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A CESÀRO AVERAGE OF GENERALISED HARDY-LITTLEWOOD

NUMBERS

Alessandro Languasco and Alessandro Zaccagnini

Abstract

We continue our recent work on additive problems with prime summands: we

already studied the average number of representations of an integer as a sum of two

primes, and also considered individual integers. Furthermore, we dealt with repre-

sentations of integers as sums of powers of prime numbers. In this paper, we study a

Cesàro weighted partial explicit formula for generalised Hardy-Littlewood numbers

(integers that can be written as a sum of a prime power and a square) thus extending

and improving our earlier results.

1. Introduction

The problem of counting the number of representations of an integer as a
sum of some fixed powers of primes, and its variants where some primes are
replaced by powers of integers, has received much attention in the last decades.
The goal, that has been attained only in part, is to obtain an asymptotic for-
mula for the number of such representations, which is valid for large integers
that satisfy some necessary congruence conditions, as in the binary and ternary
Goldbach problems. In some cases, conditional results are obtained, that is, it
is necessary to assume the truth of some hitherto unproved conjecture like the
Riemann Hypothesis. In our previous paper [12] we considered the problem of
representing a large integer of suitable parity as a sum of jb 5 primes, assuming
the truth of the Generalised Riemann Hypothesis, and we obtained an indi-
vidual asymptotic formula with a main term of the expected order of mag-
nitude, and a lower order term which depends explicitly on non-trivial zeros
of relevant Dirichlet L-functions. The corresponding problem with a smaller
number of summands is harder, and it is convenient to study the average number
of representations; in fact, assuming the Riemann Hypothesis, in our paper [11]
we gave one such result for the standard Goldbach problem where j ¼ 2. In
this case, averaging has the e¤ect of making the zeros of L-functions irrelevant,
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except for the Riemann z-function itself, and in fact the development contains
a main term and a smaller term which depends on the non-trivial zeros of the
z-function.

In the paper [14] we introduced a Cesàro-Riesz weight in the summation: the
presence of a smooth weight in place, essentially, of the characteristic function of
the interval where we are averaging, leads to the possibility of giving a develop-
ment into several terms, of decreasing order of magnitude, depending on the
zeros of the Riemann z-function, sometimes in pairs. This weight also enabled
us to remove the necessity of assuming the Riemann Hypothesis. The results of
this paper have been generalised and improved in [15], where we treated the
average number of representations of an integer in the form pl1

1 þ pl2
2 , where l1

and l2 are fixed positive integers and p1 and p2 are prime numbers. The results
in [14] have been recently extended by Goldston and Yang [7] and by Brüdern,
Kaczorowski and Perelli [2].

As remarked above, we also considered a mixed binary problem with a
prime and the square of an integer, the so-called Hardy-Littlewood numbers, in
[13]. Similar problems have been studied by Cantarini in [3] and [4]. Our task
here is to extend and improve our earlier results on weighted averages. We let
lb 1 be an integer and set

rl;2ðnÞ ¼
X

m l
1
þm2

2
¼n

Lðm1Þ;ð1Þ

where L is the usual von Mangoldt-function. Our main goal is to give a multi-
term development for

RkðNÞ ¼ RkðN; lÞ ¼
X
naN

rl;2ðnÞ
ð1� n=NÞk

Gðk þ 1Þ ;ð2Þ

where k > 0. We introduce the following abbreviations for the terms of the
development:

M1;l;kðNÞ ¼ p1=2 Gð1=lÞ
2l

N 1=2þ1=l

Gðk þ 3=2þ 1=lÞ �
Gð1=lÞ
2l

N 1=l

Gðk þ 1þ 1=lÞ ;

M2;l;kðNÞ ¼ � p1=2

2l

X
r

Gðr=lÞ
Gðk þ 3=2þ r=lÞN

r=lþ1=2;

M3;l;kðNÞ ¼ 1

2l

X
r

Gðr=lÞ
Gðk þ 1þ r=lÞN

r=l;

M4;l;kðNÞ ¼ � p1=2 logð2pÞ
2Gðk þ 3=2ÞN

1=2;

M5;l;kðNÞ ¼ N 1=4�k=2þ1=ð2lÞ

pkþ1=l

Gð1=lÞ
l

X
jb1

Jkþ1=2þ1=lð2pjN 1=2Þ
j kþ1=2þ1=l

;
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M6;l;kðNÞ ¼ �N 1=4�k=2

pk

X
r

G
r

l

� �
N r=ð2lÞ

pr=l

X
jb1

Jkþ1=2þr=lð2pjN 1=2Þ
j kþ1=2þr=l

;

M7;l;kðNÞ ¼ � logð2pÞ
pk

N 1=4�k=2
X
jb1

Jkþ1=2ð2pjN 1=2Þ
j kþ1=2

:

Here r runs over the non-trivial zeros of the Riemann zeta-function zðsÞ, G is
Euler’s function and JnðuÞ denotes the Bessel function of complex order n and real
argument u. The main result of the paper is the following theorem.

