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Abstract

This is the second of our series of papers to solve Mutsuo Oka’s problems con-

cerning our polyhedral construction of degenerations of Riemann surfaces. Oka posed

globalization problem of our degenerations and determination problem of the defining

equation of a Riemann surface appearing in our construction—which is equipped with

the standard tetrahedral group action (i.e. topologically equivalent to the tetrahedral

group action on the cable surface of the tetrahedron). A joint work with S. Takamura

solved the first problem. In this paper, we solve the second one—in an unexpected

way: an algebraic curve with the standard tetrahedral group action turns out to be

not unique: a sporadic one (hyperelliptic) and a 1-parameter family of non-hyperelliptic

curves. We study their properties. At first glance they are ‘independent’, but actually

intricately connected—we show that at one special value in this family, a degeneration

whose monodromy is a hyperelliptic involution occurs, and the sporadic hyperelliptic

curve emerges after the stable reduction (hyperelliptic jump). This jumping phenom-

enon seems deeply related to the moduli geometry and is possibly universal for other

families of curves with finite group actions. Based on this observation, we pose stably-

connectedness problem.
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1. Problems and results

Concerning our polyhedral construction of degenerations of Riemann sur-
faces, Mutsuo Oka raised two problems at the symposium ‘‘Contact structure,
singularity, di¤erential equation and related topics’’ at Kochi (2014):
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I. Globalize the above degenerations in a natural way.
II. What is the defining equation of such a Riemann surface?

We solved Problem I in the joint work [12] with S. Takamura. In this paper,
we solve Problem II. It however turns out that such a Riemann surface is not
unique but forms a 1-parameter non-hyperelliptic family together with a sporadic
hyperelliptic one. We explicitly describe this family, and in terms of stable
reduction reveal the relationship between this family and the sporadic one. We
moreover describe the image of this family under the moduli map.

Let S be an orientable real surface obtained by thickening the edges of a
polyhedron (Figure 1.1). We say that S is the cable surface of the polyhedron—
the genus of the cable surface of the n-hedron is n� 1.

The automorphism group G of the polyhedron naturally acts on S orientation-
preservingly. Kerckho¤’s theorem [13] ensures the existence of a complex struc-
ture on S such that G acts holomorphically. In this paper, we consider the
cable surface of the tetrahedron (tetra surface); its genus is 3. We may regard
this Riemann surface as an algebraic curve. Noting that any (non-hyperelliptic)
curve of genus 3 is realized as a plane algebraic curve in P2. M. Oka asked:

Problem. Determine the defining equation of such a curve. Moreover is
this curve hyperelliptic or not? (The same problem may be considered for
any regular polyhedron, but it is subtle—for which the cable surface, being
of genusb 4, is not necessarily a plane curve, so may not be defined by a single
equation.)

The complete classification of full automorphism groups of genus 3 curves is
known ([4] for non-hyperelliptic ones, [10] for hyperelliptic ones); this however
does not give the solution of the above problem—in fact the tetrahedral group
may not be the full automorphism group of a curve in question. Moreover we
must take into account the topological types of group actions: the action must
be topologically equivalent to the standard tetrahedral group action on the cable
surface S.

Reformulation. The tetrahedral group T permutes the four vertices of the
tetrahedron, which induces an isomorphism TGA4 (alternating group of degree

Figure 1.1
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4). A curve with a tetrahedral group action may be thus called an A4-curve. If
moreover the tetrahedral group action is topologically equivalent to the standard
one, that is, the natural tetrahedral group action on S, then the A4-curve is said
to be of tetra type. M. Oka’s problem is then reformulated as:

Problem. Determine all genus 3 A4-curves of tetra type.

We will show that:

Solution (Theorem 4.9 (1)). The genus 3 A4-curves of tetra type are as
follows:

(H) The hyperelliptic curve B defined by y2 ¼ x8 þ 14x4 þ 1 in C2 (more
precisely, compactify this curve in P1 � P1 and then resolve its singu-
larities, which yields B; refer to [9] p. 254 for this procedure).

(NH) The non-hyperelliptic curves Ct ðt A CnfG2;�1gÞ in P2 given by

x4 þ y4 þ z4 þ tðx2y2 þ y2z2 þ z2x2Þ ¼ 0:

(Note: All degree 4 curves are non-hyperelliptic ([11] p. 315, Exercise
3.2 (c)).)

We will actually show much more. Observe first that the A4-actions on
B and Ct are a priori ‘independent’ and moreover these curves are unrelated
(as seen from their defining equations). This is however not the case; there exists
an analytic deformation from B to Cs ðs ¼ ðt� 2Þ2Þ that is compatible with
A4-action (we say an ‘‘A4-deformation’’). The construction of this deformation
is carried out by stable reduction (so B and Ct are said to be stably connected ).
We will also show that the singularities of the complex surface S ¼ fCtgt AC
are eight A1-singularities and they arise as the quotient under a hyperelliptic
involution.

In the theory of algebraic curves, the classification of automorphism groups
of curves (of fixed genus) is usually carried out separately for hyperelliptic
curves or non-hyperelliptic curves; then there often appears a pair of a hyper-
elliptic G-curve X and a family of non-hyperelliptic G-curves Yt (where G is
a finite group) such that these G-actions are topologically equivalent (examples
of such pairs indeed appear in the list of S. Hirose in his talk at the symposium
‘‘Algebraic topology around transformation groups’’ at RIMS, 2017). Based on
our results, we pose the following:

Stably-connectedness problem. Are X and Yt connected via a
G-deformation? Are they related via stable reduction?

We plan to discuss this in our subsequent paper.

