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NÉRON MODELS OF 1-MOTIVES AND DUALITY

Takashi Suzuki

Abstract

In this paper, we propose a definition of Néron models of arbitrary Deligne

1-motives over Dedekind schemes, extending Néron models of semi-abelian varieties.

The key property of our Néron models is that they satisfy a generalization of

Grothendieck’s duality conjecture in SGA 7 when the residue fields of the base scheme

at closed points are perfect. The assumption on the residue fields is unnecessary for the

class of 1-motives with semistable reduction everywhere. In general, this duality holds

after inverting the residual characteristics. The definition of Néron models involves

careful treatment of ramification of lattice parts and its interaction with semi-abelian

parts. This work is a complement to Grothendieck’s philosophy on Néron models of

motives of arbitrary weights.

Contents

1. Introduction 431
1.1. Aim of the paper 431
1.2. Main results 433
1.3. Remarks and organization 435
2. Definition of Néron models 436
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1. Introduction

1.1. Aim of the paper. Let X be an irreducible Dedekind scheme with
function field K . Let U be either a dense open subscheme of X or equal to
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Spec K . Recall from [12, (10.1.10)] that a smooth 1-motive M over U in the
sense of Deligne is a complex of group schemes ½Y ! G� over U whose
degree �1 term Y is a lattice (étale locally isomorphic to Zn for some n)
and degree 0 term G is an extension of an abelian scheme by a torus. Raynaud
[33] studied monodromy (i.e. the defect of good reduction around XnU) of
1-motives.

In this paper, we define a certain model NðMÞ of M over X , which we call
the Néron model of M, generalizing Néron (lft) models of semi-abelian varieties
[8, Chap. 10] (see also [21], [30] for more recent studies). Grothendieck, in
[19, Exp. IX, §0.1], imagined a possibility of a theory of Néron models of motives
of arbitrary weights. On the other hand, there have been several studies of
Néron models of Hodge structures such as [17]. Our study of Néron models of
1-motives is a complement to such studies. We hope that our study sheds some
light on possible Néron models of more general motives.

One key property of our Néron model NðMÞ is that it satisfies a gener-
alization of Grothendieck’s duality conjecture [19, IX, Conj. 1.3] when the residue
fields of XnU are perfect. This conjecture is originally for M ¼ A an abelian
variety, in which case (with perfect residue fields) it is solved by the author [39]
after many partial results by other researchers. By Bertapelle-Bosch [3], the
conjecture in its original form (for abelian varieties) may fail when a residue field
is imperfect. Without the assumption on residue fields, the original conjecture is
true if A has semistable reduction everywhere by Werner [42] or after inverting
the residual characteristics by Bertapelle [2]. We prove that our Néron models
NðMÞ of 1-motives M satisfy a duality under the same assumptions as those
results (i.e. for the case of semistable M and for the case of residual character-
istics being inverted). The duality results we prove strongly suggest that our
definition of Néron models is ‘‘correct’’. If Néron models of more general
motives make any sense, then it will be a very interesting problem to try to
generalize Grothendieck’s duality conjecture to such models.

Our Néron model NðMÞ represents, in the derived category of Xsm,
the truncation ta0Rj�M in degreesa 0 of the derived pushforward of M by
the natural morphism j : Usm ! Xsm. Here Xsm is the smooth site of X , i.e. the
category of smooth X -schemes with X -scheme morphisms endowed with the
étale topology, and Usm similarly. Hence NðMÞ encodes j�Y , R1j�Y and
the kernel of the morphism R1j�Y ! R1j�G. The sheaf R1j�Y has finite stalks
and contains information about (possibly wild) ramification of the lattice Y .
If Y is unramified along XnU , then R1j�Y ¼ 0, and NðMÞ is simplified as
½ j�Y ! j�G�.

Bosch-Xarles [9, Def. 4.1] defines the Néron model of a complex of sheaves
C on (the local rigid-analytic version of ) Usm as R0j�C. Including information
about the degree �1 term (or j�Y ) is a new feature of the present work. Our
duality contains the results of Xarles [43] and Bertapelle-Gonzaléz-Avilés [4,
Thm. 1.1] as a special case where M is a torus. The result of Xarles mentioned
here is essentially about ta1Rj�Y . Hence the information of the whole ta0Rj�M
is crucial in order to even formulate duality.
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According to González-Avilés, Xarles made an (unsuccessful) attempt in
1996 to generalize his result [43] to arbitrary 1-motives. The present work has
been done independently of his attempt.

1.2. Main results. Now we state our results. Let j : Usm ! Xsm and K as
above. Denote the category of 1-motives over U by MU , which has a natural
additive functor to the bounded derived category DbðUsmÞ of sheaves on the
site Usm. Let SmGp=X be the category of commutative separated smooth group
schemes over X . It has a natural additive functor to the bounded derived
category DbðXsmÞ of sheaves on the site Xsm and hence inherits the notion of
quasi-isomorphism of complexes from DbðXsmÞ. Denote the resulting localiza-
tion of the category of bounded complexes in SmGp=X by DbðSmGp=XÞ. See

Def. 2.11 for a more detailed definition and why DbðSmGp=XÞ is triangulated.
We have a natural triangulated functor DbðSmGp=XÞ ! DbðXsmÞ. The exis-
tence of Néron models of semi-abelian varieties (i.e. representability of the sheaf
j�G) is generalized to 1-motives as follows.

Theorem A. There exists a canonical additive functor N : MU !
DbðSmGp=X Þ such that the diagram

MU DbðSmGp=XÞ
?
?
?
y

?
?
?
y

DbðUsmÞ DbðXsmÞ

�����!
N

�����!ta0Rj�

is commutative.

This means that the complex of sheaves ta0Rj�M is represented by a
complex of separated smooth group schemes over X , which is unique up to quasi-
isomorphism and behaves functorially in M in the derived category. The con-
struction of NðMÞ for M ¼ ½Y ! G� A MU needs, as auxiliary data, a finite étale
covering V of U such that Y �U V extends to a lattice over the normalization
of X in V (which means that V kills ramification of Y along XnU). To each
such choice of V , we assign a certain canonical complex NðM;VÞ in SmGp=X
with terms in degrees �1 and 0 representing ta0Rj�M. As an object of
DbðSmGp=X Þ, this complex does not depend on V .

Actually this canonical complex NðM;VÞ is more useful than the object
NðMÞ of DbðSmGp=XÞ that it represents, since functoriality in triangulated
categories is di‰cult to use for some purposes. For example, the mapping cone
of the morphism N0ðMÞ !NðMÞ mentioned below will be constructed using
this actual complex representative. Nonetheless, the well-definedness of NðMÞ
makes sense only in DbðSmGp=X Þ.

The representability of the terms of NðM;VÞ is important; otherwise
we would not have much control of the fiber of NðMÞ (and PðMÞ mentioned
below) over Z (see Prop. 3.1 (2) and Prop. 3.2). Just having a complex of
sheaves representing ta0Rj�M is not su‰cient in this regard.
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Next, to state our duality results, assume that U � X is open (so either
U 0 Spec K or X has finitely many points) with reduced complement i : Z ,! X .
For M ¼ ½Y ! G� A MU , let Y0 be the extension by zero of Y along j : U ,! X
and G0 the maximal open subgroup scheme of the Néron model of G along j
with connected fibers. (We do not use the more standard notation G0, in order
to avoid confusion with the zeroth term of a complex, in this highly derived
categorical paper.) Define the connected Néron model of M by N0ðMÞ ¼
½Y0 ! G0� A SmGp=X . We will define a canonical morphism N0ðMÞ !NðMÞ
in DbðSmGp=XÞ. There is a canonical mapping cone of this morphism. This
cone is supported on Z (up to quasi-isomorphism). The fiber over Z of this cone
is a complex of étale group schemes in degrees �1 and 0 with finitely generated
groups of geometric points. Denote this complex of étale group schemes over Z
by PðMÞ A DbðZetÞ and call it the Néron component complex of M. We have a
canonical distinguished triangle

N0ðMÞ !NðMÞ ! i�PðMÞ

in DbðXsmÞ. Let M4 A MU be the dual 1-motive of M ([12, (10.2.12), (10.2.13)]).
Denote the derived tensor product by nL, shift of complexes by [1] and the
derived sheaf-Hom functor by R Hom. We will define canonical morphisms

N0ðM4ÞnL NðMÞ ! Gm½1�;
PðM4ÞnL PðMÞ ! Z½1�

in DðXsmÞ, DðZetÞ, respectively. They induce morphisms

zM : NðM4Þ ! ta0R HomXsm
ðN0ðMÞ;Gm½1�Þ;

z0M : N0ðM4Þ ! ta0R HomXsm
ðNðMÞ;Gm½1�Þ;

hM : PðM4Þ ! R HomZsm
ðPðMÞ;Z½1�Þ:

If the residue field of Z at a point x A Z has characteristic pb 0, then by the
residual characteristic exponent of Z at x, we mean p if p > 0 and 1 if p ¼ 0.

Theorem B.
(1) zM is an isomorphism.
(2) z0M and z0M4 are both isomorphisms if and only if hM is an isomorphism

if and only if hM4 is an isomorphism.
(3) hM is an isomorphism if M is semistable (meaning that Y is unramified

and G is semistable along j).
(4) hM nZ½1=n� is an isomorphism, where n is the product of the residual

characteristic exponents of Z.
(5) hM is an isomorphism if the residue fields of Z are perfect.

(1) is more or less trivial (akin to the adjunction j � $ j� or j! $ j �).
Therefore the real content of duality is the three equivalent statements in (2),
which is a generalization of Grothendieck’s duality conjecture. (3) easily reduces
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to Grothendieck’s duality conjecture for semistable abelian varieties proved in
[42]. For (4), we define l-adic realizations of NðMÞ and N0ðMÞ (resp. PðMÞ)
as constructible complexes of sheaves of Zl-modules on X (resp. Z), where l is
a prime invertible on Z, and use the six operations formalism (in particular,
duality) in l-adic derived categories. (5) generalizes the result of [39] for abelian
varieties. We will prove (5) using the duality for cohomology of local fields
with perfect residue fields with coe‰cients in M that is established in [39, Thm.
(9.1)].

1.3. Remarks and organization. Here are some remarks. If U ¼ Spec K
and X has infinitely many points, then N0ðMÞ ¼ ½Y0 ! G0� still makes sense; see
Def. 2.18 for the definition of the extension by zero Y0 in this setting. But Y0 is
not locally of finite type over X since Spec K is not. If one wants a duality in
this case, one should first extend M to a 1-motive over some dense open sub-
scheme V of X and then consider the above duality for the morphism V ,! X .

The target category DbðSmGp=X Þ of the Néron model functor N is cer-
tainly not the best possible one. In the current form, we cannot consider tran-
sitivity of Néron model functors along two dense open subschemes V ,! U ,! X .
Also, an arbitrary object of DbðSmGp=XÞ does not seem to have any meaningful
notion of dual such that the double dual recovers the original object. For this
reason, we do not attempt to lift the morphisms zM and z0M to DbðSmGp=XÞ.
The correct target (resp. source) category might be a suitably defined (non-
derived) category of ‘‘constructible’’ or even ‘‘perverse’’ 1-motives over X (resp.
U), and the functors N and N0 might be viewed as j� and j! between such
categories.

Other kinds of realizations of Néron models should be explored. Among
such would be the universal one after inverting the residual characteristics, i.e.
as mixed étale motives over X in the sense of Cisinski-Déglise [10]. The answers
to this and the previous questions might exist along the lines of the work of Pepin
Lehalleur [31].

The above duality results are essentially of local nature, reduced to each
point of Z. Global duality as studied in [29, III, §3, 9, 11] and [40] should be
extended to Néron models of 1-motives.

We will see in Prop. 2.26 an example where the Néron model of a 1-motive
arises geometrically from a relative curve over X with an étale local section over
U . This suggests that Néron models of 1-motives might have some role in the
study of rational points of curves over K valued in ramified extensions of K and
the index problem for curves.

Now the organization of the paper is as follows. In §2, after collecting
some facts about representability of sheaves on the smooth site, we define Néron
models and connected Néron models, thereby proving Thm. A. In §3, we first
study some generalities on morphisms of topologies without exact pullback func-
tors, such as the one i : Zsm ! Xsm and the change of topologies Xfppf ! Xsm.
Then we define Néron component complexes. In §4, we define the duality
morphisms zM , z0M and hM . We prove Thm. B (1), (2) and (3). We also prove
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a weaker version of (4), namely that hM nQ is an isomorphism, by some
arguments on connected-étale sequences. In §5, we define l-adic realizations
and prove Thm. B (4). The weaker version of (4) proved earlier is necessary
for this since derived l-adic completions of semi-abelian varieties and lattices are
both Zl-lattices up to shift and destroy their distinction. In §6, we prove Thm. B
(5). We quickly recall the formalism of the ind-rational pro-étale site from [39],
[40] and the duality result [39, Thm. (9.1)] on cohomology of local fields with
perfect residue field with coe‰cients in M. From this, we deduce its version for
cohomology of the ring of integers of such a local field with coe‰cients in NðMÞ,
from which (5) follows.

Acknowledgement. The author thanks Kazuya Kato and Qing Liu for
having helpful discussions. The author is also grateful to Cristian D. González-
Avilés for sharing his earlier research proposal containing his plan on developing
Xavier Xarles’s 1996 attempt for Néron models of 1-motives, and to the referee
for careful comments.