Theorem 1.1. Let lb 1 be an integer and N be a su‰ciently large integer.
For k > 1 we have

X
naN

rl;2ðnÞ
ð1� n=NÞk

Gðk þ 1Þ ¼
X7
j¼1

Mj;l;kðNÞ þ Ok;lð1Þ:

Clearly, depending on the size of l, some of the previously listed terms
can be included in the error term. Theorem 1.1 generalises and improves our
Theorem 1 in [13], which corresponds to the case l ¼ 1, where the error term
there should be read as OkðN 1=2Þ; see Theorem 2.3 of [10]. In fact, in this case
we are now able to detect the terms M4;1;k and M7;1;k.

The basic strategy of the proof depends on the modern version of a classical
formula due to Laplace [16], namely

1

2pi

ð
ðaÞ

v�sev dv ¼ 1

GðsÞ ;ð3Þ

where <ðsÞ > 0 and a > 0; see Formula 5.4(1) on page 238 of Erdélyi et al,
[5]. Using a suitable form of this transform, which we describe in §2, we obtain
the fundamental relation for the method, viz.

NkRkðNÞ ¼
X
naN

rl;2ðnÞ
ðN � nÞk

Gðk þ 1Þ ¼
1

2pi

ð
ðaÞ

eNzz�k�1 ~SSlðzÞo2ðzÞ dz;ð4Þ

where

~SSlðzÞ ¼
X
mb1

LðmÞe�m lz and o2ðzÞ ¼
X
mb1

e�m2zð5Þ

are the exponential sums that embody the properties of the l-th powers of primes,
and of the perfect squares, respectively. Here we need k > 0, and consider the
complex variable z ¼ aþ iy with a > 0.

The basic facts that we need are the ‘‘explicit formula’’ for ~SSlðzÞ, that is,
its development as a main term and a secondary term which is a sum over
non-trivial zeros of the Riemann z-function with a very small error, as in (16)
below, and the simple connection of o2ðzÞ with yðzÞ ¼

Pþy
m¼�y e�m2z, since yðzÞ ¼
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1þ 2o2ðzÞ. Now, we recall that y satisfies the functional equation (11). We
plug these relations into the right-hand side of (4), and exchange summation over
zeros with vertical integration, obtaining formally the development in Theorem
1.1. The Bessel functions in M5;l;k, M6;l;k and M7;l;k arise from the ‘‘modular’’
terms in the functional equation of y.

Of course, we need to prove that the exchange referred to above is legit-
imate, and that the error term arising from the approximation of the exponential
sum ~SSlðzÞ in (16) is small.

Summing up, as in [15] we combine the approach with line integrals with the
classical methods dealing with infinite sums over primes, exploited by Hardy and
Littlewood (see [8] and [9]) and by Linnik [17]. The main di‰culty here is, as
in [13], that the problem naturally involves the modular relation for the complex
theta function (11). The presence of the Bessel functions in our statement strictly
depends on such modularity relation. It is worth mentioning that it is not clear
how to get such ‘‘modular’’ terms using the finite sums approach for the function
rl;2ðnÞ. The previously mentioned improvement we get in Theorem 1.1 follows
using Lemma 6.1 below, which is proved in [15].

2. Settings

As we mentioned in the previous section, we will need the general case of
(3), which can be found in de Azevedo Pribitkin [1], formulae (8) and (9). More
precisely, we have

1

2p

ð
R

eiDu

ðaþ iuÞs du ¼
Ds�1e�aD

GðsÞ if D > 0;

0 if D < 0;

8<
:ð6Þ

which is valid for s ¼ <ðsÞ > 0 and a A C with <ðaÞ > 0, and

1

2p

ð
R

1

ðaþ iuÞs du ¼ 0 if <ðsÞ > 1;

1=2 if s ¼ 1;

�
ð7Þ

for a A C with <ðaÞ > 0. Formulae (6)–(7) actually enable us to write averages
of arithmetical functions by means of line integrals as we will see below.