Main results
We state our main results explicitly:
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Main theorem. (1) The genus 3 A4-curves of tetra type are exhausted by:
(i) a hyperelliptic curve B : y2 ¼ x8 þ 14x4 þ 1 and
(ii) non-hyperelliptic curves Ct : x

4 þ y4 þ z4 þ tðx2y2 þ y2z2 þ z2x2Þ ¼ 0

in P2, where t A CnfG2;�1g (Theorem 4.9 (1)). Here CG2, C�1 are
excluded, because they are singular (Lemma 5.4; see also Figure 1.2):
� C2 is P1 of multiplicity 2.
� C�2 consists of four P1’s and any two of them intersect at one point.
� C�1 consists of two P1’s intersecting at four points.

(2) Let S be a complex surface defined by

S :¼ fðx; y; z; tÞ A P2 � C : x4 þ y4 þ z4 þ tðx2y2 þ y2z2 þ z2x2Þ ¼ 0g
and p : S ! C be the projection ðx; y; z; tÞ 7! t; so Ct ¼ p�1ðtÞ. Then the
singularities of S are eight A1-singularities and they lie on C2 (Theorem
4.9 (2)).

(3) Take a su‰ciently small disk D centered at t ¼ 2 in C and set W :¼
p�1ðDÞ. Let r : M ! W be the minimal resolution of the singularities.
Then p :¼ p � r : M ! D is a degeneration of smooth curves whose mono-
dromy is a hyperelliptic involution (Proposition 4.11).

(4) Let p 00 : N ! D be the Z2-stable reduction of p : W ! D via the base
change D ! D, t� 2 7! ðt� 2Þ2. Then the central fiber of p 00 is B
(Theorem 4.9 (3)) and the natural Z2-action on B is a hyperelliptic
involution with B=Z2 ¼ C2 (see Corollary 4.5).

Remark 1.1. The family of curves Ct is also studied by other researchers:
Kuribayashi–Sekita [15], which is subsequently used in our discussion, and

Figure 1.2. The eight bold points on C2 are A1-singularities.

479on the family of riemann surfaces with tetrahedral group action



Alwaleed and Sakai [2], which classified the 2-Weierstrass points on Ct and
determined the numbers of flexes and sextactic points.

Description of the moduli map. Let M3 be the moduli space of Riemann
surfaces of genus 3 and M3 be its Deligne–Mumford compactification. Consider
the moduli map f : Cnf2g ! M3 of the family fCtgt ACnf2g. As t ! 2, f ðtÞ ¼ ½B�,
so f is bounded, thus naturally extends to a holomorphic map f : C ! M3. Set
Im f :¼ f ðCÞ. Then:

(1) f is injective except for two values t ¼ �3G 3
ffiffiffiffiffiffiffi
�7

p

4
, for which Ct are the

Klein curve ([15] Theorem 2 p. 121). Moreover Im f intersects trans-
versally at the point corresponding to the Klein curve (this is shown by
using linear quotient family; see [20] for details).

(2) Im f intersects the hyperelliptic locus in M3 at one point f ð2Þ ¼ ½B�
(from Main theorem (4)).

(3) Im f intersects the boundary of M3 at f ð�2Þ and f ð�1Þ, which cor-
respond to the stable curves C�2 and C�1.

Exotic S4-action. Each Ct actually admits a larger group action than A4.
Indeed the symmetric group S4 acts on it (see [4] Table p. 10). Since Ct is
homeomorphic to the cable surface S of the tetrahedron, this S4-action is trans-
formed to S. On the other hand, besides the automorphism group T of the
tetrahedron, the full automorphism group T̂T (which contains orientation-reversing
automorphisms) also acts on S, and this group is isomorphic to S4. It is thus
plausible that the previous S4-action coincides with this S4-action. However
this is not the case, because the former contains no orientation-reversing auto-
morphisms (as it is holomorphic). Thus S has two distinct S4-actions: the
standard one by T̂T and the exotic one from the S4-action on Ct.

Acknowledgments. I would like to express my gratitude to Professor Mutsuo
Oka for calling my attention to the problems in the present work. I would like
to express my gratitude to Professor Ryushi Goto for warm encouragement
throughout this work. I also would like to thank Professors Tadashi Ashikaga,
Akira Ohbuchi, Shigeru Takamura and Takeshi Harui for many valuable com-
ments and fruitful discussion. I would like to thank Professor Takayuki Okuda

Figure 1.3. The point p corresponds to the Klein curve.
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for pointing out that as a byproduct of our result, a geometric realization of the
decomposition of the hyperelliptic involution of genus 3 into 13 Dehn twists is
obtained, which may be applied to construct an interesting Lefschetz fibration
(this will be discussed elsewhere).

2. Description of tetrahedral group action

Let S be the cable surface of the tetrahedron, on which the tetrahedral group
T naturally acts. Thanks to Kerckho¤ ’s theorem [13], we may give a complex
structure to it such that the T-action is holomorphic. We determine the branch
data of the quotient map c : S ! S=T. We first review terminology with the
intension of fixing notation.

Note first that c is a jTj-fold covering.
� For y A S=T, ifac�1ðyÞ < jTj, then y is a branch point (with branch index
jTj=ac�1ðyÞ).

� If y A S=T is a branch point, then x A c�1ðyÞ is a ramification point (with
ramification index jTj=ac�1ðyÞ).

A ramification point is alternatively characterized as a point with non-
trivial stabilizer. For a point x A S, its stabilizer Tx is a subgroup of T given
by

Tx :¼ fg A T : gx ¼ xg:

Now for y A S=T, take x A c�1ðyÞ. Then T acts transitively on the points

of c�1ðyÞ while Tx fixing x. Thus c�1ðyÞGT=Tx (as sets), and ac�1ðyÞ ¼
jTj=jTxj. Hence jTj=ac�1ðyÞ ¼ jTj=jTj=jTxj ¼ jTxj:

We thus obtain:

Lemma 2.1. The ramification index of x is jTxj. Thus:

ac�1ðyÞ < jTj ði:e: y is a branch pointÞ , 1 < jTxj , Tx 0 f1g:

Remark 2.2. jTxj is independent of the choice of x A c�1ðyÞ. In fact for
another x 0 A c�1ðyÞ, Tx and Tx 0 are conjugate: There exists g A T such that
x 0 ¼ gx, for which Tx 0 ¼ gTxg

�1.

