curve (x(1),z(¢)) := (1 +¢°,%)
with respect to the z-axis, we have such an example.
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CoROLLARY 4.13.  For 5/2-cuspidal edges, the bias ry is an extrinsic invariant.

Proof. Let us take a non-v-flat real-analytic 5/2-cuspidal edge satisfying
iy = 0 along the singular curve y(f). Moreover, assuming 7 = 0, then by Lemma
4.10, it holds that x, =0. By Lemma 4.3,

KG(0) = 300

Let k£ > 0 be a non-negative real number. Since x, # 0, then by Theorem 4.7,
there exists a family {g*},., of real-analytic germs of 5/2-cuspidal edges such
that, for each k > 0, g¥ is non-v-flat, g* has the same first fundamental form of
f, and the curvature function x*(z) of g*(y()) is given by x*(¢) = x(¢) + k and
the torsion is 0. Since f and g* have the same first fundamental form for each
k >0, the singular curvature x%(¢) of g vanishes identically along y(z). Thus
the limiting normal curvature of g* is x¥(#) = x(¢) + k (> 0). Hence the bias rf
for gk is given by

k
ry(t) =
In particular, the bias is extrinsic. O

Remark 4.14. The secondary cuspidal curvature r. is also extrinsic, since
ri is intrinsic (Theorem 4.4), x, is extrinsic (Corollary 4.11), and r. is written
as r. =rn/x, when x, # 0. Moreover, the product x,r, is also extrinsic, since
K,y = 3(K +x2) holds by (4.4) and «, is extrinsic (Corollary 4.12). Further-
more, by a proof similar to that of Corollary 4.12, we can prove that the cuspidal
torsion x, for cuspidal edges is also extrinsic.

4.4. Summary of intrinsicity and extrinsicity. We can summarize the intrin-
sicity and extrinsicity as follows. As seen in Section 2.1, the corresponding
invariant of the bias of cusps r, does not exist for cuspidal edges.

invariants Ky Ky i Ke K11 = KKy
int/ext intrinsic  extrinsic  extrinsic  extrinsic intrinsic

Table 1. Intrinsicity and extrinsicity for cuspidal edges.

invariants | Ky i p e Kylp o Kylp 731{[2 = Kyle
int/ext int ext ext ext ext ext int int

Table 2. Intrinsicity (int) and extrinsicity (ext) for 5/2-cuspidal edges. Here, we remark that the
intrinsicity of the invariant in the seventh slot can be verified by the identity w7, —3x? = 3K
(cf. (4.4)). With respect to the eighth slot, see Theorem 4.4.
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5. Tsometric realizations of intrinsic 5/2-cuspidal edges

In this section, we deal with 5/2-cuspidal edge singularities without ambient
spaces. We give a definition of intrinsic 5/2-cuspidal edges for singular points
of Kossowski metrics, and prove the existence of their isometric realizations
(Theorem 5.7) as in [16] and [8].

First, we briefly introduce the basic properties of Kossowski metrics.
Further systematic treatments of Kossowski metrics are given in [4, 23, 8].
Let ds®> be a germ of a positive semi-definite metric on (Rz, 0). Assume that 0 is
a singular point of ds?, that is, ds* is not positive-definite at 0. Denote by S(ds?)
the set of singular points. A non-zero tangent vector v at 0 is called a null vector
at 0 if ds*(v,x) = 0 holds for every tangent vector x at 0. A local coordinate
neighborhood (U;u,v) is called adjusted at 0 if 0, = d/0v gives a null vector at
(0,0).

If (U;u,v) is a local coordinate neighborhood adjusted at 0, then F = G =0
holds at (0,0), where

(5.1) ds* = E du® + 2F dudv + G dv*.

A singular point 0 is called admissible if there exists an local coordinate neigh-
borhood (U;u,v) adjusted at 0 such that E, = 2F,, G, = G, =0 hold at (0,0).