We will also need Bessel functions of complex order n and real argument u.
For their definition and main properties we refer to Watson [19]. In particular,
equation (8) on page 177 gives the Sonine representation:

JnðuÞ :¼
ðu=2Þn

2pi

ð
ðaÞ

s�n�1ese�u2=4s ds;ð8Þ

where a > 0 and u; n A C with <ðnÞ > �1. We will also use the Poisson integral
formula

JnðuÞ :¼
2ðu=2Þn

p1=2Gðnþ 1=2Þ

ð1
0

ð1� t2Þn�1=2 cosðutÞ dt;ð9Þ
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which holds for <ðnÞ > �1=2 and u A C. (See eq. (3) on page 48 of [19].) An
asymptotic estimate we will need is

JnðuÞ ¼
2

pu

� �1=2
cos u� pn

2
� p

4

� �
þ Ojnjðu�5=2Þ;ð10Þ

which follows from eq. (1) on page 199 of Watson [19].
From now on we assume that k > 0. We recall the definitions (5), where

z ¼ aþ iy with a > 0. We also recall that yðzÞ ¼
Pþy

m¼�y e�m2z satisfies the
functional equation

yðzÞ ¼ p

z

� �1=2
y

p2

z

� �
for <ðzÞ > 0;ð11Þ

see, e.g., Proposition VI.4.3 of Freitag and Busam [6, page 340]. Since yðzÞ ¼
1þ 2o2ðzÞ, we immediately get

o2ðzÞ ¼
1

2

p

z

� �1=2
� 1

2
þ p

z

� �1=2
o2

p2

z

� �
for <ðzÞ > 0:ð12Þ

Recalling (1), we can write

~SSlðzÞo2ðzÞ ¼
X
m1b1

X
m2b1

Lðm1Þe�ðm l
1
þm2

2
Þz ¼

X
nb1

rl;2ðnÞe�nz

and, by (6)–(7), we see thatX
naN

rl;2ðnÞ
ðN � nÞk

Gðk þ 1Þ ¼
X
nb1

rl;2ðnÞ
1

2pi

ð
ðaÞ

eðN�nÞzz�k�1 dz

 !
:ð13Þ

Our first goal is to exchange the series with the line integral in (13). To
do so we have to recall that the Prime Number Theorem (PNT) implies the
statement

~SSlðaÞ@
Gð1=lÞ
la1=l

for a ! 0þ :

In fact, by a straightforward application of the partial summation formula
we see that

~SSlðaÞ ¼ la

ðþy

0

cðtÞtl�1e�at l dt;

where c is the standard Chebyshev function. It is now convenient to split the
integration range at t0 ¼ a�1=ð2lÞ. We use the weak upper bound cðtÞf t on
½0; t0�, recalling that cðtÞ ¼ 0 for t < 2. Since tle�at l a ðaeÞ�1 for all tb 0, we
immediately see that the contribution of this range to ~SSl is f la�1=ð2lÞ. Accord-
ing to a weak form of the PNT, we have cðtÞ ¼ tþ OAðtðlog tÞ�AÞ for any fixed
A > 0. Hence, completing the missing range, performing the obvious change of
variables and using the same bounds as above when needed, we have
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ðþy

t0

cðtÞtl�1e�at l dt ¼
ðþy

0

tle�at l dtþ O

ð t0
0

tle�atl dt

� �
þ O

ðþy

t0

tle�atl

ðlog tÞA
dt

 !

¼ Gð1þ 1=lÞ
la1þ1=l

þ Oðt0a�1Þ þ O ðlog t0Þ�A

ðþy

0

tle�atl dt

� �

¼ Gð1þ 1=lÞ
la1þ1=l

þ Olða�1�1=lðlogð1=aÞÞ�AÞ:

The final result then follows by recalling that Gðsþ 1Þ ¼ sGðsÞ.
We will also use the inequality

jo2ðzÞjao2ðaÞa
ðy
0

e�at2 dta a�1=2

ðy
0

e�v2 dvf a�1=2;ð14Þ

from which we immediately getX
nb1

jrl;2ðnÞe�nzj ¼
X
nb2

rl;2ðnÞe�na ¼ ~SSlðaÞo2ðaÞfl a
�1=l�1=2:

Taking into account the estimates

jzj�1 � a�1 if jyja a;

jyj�1 if jyjb a;

�
ð15Þ

where f � g means gf f f g, and

jeNzz�k�1j � eNa a�k�1 if jyja a;

jyj�k�1 if jyjb a;

�

we haveð
ðaÞ

jeNzz�k�1j j ~SSlðzÞo2ðzÞj jdzjfl a
�1=l�1=2eNa

ð a
�a

a�k�1 dyþ 2

ðþy

a

y�k�1 dy

� �

fl a
�1=l�1=2eNa a�k þ a�k

k

� �
:

The last estimate is valid only if k > 0. So, for k > 0, we can exchange the line
integral with the sum over n in (13), thus proving (4).