Take a ramification point x A S. Then to each conjugate gTxg
�1 ðg A TÞ of

Tx, a ramification point y ¼ gx is associated; note that Ty ¼ gTxg
�1 and the

ramification index jTyj of y is equal to jTxj. Now denote by H the conjugacy
class fgTxg

�1 : g A Tg of Tx. The ramification points associated with the sub-
groups in this conjugacy class are called H-ramification points.

Definition 2.3. Let y1; y2; . . . ; yl be the branch points of c, and for each
yi A S=T, let ei :¼ jTxj ðx A c�1ðyiÞÞ be the branch index of yi. Then the tuple
ðgenusðS=TÞ; e1; e2; . . . ; elÞ is called the branch data (signature) of c (or of the
T-action on S).
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The ramification points of S ! S=T are the points of S with nontrivial
stabilizers (Lemma 2.1). To determine such points, identify T with the alter-
nating group A4 under the canonical isomorphism induced from the permutation
of the vertices of the tetrahedron. Here the (proper) nontrivial subgroups of
A4 are Z2, Z3 and Z2 � Z2 up to conjugation. Among them, Z2 and Z3 are
stabilizers of some points of S. In fact Z2 acts as a 1=2-rotation fixing four
points as illustrated in Figure 2.1 (there are three conjugate Z2’s in A4) and Z3

acts as a 1=3-rotation fixing two points as illustrated in Figure 2.2 (there are four
conjugate Z3’s in A4), while Z2 � Z2 fixes no point (as a whole group) and is
generated by a pair of 1=2-rotations (there are three conjugate Z2 � Z2’s in A4

respectively generated by (1) and (2), (2) and (3), or (3) and (1) in Figure 2.1).
The total number of Z2-ramification points are 4� 3 ¼ 12 and the total number
of Z3-ramification points are 2� 4 ¼ 8. The ramification index of each Z2-
ramification point is jZ2j ¼ 2 and the ramification index of each Z3-ramification
point is jZ3j ¼ 3.

The images of the ramification points under the quotient map c : S ! S=T
are the branch points. Note:

� ai; bi; ci; di ði ¼ 2; 3Þ are identified with a1, b1, c1, d1 respectively.
� a1 (resp. b1) is identified with d1 (resp. c1) via a 1=2-rotation as illustrated
in Figure 2.3.

Figure 2.1

Figure 2.2
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Hence the images of the Z2-ramification points are two points a1 and b1 (with
branch index 2).

Next under c : S ! S=T, ei; fi ði ¼ 2; 3; 4Þ are identified with e1, f1 respec-
tively. Hence the images of the Z3-ramification points are two points e1 and f1
(with branch index 3).

We summarize the above as follows:

Lemma 2.4. The quotient map S ! S=T has four branch points with branch
indices ð2; 2; 3; 3Þ.

We next show that S=TGP1 by applying the Riemann–Hurwitz formula:

wðSÞ ¼ jTjwðS=TÞ �
X
p AR

ðep � 1Þ;ð2:1Þ

where R is the set of the ramification points and ep is its ramification index of
p A R. In the present case, wðSÞ ¼ �4, jTj ¼ 12 and

P
pðep � 1Þ ¼ 12ð2� 1Þ þ

8ð3� 1Þ ¼ 28. Thus from (2.1), wðS=TÞ ¼ �2, implying that S=TGP1. This
with Lemma 2.4 yields the following:

Proposition 2.5. Let S be the cable surface of the tetrahedron, on which the
tetrahedral group T acts. Then S=TGP1 and the quotient map S ! S=T has
four branch points with branch indices ð2; 2; 3; 3Þ. (Thus the branch data of the
T-action on S is ð0; 2; 2; 3; 3Þ.)

We regard the branch points on S=T as ‘‘marked points’’; observe that the
complex structure on S=T ðGP1Þ with four marked points admits a 1-parameter
family of deformations (caused by moving one point among the four points—
three points on P1 are normalized as 0, 1, y under some element of PSL2ðCÞ).
Varying one branch point (in P1nfother branch pointsg) yields a family of topo-
logically equivalent coverings. The complex structures on the covering spaces
are given by the pull back of the complex structures on S=T with four marked
points via the quotient map S ! S=T. We thus obtain a 1-parameter family of

Figure 2.3
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complex structures on S with the same covering transformation group, that is, T
(their branch data remain ð0; 2; 2; 3; 3Þ). We formalize this as follows:

Corollary 2.6 (Non-rigidity). Let S be the cable surface of the tetrahedron,
on which the tetrahedral group T acts. Give a complex structure to S such that
the T-action is holomorphic, and regard S as a Riemann surface with T-action.
Then S admits a ‘‘T-action preserving ’’ 1-parameter deformation—there exists a
1-parameter family of Riemann surfaces with T-actions starting from S such that
their branch data remain ð0; 2; 2; 3; 3Þ.

3. Defining equations of A4-curves of genus 3

In what follows, unless otherwise mentioned, all curves are of genus 3. We
identify the tetrahedral group T with the alternating group A4 under the canoni-
cal isomorphism (recall: T permutes the four vertices of the tetrahedron, which
induces TGA4). A curve C with A4-action (i.e. A4 � AutðCÞ) is called an
A4-curve. The aim of this section is to show the following:

Theorem 3.1. The A4-curves of genus 3 are as follows: (i) There is a unique
hyperelliptic one: B : y2 ¼ x8 þ 14x4 þ 1. (ii) Non-hyperelliptic ones form a

1-parameter family Ct : x
4 þ y4 þ z4 þ tðx2y2 þ y2z2 þ z2x2Þ ¼ 0 ðt A CnfG2;�1gÞ.