Notation. The categories of sets and abelian groups are denoted by Set and
Ab, respectively. All groups, group schemes and sheaves of groups are assumed
commutative. For an additive category A, the category of complexes in A in
cohomological grading is denoted by ChðAÞ. Its full subcategories of bounded
below, bounded above and bounded complexes are denoted by ChþðAÞ, Ch�ðAÞ
and ChbðAÞ, respectively. If A! B is a morphism in ChðAÞ, then its mapping
cone is denoted by ½A! B�. The homotopy category of Ch�ðAÞ for � ¼ þ, �, b
or (blank) is denoted by K �ðAÞ. If A is abelian, then its derived category is
denoted by D�ðAÞ. The canonical truncation functors for DðAÞ in degreesa n
and b n are denoted by tan and tbn, respectively. If we say A! B! C is a
distinguished triangle in a triangulated category, we implicitly assume that a
morphism C ! A½1� to the shift of A is given, and the triangle A! B! C !
A½1� is distinguished. If A! B is a morphism in a triangulated category together
with a certain canonical choice of a mapping cone, then this mapping cone is
still denote by ½A! B� unless confusion may occur. For a site S, the categories
of sheaves of sets and abelian groups are denoted by SetðSÞ and AbðSÞ. We
denote Ch�ðSÞ ¼ Ch�ðAbðSÞÞ and use the notation K �ðSÞ, D�ðSÞ similarly. The
Hom and sheaf-Hom functors for AbðSÞ are denoted by HomS and HomS,
respectively. Their right derived functors are denoted by ExtnS, R HomS and
ExtnS, R HomS, respectively. The tensor product functor n is over the ring Z
(or, on some site, the sheaf of rings Z). Its left derived functor is denoted by
nL. For a morphism of sites f : S 0 ! S, we denote by f � the pullback functor
for sheaves of abelian groups.

2. Definition of Néron models

For a scheme X , we denote the smooth site of X by Xsm. It is the category
of smooth X -schemes with X -scheme morphisms endowed with the étale (or
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equivalently, smooth) topology. We denote the category of separated smooth
group schemes (commutative, as assumed throughout the paper) over X by
SmGp=X and the category of quasi-separated smooth (commutative!) group
algebraic spaces over X by SmGp 0=X . They are additive categories. The full
subcategory of SmGp=X (resp. SmGp 0=X ) consisting of objects étale over X are
denoted by EtGp=X (resp. EtGp 0=X ).

By a Dedekind scheme, we mean a noetherian regular scheme of dimension
a 1. A separated smooth group algebraic space over a Dedekind scheme is a
scheme by [32, Thm. (3.3.1)]. Hence SmGp=X � SmGp 0=X if X is Dedekind.

Proposition 2.1. Let X be an irreducible Dedekind scheme with function
field K. Let U be either a dense open subscheme of X or equal to Spec K. Then
the inclusion morphism j : U ,! X induces a morphism of sites j : Usm ! Xsm

(defined by the functor sending a smooth X-scheme X 0 to X 0 �X U).

Proof. The only non-trivial part is the exactness of the pullback functor
j �set : SetðXsmÞ ! SetðUsmÞ for sheaves of sets. To show this, we may assume
that X ¼ Spec A is a‰ne. If U is open in X , then j �set is just the restriction
functor, hence exact. Assume U ¼ Spec K . Let F A SetðXsmÞ. Then j �setF is
the sheafification of the presheaf that sends a smooth K-algebra B to the direct
limit of the sets FðA 0Þ, where A 0 runs through smooth A-algebras with fixed
A-algebra homomorphisms to B. The index category for this direct limit is
filtered since K and hence B are filtered direct limits of smooth A-algebras.
Since filtered direct limits and sheafification are exact, we know that j �set is exact.

r

In the rest of this section, assume the following:

Situation 2.2.
� X is an irreducible Dedekind scheme with function field K .
� U is either a dense open subscheme of X or equal to Spec K .
� j : U ,! X is the inclusion morphism.
� j : Usm ! Xsm is the morphism of sites induced by j as in Prop. 2.1.

As above, we assume that X is irreducible (and, in particular, non-empty),
so that its function field K makes sense. A Dedekind scheme is a finite disjoint
union of irreducible Dedekind schemes ([8, 1.1]). The arguments in this paper
do not involve with descent problems that require careful treatment of reducible
Dedekind schemes. Note that Spec K � X is open if and only if Spec K is
(locally) of finite type over X if and only if X has finitely many points if and only
if X has a finite open covering by local Dedekind schemes.

Proposition 2.3. Let Y be a ( possibly infinite) disjoint union of finite étale
connected schemes over U. Then j�Y is a separated étale scheme over X.
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Proof. If Z is a smooth X -scheme, then any connected component of
Z �X U uniquely extends to a connected component of Z. Therefore j� as a
functor SetðUsmÞ ! SetðXsmÞ commutes with disjoint unions. Hence we may
assume that Y is connected. Let Y be the normalization of X in Y . Let
V � Y be the maximal open subscheme étale over X . If Z is a smooth X -
scheme, then any U-morphism Z �X U ! Y uniquely extends to an X -morphism
Z ! Y since Z is normal. This morphism factors through V . This means that
j�Y ¼ V , which is separated étale. r

Proposition 2.4. Let Y be an étale group scheme over X and F A AbðXsmÞ
a sheaf. Let j : Y ! F be any morphism in AbðXsmÞ and KerðjÞ A AbðXsmÞ its
kernel. Then KerðjÞ is an open subscheme of Y and, in particular, an étale
X-scheme.

Proof. Let N be the union of the open subschemes of Y that map to zero
in F . Then N itself maps to zero in F . Any X -morphism Z ! Y from a quasi-
compact smooth X -scheme Z is a faithfully flat smooth morphism followed by an
open immersion. Hence if Z maps to zero in F , then it factors through N.
Thus N ¼ kerðjÞ. r

Proposition 2.5. Let G1;G2 A SmGp 0=X. Then any extension G3 of G1 by
G2 in AbðXsmÞ is in SmGp 0=X. If G1;G2 A SmGp=X , then G3 A SmGp=X.

Proof. We know that G3 A SmGp 0=X by descent. Since X is Dedekind, we
know by [32, Thm. (3.3.1)] that a separated group algebraic space over X is a
scheme. Hence the second statement follows. r

If G is an extension of an abelian scheme by a torus over U and if U ¼
Spec K , then j�G is represented by the Néron (lft) model [8, 10.1/7], which is
in SmGp=X . If U � X is dense open, we still have j�G A SmGp=X by the
arguments in [8, 10.1/9]. In this case, j�G is the open subgroup scheme of the
Néron model of G �X K along Spec K ! X with connected fibers over U . We
still call j�G the Néron model of G (along j : U ,! X ).

Proposition 2.6. Let 0! H ! G ! Y ! 0 be an extension of group
schemes over U such that H is an extension of an abelian scheme by a torus
and Y is a lattice. Then j�G A SmGp=X.

Proof. We have an exact sequence 0! j�H ! j�G ! j�Y ! R1j�H in
AbðXsmÞ. As above, we have j�H A SmGp=X . Also j�Y A EtGp=X by
Prop. 2.3. By Prop. 2.4, we know that the kernel of j�Y ! R1j�H is in
EtGp=X . Therefore j�G A SmGp=X by Prop. 2.5. r

Let MU be the category of smooth 1-motives over U in the sense of Deligne
[12, (10.1.10)]. An object M ¼ ½Y ! G� of MU is a complex consisting of a
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lattice Y placed in degree �1, an extension G of an abelian scheme by a torus
placed in degree 0 and a morphism Y ! G of group schemes over U . A mor-
phism in MU is a morphism of complexes of group schemes over U . In par-
ticular, MU is a full subcategory of ChbðSmGp=UÞ.

For M ¼ ½Y ! G� A MU and a finite étale covering V of U , we denote the
Weil restriction ResV=UðY �U VÞ of Y �U V by YðVÞ. For references on Weil
restrictions, see [8, 7.6] and [11, A.5]. We have a natural injective morphism
Y ,! YðVÞ. We set Yð=VÞ ¼ YðVÞ=Y . The objects YðVÞ and Yð=VÞ are lattices
over U . We denote the cokernel of the diagonal embedding Y ,! YðVÞlG in
AbðUsmÞ by GðVÞ (which depends on not only V and G but the whole M despite
of the notation). We have a morphism between exact sequences

0 ���! Y ���! YðVÞ ���! Yð=VÞ ���! 0
?
?
?
y

?
?
?
y

�
�
�
�

0 ���! G ���! GðVÞ ���! Yð=VÞ ���! 0

in AbðUsmÞ. In particular, we have GðVÞ A SmGp=U by Prop. 2.5. Define

MðVÞ ¼ ½YðVÞ ! GðVÞ� A ChbðSmGp=UÞ:

Then the natural morphism M !MðVÞ is a quasi-isomorphism in ChbðUsmÞ.
For a morphism W ! V of finite étale coverings of U , we have natural mor-
phisms YðVÞ ! YðWÞ and GðVÞ ! GðW Þ by functoriality of the Weil restriction and
hence a morphism MðVÞ !MðW Þ.

Definition 2.7. Let M ¼ ½Y ! G� A MU . A good covering of U with
respect to M (or Y ) and X is a finite étale covering V of U such that
Y �U V extends to a lattice over the normalization of X in V .

(We do not introduce a piece of notation for the above mentioned extension
of Y �U V as we do not have to.) The key properties of good coverings are
that any finite étale covering that factors through a good covering is good and
that the following holds.

Proposition 2.8. For any lattice Y over U , a good covering exists. If V is
a good covering of U with respect to Y and X , then we have R1j�YðVÞ ¼ 0.

Proof. A lattice can be trivialized by a finite étale covering by [14, X, Prop.
5.11, Thm. 5.16]. Such a covering is good. Let V be a good covering of U
with respect to Y . Let V be the normalization of X in V . Note that the Weil
restriction functor AbðVsmÞ ! AbðUsmÞ is nothing but the pushforward functor
for the finite étale morphism V ! U . Since the pushforward functor for a finite
morphism is exact in the étale topology ([28, II, Cor. 3.6]), we know that the Weil
restriction functor AbðVsmÞ ! AbðUsmÞ is exact (see also [11, A.5.4]). Hence the
sheaf R1j�YðVÞ A AbðXsmÞ is the étale sheafification of the presheaf that sends
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a smooth X -scheme X 0 to H 1ðX 0 �X V ;Y Þ. Hence it is enough to assume that
X is strict henselian local and U is the generic point of X , and show that
H 1ðX 0 �X V ;YÞ ¼ 0 for the strict henselization X 0 of any smooth X -scheme at
any point. By goodness, Y extends to a lattice over the strict henselian scheme
X 0 �X V . Hence Y becomes trivial over X 0 �X V . Since X 0 �X V is regular,
we have H 1ðX 0 �X V ;ZÞ ¼ 0 and so H 1ðX 0 �X V ;YÞ ¼ 0. r

Definition 2.9. Let M ¼ ½Y ! G� A MU and V a good covering of U with
respect to M and X . We define

NðM;VÞ ¼ j�MðVÞ ¼ ½ j�YðVÞ ! j�GðVÞ�;

which is an object of ChbðSmGp=XÞ by Prop. 2.6. We call NðM;VÞ the
Néron model of M with respect to V (along j : U ! X ). The assignment V 7!
NðM;VÞ is contravariantly functorial.

Proposition 2.10. Let M ¼ ½Y ! G� A MU and V a good covering of U
with respect to M and X. Consider the morphisms

NðM;VÞ ! Rj�MðVÞGRj�M

in DbðXsmÞ. Then the induced morphism

NðM;VÞ ! ta0Rj�M

is an isomorphism in DbðXsmÞ.

Proof. By Prop. 2.8, we have an exact sequence

0! H�1Rj �M ! j�YðVÞ ! j�GðVÞ ! H 0Rj �M ! 0:

This proves the proposition. r

The inclusion functor SmGp 0=X ,! AbðXsmÞ induces a triangulated functor
KbðSmGp 0=XÞ ! KbðXsmÞ.

Definition 2.11. We say that a morphism in KbðSmGp=X Þ, KbðSmGp 0=XÞ,
KbðEtGp=X Þ or KbðEtGp 0=X Þ is a quasi-isomorphism if it is so in KbðXsmÞ. We
define DbðSmGp=X Þ to be the localization of KbðSmGp=XÞ by the null system of
objects quasi-isomorphic to zero ([24, Thm. 10.2.3]). We define DbðSmGp 0=XÞ,
DbðEtGp=X Þ and DbðEtGp 0=XÞ similarly.

A priori, DbðSmGp=XÞ (and DbðSmGp 0=XÞ) might not be a locally small
category and might be as large as DbðXsmÞ. Smooth group schemes over X with
connected fibers are quasi-compact ([13, Exp. VI B, Cor. 3.6]) and hence form a
small set. Therefore the problem is the cardinalities of the component groups
of the fibers. If one wants to prove the local smallness of DbðSmGp=XÞ using
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[24, Rmk. 7.1.14], it su‰ces to show that for any quasi-isomorphism F 0 ! F in
KbðSmGp=X Þ, there exists a quasi-isomorphism F 00 ! F 0 in KbðSmGp=XÞ such
that the cardinalities of the component groups of the fibers of the terms of F 00

are no bigger than those of F . While this seems likely verified by a limit
argument on component groups, we content ourselves with not necessarily locally
small categories. But notice that the relative component group G=G0 ¼ p0ðGÞ
(the quotient by the relative identity component G0; [13, Exp. VI B, Cor. 3.5],
[32, (3.2), (d)]; see also the first paragraph of the proof of Prop. 3.4 below) of
any smooth group scheme and group algebraic space G in this paper are all
Z-constructible ([29, II, §0, ‘‘Constructible sheaves’’]) over X . Hence one may
instead use the full subcategory of SmGp=X and SmGp 0=X consisting of objects
with Z-constructible relative component groups. This full subcategory is small,
and hence any localization of its bounded homotopy category is small.

Proposition 2.12. The natural functors induce a commutative diagram of
triangulated functors

DbðEtGp=X Þ DbðEtGp 0=XÞ DbðXetÞ?
?
?
y

?
?
?
y

?
?
?
y

DbðSmGp=X Þ ���! DbðSmGp 0=XÞ ���! DbðXsmÞ:

����! ����!

