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A p-ANALOGUE OF THE MULTIPLE EULER CONSTANT
NOBUSHIGE KUROKAWA, YUICHIRO TAGUCHI AND HIDEKAZU TANAKA

Abstract

We study a p-analogue of the multiple Euler constant. Then we show that it
can be described by the congruence zeta function attached to powers of G, over F,.
Moreover, we show that it converges to the multiple Euler constant as p — 1.

1. Introduction

Let r=1,2,3,... and p > 1. Then we define a p-analogue of the multiple
Euler constant y,.(p) by
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where

Now we define the congruence zeta function (.1 (s) as

0 Grr:;l Fon .
gGr"'? I/FP(S) = exXp Z|T(p)lp 5
m=1

We prove the following results:

THEOREM 1.

Z cl log CG" 1 ( )7
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2010 Mathematics Subject Classification. Primary 11MO06; Secondary 11M35, 11M41, 14G10.

Key words and phrases. p-analogue; multiple Euler constant; absolute zeta function; congruence
zeta function.

Received November 27, 2018; revised February 4, 2019.

393



394  NOBUSHIGE KUROKAWA, YUICHIRO TAGUCHI AND HIDEKAZU TANAKA

where c.(n) is defined by

0 0 xn—l r
Zcr(n)x"’1 = (Z p )

n=1

_ <‘l°g(1 - x)>r, (Ix] < 1).

X

We remark that in [5], Kurokawa and Taguchi studied

=1

y(p) = ZW>

m=1 P

which satisfies the following identity

n(p) = lpof [ /() —log <%>-

Theorem 1 is a generalization of [5, Theorem 1]:
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In [8], Kurokawa and Wakayama studied

KW(p):iﬁ (p_l)log(p_l)_p_l
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and proved that
lim 7= (p) =,
[)*}

where y = 0.5772... is the usual Euler constant.
Now we define the multiple zeta function {,(s) and the multiple Euler con-

stant 7, as

8

L(s) = (n+r=2)n-n

n=1
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and

Vr = llm({,(s) - l > + Hr—l

s—r K

respectively, where
r—1 1
H._| = —.
"

is the Harmonic number. We have

where {(s) =)_,2,n~* is the Riemann zeta function, and

1=7
respectively.

We give some numerical examples of the values of yXWV(p) and y,(p):

P 7V (p) 71(p) 72(p) 73(p) 7a(p)

15 | 0.8438... | 04815... 1.3824 ... 34248 9.3462...

1.1 0.6309... 0.5537... 1.5300... 3.6510... 9.6542...
101 | 0.5826... | 0.5747... 1.5722... 3.7146... 9.7395...
1.001 | 0.5777... | 0.5769... 1.5767 ... 37214 9.7484 ...

1 y n=7y n=r+l [ =y +l2)+3 | =r+20)+32)+§

=05772... | =15772... | =37221... =9.749% .

The above values of yp, are calculated as follows.

THEOREM 2.
(1) Let {Z] be the Stirling number of the first kind defined by

x(x+1)..-(x+n—1)=zn:mxk.

k=1

Then
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has an analytic continuation to all se€ C. It has simple poles at s =k + 1 with
residue [r;l} for k=1,...;r—1.

(2)

r—2 _
Y=7+ |:r 1}C(r—k)+H,1

In Theorem 3 below we need the absolute zeta function (g /p,(s) of
G) = GL(1)" (n>1) defined as

Carm (s) = 11)13} e /E, (5),

where the right hand side is the congruence zeta function; see Soulé¢ [9] and
Connes-Consani [1]. We recall another construction of absolute zeta functions
using absolute automorphic forms given by [4], [5], [6]. For a function

SRy o—R
satisfying the absolute automorphy
f(i) — CxPf()

for constants C and D, we define the absolute zeta function (,(s) of f by

w—0>

Zs(w,s) := ﬁjld F0)x " (log x)" " dx.

0
{r(s) :==exp (% Zs(w,s)

with

By this construction, (g, (s) is given as

CG”/FI (s) = Cf(s)

m

for f(x)=(x—1)".