Note first that: If C is an A4-curve, then A4 � AutðCÞ, so jAutðCÞj is
divisible by jA4j ¼ 12. We thus consider curves C such that jAutðCÞj is divisible
by 12. We separate into hyperelliptic case and non-hyperelliptic case:

(H) The list of hyperelliptic curves C such that jAutðCÞj is divisible by 12 is
as follows ([10] p. 118 Table 1):

Aut jAutj C

D12 12 H1 : y2 ¼ xðx6 þ tx2 þ 1Þ
U6 24 H2 : y2 ¼ xðx6 � 1Þ

Z2 �S4 48 H3 : y2 ¼ x8 þ 14x4 þ 1

Table 3.1. Sn: symmetric group of degree n. U6 :¼ ha; b : a2 ¼ b12 ¼ abab7 ¼ 1i (or ha; b : a2; b12;
abab7i in [5] p. 272 Table 2, 3.e). D2n :¼ ha; b : an ¼ b2 ¼ abab ¼ 1i: dihedral group of order 2n.

Note: The presentation U6 ¼ ha; b : a2; b6; abab4i in [10] p. 118 seems a typo, because for which

jU6j0 24 (but jU6j ¼ 6).

Here:
� H1 and H2 are not A4-curves, as A4 6� AutðH1Þ ð¼ D12Þ and A4 6�
AutðH2Þ ð¼ U6Þ by Lemma 3.3 below.

� H3 is an A4-curve, indeed A4 � Z2 �S4. (Note: The Galois group of
x8 þ 14x4 þ 1 is S4, see [14] p. 58.)

This confirms (i) of Theorem 3.1.

484 ryota hirakawa



(NH) The list of non-hyperelliptic curves C such that jAutðCÞj is divisible
by 12 is as follows ([4] Theorem 16 p. 10)—note that any non-hyperelliptic curve
of genus 3 is realized as a quadric in P2:

Aut jAutj C

S4 24 NH1 : x4 þ y4 þ z4 þ tðx2y2 þ y2z2 þ z2x2Þ ¼ 0,

where t A Cn 0;
�3G 3

ffiffiffiffiffiffiffi
�7

p

2

( )
. Precisely: t ¼G2;�1 are

also excluded, as NH1 for them are singular (Lemma 5.6).

Z4 } A4 GSL2ðF3ÞzZ2 48 NH2 : x4 þ y4 þ z3x ¼ 0

ðZ4 � Z4ÞzS3 96 NH3 : x4 þ y4 þ z4 ¼ 0 (Fermat curve)

PSL2ðF7Þ 168 NH4 : z3yþ y3xþ x3z ¼ 0 (Klein curve)

Table 3.2. AzB is the semidirect product of A and B. For Z4 } A4, see [4] p. 10. Note: Both

Z4 } A4 and SL2ðF3ÞzZ2 have the same identification number of finite group: ‘‘GAP Id. [48, 33]’’

([4] p. 10, [19] p. 9), so they are isomorphic.

Here:
� NH1 is an A4-curve, as A4 � AutðNH1Þ ð¼ S4Þ.
� NH2 is excluded, as A4 6� AutðNH2Þ ð¼ SL2ðF3ÞzZ2Þ; see [19] p. 9.
� NH3 and NH4 are special cases of NH1 at the value of t ¼ 0 and t ¼
�3G 3

ffiffiffiffiffiffiffi
�7

p

2
respectively. In fact, NH1 for t ¼ 0 is the Fermat curve and

NH1 for t ¼ �3G 3
ffiffiffiffiffiffiffi
�7

p

2
is isomorphic to the Klein curve ([15] p. 121

Theorem 2).
This confirms (ii) of Theorem 3.1.

Supplement: Technical lemmas on groups

Lemma 3.2. For U6 :¼ ha; b : a2 ¼ b12 ¼ abab7 ¼ 1i, the following hold:
(i) ba ¼ ab5.
(ii) Any element of U6 is written as bk or abk ðk ¼ 0; 1; . . . ; 11Þ. Conse-

quently U6 ¼ fbk; abk : k ¼ 0; 1; . . . ; 11g.
(iii) Any subgroup H � U6 of order 12 is normal in U6 and U6=HGZ2.

Moreover b2 A H.

Proof. (i): The relation abab7 ¼ 1 is rewritten as ba ¼ a�1b�7. Here
a�1 ¼ a and b�7 ¼ b5 (as a2 ¼ b12 ¼ 1), thus ba ¼ ab5.

(ii): Use (i).
(iii): Since jU6j ¼ 24 and jHj ¼ 12, H is of index 2 in U6, so normal. We

show that b2 A H. If b A H, this is trivial. If b B H, then b determines the
generator b of U6=HGZ2, so b2 ¼ 1, thus b2 A H. r

Lemma 3.3. (1) A4 is ‘‘not ’’ a subgroup of D12.
(2) A4 is ‘‘not ’’ a subgroup of U6.
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Proof. (1): Since jA4j ¼ jD12j ð¼ 12Þ, if A4 � D12 then A4 ¼ D12, which
contradicts the fact that D12 has an element of order 6 while A4 does not
(because the order of any element of A4 is either 1, 2 or 3).

(2): Since jA4j ¼ 12, if A4 � U6 then b2 A A4 (Lemma 3.2 (iii)). The order
of this element is 6, which is a contradiction. r

4. Proof of main results

Unless otherwise mentioned, all curves are assumed to be of genus 3. The
tetrahedral group T naturally acts on the cable surface S of the tetrahedron. By
Kerckho¤’s theorem [13], we may give a complex structure on S such that this
action is holomorphic. Recall that TGA4, so S is an A4-curve. Its branch
data on S is ð0; 2; 2; 3; 3Þ (Proposition 2.5). An A4-curve is said to be of tetra
type if the A4-action is topologically equivalent to the standard tetrahedral group
action on S.