Proof. This follows from [24, Thm. 10.2.3]. r

Proposition 2.13. Let 0! F1 ! F2 ! F3 ! 0 be a term-wise exact se-
quence in ChbðXsmÞ with Fi A ChbðSmGp=X Þ for any i. Then there exists a

canonical morphism F3 ! F1½1� in DbðSmGp=XÞ such that the triangle F1 ! F2 !
F3 ! F1½1� is distinguished in DbðSmGp=XÞ and maps to the canonical distin-
guished triangle F1 ! F2 ! F3 ! F1½1� in DbðXsmÞ. Similar statements hold for
DbðSmGp 0=XÞ, DbðEtGp=X Þ and DbðEtGp 0=X Þ.

Proof. Set F 03 ¼ ½F1 ! F2�. We have F 03 ¼ F2 lF1½1� as a graded object
forgetting the di¤erentials. The first projection F2 lF1½1� ! F2 followed by the
morphism F2 ! F3 gives a morphism F 03 ! F3 in ChbðSmGp=XÞ (i.e. commuta-
tive with the di¤erentials). For any n, the diagram with exact rows

HnF1 ���! HnF2 ���! HnF 03 ���! Hnþ1F1 ���! Hnþ1F2�
�
�
�

�
�
�
�

?
?
?
y

�
�
�
�

�
�
�
�

HnF1 ���! HnF2 ���! HnF3 ���! Hnþ1F1 ���! Hnþ1F2

in AbðXsmÞ is commutative. Hence F 03 ! F3 is a quasi-isomorphism. The re-
quired morphism is given by the composite F3  @ F 03 ! F1½1� in DbðSmGp=XÞ.

r
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Proposition 2.14. For any object M ¼ ½Y ! G� A MU , choose a good cover-
ing V of U with respect to M and X and consider the object

NðM;VÞ A DbðSmGp=X Þ:

For any morphism M ¼ ½Y ! G� !M 0 ¼ ½Y 0 ! G 0� A MU , choose a good cover-
ing V of U with respect to both M and M 0 and X and consider the morphism

NðM;VÞ !NðM 0;VÞ A DbðSmGp=X Þ:

These assignments define a well-defined additive functor MU ! DbðSmGp=XÞ.

Proof. Let M ¼ ½Y ! G� A MU and V a good covering of U with respect
to M and X . If W ! V is a morphism from another finite étale covering W of
U , then the induced morphism NðM;VÞ !NðM;WÞ is a quasi-isomorphism
by Prop. 2.10. Let f ; g : W x V be two U-morphisms. Then the diagram

0 ���! Y ���! YðVÞ ���! Yð=VÞ ���! 0
?
?
?
y0

?
?
?
y f�g

?
?
?
y f�g

0 ���! Y ���! YðW Þ ���! Yð=W Þ ���! 0

is commutative. Hence the morphism f � g : YðVÞ ! YðWÞ factors through the
quotient Yð=VÞ. The composite GðVÞ !! Yð=VÞ ! YðW Þ as a diagonal arrow in the
commutative diagram

YðVÞ ���! GðVÞ
?
?
?
y f�g f�g

?
?
?
y

YðW Þ ���! GðWÞ

from the right upper term to the left lower term splits the diagram into two
commutative triangles. This means that the two morphisms f ; g : MðVÞ x MðW Þ
are homotopic to each other. Applying j� term-wise, we know that the two
morphisms f ; g : NðM;VÞx NðM;WÞ are also homotopic to each other.
Therefore NðM;VÞ A DbðSmGp=X Þ is independent of the choice of V . The
rest is an easy consequence of this. r

Definition 2.15. We denote the functor MU ! DbðSmGp=XÞ defined in
Prop. 2.14 by N. Hence NðMÞ ¼NðM;VÞ in DbðSmGp=X Þ for M A MU and
a good covering V of U with respect to M and X . We call NðMÞ the Néron
model of M (along j : U ! X ).

Proposition 2.16. For any M A MU , the image of NðMÞ under the functor
DbðSmGp=X Þ ! DbðXsmÞ is canonically identified with ta0Rj�M.

Proof. This follows from Prop. 2.10. r
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Prop. 2.14 and 2.16 together finish the proof of Thm. A. Next we consider
connected Néron models.

Proposition 2.17. Let Y A EtGp=U. Identify U with its image in Y as
the zero section, which is an open and closed subset of Y. Then the scheme
ðYnUÞ t X has a unique X-group scheme structure with zero section X compatible
with the U-group scheme structure of Y. It is separated over X , and moreover
étale over X if U � X is open.

Proof. Obvious. r

Definition 2.18. For Y A EtGp=U , we denote the group scheme ðYnUÞ t X
over X in Prop. 2.17 by Y0 and call it the extension by zero of Y to X .

Proposition 2.19. Let Y A EtGp=U with extension by zero Y0 over X. Let
G be a group scheme over X. Then the natural homomorphism

HomX ðY0;GÞ ! HomUðY ;G �X UÞ
is an isomorphism. If U � X is open, then we have Y0 ¼ j!Y , where j! : AbðUsmÞ
! AbðXsmÞ is the left adjoint of j �.

Proof. Obvious. r

Definition 2.20. Let M ¼ ½Y ! G� A MU . Let Y0=X be the extension by
zero of Y and G0=X be the maximal open subgroup scheme of the Néron model
G of G with connected fibers. We define

N0ðMÞ ¼ ½Y0 ! G0�;
which is a complex of (not necessarily locally finite type) group schemes over
X . The assignment M 7!N0ðMÞ is an additive functor. We call N0ðMÞ the
connected Néron model of M (along j : U ! X ).

We have N0ðMÞ A ChbðSmGp=XÞ if U � X is open.

Proposition 2.21. Let M ¼ ½Y ! G� A MU. For good coverings V of U
with respect to M, the natural morphisms

N0ðMÞ !NðM;VÞ
of complexes of group schemes over X are contravariantly functorial in V. In
particular, if U � X is open, then they induce a canonical morphism

N0ðMÞ !NðMÞ in DbðSmGp=XÞ:

Proof. Obvious. r

In the next two propositions, consider the following situation:
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Situation 2.22.

U 0 ���!
j 0

X 0
?
?
?
y

?
?
?
y

U X :����!j

is a cartesian diagram of schemes such that the both horizontal morphisms are as
in Situation 2.2.

In this situation, we say that the formation of Néron models commutes with
the base change X 0=X if the natural morphism

NðM;VÞ �X X 0 !NðM �U U 0;V �U U 0Þ
in ChbðSmGp=X 0Þ is an isomorphism for any M A MU and any good covering V
of U with respect to M and X . In this case, the natural morphism

N0ðMÞ �X X 0 !N0ðM �U U 0Þ
of complexes of group schemes over X 0 is an isomorphism since the base change
ð�Þ �X X 0 preserves the maximal subgroup scheme with connected fibers. The
natural morphism

NðMÞ �X X 0 !NðM �U U 0Þ
in DbðSmGp=X 0Þ is also an isomorphism.

Proposition 2.23. The formation of Néron models commutes with the base
change X 0=X if X 0 ! X is a regular morphism. This happens, in particular, if
X 0 ! X is an étale morphism, the localization of X at a closed point, or the (strict)
henselization of local X.

Proof. The statement holds if X 0 ! X is an open immersion. The state-
ment is Zariski local on X and X 0. Hence we may assume that both X and X 0

are a‰ne.
By the structure of NðM;VÞ, it is enough to show that ð j�TÞ �X X 0 !@

j 0�ðT �U U 0Þ for any smooth U-scheme T such that j�T (resp. j 0�ðT �U U 0Þ) is
representable by a smooth X -scheme (resp. smooth X 0-scheme). Since X 0 ! X
is a regular morphism between noetherian a‰ne schemes, we know by Popescu’s
theorem [41, Thm. 1.1] that X 0 can be written as a filtered inverse limit lim � X 0l
of smooth a‰ne X -schemes. Let X 00 be a smooth a‰ne X 0-scheme. Then there
exist an index l0 and a smooth a‰ne X 0l0 -scheme X 00l0 such that X 00GX 0 �X 0

l0

X 00l0 .
Set X 00l ¼ X 0l �X 0

l0

X 00l0 for lb l0. Then

GðX 00; ð j�TÞ �X X 0Þ ¼ lim�!
lbl0

GðX 00l �X U ;TÞ

¼ GðX 00 �X U ;TÞ ¼ GðX 00; j 0�ðT �U U 0ÞÞ:

Hence ð j�TÞ �X X 0 !@ j 0�ðT �U U 0Þ. r
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Proposition 2.24. The formation of Néron models commutes with the base
change X 0=X if X ¼ Spec A is local and X 0 ¼ Spec ÂA its completion.

Proof. We may assume that X is strictly henselian (local!) and U ¼ Spec K
its generic point. Write U 0 ¼ Spec K 0. We denote the base change ð�Þ �X X 0 of
X -schemes by ð�Þ0. Let V be a good covering of U with respect to M and X .
The proof of Prop. 2.3 shows that j�Y is the maximal open subscheme of the
normalization of X in Y étale over X . This description shows that ð j�YÞ0 !@
j 0�Y

0. Similarly, we have ð j�YðVÞÞ0 !
@

j 0�Y
0
ðV 0Þ and ð j�Yð=VÞÞ0 !

@
j 0�Y

0
ð=V 0Þ. Also,

the formation of Néron (lft) model of semi-abelian varieties commutes with
completion by [8, 10.1/3]. Thus ð j�GÞ0 !@ j 0�G

0. We have exact sequences

0! j�G ! j�GðVÞ ! j�Yð=VÞ ! R1j�G;

0! j 0�G
0 ! j 0�G

0
ðV 0Þ ! j 0�Y

0
ð=V 0Þ ! R1j 0�G

0

in AbðXsmÞ, AbðX 0smÞ, respectively, and a commutative diagram with exact
rows

0 ���! ð j�GÞ0 ���! ð j�GðVÞÞ0 ���! ð j�Yð=VÞÞ0
?
?
?
yo

?
?
?
y

?
?
?
yo

0 j 0�G
0 j 0�G

0
ðV 0Þ j 0�Y

0
ð=V 0Þ����! ����! ����!

in SmGp=X 0. We want to show that the second vertical morphism is an
isomorphism. Let C A EtGp=X be the kernel of j�Yð=VÞ ! R1j�G and D A
EtGp=X 0 the kernel of j 0�Y

0
ð=V 0Þ ! R1j 0�G

0. The above diagram induces an injec-

tive morphism C 0 ,! D in EtGp=X 0, which is an isomorphism after j 0�. It is
enough to show that C 0 !@ D, for which it is enough to show that GðX 0;C 0Þ !@
GðX 0;DÞ. We have GðX 0;C 0Þ ¼ GðX ;CÞ since C A EtGp=X . We have a com-
mutative diagram with exact rows

0 GðX ;CÞ GðU ;Yð=VÞÞ H 1ðU ;GÞ
?
?
?
y

?
?
?
yo

?
?
?
y

0 ���! GðX 0;DÞ ���! GðU 0;Y 0ð=V 0ÞÞ ���! H 1ðU 0;G 0Þ:

���! ����! ����!

Since G is smooth and X henselian local, the right vertical homomorphism
H 1ðU ;GÞ ! H 1ðU 0;G 0Þ (or H 1ðK ;GÞ ! H 1ðK 0;G 0Þ) is an isomorphism by
[16, Prop. 3.5.3 (2)]. Thus GðX ;CÞ !@ GðX 0;DÞ. Hence ð j�GðVÞÞ0 !@ j 0�G

0
ðV 0Þ.

Therefore NðM;VÞ0 !@ NðM 0;V 0Þ. r

There are slightly more flexible representatives of NðMÞ in ChbðSmGp=UÞ
than NðM;VÞ.

Proposition 2.25. Let M ¼ ½Y ! G� A MU. Let 0! Y ! Y 0 ! Y 00 ! 0
be an exact sequence of lattices over U such that R1j�Y

0 ¼ 0. Denote the cokernel
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of the diagonal embedding Y ,! Y 0lG by G 0. Then there exists a canonical
isomorphism NðMÞG ½ j�Y 0 ! j�G

0� in DbðSmGp=X Þ.

Proof. Let V be a finite étale covering of U such that Y 0 (and hence Y and
Y 00) is trivial over V . Choose a retraction (left-inverse) Y 0 �U V !! Y �U V to
the inclusion Y �U V ,! Y 0 �U V . Such a retraction exists since the cokernel
Y 00 �U V is a lattice. This retraction corresponds to a morphism Y 0 ! YðVÞ
such that the composite Y ! Y 0 ! YðVÞ is the natural inclusion. Hence we
have a morphism ½Y 0 ! G 0� ! ½YðVÞ ! GðVÞ� in ChbðSmGp=UÞ. We have
½ j�Y 0 ! j�G

0�G ta0Rj�M in DbðXsmÞ since R1j�Y
0 ¼ 0. Hence ½ j�Y 0 ! j�G

0�
! ½ j�YðVÞ ! j�GðVÞ� in ChbðSmGp=XÞ is a quasi-isomorphism. Thus ½ j�Y 0 !
j�G

0� !@ NðMÞ in DbðSmGp=X Þ. A di¤erent choice of a retraction Y 0 �U V !!
Y �U V gives a morphism ½Y 0 ! G 0� ! ½YðVÞ ! GðVÞ� homotopic to the previous
one by the same argument as the proof of Prop. 2.14. Hence the isomorphism
½ j�Y 0 ! j�G

0� !@ NðMÞ in DbðSmGp=XÞ is canonical. r

Here is a simple example where the Néron model of a 1-motive arises geo-
metrically from a relative curve over X with an étale local section over U .

Proposition 2.26. Assume that X is excellent and the residue fields of XnU
are perfect. Let S ! X be a proper flat morphism with 1-dimensional geomet-
rically connected fibers from a regular scheme S such that SU ¼ S �X U ! U is
smooth. Let T ! X be a finite flat morphism from a regular scheme T such that
TU ¼ T �X U ! U is étale. Let s : T ! S be an X-morphism.