DeriNITION 5.1 (Kossowski metric). If each singular point is admissible, and
there exists a smooth function A defined on a neighborhood (U;u,v) of 0 such
that

EG-F*=)’

on U, and dA # 0 holds at (0,0), then ds” is called a (germ of a) Kossowski
metric, where E, F, G are smooth functions on U satistfying (5.1). Moreover, if
we can choose E, F, G, and 4 to be analytic functions, then the Kossowski metric
is called analytic.

As shown in [4], the first fundamental form of a frontal-germ f : (R*,0) —
(R?,0) whose singular points are all non-degenerate is a Kossowski metric.

Let ds®> be a germ of a Kossowski metric having a singular point at 0. By
the condition dA # 0 at (0,0), the implicit function theorem yields that there
exists a regular curve y(¢) (|f] <é&) in the wv-plane (called the singular curve)
parametrizing S(ds?). Then there exists a smooth non-zero vector field # such
that 7, gives a null vector for each g € S(ds*) near (0,0). We call # a null vector
field.

DEFINITION 5.2. If 5 is transversal to S(ds?) at 0, the singular point 0 is
called type 1 (or an A, point).

For a Kossowski metric ds®> induced from a frontal-germ f, type I singular
points of ds? correspond to singular points of the first kind of f.
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According to [4, Proposition 2.25], for a type I singular point, there exists a
coordinate system (U;u,v) centered at 0, such that

- the singular set S(ds?) is given by the wu-axis,

+ 0, gives the null vector field,

* F=0 on U, and

* E(u,0) =1, E,(4,0) = G,(1,0) =0, Gp(u,0) =2
hold, where E, F, G are smooth functions as in (5.1). Such a coordinate system
is called a normalized strongly adapted coordinate system. Since Gy,(u,0) =2 is
equivalent to 4,(u,0) = +1, by changing v+— —v if necessary, we may assume
that 1,(#,0) = 1. (Hence, in the case of Kossowski metrics induced from frontals
in R3, the normalized strongly adapted coordinate systems are normally-adjusted,
cf. Definition 4.1.)

We shall review the definition of the product curvature for type I singular
points defined in [4]. Let (U;u,v) be a normalized strongly adapted coordinate
system centered at a type I singular point 0. Denote by K the Gaussian curva-
ture of ds> on U\{v=0}. By [4, Proposition 2.27], vK(u,v) is a smooth func-
tion on U. Then

K= lilré vK (u,v)
does not depend on the choice of the normalized strongly adapted coordinate
system satisfying 4,(0,0) = 1, and is called the product curvature.

Now, assume that xp; vanishes along the wu-axis. Then, K is a bounded
smooth function on U, and

K, = lil’% K, (u,v)
v—

does not depend on the choice of the normalized strongly adapted coordinate
system satistying 1,(0,0) = 1. We call K, the secondary product curvature or the
null-derivative Gaussian curvature.

DEFINITION 5.3. Let ds?> be a germ of a Kossowski metric at a type I
singular point 0. If the product curvature Kp vanishes along S(ds?), and the
secondary product curvature K, does not vanish at 0, then the singular point 0
is called an intrinsic 5/2-cuspidal edge.

The following lemma is a direct conclusion of Lemma 4.3 and Corollary 4.5.

LEmMMA 54. Let f:(R* 0) — (R?,0) be a non-v-flat frontal-germ having a
singular point 0 of the first kind. Denote by ds* the first fundamental form of f.
Then, f at 0 is a 5/2-cuspidal edge if and only if 0 is an intrinsic 5/2-cuspidal edge
(as a singular point of the Kossowski metric ds?).

We remark that the assumption of the non-v-flatness cannot be removed,
since there exists a cuspidal edge with vanishing limiting normal curvature such
that the corresponding singular points of ds®> are intrinsic 5/2-cuspidal edges.
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Example 5.5. Let f: (R?0) — (R*0) be a map-germ defined by f(u,v) =
(u,u®> +v%,v3 +v*). The first fundamental form ds? is written as

ds* = (4u? + 1) du® + Suv dudv + v> (4 + v*(4v + 3)2) dv’.