Definition 4.1. An A4-curve of tetra type is called a tetra curve.

We determine all tetra curves, in fact we show that B and Ct ðt A CnfG2;
�1gÞ in Theorem 3.1 exhaust all tetra curves. This is a consequence of a chain
of claims:

Claim I. Ct for some t is a tetra curve.

Proof. If none of Ct is a tetra curve, then only B is a tetra curve, which
however cannot occur due to the non-rigidity of a tetra surface (Corollary 2.6).

r

From the non-rigidity of a tetra surface (Corollary 2.6), the following
holds:

Claim II. Let Ct0 be a tetra curve, then there exists an open neighborhood
U of t0 in CnfG2;�1g such that for any t A U , Ct is a tetra curve.

In fact every Ct ðt A CnfG2;�1gÞ is a tetra curve. To show this, we need
preparation. Let S be the complex surface in P2 � C defined by

S :¼ fð½x : y : z�; tÞ A P2 � C : x4 þ y4 þ z4 þ tðx2y2 þ y2z2 þ z2x2Þ ¼ 0g;

and let p : S ! C be the projection ð½x : y : z�; tÞ 7! t; and Ct ¼ p�1ðtÞ.

Lemma 4.2. (1) M :¼ SnðCG2 [ C�1Þ is non-singular. (2) Set W :¼ CnfG2;
�1g, then the restriction p : M ! W is a fibration.
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Proof. (1) follows from the fact that all of singular points of S lie on C2

(Lemma 5.1 below). (2) is clear, because no degeneration occurs in p : M ! W
(Lemma 5.6 below). r

Lemma 4.3. For each point b A W, there exists an open neighborhood V of b
in W such that the A4-actions on all Ct ðt A VÞ are topologically the same.

Proof. Since p : M ! W is a fibration, by the Ehresmann fibration theorem
there exists a su‰ciently small open neighborhood V of b in W such that
the restriction p : p�1ðVÞ ! V is di¤eomorphically isomorphic to a projection
C � V ! V (where C ¼ Cb). The fiberwise A4-action on p�1ðVÞ corresponds
to a fiberwise A4-action on C � V . Identifying the fiber C � ftg ðt A VÞ with C
in an obvious way, we regard the A4-action on C � ftg ðt A VÞ as a family of
A4-actions on a single C. This amounts to a family of injective homomorphisms
it : A4 ! MCGðCÞ, where MCGðCÞ denotes the mapping class group of C.
Since MCGðCÞ is discrete, it must be constant. Therefore the A4-actions on all
Ct ðt A VÞ are topologically the same. r

Now we can show:

Claim III. Every Ct ðt A WÞ is a tetra curve.

Proof. It su‰ces to show that the A4-actions on all Ct ðt A WÞ are topolog-
ically the same. Take the open neighborhood U in Claim II as a maximal
one. We claim that U is the whole of W. Otherwise there is a boundary point
(say b) of U in W. By Lemma 4.3, there exists an open neighborhood V of b
in W such that the A4-actions on all Ct ðt A VÞ are topologically the same. So
V � U , which contradicts the fact that b B U . r

Our next task is to show that B is also a tetra curve. Let D be a su‰ciently
small disk centered at t ¼ 2 in C and set W :¼ p�1ðDÞ. Consider the restriction
p : W ! D of p : S ! C around the singular fiber C2 ¼ p�1ð2Þ (¼ 2P1; see
Lemma 5.4). After showing that B arises as the central fiber of a stable reduc-
tion of p : W ! D, we will show that B is a tetra curve. Note first that W has
eight isolated singularities, which lie on C2 and exhaust all singularities of S (see
Lemma 5.1 below). These eight singularities are A1-singularities (see Lemma 5.3
below).

Now let p 0 : W 0 ! D be the family obtained from p : W ! D by the base
change t� 2 ¼ s2, where explicitly

W 0 :¼ fð½x : y : z�; sÞ A P2 � D : x4 þ y4 þ z4 þ ðs2 þ 2Þðx2y2 þ y2z2 þ z2x2Þ ¼ 0g:

The central fiber p 0�1ð0Þ of p 0 : W 0 ! D is identical to p�1ð2Þ ð¼ C2Þ, so
p 0�1ð0ÞGP1. Here W 0 is singular in codimension 1 (W 0 is ‘bent’ along
p 0�1ð0Þ), and so non-normal. Let n : N ! W 0 be the normalization of W 0.
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Then p 00 :¼ p 0 � n : N ! D is a (non-degenerating) family of smooth curves,
which is the stable reduction of p : W ! D.

N ���!n W 0 W

p 00 p 0

???y
???yp

D ���!base

change
D:

ð4:1Þ
� � � !

Lemma 4.4. Let r1; r2; . . . ; r8 A p�1ð0Þ be the eight singularities of W and
r 01; r

0
2; . . . ; r

0
8 A p 0�1ð0Þ be the corresponding points of W 0 under the identification of

p�1ð0Þ with p 0�1ð0Þ. Then the restriction n : p 00�1ð0Þ ! p 0�1ð0Þ ðGP1Þ of n : N !
W 0 is a double covering with eight branch points r 01; r

0
2; . . . ; r

0
8.