THEOREM 3. For any r > 1,

Vr= Z ¢r(n) log C(;;;;I/Fl (n).

n=2

THEOREM 4. For any r > 1,

lim ,(p) = 7,
p—1
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2. Proof of Theorem 1

First, we prove the following formula:

LemMA 1. For n> 2,

Cpm, (1) = [J(1 = p~) V0.

m
k=1

Proof of Lemma 1.

|G (Fpn)| s
cc,;/Fp<s>=exp<Z%_pnp )
m=1

Then letting s =n+ 1, and taking n — | instead of n we have Lemma 1. []

Now, we prove Theorem 1. Using Lemma 1, we have

i cr(n) log Lgung, (n) = i cr(n) 10g<ﬁ(1 _ pk)<1>k(;{)>
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>end -0 (7 et~
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=> o (D" log(1 — p~*+1)y
n=1 k=0 k
0 n—1 0
B ok (n—1 R
=3 an Y (-1 (" >,;m”




398

Since

we have
o0

m
n=2 n=1

S () log gy, (1) = S ()

=7,(p).

Hence, we obtain Theorem 1.

3. Proof of Theorem 2

First, we prove (1) of Theorem 2. Since

(n+r—2)-~-nzz

n
=1 k

we have

k

— 10g<
p
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Q.E.D.
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0 r—

r—1 .
co =3[ )

()
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ko |

k=1
=;_1[’;1}c<s—k>
:C(s—r+1)+l:j[r;1}C(s—k).

(2) of Theorem 2 is given by

. 1
Vr = lim (C)(S) - ﬁ) + Hr—l

s—T

lsigg{(as—rm—S%r>+r§f[’;l}«:(s—k>}+ﬂr1

k=1

y+rz?[r ] k) + Hy ),

where we used

{g}({(s—r-i—l)_Sir) :113}(((3)—S_1 l)
:y‘

Thus, we obtain Theorem 2. Q.E.D.

4. Proof of Theorem 3

Since



400  NOBUSHIGE KUROKAWA, YUICHIRO TAGUCHI AND HIDEKAZU TANAKA

we have

Cr(s) = (l"— 1)' Z (n] +dn+ 1)—3.

nyyee, 1, =0

(Here we remark that the multiple Euler constant y, is essentially studied in [7]
where we proved the limit formula for the multiple Hurwitz zeta function.)
Hence

r—nDH*  x! x
66 =" |y e

where we used

I
=
L
[
=
3
N——
=
gl
=
.
\_

n1:0
— Z xf(n1+--'+n,-+l).
N yeeey n,>0
This gives
(r—l)!J‘x‘ logx \" , —re1
= 1
G =" ), (o) ¥ o ax
=D P —log( = (L= x )Y
=T Jl T x “(log x) dx.
Putting u =1 — x~!, we have
—log(1 — (1 —x"NH)\"  /—log(l —u)\
| —x1 N u
— (Zlun—l>
n=1 n

Thus, we have
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[ = o

= ;cr(n) rr—(si)!J:o(l . x_l)n—lx_z(log x)si"il d

o0 r— 1 ! o0 n B n— 1 o .
;c,,(n)(r(s)) Jl (;(1)k 1(k_1)x k 1>(logx) .
B 0 o (r—l)l n ke n—1 o AR
_; ) gy 2D (k_1>r( "

where

k=

This expression gives the analytic continuation of {.(s) as a meromorphic
function as in Hasse [3]. Since

i (r—1)! 1Y
£§I}((S—1)---(s—r)s_r> =—-H,_,

. (r=DZgmp (s —r.n)
lAILl} (S— 1)...(5_’,) :log CG:{'/Fl(n)v

we have
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(r =D Zgu1p, (s = r,m)
/B ’
| H,_
FimS ol

0

Z ) log CG" 1F, 1 (n).

n=2

5. Proof of Theorem 4
First, we prove the following formula:
LemMA 2. For g = p~! let

log ¢ (! log x\"\ d,x
*(q) = 1 -
=2t (1-(755) ) s

where we use the Jackson g-integral defined by

J dfof " —q").

Then:
o
() = Zcr( ) log L/, (1)
n=2
=7,(p)
when q~' = p is a prime number.