We can check that f is a front with a unit normal v(u,v) = A~ (Quv(4v + 3),

—v(4v +3),2), where we set 4:= \/4 +v2(4u? 4+ 1) (40 +3)>.  Since the signed
area density function A is written as A = vd, the w-axis gives the singular set
{(1,0); ue R}. As every singular point (u,0) is of the first kind, f is a cuspidal
edge. The limiting normal curvature r,(u) is identically zero along the w-axis,
so the product curvature is too. The Gaussian curvature K is given by K =
—4(4v + 3)(8v + 3)/A%, which satisfies K,(u,0) = —9. Hence, the corresponding
singular points of ds® are intrinsic 5/2-cuspidal edges, although f is a cuspidal
edge.

Kossowski [13] proved a realization theorem of Kossowski metrics which
admit only singular points satisfying K d4 # 0. In [8], a realization theorem of
Kossowski metrics at an arbitrary singular point is proved. In the following
Fact 5.6, we introduce the realization theorem, which is a restricted version of
[8, Theorem B] so that y(¢) is chosen to be the singular curve

FAcT 5.6 (cf. [8, Theorem B)). Let ds*> be a germ of an analytic Kossowski
metric on (R*,0), and let y(t) (|t| <¢) be a singular curve passing through a
singular point 0 = y(0).  Assume that 0 is a type 1 singular point of ds*. Then,
for given analytic function-germs «(t), ©(t) at t =0, there exists an analytic
frontal-germ [ = f,, . : (R*,0) — (R*,0) satisfying the following properties:

(1) ds? is the first fundamental form of f,

(2) the limiting normal curvature function germ along the singular curve vy

coincides with e for a suitable choice of a unit normal vector field v,

(3) z(t) gives the torsion function germ of (1) := f o y(t).

The possibilities for the congruence classes of such an f are at most two. More-
over, if T vanishes identically (i.e., 9 is a planar curve), then the congruence class
of [ is uniquely determined.

Using Fact 5.6 and an argument similar to that of Theorem 4.7, we have
the following realization theorem of Kossowski metrics with intrinsic 5/2-
cuspidal edges with prescribed singular images, which is an analogous to a
result of [16, Theorem 12] for cuspidal edges and [8, Corollary D] for cuspidal
Cross caps.

THEOREM 5.7. Let ds”> be a germ of an analytic Kossowski metric on (RZ,O).
Assume that 0 is an intrinsic 5/2-cuspidal edge. Take a germ of an analytic
regular space curve o(t) such that its curvature function x(t) satisfies

K> iy
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at 0, where i is the singular curvature of ds*> along the singular curve y. Then
there exists a germ of an analytic 5/2-cuspidal edge f, : (R*,0) — (R*,0) with non-
vanishing limiting normal curvature such that

(1) the first fundamental form of f, coincides with ds?,

(2) the singular image f; o7y coincides with o.
The possibilities for congruence classes of such an f; are at most two unless t
vanishes identically.  On the other hand, if © vanishes identically (i.e., ¢ is a planar
curve), then the congruence class of f, is uniquely determined.

Proof.  Set (1) to be w(f) := log \/x(t)* — xy(1)>. Let z(¢) be the torsion
function of o(f). By Fact 5.6, there exists an analytic frontal-germ f; :=
fore : (R?,0) — (R?,0) such that the items (1)—(3) in Fact 5.6 hold. Thus, it
suffices to show that f; has a 5/2-cuspidal edge at 0. Since the first funda-
mental form of f, coincides with ds?, the product curvature x and the secondary
product curvature ri; of f, coincide with those of ds?, respectively. Therefore,
by Corollary 4.5, we have that f, : (R?,0) — (R>,0) has a 5/2-cuspidal edge at 0.