Proof. For each point q A p�1ð0Þ, let q 0 A p 0�1ð0Þ denote the correspond-
ing point under the identification of p�1ð0Þ with p 0�1ð0Þ. To show the asser-
tion, we describe the normalization n : N ! W 0 around each point q 0 A p 0�1ð0Þ.
We separate into two cases depending on the position of q 0 (below, we take
a coordinate of the disk D so that the center is the origin: D ¼ fT A C :
jT j < 1g):

Case 1. q 0 A fr 01; r 02; . . . ; r 08g: In this case W is defined by TX ¼ Y 2 around
q (and p : W ! D is given by ðX ;Y ;TÞ 7! T around q). Here q corresponds
to the origin ðX ;Y ;TÞ ¼ ð0; 0; 0Þ. The base change T 7! T 2 turns TX ¼ Y 2 to
T 2X ¼ Y 2, which is the defining equation of W 0 around q 0 (and p 0 : W 0 ! D is
given by ðX ;Y ;TÞ 7! T around q 0). Here q 0 corresponds to the origin ðX ;Y ;TÞ
¼ ð0; 0; 0Þ. Let Wq 0 be a su‰ciently small neighborhood of q 0. Then Wq 0 \
p 0�1ð0Þ, given by T ¼ Y ¼ 0 (the X -axis), is the non-normal locus of Wq 0 .
The normalization of Wq 0 is given by ðu; vÞ A C2 7! ðv2; uv; uÞ A W 0

q 0 ; note that
ðX ;Y ;TÞ ¼ ðv2; uv; uÞ satisfies T 2X ¼ Y 2, as u2v2 ¼ ðuvÞ2. (Precisely speaking,
we need to shrink C2 around the origin.) On the u-axis in C2, this normal-
ization is given by v 7! v2, which is a double covering over the origin q 0. See
Figure 4.1.

Figure 4.1. The restriction of n : C2 ! W 0
q 0 to the u-axis is two-to-one outside 0 A C2 while ramified

at 0.
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Case 2. q 0 A p 0�1ð0Þnfr 01; r 02; . . . ; r 08g: In this case W is defined by T ¼ Y 2

around q (and p : W ! D is given by ðX ;Y ;TÞ 7! T around q). Accordingly
W 0 is defined by T 2 ¼ Y 2 around q 0 (and p 0 : W 0 ! D is given by ðX ;Y ;TÞ 7!
T around q 0). Let Wq 0 be a su‰ciently small neighborhood of q 0. Then Wq 0 \
p 0�1ð0Þ, given by Y ¼ T ¼ 0 (the X -axis), is the non-normal locus of Wq 0 . The
normalization of Wq 0 : T 2 ¼ Y 2 is explicitly given by Vþ q V� ! Wq 0 , where

Vþ :¼ fðu; v;wÞ A C3 : w ¼ vg and V� :¼ fðu; v;wÞ A C3 : w ¼ �vg, and njVþ
and

njV�
are the ‘identity’ maps. (Precisely speaking, we need to shrink Vþ and V�

around the origins.) This normalization isomorphically maps the u-axis in Vþ
and the u-axis in V� to the X -axis in Wq 0 , which is an unramified double
covering.

The descriptions in Case 1 and Case 2 together imply the assertion.

A genus 3 curve branched over P1 at eight points is necessarily hyperelliptic,
and the double covering is the quotient under the hyperelliptic involution—the
ramification points are the fixed points of hyperelliptic involution. Thus the
following holds:

Corollary 4.5. In Lemma 4.4, p 00�1ð0Þ is a hyperelliptic curve, and the
eight ramification points of n are the fixed points of its hyperelliptic involution i, so
that p 00�1ð0Þ=i ¼ p 0�1ð0Þ ð¼ p�1ð0ÞÞ.

We next show that the hyperelliptic curve A :¼ p 00�1ð0Þ admits an A4-action.
Consider the commutative diagram:

N ���! W

p 00

???y
???yp

D ���! D:

ð4:2Þ

Figure 4.2. The restriction of n : Vþ q V� ! Wq 0 to the u-axis in Vþ and the u-axis in V� is two-to-

one and unramified.
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Then the A4-action on Wnp�1ð0Þ lifts to an A4-action on NnA such that it maps
each fiber p 00�1ðuÞ ðu0 0Þ to itself (Remark 4.7 below). The commutativity of
(4.2) implies that each fiber p 00�1ðuÞ ðu0 0Þ is isomorphic to Cs ðs ¼ u2Þ, so from
Claim III it is a tetra curve (equipped with the A4-action). We thus obtain the
following:

Lemma 4.6. (1) A :¼ p 00�1ð0Þ is a hyperelliptic curve. (2) p 00 : NnA !
Dnf0g is a family of smooth A4-curves—the A4-action on NnA maps each fiber
p 00�1ðuÞ ðu0 0Þ to itself, and p 00�1ðuÞ ðu0 0Þ is a tetra curve.

Remark 4.7. Any finite group action on a plane curve in P2 is the restric-
tion of a projective linear action on P2, that is, the finite group acts as a sub-
group of PGL3ðCÞ ([16] Corollary 5.3.19 p. 382). So in our context, the A4-
action on W is of the form ð½x : y : z�; sÞ 7! ðgð½x : y : z�Þ; sÞ, where g A PGL3ðCÞ
(and s :¼ t� 2). This action naturally defines an A4-action on NnA. Indeed as
W is defined by f ð½x : y : z�; sÞ :¼ x4 þ y4 þ z4 þ ðsþ 2Þðx2y2 þ y2z2 þ z2x2Þ ¼ 0

in P2 � D, NnA is defined by f ð½x : y : z�; s2Þ ¼ 0 in P2 � ðDnf0gÞ, thus the
A4-action on W defines an A4-action on NnA. (Caution: N itself is not simply
defined by f ð½x : y : z�; s2Þ ¼ 0.)

The A4-action on NnA uniquely extends to an A4-action on N that maps
A ¼ p 00�1ð0Þ to itself (see Remark 4.8 below). In particular A is an A4-curve.
With Lemma 4.6 (1), A is a hyperelliptic A4-curve. Such a curve is unique—it
is B (see Theorem 3.1), thus A ¼ B.