Proof of Lemma 2. By the definition
log ¢ - < (log(q’”)>’) q" —q""
:k = 1 -
(@) 1,,12:: gm—1 log(g™)

- (—log(ll—(qlm— q’”)))")

Q.E.D.
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0 n—1 n—1 0 qn1(k+])
S ()

n=2 k=0 m=1
e) n—1 n—1
=S Y0 (") (1 - )
n=2 k=0
e ol T+ (-1
=2)mn%oﬁrw“N“ 00
n=2 k=0
—Ejﬁhﬂbg<fﬂl—Q@““%ZD>
n=2 k=1
= ¢r(n) log Loy (n)
n=2

Hence, by Theorem 1
(@) = 7.(p).

Next, we prove Theorem 4. For 0 < x <1 let

(- (23 e

403

Then it is not difficult to see that f(x) is a monotone decreasing continuous

function with
. r
lim fr(x) =3
and
. 1 oo r=1
m e ={,., 12,
These are shown as follows:

1710gx

E— 2
lim f,(x) = lim — =1 <1+1°gx+<1°gx> +...+<1°gx

x—1

x—1  logx x—1 x—1

r

7
where we used that
- log x
~ox—1_1
x—1  logx 2’
logx

,r%lx—l_

))
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Similarly,

log x 5 |
. . T x_1 log x log x log x\'™
ilg(l)ﬁ(x)_l—li% log x <1+x—1+<x—1> + +(x—1) )

(1 =,
"+ - or>2

where we used

log x

_X—l =1
x—0 log x

Y

|
lim —&% _
x~>0x—1

Let us show the monotone decreasing property. First, look at the case r = 1.
Then,

1 1

fl(x)zlfx—i_logx 0<x<)
and
, 1 1
X) = — .
i) (x—1)?% (log x)*x
Hence,
, log x 1
fl(x)<0(0<x<l)<:>x_l<ﬁ 0<x<),

and putting u = x~'/2 (u> 1), the above inequality is equivalent to

1 1
10gu<2(u—u> (u>1).
Let

Then
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and
lim g(u) = 0.

u—1
Hence, we see that
fi(x) <0 for 0 <x< 1.

Next let r > 2. Then

log x\"\ 1

fr(x)_(l_<x—l))logx

= ]_logx 1 . 1+logx+“_+ IOﬁ o
x—1)logx x—1 x—1

= fi(x) - (L+h(x) 4 +h(x)"),

where
_logx
Tx—1"

h(x)

Hence, it is sufficient to show that A(x) > 0 is monotone decreasing for 0 < x < 1.
We know that

lln} h(x) =1,
lﬁrr(l) h(x) = +o0
and
, x—1—xlogx
W) =———5—
x(x—=1)
Thus,

1
h(x)<0 (0<x<1) & logx>1—; 0<x<1)
< logu<u—1 (u>1),

x=1/u

which is well-known. This proves the monotone decreasing property of f.(x).
Then we obtain the following inequalities

qJOl fr(x) dx < JOI Sr(x) dgx < Jol fr(x) dx.

Actually, from
"

ﬁw%mm—¢“5sji (x) d

an»l
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we see that

Next, from
we get

Hence,

From the inequalities

qJ; Sr(x)dx < Jl Sr(x) dgx < J; Sfr(x) dx

we obtain

Thus,
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Finally, we show that

1
| Ay e =3,
0

This is a generalization of Euler’s result ([2] 1776)

Jl : + ! dx =
o\l —x logx A

which is nothing but the case r=1. Here we know that {,(s) has a simple
pole at s = r with residue 1 (see Theorem 2 (1)). Using the integral expression

of ¢(s)

o (1—x &

we have

. 1N\ o=t [lees 1!
lslg}(gr(s)_s—) _szl I'(s) L l—x -1 log; dx

1 r
:J | log x dx H,
0 x—1 log x

Hence, by the definition of y, we obtain

fmme

0
This proves Theorem 4. Q.E.D.

Remark. It seems rather difficult to prove Theorem 4 from Theorem 3
directly: termwise convergence is easily seen, but it seems that we must give
difficult arguments to show the possibility for the exchange of the summation and
the limit. Actually this difficulty made us to use the integral expressions as in
the above proof of Theorem 4.
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