Denote by Y the kernel of the norm map ResTU=U Z!! Z and by A
the relative Jacobian Pic0SU=U

. Let ResTU=U Z! PicSU=U be the morphism in
SmGp=U induced by the restriction TU ! SU of s and Y ! A its restriction. Set
M ¼ ½Y ! A� A MU. Denote by ðPicS=X Þsep the maximal separated quotient of
PicS=X ([32, (8.0.1)]).

Then the morphism ResTU=U Z! PicSU=U in SmGp=U uniquely extends to a
morphism ResT=X Z! ðPicS=X Þsep in SmGp=X , and we have a canonical isomor-
phism

NðMÞG ½ResT=X Z! ðPicS=X Þsep�
in DbðSmGp=XÞ.

Proof. We have a commutative diagram with exact rows

0 ���! Y ���! ResTU=U Z ���! Z ���! 0
?
?
?
y

?
?
?
y

�
�
�
�

0 ���! A PicSU=U Z ���! 0����! ����!deg

in SmGp=U . Hence the cokernel of the diagonal embedding Y ,! ResTU=U Zl
A is PicSU=U . We have R1j� ResTU=U Z ¼ 0 by the same argument as the proof
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of Prop. 2.8. Hence we have a canonical isomorphism

NðMÞG ½ j� ResTU=U Z! j� PicSU=U �

in DbðSmGp=XÞ by Prop. 2.25. We have j� ResTU=U ZGResT=X Z since
ResT=X Z is an étale X -scheme and the pushforward of Z by the morphism
TU ; et ,! Tet is Z. By the assumption on the residue fields of XnU and [18,
Eq. (4.10 bis)], we know that the natural morphism PicS=X ! j� PicSU=U is sur-
jective in AbðXetÞ whose kernel is a skyscraper étale sheaf. Hence ðPicS=X Þsep !

@

j� PicSU=U in SmGp=X . This proves the proposition. r

The assumption ‘‘the residue fields of XnU are perfect’’ is only used to
ensure that PicS=X ! j� PicSU=U is surjective in AbðXetÞ. This latter condition
is satisfied also if S �X O sh

X ;x ! Spec O sh
X ;x has a section (or slightly weaker, has

index 1) for any x A XnU , where Osh
X ;x is the strict henselian local ring at x, as

stated before [18, Eq. (4.13)].

3. Component complexes

Recall from [40, §2.4] that a premorphism of sites f : S 0 ! S between sites
defined by pretopologies is a functor f �1 from the underlying category of S to
the underlying category of S 0 sending covering families to covering families such
that f �1ðT2 �T1

T3Þ ¼ f �1T2 �f �1T1
f �1T3 whenever T2 ! T1 appears in a cover-

ing family. Such a functor f �1 is called a morphism of topologies from S to S 0

in [1, Def. 2.4.2]. By [38, Lem. 3.7.2], the pullback f � : AbðSÞ ! AbðS 0Þ admits
a left derived functor Lf � : DðSÞ ! DðS 0Þ, which is left adjoint to Rf� : DðS 0Þ !
DðSÞ. Statement (1) in the following proposition is already used in the proof of
[40, Lem. 3.2.6].

Proposition 3.1. Let f : S 0 ! S be a premorphism of sites defined by
pretopologies. Assume that the underlying category of S has finite products and
the underlying functor f �1 of f commutes with these products.

(1) There exists a canonical isomorphism

Rf�R HomS 0 ðLf �F ;F 0ÞGR HomSðF ;Rf�F 0Þ

in DðSÞ functorial in F A DðSÞ and F 0 A DðS 0Þ.
(2) Denote the sheafification functor for S or S 0 by ð�Þ@. Let F be a bounded

above complex of representable presheaves of abelian groups on S. Then
we have Lf � ~FF ¼ f � ~FF ¼ ð f �1FÞ@ in DðS 0Þ, where f � and f �1 in the
middle and right-hand sides are applied term-wise.

Proof. First note that the pullback f �set : SetðSÞ ! SetðS 0Þ for sheaves of
sets commutes with finite products. Indeed, for F A SetðSÞ, the sheaf f �setF is
the sheafification of the presheaf that sends X 0 A S 0 to the direct limit of F ðX Þ,
where X runs through objects of S together with morphisms X 0 ! f �1X in S 0.
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Using this presentation and the assumption on f �1, it is routine to check that
the assignment F 7! f �setF commutes with finite products. (If one wants a
reference, see [6, Thm. 1.5, Ex. 3.1].)

Second, if F is a complex of representable presheaves of abelian groups on
S, then f � ~FF ¼ f �set ~FF ¼ ð f �1FÞ@ in ChðS 0Þ.

(1) This is [24, Thm. 18.6.9 (iii)] when f is a morphism of sites. The only
part that needs exactness of f �set is the proof of [24, Prop. 17.6.7 (i)]. It does
not need full exactness but only commutativity with finite products.

(2) We have a spectral sequence

E
ij
1 ¼ L�j f

� ~FF i ) HiþjLf � ~FF ;

where ~FF i is the i-th term of the complex ~FF . Hence we may assume that F has
a term only in degree zero. By the method of proof of [39, Rmk. (5.1.2)] (i.e.
using Mac Lane’s resolution of F ), the statement to prove reduces to the state-
ment f �setð ~FF mÞ ¼ ðð f �FÞ@Þm for all mb 0, where the upper scripts m denote
products of m copies. This statement is true by the assumption on f �1 and the
two remarks above. r

Proposition 3.2. Let f : Y ! X be a morphism of schemes and f : Ysm !
Xsm the induced premorphism of sites. Then for any bounded above complex F of
smooth group algebraic spaces over X , we have Lf �F ¼ F �X Y (term-wise fiber
product).

Proof. Consider the category of smooth algebraic spaces over X with mor-
phisms of algebraic spaces over X endowed with the étale topology. Let Xsm 0 be
the resulting site. The identity functor defines a morphism of sites Xsm 0 ! Xsm

inducing an equivalence on the topoi. Let f 0 : Ysm 0 ! Xsm 0 be the premorphism
of sites induced by f . We have Lf 0� ¼ Lf � since these functors are intrinsic to
the topoi. Since the terms of F are now representable in Xsm 0 , Prop. 3.1 shows
that Lf �F ¼ f �F ¼ F �X Y . r

In the rest of this paper, we consider the following situation:

Situation 3.3.
� X is an irreducible Dedekind scheme with function field K .
� U is a dense open subscheme of X with complement Z with reduced
induced structure.

� j : U ,! X and i : Z ,! X are the inclusion morphisms.
� j : Usm ! Xsm and i : Zsm ! Xsm are the premorphisms of sites induced by
j and i, respectively.

The scheme Z is a finite set of closed points of X . Note that we disallow
U ¼ Spec K from now on (if X has infinitely many points). Hence the con-
nected Néron model N0ðMÞ of M A MU is in ChbðSmGp=X Þ. Let EtGp f =Z �
EtGp=Z be the full subcategory of groups with finitely generated geometric fibers.
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For an object P of DbðEtGp f =ZÞ, we denote its linear dual R HomZet
ðP;ZÞ A

DbðEtGp f =ZÞ by PLD. Note that if P is not constant, then i�P A EtGp 0=X is
only an algebraic space and not a scheme by [32, Prop. (3.3.6.1)] (see also [25,
Introduction, Example 2]).

Proposition 3.4. Let M ¼ ½Y ! G� A MU and V a good covering of U with
respect to M and X. Let Y0=X be the extension by zero of Y and G0=X be the
maximal open subgroup scheme of the Néron model G of G with connected fibers.
Define

P 0ðM;VÞ ¼ ½ j�YðVÞ=Y0 ! j�GðVÞ=G0� A ChbðXsmÞ;
PðM;VÞ ¼ i�P 0ðM;VÞ A ChbðZsmÞ:

Then we have P 0ðM;VÞ A ChbðEtGp 0=X Þ and PðM;VÞ A ChbðEtGp=ZÞ. We
have a distinguished triangle

N0ðMÞ !NðM;VÞ ! P 0ðM;VÞ
in DbðSmGp 0=X Þ. The morphism P 0ðM;VÞ ! i�PðM;VÞ is a quasi-
isomorphism. In particular, we have a distinguished triangle

N0ðMÞ !NðM;VÞ ! i�PðM;VÞ
in DbðSmGp 0=XÞ. For any morphism W ! V of finite étale coverings of U , the
morphisms P 0ðM;VÞ ! P 0ðM;WÞ and P 0ðM;VÞ ! P 0ðM;WÞ are both quasi-
isomorphisms.

Proof. We have j�G ¼ G. We show that G=G0 A EtGp 0=X . Write G as
a union of quasi-compact open subschemes Si � G (which might not be group
subschemes). For each i, the connected components of fibers of Si ! X form a
quasi-separated étale algebraic space p0ðSi=XÞ over X ([26, (6.8.1) (i)], [34, Thm.
2.5.2 (i)]). Since lim�! i

p0ðSi=XÞ ¼ G=G0, we know that the sheaf of groups G=G0

is also a quasi-separated étale algebraic space, so it is in EtGp 0=X .
We have an exact sequence

0! j�G=G0 ! j�GðVÞ=G0 ! j�Y=ðVÞ ! R1j�Gð3:1Þ
in AbðXsmÞ. The kernel of j�Y=ðVÞ ! R1j�G is in EtGp=X by Prop. 2.3 and
2.4. Hence j�GðVÞ=G0 A EtGp 0=X . The same argument shows that j�YðVÞ=Y0 A
EtGp 0=X . Hence P 0ðM;VÞ A ChbðEtGp 0=XÞ and consequently PðM;VÞ A
ChbðEtGp=ZÞ.

The sequence

0!N0ðMÞ !NðM;VÞ ! P 0ðM;VÞ ! 0

is a term-wise exact sequence of complexes in AbðXsmÞ. Hence by Prop. 2.13, it
defines a distinguished triangle in DbðSmGp 0=XÞ.

We have a distinguished triangle

j! j
�P 0ðM;VÞ ! P 0ðM;VÞ ! i�i

�P 0ðM;VÞ
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in DbðXetÞ and hence in DbðXsmÞ. We have

j �P 0ðM;VÞ ¼ ½YðVÞ=Y ! GðVÞ=G� ¼ 0

in DbðUsmÞ. Hence P 0ðM;VÞ ! i�i
�P 0ðM;VÞ is a quasi-isomorphism.

We have a morphism of distinguished triangles

N0ðMÞ ���! NðM;VÞ ���! P 0ðM;VÞ
�
�
�
�

?
?
?
y

?
?
?
y

N0ðMÞ ���! NðM;WÞ ���! P 0ðM;WÞ:

(Remember that there are hidden shifted terms N0ðMÞ½1� in the triangles and a
hidden commutative square next to the right square.) The middle vertical mor-
phism is a quasi-isomorphism by Prop. 2.10. Hence so is the right vertical one.

r

Definition 3.5. For M ¼ ½Y ! V � A MU and V a good covering of U with
respect to M and X , we call PðM;VÞ A ChbðEtGp=ZÞ the Néron component
complex of M with respect to V . It is contravariantly functorial in V .

Proposition 3.6. For M and V as above, we have PðM;VÞ A
ChbðEtGp f =ZÞ. Its term in degree �1 is a lattice.

Proof. The Néron model j�G has finitely generated groups of geometric
connected components ([20, Prop. 3.5]). Hence the exact sequence (3.1) shows
that P 0ðM;VÞ has finitely generated geometric fibers. Its degree �1 term
j�YðVÞ=Y0 becomes i�j�YðVÞ after pulling back to Z, which is a lattice. r

Proposition 3.7. For any object M ¼ ½Y ! G� A MU , choose a good cover-
ing V of U with respect to M and X and consider the object

P 0ðM;VÞ A DbðEtGp 0=X Þ:

For any morphism M ¼ ½Y ! G� !M 0 ¼ ½Y 0 ! G 0� A MU , choose a good cover-
ing V of U with respect to both M and M 0 and X and consider the morphism

P 0ðM;VÞ ! P 0ðM 0;VÞ A DbðEtGp 0=XÞ:

These assignments define a well-defined additive functor MU ! DbðEtGp 0=X Þ.
We denote this functor as M 7! P 0ðMÞ.

Proof. The same proof as Prop. 2.14 works. r

Definition 3.8. For M A MU , we define

PðMÞ ¼ i�P 0ðMÞ A DbðEtGp=ZÞ
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and call it the Néron component complex of M. The assignment M 7! PðMÞ
defines an additive functor MU ! DbðEtGp=ZÞ. We have a canonical distin-
guished triangle

N0ðMÞ !NðMÞ ! i�PðMÞ

in DbðSmGp 0=XÞ coming from Prop. 3.4.

Note that Li�P 0ðMÞ ¼ i�P 0ðMÞ in DbðZsmÞ by Prop. 3.2. Hence the pull-
back functor i� in the above definition can be understood in either the derived or
non-derived sense.

Proposition 3.9. We have PðMÞ A DbðEtGp f =ZÞ, concentrated in degrees
�1 and 0. Its H�1 is a lattice.

Proof. This follows from Prop. 3.6. r

Proposition 3.10. The formation of Neron component complexes commutes
with regular base change and completion. More precisely, in Situation 2.22, as-
sume that U ! X is open and X 0 ! X is regular or the completion of a local X.
Let Z 0 ¼ Z �X X 0. Then we have

PðM;VÞ �Z Z 0 !@ PðM �U U 0;V �U U 0Þ

in ChbðSmGp=Z 0Þ and

PðMÞ �Z Z 0 !@ PðM �U U 0Þ

in DbðSmGp=Z 0Þ for any M A MU and any good covering V of U with respect to
M and X.

Proof. This follows from Prop. 2.23 and 2.24. r

4. Duals and duality pairings of Néron models

In the rest of this paper, we work in the following situation with a set of
notation:

Situation 4.1.
� j : Usm ! Xsm, i : Zsm ! Xsm and K are as in Situation 3.3.
� M ¼ ½Y ! G� A MU is a 1-motive, where Y is a lattice and G is an
extension of an abelian scheme A by a torus T .

� Let T, G, A be the Néron models of T , G, A, respectively, along j.
Denote their open subgroup schemes with connected fibers by T0, G0, A0,
respectively. Denote the extension by zero of Y by Y0.