Remark 4.8. Let p : M ! D be a family of smooth curves and set X :¼
p�1ð0Þ. Suppose that the restriction p : MnX ! Dnf0g is a family of smooth
G-curves (G: a finite group). Then the G-action on MnX uniquely extends to a
G-action on M that maps X to itself (see [1] p. 115).

We show that the A4-actions on all fibers of p 00 : N ! D are topologically
equivalent. First by the Ehresmann fibration theorem, p 00 : N ! D may be topo-
logically considered as the projection A� D ! D (recall that D is a su‰ciently
small disk). Then applying the argument in the proof of Lemma 4.3 shows that
the A4-actions on all fibers of p 00 : N ! D are topologically the same. Since the
A4-actions on all fibers of p 00 : NnA ! Dnf0g are of tetra type (Lemma 4.6 (2)),
the A4-action on A is also of tetra type. Thus A ð¼ BÞ is also a tetra curve.

We summarize the results so far obtained as follows:

Theorem 4.9. (1) The tetra curves are exhausted by B and Ct ðt A
CnfG2;�1gÞ.

(2) W (and S) has eight singularities and they lie on C2 and all are A1-
singularities.

(3) Let p 00 : N ! D be the stable reduction of p : W ! D via a base change
D ! D, t� 2 7! ðt� 2Þ2. Then the central fiber of p 00 is B.
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Remark 4.10. The A4-action on B (and Ct) corresponds to an embedding of
A4 (as a subgroup) into the mapping class group MCG3 of a genus 3 curve.
Then in MCG3, A4 and the hyperelliptic involution i commute, which follows
from the commutativity of the A4-action and the Z2-action ðZ2 ¼ hiiÞ on NnA;
see the paragraph above Lemma 4.6.

Now let r : M ! W be the minimal resolution of the eight A1-singularities
r1; r2; . . . ; r8 (in Lemma 4.4), where each Ei :¼ r�1ðriÞ ði ¼ 1; 2; . . . ; 8Þ is P1 with
self-intersection number �2, that is, Ei is a ð�2Þ-curve. The composition of r
with p : W ! D is a degeneration p :¼ p � r : M ! D of smooth curves of genus
3, whose singular fiber is 2P1 þ

P8
i¼1 Ei (Figure 4.3), where each Ei intersects

2P1 transversally. The monodromy of p : M ! D is the hyperelliptic involution
in Corollary 4.5.

We formalize the above as follows:

Proposition 4.11. Let r : M ! W be the minimal resolution of the eight
A1-singularities r1; r2; . . . ; r8 of W ; each Ei :¼ r�1ðriÞ is a ð�2Þ-curve. Then the
composition of r with p : W ! D is a degeneration p :¼ p � r : M ! D of smooth
curves of genus 3, whose singular fiber is 2P1 þ

P8
i¼1 Ei, and the monodromy of

p : M ! D is the hyperelliptic involution in Corollary 4.5.

5. The singularities and singular fibers of the A4-family

Let S be the complex surface in P2 � C defined by

S :¼ fð½x : y : z�; tÞ A P2 � C : x4 þ y4 þ z4 þ tðx2y2 þ y2z2 þ z2x2Þ ¼ 0g;
and let p : S ! C be the projection ð½x : y : z�; tÞ 7! t and Ct :¼ p�1ðtÞ. The
restriction of p : S ! C to CnfG2;�1g is the family of A4-curves appearing in
Theorem 3.1 (ii).

Lemma 5.1. S has eight isolated singularities ð½Go :Go2 : 1�; 2Þ and
ð½Go2 :Go : 1�; 2Þ, where o :¼ e2pi=3, which lie on the fiber C2 ¼ p�1ð2Þ.

Figure 4.3. The minimal resolution r : M ! W .
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Proof. Take an open covering P2 ¼ U [ V [W , where U ¼ fz ¼ 1g,
V ¼ fx ¼ 1g, and W ¼ fy ¼ 1g. We show that the singularities of S lie on
ðU \ V \WÞ � C and they are ð½Go :Go2 : 1�; 2Þ and ð½Go2 :Go : 1�; 2Þ.

We first determine the singularities of S on U � C. The defining equation
of S on U � C is given by f ðx; y; tÞ ¼ x4 þ y4 þ 1þ tðx2y2 þ x2 þ y2Þ. Let q ¼
ðx; y; tÞ A SjU�C, then

ðaÞ x4 þ y4 þ 1þ tðx2y2 þ x2 þ y2Þ ¼ 0:

Suppose that q is a singularity, equivalently

qx f ðqÞ ¼ qy f ðqÞ ¼ qt f ðqÞ ¼ 0 ðJacobi criterionÞ;

or explicitly

ðbÞ xð4x2 þ 2tðy2 þ 1ÞÞ ¼ 0;

ðcÞ yð4y2 þ 2tðx2 þ 1ÞÞ ¼ 0;

ðdÞ x2y2 þ x2 þ y2 ¼ 0:

8><
>:

We claim that x0 0 and y0 0. Indeed if x ¼ 0 then (a) and (d) become ðaÞ0
y4 þ ty2 þ 1 ¼ 0 and ðdÞ0 y2 ¼ 0, so 1 ¼ 0 (absurd!). Similarly if y ¼ 0 then (a)
and (d) yield a contradiction, so y0 0. Dividing now (b) by x and (c) by y
yields

ðbÞ0 4x2 þ 2tðy2 þ 1Þ ¼ 0;

ðcÞ0 4y2 þ 2tðx2 þ 1Þ ¼ 0:

�

We next claim that x2 0�1 and y2 0�1. If x2 ¼ �1 then ðcÞ0 implies
y ¼ 0 (contradiction). Similarly if y2 ¼ �1 then ðbÞ0 implies x ¼ 0 (contradic-

tion). Now eliminating t from ðbÞ0 and ðcÞ0 yields ðeÞ 2x2

y2 þ 1
¼ 2y2

x2 þ 1
. From

(d), x2 ¼ �y2

y2 þ 1
. Substituting this into (e) yields y2 ¼ �2;o;o2, so ðx2; y2Þ ¼

ð�2;�2Þ; ðo;o2Þ; ðo2;oÞ. Here the first one is excluded, as it does not satisfy
(a). The others indeed satisfy all of (a), (b), (c), (d) for t ¼ 2. Therefore the
singularities of S on U � C are ð½Go :Go2 : 1�; 2Þ and ð½Go2 :Go : 1�; 2Þ.