O

Remark 5.8. We may suppose that o(¢) is defined for |¢| < &. By Theorem
5.7, there exists a frontal f : (R?,0) — (R*0) having a 5/2-cuspidal edge at
p = 0(0) such that f_ is isometric to f| and o(¢) = f4 o p(f). On the other hand,
reversing the orientation of o(f), there exists a frontal g, : (R* 0) — (R>,0)
having a 5/2-cuspidal edge at p = o(0) such that g_ is isometric to g, and
ag(—t) = goy(—t). Thus if ¢ is not planar, there are totally four distinct 5/2-
cuspidal edges f., f-, g+ and g_ with the common first fundamental form
whose image of the singular curve coincides with o((—¢,¢)) in general, see [9] for
details.

Appendix A. Proofs of propositions

A.1. Proof of Proposition 3.9. We show the following proposition, which
is a normal form of a singular point of the first kind.

PrOPOSITION A.l. Let f:(R*0)— (R*0) be a frontal and 0 a singular
point of the first kind. Then there exist a coordinate system (u,v) and an isometry
A of R® such that

Ao f(u,v) = (u,ar(u) + v*/2,a3(u) + v*b3(u, v))

for some functions ay, as, bs. If 0 is a 5/2-cuspidal edge, b3 has the form bsy =
e3(u) + vieq(u) + vies(u,v) for some functions cs, cy, cs.

Proof. Let v be a unit normal vector field along f. Since rank dfy = 1, by
an isometry 4 on R>, we may assume dfy(X) = (*,0,0) for any X € TR and
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v(0,0) = (0,0,1), where * stands for a real number. Since 0 is a singular point
of the first kind, S(f) is a regular curve in (R?,0), and 7 is transversal to S(f).
Thus there exists a coordinate system (&, ) satisfying S(f) = {t# = 0} and n = 0;.
Since f;(0,0) = (a,0,0) (a #0), setting u = f1(#,0), v =0, the coordinate system
(u,v) satisfies

(Al) f(uvv) = (uv.ﬁ(”av)aﬁ(uv U))a
(f2>u(070) = (f3>u(070) =0, V<070) = (0707 1)7

where fi(u,v) is the first component of f. Since f;(u,0) =0, there exist func-
tions ay, as, by, by such that fi(u,v) = a;(u) + v*b;(u,v)/2 (i=2,3). Since 0
is non-degenerate, 4,(0,0) #0. Thus det(f,, fi,,v)(0,0) = b,(0,0) # 0 Setting
i=u, 0=uv|b2(u,v)|, (A.1) is

f(u,8) = (u,a(u) + 5%/2, a3(u) + 1721;3(14, D)).

This shows the first assertion.
If 0 is a 5/2-cuspidal edge, then by Lemma 3.2, det(f,, for, for)(#,0) =0
holds. Thus we have the second assertion. O

Proposition 3.9 is now obvious by Proposition A.1.

A.2. Proof of Proposition 3.2.

Proof of Proposition 3.2. To show Proposition 3.2, firstly we show the
independence of the condition on the choice of the vector fields. Obviously,
the condition (1) does not depend on the choice of the vector fields. Since the
condition (2) is equivalent to f not being a front (Fact 3.3), the condition (2)
does not depend on the choice of the vector fields. Moreover, by the proof of
Lemma 3.6, we see the independence of the condition (3) on the choice of the
vector fields.

By Proposition A.l, we may assume that f is written in the form
f(u,v) = (u,v>,v°cs(u,v)). There exist functions cg, ¢; such that cs(u,v) =
ce(u,v?) 4 ver(u,v?).  Considering @ o f(u,v), where ®(X,Y,Z) = (X,Y,Z —
Y3c;(X,Y)), we may assume that f has the form f(u,v) = (u,v?, v ce(u, v?)).
Then a pair of vector fields & =0,, = 0, satisfies the condition of Proposi-
tion 3.2 with (3.4), and we see that /=0. By condition (3) of Proposition 3.2,
we see ¢(0,0) #0. We set @2(X,Y,Z)=(X,Y,Z/cs(X,Y)). Then ®y0 f =
(u,v%,0%), which shows the assertion. O
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