� Fibers over Z are generally denoted by putting the subscript ð�ÞZ. The
notation ð�ÞZ0 or ð�Þ0Z mean the identity component of ð�ÞZ.
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� M4¼ ½Y 0 ! G 0� is the dual of M (see below). The objects above corre-
sponding to M4 are denoted by putting primes ð�Þ0, such as A 0, T 0

0 , G
0
0Z,

etc.

The dual 1-motive M4 [12, (10.2.12), (10.2.13)] of M is equipped with

a canonical Gm-bi-extension M4nL M ! Gm½1� as a morphism in DðUfppf Þ or
DðUsmÞ. The induced morphism

M4! ta0R HomUfppf
ðM;Gm½1�Þð4:1Þ

via the derived tensor-Hom adjunction ([24, Thm. 18.6.4 (vii)]) is an isomorphism
in DðUfppf Þ ([23, Thm. 1.11 (2)]).

Proposition 4.2. For any scheme S, let a : Sfppf ! Ssm be the premorphism
of sites defined by the identity functor. Then for any bounded complex of smooth
group algebraic spaces F over S, we have Ra�F ¼ F and La�F ¼ F. Let F1, F2,
F3 be bounded complexes of smooth group algebraic spaces over S. If F1 ! F2 !
F3 ! F1½1� is a triangle of bounded complexes of smooth group algebraic spaces
over S, then it is distinguished in DðSfppf Þ if and only if it is so in DðSsmÞ.
Morphisms F1 nL F2 ! F3 in DðSfppf Þ bijectively correspond to morphisms
F1 nL F2 ! F3 in DðSsmÞ.

Proof. We have Ra�F ¼ F since fppf cohomology with coe‰cients in
smooth group algebraic spaces agrees with étale cohomology ([28, III, Rmk.
3.11 (b)]). We have La�F ¼ F by Prop. 3.1 (2) and the proof of Prop. 3.2.
These facts imply the statement about the distinguished triangle. We have

HomDðSfppf ÞðF1 n
L F2;F3Þ ¼ HomDðSfppf ÞðLa�F1 n

L La�F2;F3Þ

¼ HomDðSsmÞðF1 n
L F2;Ra�F3Þ

¼ HomDðSsmÞðF1 n
L F2;F3Þ:

This shows the last statement. r

Proposition 4.3. The isomorphism (4.1) induces an isomorphism

M4!@ ta0R HomUsm
ðM;Gm½1�Þ

in DðUsmÞ.

Proof. Let a : Ufppf ! Usm be the premorphism of sites defined by the
identity functor. We apply ta0Ra� to the mentioned isomorphism. By Prop.
4.2, we have ta0Ra�M

4¼ ta0M
4¼M4 and La�M ¼M. Also ta0Ra�ta0 ¼

ta0Ra� since ta0Ra�tb1 ¼ 0. Hence

ta0Ra�ta0R HomUfppf
ðM;Gm½1�Þ ¼ ta0R HomUsm

ðM;Gm½1�Þ

using Prop. 3.1. This proves the proposition. r
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Definition 4.4. We define

NðMÞ4¼ ta0R HomXsm
ðNðMÞ;Gm½1�Þ A DðXsmÞ;

N0ðMÞ4¼ ta0R HomXsm
ðN0ðMÞ;Gm½1�Þ A DðXsmÞ:

Let Gm=X be the Néron model of Gm=U . Recall from [29, III, proof of
Lem. C.10] that R1j�Gm ¼ 0. Hence we have ta0ðRj�Gm½1�Þ ¼ Gm½1�. We have
a canonical exact sequence

0! Gm ! Gm ! i�Z! 0

in SmGp=X .

Proposition 4.5. Consider the morphisms

Rj�M
4nL Rj�M ! Rj�ðM4nL MÞ ! Rj�Gm½1�

and the induced morphism

NðM4ÞnL NðMÞ ! Gm½1�
in DðXsmÞ. The two induced morphisms

NðM4Þ ! ta0R HomXsm
ðNðMÞ;Gm½1�Þ

! ta0R HomXsm
ðN0ðMÞ;Gm½1�Þ

are both isomorphisms in DðXsmÞ.

Proof. Applying ta0Rj� to the isomorphism in Prop. 4.3 and using
ta0Rj�ta0 ¼ ta0Rj�, we have

NðM4Þ !@ ta0Rj�R HomUsm
ðM;Gm½1�Þ:

We have j �NðMÞ ¼ j �N0ðMÞ ¼M. Hence by Prop. 3.1, we have

NðM4Þ !@ ta0R HomXsm
ðNðMÞ;Rj�Gm½1�Þ

!@ ta0R HomXsm
ðN0ðMÞ;Rj�Gm½1�Þ:

Let F ¼ R HomXsm
ðNðMÞ; �Þ or R HomXsm

ðN0ðMÞ; �Þ. By the distinguished
triangle

Fta0ðRj�Gm½1�Þ ! F ðRj�Gm½1�Þ ! Ftb1ðRj�Gm½1�Þ

and the fact ta0ðRj�Gm½1�Þ ¼ Gm½1�, we have

ta0FðGm½1�Þ !@ ta0F ðRj�Gm½1�Þ:
Hence the result follows. r

If M is an abelian scheme, then the isomorphisms in Prop. 4.5 agree with the
isomorphism in [29, III, Lem. C.10] by construction.
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Proposition 4.6. The morphism

NðM4ÞnL NðMÞ ! Gm½1�
in Prop. 4.5 and the corresponding morphism

NðM44ÞnL NðM4Þ ! Gm½1�
for M4 are compatible under the biduality isomorphism M !@ M44 and switching
the tensor factors.

Proof. This follows from the fact that the morphism M4nL M ! Gm½1�
and the corresponding morphism M44nL M4! Gm½1� for M4 are compatible
under M !@ M44 and switching the tensor factors by the symmetric description
of the pairings [12, (10.2.12)]. r

Proposition 4.7. We have

ta0R HomXsm
ðN0ðMÞ; i�Z½1�Þ ¼ 0:

Hence the isomorphism in Prop. 4.5 induces a canonical isomorphism

NðM4ÞG ta0R HomXsm
ðN0ðMÞ;Gm½1�Þ ¼N0ðMÞ4:

Proof. We have

R HomXsm
ðN0ðMÞ; i�Z½1�Þ ¼ i�R HomZsm

ði�N0ðMÞ;Z½1�Þ
by Prop. 3.1 and Prop. 3.2. We have i�N0ðMÞ ¼ GZ0 since i�Y0 ¼ 0. Hence

ta0R HomXsm
ðN0ðMÞ; i�Z½1�Þ ¼ i�ta0R HomZsm

ðGZ0;Z½1�Þ:
The fibers of the group GZ0 at the points of Z are connected smooth algebraic
groups. Hence the same argument as [29, III, paragraph after Lem. C.10] shows
that

HomZsm
ðGZ0;ZÞ ¼ 0;

Ext1Zsm
ðGZ0;ZÞ ¼ HomZsm

ðp0ðGZ0Þ;Q=ZÞ ¼ 0:

The result then follows. r

By the definition of N0ðMÞ4 and the derived tensor-Hom adjunction, the
isomorphism NðM4Þ !@ N0ðMÞ4 in Prop. 4.7 gives a Gm-bi-extension

N0ðMÞnL NðM4Þ ! Gm½1�
as a morphism in DðXsmÞ. Switching M and M4 and applying the derived
tensor-Hom adjunction, we have a morphism

N0ðM4Þ ! R HomXsm
ðNðMÞ;Gm½1�Þ

This morphism factors through the truncation ta0 of the right-hand side since
N0ðM4Þ is concentrated in degreesa 0.
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Definition 4.8. We denote the above obtained morphisms in DðXsmÞ
by

zM : NðM4Þ !@ N0ðMÞ4;
z0M : N0ðM4Þ !NðMÞ4:

Hence Thm. B (1) has been proven in Prop. 4.7. If M is an abelian scheme,
then the morphism z0M agrees with the morphism in [29, III, Lem. C.11] by
construction.

Proposition 4.9. We have

ta0R HomXsm
ðNðMÞ; i�Z½1�Þ  @ ta0R HomXsm

ði�PðMÞ; i�Z½1�Þ
¼ i�ta0R HomZsm

ðPðMÞ;Z½1�Þ

!@ i�PðMÞLD½1�:

Proof. The first isomorphism follows from Prop. 4.7. The second equality
is Prop. 3.1. The third isomorphism follows from the fact that the category of
abelian groups has projective dimension one, Ext1ðZ; �Þ ¼ 0 and Prop. 3.9. r

Proposition 4.10. Let us abbreviate the functor R HomXsm
as ½� ; ��X . Con-

sider the two distinguished triangles

N0ðM4Þ !NðM4Þ ! i�PðM4Þ;
½NðMÞ;Gm½1��X ! ½NðMÞ;Gm½1��X ! ½NðMÞ; i�Z½1��X :

The morphism

NðM4Þ ! ½NðMÞ;Gm½1��X
in the middle coming from Prop. 4.5 can uniquely be extended to a morphism of
distinguished triangles

N0ðM4Þ NðM4Þ i�PðM4Þ;
?
?
?
y

?
?
?
y

?
?
?
y

½NðMÞ;Gm½1��X ���! ½NðMÞ;Gm½1��X ���! ½NðMÞ; i�Z½1��X :

���������! ���������!

The left vertical morphism agrees with the morphism z0M. The middle morphism
becomes an isomorphism after truncation ta0.

Proof. If we show that any morphism from N0ðM4Þ or N0ðM4Þ½1� to
½NðMÞ; i�Z½1��X is necessarily zero, then the general lemma on triangulated
categories [39, Lem. (4.2.5)] gives the desired unique extension. Let f be such
a morphism. Then f factors through the truncation ta0 of ½NðMÞ; i�Z½1��X ,
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which is isomorphic to i�PðMÞLD½1� by Prop. 4.9. By adjunction, f corresponds
to a morphism from G 0Z0 or G 0Z0½1� to PðMÞLD½1�. We have a spectral sequence

E
ij
2 ¼ Ext iZsm

ðH�j�1PðMÞ;ZÞ ) HiþjðPðMÞLD½1�Þ:

From this and by Prop. 3.9, we obtain an isomorphism and an exact sequence

H�1ðPðMÞLD½1�Þ ¼ HomZsm
ðH 0PðMÞ;ZÞ;

0! Ext1Zsm
ðH 0PðMÞ;ZÞ ! H 0ðPðMÞLD½1�Þ ! HomZsm

ðH�1PðMÞ;ZÞ ! 0:

Hence PðMÞLD½1� A DbðEtGp f =ZÞ is concentrated in degrees �1 and 0 whose
H�1 is a lattice. Therefore, about cohomology objects Hn of PðMÞLD½1�, we
have

HomZsm
ðG 0Z0;H

�1 or H 0Þ ¼ Ext1Zsm
ðGZ0;H

�1Þ ¼ 0;

and f has to be zero.
On the other hand, we have a commutative diagram

N0ðM4ÞnL NðMÞ ���! NðM4ÞnL NðMÞ
?
?
?
y

?
?
?
y

Gm½1� Gm½1�;��������������!

where the right vertical morphism is the one in Prop. 4.5 and the left vertical
morphism is the one appearing in the definition of z0M (in the paragraph before
Def. 4.8). Translating this using the derived tensor-Hom adjunction, we see that
the left square in the statement of the proposition is also commutative if the
morphism z0M is used in the left vertical morphism. Hence the left vertical
morphism has to be z0M by uniqueness. The middle morphism becomes an
isomorphism after truncation ta0 by Prop. 4.5. r

The objects in the upper row of the diagram in this proposition are concen-
trated in degreesa 0. Hence the third vertical morphisms factor as

i�PðM4Þ ! i�PðMÞLD½1�;

where we used the isomorphism in Prop. 4.9. It is a morphism in DðXsmÞ.
Pulling back by i, we have a morphism PðM4Þ ! PðMÞLD½1� in DbðEtGp f =ZÞ.
By the derived tensor-Hom adjunction, this corresponds to a morphism

PðM4ÞnL PðMÞ ! Z½1�
in DðZsmÞ (or DðZetÞ).

Definition 4.11. We denote the above obtained morphism in DbðEtGp f =ZÞ
by

hM : PðM4Þ ! PðMÞLD½1�:
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If M is an abelian scheme, then the morphism hM agrees with Grothen-
dieck’s pairing by [29, III, Lem. C.11].

Proposition 4.12. We have

ta1R HomXsm
ði�PðMÞ;Gm½1�Þ ¼ 0:

Proof. We have

R HomXsm
ði�PðMÞ;Rj�Gm½1�Þ ¼ Rj�R HomUsm

ð j �i�PðMÞ;Gm½1�Þ ¼ 0

by Prop. 3.1 (1) (or [24, Thm. 18.6.9 (iii)], noting that j is a morphism of sites).
Together with R1j�Gm ¼ 0, we have

R HomXsm
ði�PðMÞ;Gm½1�Þ ¼ R HomXsm

ði�PðMÞ; tb2Rj�GmÞ:

This is concentrated in degreesb 2. r

Proposition 4.13. Consider the diagram

½NðMÞ;Gm½1��X ½N0ðMÞ;Gm½1��X ½N0ðMÞ;Gm½1��X?
?
?
y

?
?
?
y

½NðMÞ; i�Z½1��X  ��� ½i�PðMÞ; i�Z½1��X ���! ½i�PðMÞ;Gm½1��X ½1�

����!  ����

of natural morphisms in DðXsmÞ. Note that the mapping cones of the four
horizontal morphisms are all concentrated in degreesb 1 by Prop. 4.7 and 4.12
and hence the horizontal morphisms become isomorphisms after truncation ta0.
Then the resulting two morphisms

N0ðMÞ4 x i�PðMÞLD½1�

are equal, or equivalently, the above diagram becomes a commutative diagram after
ta0.