Similarly the singularities of S on V � C are ð½1 :Go :Go2�; 2Þ and
ð½1 :Go2 :Go�; 2Þ. They are ‘equal’ to ð½Go :Go2 : 1�; 2Þ and ð½Go2 :Go : 1�;
2Þ (projective coordinates!). Similarly the singularities of S on W � C are
ð½Go2 : 1 :Go�; 2Þ and ð½Go : 1 :Go2�; 2Þ, and they are also ‘equal’ to ð½Go :
Go2 : 1�; 2Þ and ð½Go2 :Go : 1�; 2Þ. r

Remark 5.2. The eight points ½Go :Go2 : 1�, ½Go2 :Go : 1� on P2 are the
base points of the pencil fCtgt AP1 :

Lemma 5.3. All eight singularities ð½Go :Go2 : 1�; 2Þ and ð½Go2 :Go : 1�; 2Þ
of S are an A1-singularities.
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Proof. It su‰ces to check that the Hessian of f ðx; y; tÞ ¼ x4 þ y4 þ 1þ
tðx2y2 þ x2 þ y2Þ at each singularity is nonzero, that is, nondegenerate (as this is
equivalent to the singularity being A1; see, e.g. [17]). The Hessian matrix of f is

H ¼
12x2 þ 2tðy2 þ 1Þ 4txy 2xðy2 þ 1Þ

4txy 12y2 þ 2tðx2 þ 1Þ 2yðx2 þ 1Þ
2xðy2 þ 1Þ 2yðx2 þ 1Þ 0

0
B@

1
CA:

At a singularity ðx; y; tÞ ¼ ðo;o2; 2Þ, H is given by

12o2 8 �2

8 12o �2

�2 �2 0

0
B@

1
CA;

whose determinant is nonzero (indeed 16). Similarly for the other singularities,
the Hessian is nonzero. r

We next determine the singular fibers of p : S ! C.

Lemma 5.4. The curves Ct for t ¼G2;�1 are reducible. In fact:
(i) C2 is P1 of multiplicity 2.
(ii) C�2 consists of four P1’s and any two of them intersect at one point.
(iii) C�1 consists of two P1’s intersecting at four points.

Proof. The defining equations (DEs) of Ct for t ¼G2;�1 factorize as
follows (so Ct for t ¼G2;�1 are reducible):

DE for t ¼ 2:

x4 þ y4 þ z4 þ 2ðx2y2 þ y2z2 þ z2x2Þ ¼ ðx2 þ y2 þ z2Þ2:
DE for t ¼ �2:

x4 þ y4 þ z4 � 2ðx2y2 þ y2z2 þ z2x2Þ
¼ ðxþ yþ zÞðxþ y� zÞðx� yþ zÞðx� y� zÞ:

DE for t ¼ �1: Where o :¼ e2pi=3,

x4 þ y4 þ z4 � ðx2y2 þ y2z2 þ z2x2Þ ¼ ðx2 þ oy2 þ o2z2Þðx2 þ o2y2 þ oz2Þ:
Note that any factor of the above factorizations is linear or quadratic, so it

defines P1. Thus each irreducible component of Ct for t ¼G2;�1 is P1. The
other assertions are immediate from the above factorizations. r

Lemma 5.5. Any curve Ct for t0G2;�1 is smooth.

Proof. Set Fðx; y; zÞ :¼ x4 þ y4 þ z4 þ tðx2y2 þ y2z2 þ z2x2Þ. Then ½x : y :
z� A Ct is a singularity if and only if qxF ¼ qyF ¼ qzF ¼ 0, or explicitly

xð2x2 þ tðy2 þ z2ÞÞ ¼ yð2y2 þ tðz2 þ x2ÞÞ ¼ zð2z2 þ tðx2 þ y2ÞÞ ¼ 0:ð5:1Þ
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We separate into two cases:

Case 1. xyz0 0: Then (5.1) is simplified into

2x2 þ tðy2 þ z2Þ ¼ 2y2 þ tðz2 þ x2Þ ¼ 2z2 þ tðx2 þ y2Þ ¼ 0:

Thus

2 t t

t 2 t

t t 2

0
B@

1
CA x2

y2

z2

0
B@

1
CA¼ 0. This has a nontrivial solution precisely when

2 t t

t 2 t

t t 2

������
������ ¼ 0, that is, 2t3 � 6t2 þ 8 ¼ 0, so t ¼ 2;�1.

Case 2. xyz ¼ 0: Then no two of x, y, z can be 0 (for instance if x ¼ y ¼
0, then from (5.1), z ¼ 0, so x ¼ y ¼ z ¼ 0, which contradicts ½x : y : z� A P2).
We may thus assume that x ¼ 0 and yz0 0. Then 2y2 þ tz2 ¼ 2z2 þ ty2 ¼ 0, so
2 t

t 2

� �
y2

z2

� �
¼ 0. This has a nontrivial solution precisely when

2 t

t 2

����
���� ¼ 0,

that is, �t2 þ 4 ¼ 0, so t ¼G2.
We thus conclude that Ct is singular if and only if t ¼G2;�1. r

By Lemmas 5.4 and 5.5, the following is obtained:

Lemma 5.6. A curve Ct ðt A CÞ is singular precisely when t ¼G2;�1: the
singular curves C2, C�2, C�1 are explicitly described in Lemma 5.4.
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