Proof. Denote the distinguished triangles

N0ðMÞ !NðMÞ ! i�PðMÞ;
Gm½1� ! Gm½1� ! i�Z½1�

by A! B! C, D! E ! F , respectively. Then the diagram can be written as

½B;E �X ���! ½A;E �X  ��� ½A;D�X?
?
?
y

?
?
?
y

½B;F �X  ��� ½C;F �X ���! ½C;D�X ½1�:

 ����

As noted, ½A;F �X and ½C;E �X ½1� are concentrated in degreesb 1. We want
to show that the two morphisms ta0½A;E �X x ta0½C;F �X are equal. Let

457néron models of 1-motives and duality



T A DðXsmÞ be any object concentrated in degreesa 0. Applying HomXsm
ðT ; �Þ,

we are comparing two homomorphisms

HomXsm
ðT nL A;EÞx HomXsm

ðT nL C;FÞ:

Denote T nL A, T nL B, T nL C by A 0, B 0, C 0, respectively. We want to show
that the diagram

HomXsm
ðB 0;EÞ ���!

@
HomXsm

ðA 0;EÞ HomXsm
ðA 0;DÞ

?
?
?
y

?
?
?
y

HomXsm
ðB 0;FÞ  ���

@
HomXsm

ðC 0;FÞ ���!@ HomXsm
ðC 0;D½1�Þ

 ����
@

is commutative. We know that R HomXsm
ðA 0;F Þ and R HomXsm

ðC 0;E½1�Þ are
concentrated in degreesb 1. Let f A HomXsm

ðA 0;EÞ. Sending f to HomXsm
ðC 0;

FÞ via the left side of the diagram, we have a commutative diagram

A 0 ���! B 0 C 0 A 0½1�
?
?
?
y f

?
?
?
y

?
?
?
y

?
?
?
y f

E F D½1� E½1�

ð4:2Þ

����! ����!

���! ���! ���!

with diagonal arrows from B 0 to E and C 0 to F splitting the left and middle
squares into commutative triangles. (Note that the right square is automat-
ically commutative since HomXsm

ðC 0;E½1�Þ ¼ 0.) Hence we have a commutative
diagram

B 0 ���! C 0 ���! A 0½1� ���! B 0½1�
?
?
?
y

?
?
?
y

?
?
?
y

E F D½1� E½1�:���! ����! ����!

By an axiom of triangulated categories, there exists a morphism A 0½1� ! D½1� that
completes this diagram into a morphism of distinguished triangles. This mor-
phism diagonally splits the right square of the diagram (4.2) into commutative
triangles. From this, we see that the two images of f in HomXsm

ðC 0;FÞ are
equal. This proves the proposition. r

Proposition 4.14. The diagram

N0ðM4Þ NðM4Þ i�PðM4Þ;
?
?
?
yz0M

?
?
?
yzM

?
?
?
yd�i�hM

½NðMÞ;Gm½1��X ���! ½N0ðMÞ;Gm½1��X ���! ½i�PðMÞ;Gm½1��X ½1�:

���������! �����������!

is a morphism of distinguished triangles, where the d in the right vertical morphism
is the connecting morphism i�Z½1� ! Gm½2� of the triangle Gm ! Gm ! i�Z.
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Proof. It is enough to show the commutativity of the squares after applying
ta0 to the lower row since the upper row consists of objects concentrated in
degreesa 0. (Note that there are actually three squares whose commutativity
has to be checked, one of which is hidden in the diagram.) Prop. 4.6 and 4.13
show that the lower row after ta0 can be identified with the lower row after ta0

of the diagram in Prop. 4.10. This implies the result. r

Proposition 4.15. Under the identification M !@ M44, the dual

hLD
M : PðMÞ ! PðM4ÞLD½1�

of hM agrees with

hM4 : PðMÞ ! PðM4ÞLD½1�:

In particular, hM is an isomorphism if and only if hM4 is so.

Proof. Applying the derived tensor-Hom adjunction to the diagram in
Prop. 4.14 and interchanging the tensor factors, we have a morphism of distin-
guished triangles

N0ðMÞ NðMÞ i�PðMÞ;?
?
?
yz0M4

?
?
?
yzM4

?
?
?
yd�i�hLD

M

½NðM4Þ;Gm½1��X ���! ½N0ðM4Þ;Gm½1��X ���! ½i�PðM4Þ;Gm½1��X ½1�:

�����������! ������������!

Using the uniqueness part of Prop. 4.10, we know that i�h
LD
M ¼ i�hM4. r

The following together with Prop. 4.15 proves Thm. B (2).

Proposition 4.16. The morphisms z0M and z0M4 are both isomorphisms if
and only if hM is an isomorphism. If these equivalent conditions are satisfied, then
the diagram in Prop. 4.14 induces an isomorphism of distinguished triangles

N0ðM4Þ ���! NðM4Þ i�PðM4Þ;

o

?
?
?
yz0M o

?
?
?
yzM o

?
?
?
yi�hM

NðMÞ4 N0ðMÞ4 ���! i�PðMÞLD½1�:

�����!

���!

Proof. Suppose that hM is an isomorphism. By Prop. 4.7 and Def. 4.8, the
morphism zM : NðM4Þ !N0ðMÞ4 is an isomorphism. Then the five lemma
applied to the diagram in Prop. 4.14 shows that z0M : N0ðM4Þ !NðMÞ4 is
an isomorphism. On the other hand, Prop. 4.15 shows that hM4 is also an
isomorphism. Hence the above argument applied to M4 implies that z0M4 is an
isomorphism.

Conversely, suppose that z0M and z0M4 are isomorphisms. Then the same
argument as above shows that hM and hM4 are isomorphisms in H�1 and injec-
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tive in H 0. Set P ¼ PðMÞ and P 0 ¼ PðM4Þ. Denote the torsion part by ð�Þtor
and torsion-free quotient by ð�Þ=tor. Then we have a commutative diagram with
exact rows

0 ���! H 0ðP 0Þtor H 0ðP 0Þ H 0ðP 0Þ=tor ���! 0
?
?
?
y

?
?
?
y

?
?
?
y

0 ���! H 0ðPÞPDtor ���! H 1ðPLDÞ ���! H�1ðPÞLD ���! 0;

����! ����!

where H 0ðPÞPDtor is a shorthand for ðH 0ðPÞtorÞ
PD. The middle vertical morphism

is injective. The right vertical one is an isomorphism by Prop. 4.15. These
imply that the left vertical morphism is injective. Switching M and M4, we
know that H 0ðPÞtor ! H 0ðP 0ÞPDtor is also injective. As H 0ðPÞtor and H 0ðP 0Þtor are
finite étale, we conclude that these injective morphisms are all isomorphisms.
Therefore hM and hM4 are isomorphisms.

The last statement about the diagram follows from the isomorphism

d : ½i�PðMÞ; i�Z½1��X !
@

ta0½i�PðMÞ;Gm½2��X ;

which is a consequence of Prop. 4.12. r

Proposition 4.17. The morphism hM is an isomorphism if and only if the
corresponding morphism

hM�UK sh
x
: PðM4�U K sh

x Þ ! PðM �U K sh
x Þ

LD½1�;

for the strict henselian local field K sh
x at any point x A Z is an isomorphism. We

may replace K sh
x by its completion.

Proof. This follows from Prop. 3.10. r

The following proves Thm. B (3).

Proposition 4.18. The morphism hM is an isomorphism if M is semistable
over X , i.e. if its torus and lattice parts are unramified over X and its abelian
scheme part is semistable over X.

Proof. We may assume that X is strictly henselian local by Prop. 4.17. If
M ¼ Gm or Z½1�, then PðMÞ ¼ Z or Z½1�, respectively, and hM is an isomor-
phism. Hence hM is an isomorphism if M is an unramified torus or an
unramified lattice shifted by one. If M is a semistable abelian variety, then
hM is Grothendieck’s pairing, which is an isomorphism by [42].

Now we treat a general semistable M. Set Y ¼ j�Y . By assumption,
X itself is a good covering of X . Hence NðMÞ ¼ ½Y! G� and N0ðMÞ ¼
½Y0 ! G0�. We have R1j�T ¼ 0 since T is a trivial torus and by the proof of
[29, III, Lem. C.10]. Hence we have an exact sequence 0!T! G!A! 0.
We have G0 \T ¼T0 since G0 is of finite type and p0ðTZÞ is torsion-free.
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Therefore we have an exact sequence 0!T0 ! G0 !A0 ! 0. We have mor-
phisms of distinguished triangles

T 0
0 G 00 A 0

0?
?
?
y

?
?
?
y

?
?
?
y

½Y½1�;Gm½1��X ���! ½½Y!A�;Gm½1��X ���! ½A;Gm½1��X

�������������! ������������!

and

G 00 ½Y 00 ! G 00� Y 00½1�?
?
?
y

?
?
?
y

?
?
?
y

½½Y!A�;Gm½1��X ���! ½½Y! G�;Gm½1��X ���! ½T;Gm½1��X :

������������! ���������!

In either diagram, the left and right vertical morphisms become isomorphisms
after truncation ta0 by the previously treated cases. Therefore the four lemmas
imply that the middle vertical morphisms become isomorphisms after ta0. r

The following proves a weaker version of Thm. B (4).

Proposition 4.19. The morphism hM becomes an isomorphism after tensoring
with Q.

Proof. We may assume that X is strictly henselian local and U ¼ Spec K
by Prop. 4.17. First we describe PðMÞnQ. We have R1j�Q ¼ 0 since
H 1ðX 0 �X U ;QÞ ¼ 0 for any quasi-compact smooth X -scheme X 0 by [29, II,
Lem. 2.10]. From this, by taking a finite Galois extension of K that trivializes
Y and arguing with a Hochschild-Serre spectral sequence, we know that
R1j�Y nQ ¼ 0. Hence NðMÞnQ ¼ ½ j�Y ! j�G�nQ. Therefore PðMÞnQ
¼ ½GðU ;YÞ ! p0ðGZÞ�nQ, where we are viewing PðMÞ as a complex of
abstract abelian groups since X is strictly henselian and hence Z is a geometric
point. Let F be the cokernel of GZ !AZ in AbðZsmÞ. Then GðZ;FÞ is a
subgroup of H 1ðU ;TÞ. If K 0 is a finite Galois extension of K that trivializes T ,
then the exact sequence

0! H 1ðGalðK 0=KÞ;TðK 0ÞÞ ! H 1ðK ;TÞ ! GðGalðK 0=KÞ;H 1ðK 0;TÞÞ;

the vanishing H 1ðK 0;GmÞ ¼ 0 and [35, VIII, §2, Cor. 1 to Prop. 4] show that
H 1ðK ;TÞ is killed by ½K 0 : K �. Hence so is GðZ;FÞ. The snake lemma for the
diagram

0 ���! GZ0=TZ0 ���! GZ=TZ0 ���! p0ðGZÞ ���! 0
?
?
?
y

?
?
?
y

?
?
?
y

0 AZ0 AZ p0ðAZÞ ���! 0�����! �������! �����!
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gives an exact sequence

TZ \ GZ0 ! p0ðTZÞ ! Kerðp0ðGZÞ ! p0ðAZÞÞ !AZ0=GZ0 ! F

in AbðZsmÞ. The first term is of finite type over Z. Hence the first morphism
has finite image. The third morphism is a morphism from a finitely generated
abelian group to a smooth algebraic group. The group of Z-valued points of the
cokernel of this morphism is killed by ½K 0 : K �. Such a morphism has finite
image since Z is a geometric point. The group p0ðAZÞ is finite. Thus we have
p0ðTZÞnQ ¼ p0ðGZÞnQ. Therefore

PðMÞnQ ¼ ½GðU ;YÞ ! p0ðTZÞ�nQ:

Note that Y and T 0 are Cartier dual to each other. So are Y 0 and T . The
morphism hM nQ decomposes into two parts

GðU ;Y 0ÞnQ! Homðp0ðTZÞnQ;QÞ;
p0ðT 0

ZÞnQ! HomðGðU ;Y ÞnQ;QÞ
given by

GðU ;Y 0Þ ¼ HomUðT ;GmÞ ! HomZðTZ;GmÞ ! Homðp0ðTZÞ;ZÞ

and the corresponding morphism for Y and T 0. It is a classical fact that the two
parts above are isomorphisms.1 Hence hM nQ is an isomorphism. r

Proposition 4.20. The morphism z0M induces an isomorphism in cohomol-
ogies in degrees0 0 and an injection in H 0. The morphism hM induces an
isomorphism in cohomologies in degrees0�1; 0 and an injection in H�1. We
have an exact sequence

0! CokerðH�1hMÞ ! CokerðH 0z0MÞ ! KerðH 0hMÞ ! 0:

Each of these three terms as well as CokerðH 0hMÞ is of the form i�N for some
finite étale group scheme N over Z.

Proof. The domains and codomains of the morphisms z0M and hM are
concentrated in degrees �1, 0. The diagram in Prop. 4.10 shows that H�1z0M is
injective and induces exact sequences

0! CokerðH�1z0MÞ ! KerðH�1hMÞ ! KerðH 0z0MÞ ! 0;

0! CokerðH�1hMÞ ! CokerðH 0z0MÞ ! KerðH 0hMÞ ! 0:

1One way to quickly see this is the following. Let l be a prime invertible on Z. The Kummer

sequence gives H 1ðU ;VlTÞ ¼ p0ðTÞnQl , where Vl is the rational l-adic Tate module of T . The

l-adic representation VlT over U is the Tate twist of the dual of Y 0nQl . Hence the duality

H 1ðU ;VlTÞ $ GðU ;Y 0nQlÞ of l-adic cohomology of strict henselian discrete valuation fields ([22,

Exp. I, Thm. 5.1]) gives the result.
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All these groups are torsion by Prop. 4.19. The group KerðH�1hMÞ is torsion-
free by Prop. 3.9, hence zero. Therefore CokerðH�1z0MÞ ¼ KerðH 0z0MÞ ¼ 0.
The groups CokerðHnhMÞ and KerðHnhMÞ for any n are of the stated form.
Hence so is their extension CokerðH 0z0MÞ. r

In particular, if z0M is an isomorphism, then hM is an isomorphism in
cohomologies of degrees0 0 and an injection with finite étale cokernel in H 0.
This might not imply that hM is an isomorphism if no additional assumption is
made on z0M4. This point seems to exist already for the case that M ¼ A is an
abelian scheme; see [7, Prop. 5.1]. An injection of finite étale groups of the same
order is an isomorphism, but it is not clear whether p0ðAxÞ and p0ðA 0

xÞ for x A Z
have the same order or not. According to Lorenzini [27, Rmk. 7.1], it is not
known that the groups of geometric points of p0ðAxÞ and p0ðA 0

xÞ are abstractly
isomorphic.

5. l-adic realization and perfectness for l-part

We continue working in Situation 4.1. Let l be a prime number invertible
on X . Below we use the formalism of derived categories of l-adic sheaves given
by [5, §6], [37, Tag 09C0] for technical simplicity. One can also use [15]. We
denote the pro-étale site of X by Xproet ([5, Def. 4.1.1]). The derived com-
pleteness and the derived completion ([5, Lem. 3.4.9, Prop. 3.5.1 (3)])

F̂F ¼ R lim �
n

ðF nL Z=l nZÞ

of an object F A DðXproetÞ is always taken with respect to the ideal lZ � Z. See
[37, Tag 091J], [40, §2.3] for how we choose derived inverse limits functorially in
derived categories. In fact, we have

F̂F ¼ R HomXproet
ðQl=Zl ;F Þ½1�

by [37, Tag 099B]. The constructibility of a derived complete F A DðXproetÞ is
always taken with respect to the ideal lZ � Z (or lZl � Zl ; [5, Lem. 3.5.6]) unless
otherwise noted. The same notation applies to the pro-étale sites Uproet, Zproet.
For a derived complete F A DðXproetÞ, we denote

F4¼ R HomXproet
ðF ;Zlð1Þ½2�Þ;

where we set Zl ¼ lim � n
Z=l nZ A AbðXproetÞ and the Tate twist Zlð1Þ ¼

lim � n
Z=l nZð1Þ A AbðXproetÞ as sheaves. (This notation F4 does not clash with

dual 1-motives M4 since a non-zero 1-motive is never derived complete. It is
also di¤erent from the linear dual of Zl-lattices due to the twisted shift (1)[2].)
The same notation F4 applies to a derived complete F A DðUproetÞ. For a
derived complete F A DðZproetÞ, we denote

F4 ¼ R HomZproet
ðF ;ZlÞ:
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For the six operations formalism, see [5, §6.7]. The l-adic Tate module Tlð�Þ of
a sheaf is the inverse limit of the l n-torsion parts for nb 0. Let n : Xproet ! Xet

be the morphism of sites defined by the identity functor ([5, §5]). We naturally
regard objects of DðXetÞ as objects of DðXproetÞ via pullback n� (omitting n� from
the notation). A similar convention applies to n : Zproet ! Zet and n : Uproet !
Uet.

Proposition 5.1. Let a : Xsm ! Xet be the morphism of sites defined by the
identity. Then the objects a�NðMÞnL Z=lZ and a�N0ðMÞnL Z=lZ of DbðXetÞ
are constructible complexes of sheaves of Z=lZ-modules.

Proof. The object a�Y0 nL Z=lZ ¼ Y0=lY0 is constructible. The object
a�G0 nL Z=lZ is the l-torsion part of G0 shifted by one, which is constructible.
Hence a�N0ðMÞnL Z=lZ is constructible. Since PðMÞ A DbðEtGp f =ZÞ, it
follows that a�NðMÞnL Z=lZ is also constructible. r

In the rest of this section, we will omit a� and simply denote the image
of a sheaf or a complex of sheaves F over the smooth site (of U , X or Z)
by F .

Definition 5.2. Viewing NðMÞ as an object of DðXproetÞ, we call its
derived completion NðMÞ5 A DðXproetÞ the l-adic realization of NðMÞ and
denote it by N̂NðMÞ. The l-adic realizations N̂N0ðMÞ ¼N0ðMÞ5 A DðXproetÞ
and P̂PðMÞ ¼ PðMÞ5 A DðZproetÞ are defined similarly.

Yet another convention: in the rest of this section, we will use the pro-étale
topology only and denote the morphisms Uproet ! Xproet and Zproet ! Zproet

induced by j : U ,! X and i : Z ,! X simply by j and i. This change of nota-
tion does not make a di¤erence for relevant groups after derived completion.
More precisely:

Proposition 5.3. Let i : Zproet ! Xproet as above. Let H A SmGp 0=X.
Then the natural reduction morphism i�H ! H �X Z induces an isomorphism
ði�HÞ5!@ ðH �X ZÞ5 in DðZproetÞ.

Proof. The reduction morphism i�H ! H �X Z is surjective by smooth-
ness. We need to show that the multiplication by l on the kernel of i�H !
H �X Z in AbðZproetÞ is an isomorphism. We may assume that X is strictly
henselian and U ¼ Spec K . Since Z is then a geometric point and H locally
of finite type, it is enough to show that l : KerðHðXÞ !! HðZÞÞ is bijective. By
dividing H by the schematic closure of the identity section of H �X U , we may
assume that H is a separated scheme ([32, Prop. 3.3.5]). The multiplication by
l is an étale morphism on H by [8, 7.3/2 (b)]. In particular, KerðlÞ � H is a
separated étale group scheme over X . Hence the map KerðlÞðX Þ ! KerðlÞðZÞ is
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bijective since X is henselian. Therefore l : KerðHðXÞ !! HðZÞÞ is injective.
Let a A KerðHðX Þ !! HðZÞÞ. Then the inverse image l�1ðaÞ � H is a separated
étale X -scheme whose special fiber contains 0 (the identity element). Hence
l�1ðaÞðX Þ is non-empty since X is henselian. Thus l : KerðHðXÞ !! HðZÞÞ is
also surjective. This implies the result. r

Proposition 5.4. The objects N̂NðMÞ, N̂N0ðMÞ of DðXproetÞ and the object

P̂PðMÞ of DðZproetÞ are constructible. We have P̂PðMÞ ¼ PðMÞnZl . We have a
canonical distinguished triangle

N̂N0ðMÞ ! N̂NðMÞ ! i�P̂PðMÞ
in DðXproetÞ.

Proof. The statements for N̂NðMÞ and N̂N0ðMÞ follow from Prop. 5.1 and

[5, Prop. 3.5.1 (2)]. Since PðMÞ A DbðEtGp f =ZÞ, it follows that P̂PðMÞ ¼
PðMÞnZl is constructible. Applying the derived completion to the triangle
in Def. 3.8, we get the stated distinguished triangle. r

Proposition 5.5. We have canonical isomorphisms

i�N̂N0ðMÞGTlGZ0½1�; i !N̂NðMÞGTli
�ðR1j�MÞ½�1�;

which are shifts of Zl -lattices over Z.

Proof. By [5, Rmk. 6.5.10], the derived completion commutes with i�

and j �. By the distinguished triangle i ! ! i� ! i�Rj� j
� of functors DðXproetÞ !

DðZproetÞ ([5, Lem. 6.1.16]), we know that the derived completion also commutes
with i !. We have i�Y0 ¼ 0. Also i�G5

0 ¼ G5
Z0 ¼ TlGZ0½1� by Prop. 5.3 and the

fact that the smooth group scheme GZ0 with connected fibers is l-divisible.
Hence i�N̂N0ðMÞ ¼ TlG0Z½1�. We have a distinguished triangle

i !NðMÞ ! i�NðMÞ ! i�Rj�M:

We have i�NðMÞ ¼ ta0i
�Rj�M. We claim that the l-primary part of i�Rnj�M

is divisible for n ¼ 1 and zero for nb 2. This implies

i !N̂NðMÞ ¼ ðtb1i
�Rj�MÞ5½�1� ¼ ði�R1j�MÞ5½�2� ¼ Tli

�ðR1j�MÞ½�1�

as desired.
Now we prove the above claim. We may assume that X is strictly henselian

and U ¼ Spec K . We need to show that the l-primary part of HnðK ;MÞ is
divisible for n ¼ 1 and zero for nb 2. It is enough to show this for the case
M ¼ G and the case M ¼ Y ½1�. Let C be the l-primary part of Gtor or
Y nQl=Zl . We need to show that HnðK ;CÞ is divisible for n ¼ 1 and zero
for nb 2. Since C is l-divisible with finite l-torsion part, this follows from the
fact that the l-cohomological dimension of K is 1 ([36, II, §4.3, Prop. 12]).

r
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Proposition 5.6. The objects i !N̂N0ðMÞ and ði�N̂NðMÞÞ4 are concentrated in
degrees 0 and 1. The H 0 of these objects are Zl -lattices. The objects i�N̂N0ðMÞ
and ði !N̂NðMÞÞ4 are concentrated in degree �1.

Proof. We have a distinguished triangle

i !N̂N0ðMÞ ! i !N̂NðMÞ ! P̂PðMÞ:

Hence the statement about i !N̂N0ðMÞ follows from Prop. 3.9 and 5.5. We also
have a distinguished triangle

i�N̂N0ðMÞ ! i�N̂NðMÞ ! P̂PðMÞ:

Hence by the same propositions, we know that i�N̂NðMÞ is concentrated in
degrees �1, 0, whose H�1 is a Zl-lattice. This implies the statement about
ði�N̂NðMÞÞ4. The rest is already in Prop. 5.5. r

Proposition 5.7. For F ;G A DðXproetÞ, we have

R HomXproet
ðF ;GÞ5¼ R HomXproet

ðF̂F ; ĜGÞ:

Proof. The derived tensor product ð�ÞnL Z=l nZ is given by the mapping
cone of multiplication by l n, which commutes with R HomXproet

ðF ; �Þ. The
derived inverse limit R lim � also commutes with R HomXproet

ðF ; �Þ. Hence we
have

R HomXproet
ðF ;GÞ5¼ R lim �

n

R HomXproet
ðF ;GnL Z=l nZÞ

¼ R lim �
n

R HomXproet
ðF̂F ;GnL Z=l nZÞ

¼ R HomXproet
ðF̂F ; ĜGÞ;

where the second equality comes from the fact that the mapping cone of F ! F̂F
is uniquely l-divisible. r

Therefore the morphism z0M induces a morphism

ẑz0M : N̂N0ðM4Þ ! R HomXproet
ðN̂NðMÞ;Zlð1Þ½2�Þ ¼ N̂NðMÞ4

via derived completion. Its pullback ðM4Þ5! M̂M4 to Uproet is an isomorphism
since ðM4Þ5½�1� ¼ TlM

4 and M̂M½�1� ¼ TlM are dual to each other after Tate
twist.

Proposition 5.8. The morphism ẑz0M is an isomorphism. In H�1i�, it
induces a perfect pairing

TlG
0
Z0 $ Tli

�R1j�M

of Zl -lattices over Z.
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Proof. The statement about H�1i� is a consequence of Prop. 5.5, once we
show that ẑz0M is an isomorphism. We have

i�ðN̂NðMÞ4Þ ¼ ði !N̂NðMÞÞ4

by Verdier duality. Since

j �ẑz0M : j �ðN̂N0ðM4ÞÞ ! j �ðN̂NðMÞ4Þ
is an isomorphism, it is enough to show that the morphism

i�ẑz0M : i�ðN̂N0ðM4ÞÞ ! i�ðN̂NðMÞ4Þ ¼ ði !N̂NðMÞÞ4

is an isomorphism. The morphism ẑz0M induces a canonical morphism of distin-
guished triangles

i�Rj�ðN̂N0ðM4ÞÞ½�1� ���! i !ðN̂N0ðM4ÞÞ ���! i�ðN̂N0ðM4ÞÞ
?
?
?
yo

?
?
?
y

?
?
?
y

ði�Rj�N̂NðMÞÞ4 ði�N̂NðMÞÞ4 ði !N̂NðMÞÞ4:�����! ����!
Denote the upper triangle by E ! F ! G and lower by E 0 ! F 0 ! G 0. Then
by Prop. 5.6, we have a commutative diagram

H 1E H 1F
?
?
?
yo

?
?
?
y

H 1E 0 ���!@ H 1F 0

����!
@

and a commutative diagram with exact rows

0 H�1G H 0E H 0F 0?
?
?
y

?
?
?
yo

?
?
?
y

0 ���! H�1G 0 ���! H 0E 0 ���! H 0F 0 ���! 0;

���! ����! ����! ���!

and the cohomologies of E, F , G, E 0, F 0, G 0 are zero in all other degrees. The
first diagram shows that the morphism H 1F ! H 1F 0 is an isomorphism. The
second diagram shows that H 0F ! H 0F 0 is surjective. It is an isomorphism up
to torsion by Prop. 4.19. It is also a morphism between Zl-lattices by Prop. 5.6.
These imply that H 0F ! H 0F 0 is an isomorphism. Therefore H�1G ! H�1G 0

is also an isomorphism. Hence F ! F 0 and G ! G 0 are both isomorphisms.

This proves that ẑz0M is an isomorphism. r

Proposition 5.9. The morphism PðM4Þ ! PðMÞLD½1� becomes an isomor-
phism after tensoring with Zl .

Proof. The derived completion of the diagram in Prop. 4.14 gives a mor-
phism of distinguished triangles
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N̂N0ðM4Þ N̂NðM4Þ i�P̂PðM4Þ
?
?
?
yẑz0M

?
?
?
yẑzM

?
?
?
yĥhM

ðN̂NðMÞÞ4 ���! ðN̂N0ðMÞÞ4 ���! i�P̂PðMÞ4½1�:

�����! �����!

The morphism ẑz0M is an isomorphism by Prop. 5.8. The morphism ẑzM can be
obtained by applying the dual ð�Þ4 to ẑz0M4 by the definition of z0M . Hence ẑzM is
an isomorphism. (This is not a consequence of the fact that zM : NðM4Þ !
N0ðMÞ4 is an isomorphism, since derived completion does not commutes with
the truncation ta0 that appears in Def. 4.4.) Therefore ĥhM is an isomorphism.

r

The following finishes the proof of Thm. B (4).

Proposition 5.10. Any of the kernel or cokernel of H nzM and HnhM for
any n is of the form i�N for some finite étale group scheme N over Z whose
fiber over any x A Z has order a power of the residual characteristic exponent
at x.

Proof. This follows from Prop. 5.9 and 4.20. r

6. Duality for cohomology of Néron models and perfectness for p-part

We continue working in Situation 4.1. Assume that X ¼ Spec OK is the
spectrum of a complete discrete valuation ring OK with perfect residue field k of
characteristic p > 0 and U ¼ Spec K its generic point. Below we use the same
notation as [39, §2.1], [40, §2.3] about the ind-rational pro-étale site of k. We
also write Z ¼ x, OK ¼ ÔOx, K ¼ K̂Kx in order to match the notation in [40, §2.5].
Let k indrat be the category of ind-rational k-algebras and Spec k indrat

proet the ind-
rational pro-étale site of k defined in [39, §2.1], [40, §2.3]. Let

RGðOK ; �Þ;RGxðOK ; �Þ : DðOK; fppf Þ ! Dðk indrat
proet Þ

RGðK; �Þ : DðKfppf Þ ! Dðk indrat
proet Þ

be the functors defined in [40, §2.5]. The composites of them with the n-th
cohomology object functor Hn for any n is denoted by HnðOK ; �Þ, Hn

xðOK ; �Þ and
HnðK ; �Þ, respectively, and we set GðOK ; �Þ ¼ H0ðOK ; �Þ, GðK ; �Þ ¼ H0ðK ; �Þ. We

denote the Serre dual functor by ð�ÞSD ¼ R Homk indrat
proet
ð�;ZÞ ([39, §2.4]). An object

C A Dðk indrat
proet Þ is said to be Serre reflexive if the canonical morphism C ! C SDSD

is an isomorphism.
We have the canonical trace morphism

RGðK ;GmÞ ! RGxðOK ;GmÞ½1� ¼ Z
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by [40, Eq. (2.5.7)]. The morphism

M4! R HomKfppf
ðM;Gm½1�Þ

induces morphisms

RGðK ;M4Þ ! R Homk indrat
proet
ðRGðK ;MÞ;RGðK ;Gm½1�ÞÞ

! R Homk indrat
proet
ðRGðK ;MÞ;Z½1�Þ ¼ RGðK ;MÞSD½1�

in Dðk indrat
proet Þ as in [40, §2.5]. Its Serre dual (when M and M4 are switched)

RGðK ;M4ÞSDSD ! RGðK ;MÞSD½1�

is an isomorphism by [39, Thm. (9.1)] and the comparison results in [40,
Appendix A]. This result is the main input for the results of this section.

By Prop. 4.2, the distinguished triangle in Def. 3.8 and the commutative
diagram in Prop. 4.10 can be translated in the fppf site.

Proposition 6.1. The distinguished triangle in Def. 3.8 and the localization
triangle in [40, §2.5] (i.e. the definition of RGx as a mapping cone) induce a
commutative diagram of distinguished triangles

RGxðOK ;N0ðMÞÞ ���! RGxðOK ;NðMÞÞ ���! PðMÞ
?
?
?
y

?
?
?
y

�
�
�
�

RGðOK ;N0ðMÞÞ RGðOK ;NðMÞÞ PðMÞ
?
?
?
y

?
?
?
y

?
?
?
y

RGðK ;MÞ RGðK ;MÞ 0:

����! ����!

��������!

Proof. Obvious. r

Proposition 6.2.
(1) About RGðOK ;N0ðMÞÞSDSD: The H�1 is the Tate module TGðK ;GÞsAb

of the maximal semi-abelian subgroup GðK ;GÞsAb of the proalgebraic group
GðK ;GÞ. The H 0 is the quotient GðK ;GÞ0=sAb of the identity component
GðK ;GÞ0 by GðK ;GÞsAb.

(2) About RGxðOK ;NðMÞÞSD: The H�1 is the Pontryagin dual

p0ðH1ðK ;MÞÞPD of the component group p0ðH1ðK;MÞÞ of the ind-
algebraic group H1ðK ;MÞ. The H 0 is the dual

H1ðK ;MÞSD
0

0 :¼ Ext1
k indrat
proet
ðH1ðK ;MÞ0;Q=ZÞ

of the identity component H1ðK ;MÞ0.
(3) About RGxðOK ;N0ðMÞÞ: The H 0 is H�1PðMÞ. The H 1 is H 0PðMÞ.

The H 2 is H1ðK ;MÞ.
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(4) About RGðOK ;NðMÞÞSD: The H 0 is H 0ðPðMÞLDÞ. The H 1 is

H 1ðPðMÞLDÞ. The H 2 is the dual

GðK ;GÞSD
0

0 :¼ Ext1
k indrat
proet
ðGðK ;GÞ0;Q=ZÞ

of the identity component GðK ;GÞ0.
In both cases (1) and (2), the H�1 is a pro-finite-étale group scheme over k and the
H 0 is a connected unipotent proalgebraic group over k. In both cases (3) and (4),
the H 0 is a lattice, H 1 A EtGp f =k and H 2 an ind-algebraic group with unipotent
identity component. All the four complexes above are Serre reflexive. We have
Hn ¼ 0 for all the complexes for all other degrees.

Proof. (1) Since Y0 is the extension by zero of the étale group Y , we have
RGðOK ;Y0Þ ¼ 0 by [39, Prop. (5.2.3.4)]. We have

RGðOK ;G0Þ ¼ GðOK ;G0Þ ¼ GðOK ;GÞ0 ¼ GðK ;GÞ0;
where the first equality is [39, Prop. (3.4.1)] (with the smoothness of G0),
the second [39, Prop. (3.4.2) (a)] and the third [39, Prop. (3.1.3) (c)]. Hence
RGðOK ;N0ðMÞÞ ¼ GðK ;GÞ0, which is a connected proalgebraic group by [39,
Prop. (3.4.2) (a)]. Therefore the description of its double dual follows from [39,
Prop. (2.4.1) (d) and Footnote 7].

(2) We have

RGðOK ;NðMÞÞ ¼ ta0RGðOK ;Rj�MÞ ¼ ta0RGðK ;MÞ
by [39, Prop. (3.4.1)] (truncation commutes with exact functors). Hence one of
the distinguished triangles in Prop. 6.1 shows that

RGxðOK ;NðMÞÞ ¼ H1ðK ;MÞ½�2�
since RGðK ;MÞ is concentrated in degrees �1, 0, 1 (see [39, first paragraph
of §9]). By loc. cit., we know that H1ðK;MÞ is an ind-algebraic group with
unipotent identity component. Hence [39, Prop. (2.4.1) (b)] gives the required
description of its Serre dual.

(3) One of the distinguished triangles in Prop. 6.1 and what we saw right
above give a distinguished triangle

RGxðOK ;N0ðMÞÞ ! H1ðK ;MÞ½�2� ! PðMÞ:
The result follows from this.

(4) One of the distinguished triangles in Prop. 6.1 and what we saw in the
proof of (1) above give a distinguished triangle

PðMÞLD ! RGðOK ;NðMÞÞSD ! GðK ;GÞSD0 :

We have

GðK ;GÞSD0 ¼ R Homk indrat
proet
ðGðK ;GÞ0;Q=ZÞ½�1�

¼ Ext1
k indrat
proet
ðGðK ;GÞ0;Q=ZÞ½�2�

¼ GðK ;GÞSD
0

0 ½�2�
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by [39, Prop. (2.3.3) (d), (2.4.1) (a)]. Hence the statements in (4) follow. The

group GðK ;GÞSD
0

0 is an ind-algebraic group with unipotent identity component
by [39, (2.4.1) (d)].

We can check that the cohomology objects of all the four complexes are
Serre reflexive using [39, (2.4.1) (b)]. Hence the four complexes themselves are
Serre reflexive. r

By Prop. 4.2, the morphism

NðM4Þ ! R HomOK ; sm
ðN0ðMÞ;Gm½1�Þ

in DðOK; smÞ given in Def. 4.8 induces a morphism

NðM4Þ ! R HomOK; fppf
ðN0ðMÞ;Gm½1�Þ

in DðOK ; fppf Þ. Hence [39, Prop. (3.3.8)] and the trace morphism give a morphism
of distinguished triangles

RGðOK ;NðMÞÞ RGðK ;MÞ RGxðOK ;NðMÞÞ½1�?
?
?
y

?
?
?
y

?
?
?
y

RGxðOK ;N0ðM4ÞÞSD ���! RGðK;M4ÞSD½1� ���! RGðOK ;N0ðM4ÞÞSD½1�

��������! �������!

Applying SD, shifting by one and using the Serre reflexibility of RGxðOK ;
N0ðM4ÞÞ (Prop. 6.2), we have a morphism of distinguished triangles

RGðOK ;N0ðM4ÞÞSDSD
���! RGðK ;M4ÞSDSD

���! RGxðOK ;N0ðM4ÞÞ½1�
?
?
?
y

?
?
?
y

?
?
?
y

RGxðOK ;NðMÞÞSD RGðK;MÞSD½1� RGðOK ;NðMÞÞSD½1�:

ð6:1Þ

�����! ����!
To simplify the notation, we denote the upper triangle by C ! D! E and lower
by C 0 ! D 0 ! E 0. As noted earlier, the middle vertical morphism is an isomor-
phism by [39, Thm. (9.1)], so D!@ D 0. The above diagram induces a morphism
from the long exact sequence of cohomologies of C ! D! E to the long exact
sequence of cohomologies of C 0 ! D 0 ! E 0. We can spell it out using Prop. 6.2
as follows:

0 TGðK ;G 0ÞsAb H�1D H�1PðM4Þ
?
?
?
y

?
?
?
yo

?
?
?
y

0 ���! ðp0H1ðK ;MÞÞPD ���! H�1D 0 ���! H 0ðPðMÞLDÞ

�����! �����! ����!

���! GðK ;G 0Þ0=sAb H 0D H 0PðMÞ 0
?
?
?
y

?
?
?
yo

?
?
?
y

���! H1ðK ;MÞSD
0

0 ���! H 0D 0 ���! H 1ðPðMÞLDÞ ���! 0;

����! �����! �����!
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0 H 1D H1ðK ;M4Þ ���! 0
?
?
?
yo

?
?
?
y

0 ���! H 1D 0 ���! GðK ;GÞSD
0

0 ���! 0:

���! ���!

The upper, middle and lower diagrams are for the H�1, H 0 and H 1, respectively.

Proposition 6.3. The morphism of distinguished triangles (6.1) is an isomor-
phism of distinguished triangles. The H 1 of the right vertical isomorphism gives an
isomorphism

H1ðK ;M4Þ !@ GðK;GÞSD
0

0 :ð6:2Þ

Proof. The latter statement about H 1 is clear by the paragraph before the
proposition. Applying RGxðOK ; �Þ to the diagram in Prop. 4.14, and using [39,
Prop. 3.3.8] and the trace morphism, we have a morphism of distinguished
triangles

RGxðOK ;N0ðM4ÞÞ ���! RGxðOK ;NðM4ÞÞ PðM4Þ
?
?
?
y

?
?
?
y

?
?
?
y

RGðOK ;NðMÞÞSD ���! RGðOK ;N0ðMÞÞSD ���! PðMÞLD½1�:

ð6:3Þ

�����!

The morphism in H 2 of the left vertical morphism is the isomorphism (6.2). The
objects PðMÞ and PðM4ÞLD½1� are concentrated in degrees �1, 0 by Prop. 3.9
and the proof of Prop. 4.10. Hence the left horizontal two morphisms are both
isomorphisms in H 2. The upper middle term RGxðOK ;NðM4ÞÞ is concentrated
in degree 2 as we saw in the proof of Prop. 6.2 (2). As we saw in the proof of
Prop. 6.2 (1), the object RGðOK ;N0ðMÞÞ ¼ GðK ;GÞ0 is a connected proalgebraic
group. Hence its Serre dual is concentrated in degree 2 by [39, Prop. (2.4.1)
(b)]. Therefore the lower middle term RGðOK ;N0ðMÞÞSD in the above diagram
is also concentrated in degree 2. Combining all these, we know that the middle
vertical morphism in the above diagram is an isomorphism. Its Serre dual
is C ! C 0 with M replaced by M4. Therefore C ! C 0 is an isomorphism.
Hence E ! E 0 is an isomorphism. r

Proposition 6.4. The morphism hM is an isomorphism.

Proof. The right vertical morphism in (6.3) is hM by Prop. 4.14 and the
construction of (6.3). The middle vertical morphism is an isomorphism as seen
in the proof of Prop. 6.3. The left vertical morphism is E ! E 0 up to shift,
which is an isomorphism by Prop. 6.3. Therefore hM is an isomorphism. r

The following finishes the proof of Thm. B (5) and hence of Thm. B
itself.
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Proposition 6.5. Let X be an irreducible Dedekind scheme and j : U ,! X
a dense open subscheme with complement Z. Assume the residue fields of Z are
perfect. Then for any M A MU , the morphism hM is an isomorphism.

Proof. This follows from Prop. 4.17, 5.9 (for zero residual characteristics)
and 6.4 (for positive residual characteristics). r

Remark 6.6. The right-hand side of (6.2) depends only on G and not on Y .
Hence the left-hand side actually depends only on ½Y 0 ! A 0� and not on T 0.
This can also be checked directly by noting that HnðK ;T 0Þ ¼ 0 for nb 1 by
[39, Prop. (3.4.3) (e)], the distinguished triangle T 0 !M4! ½Y 0 ! A 0� and hence

an isomorphism H1ðK ;M4Þ !@ H1ðK ; ½Y 0 ! A 0�Þ. In particular, (6.2) can be
written as

H1ðK ; ½Y 0 ! A 0�Þ !@ GðK ;GÞSD
0

0 :

A similar remark exists for Prop. 5.8.
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