3. Inserting zeros and modularity

We need k > 1=2 in this section. The treatment of the integral on the right-
hand side of (4) requires Lemma 6.1. We split ~SSlðzÞ according to its statement
as SlðzÞ þ Eða; z; lÞ where E satisfies the bound in (31) and

SlðzÞ :¼
Gð1=lÞ
lz1=l

� 1

l

X
r

z�r=lG
r

l

� �
� logð2pÞ;ð16Þ
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where r ¼ b þ ig runs over the non-trivial zeros of zðsÞ. Formula (4) be-
comes

X
naN

rl;2ðnÞ
ðN � nÞk

Gðk þ 1Þ ¼
1

2pi

ð
ðaÞ

SlðzÞo2ðzÞeNzz�k�1 dz

þ O

ð
ðaÞ

jEða; z; lÞj jeNzj jzj�k�1jo2ðzÞj jdzj
 !

:

Using (14)–(15) and (31), we see that the error term is

fl a
�1=2eNa

ð a
�a

a�k�1=2 dyþ
ðþy

a

y�k�1=2 log2ðy=aÞ dy
� �

fk;l e
Naa�k 1þ

ðþy

1

v�k�1=2 log2 v dv

� �
fk;l e

Naa�k;

provided that k > 1=2. Choosing a ¼ 1=N, the previous estimate becomes
fk;l N

k: Summing up, for k > 1=2, we can write

X
naN

rl;2ðnÞ
ðN � nÞk

Gðk þ 1Þ ¼
1

2pi

ð
ð1=NÞ

SlðzÞo2ðzÞeNzz�k�1 dzþ Ok;lðNkÞ:ð17Þ

We now insert (12) into (17), so that the integral on the right-hand side of (17)
becomes

1

2pi

ð
ð1=NÞ

SlðzÞ
1

2

p

z

� �1=2
� 1

2

 !
eNzz�k�1 dzð18Þ

þ 1

2pi

ð
ð1=NÞ

p

z

� �1=2
SlðzÞo2

p2

z

� �
eNzz�k�1 dz

¼ I1 þI2;

say. We now proceed to evaluate I1 and I2. In the next two sections we will
use (16) and obtain that I1 and I2 split into a number of summands; in later
sections we will prove that we can exchange all summations and integrations,
in suitable ranges for k, using some properties of the non-trivial zeros of the
Riemann z-function: see §6. Finally, we perform a change of variables that
yields all the summands in the statement of Theorem 1.1.

4. Evaluation of I1

We need k > 1=2 in this section. By a direct computation we can write
that
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I1 ¼
1

4pi

Gð1=lÞ
l

ð
ð1=NÞ

p1=2

z1=2
� 1

� �
eNzz�k�1�1=l dz

� p1=2

4lpi

ð
ð1=NÞ

X
r

G
r

l

� �
eNzz�k�r=l�3=2 dz

þ 1

4lpi

ð
ð1=NÞ

X
r

G
r

l

� �
eNzz�k�r=l�1 dz

� logð2pÞ
4pi

ð
ð1=NÞ

p1=2

z1=2
� 1

� �
eNzz�k�1 dz

¼ J1 þJ2 þJ3 þJ4;

say. We see now how to evaluate J1, J2, J3 and J4. The delicate point is
the justification of the exchanges required to deal with J2 and J3 (see §7 for the
details), whereas the computations needed for J1 and J4 are straightforward
and immediately follow by using the substitution s ¼ Nz, by (3). This way we
get

J1 ¼
p1=2

2

Gð1=lÞ
l

Nkþ1=2þ1=l

Gðk þ 3=2þ 1=lÞ �
Gð1=lÞ
2l

Nkþ1=l

Gðk þ 1þ 1=lÞð19Þ

and

J4 ¼ � p1=2 logð2pÞ
2Gðk þ 3=2ÞN

kþ1=2 þ logð2pÞ
2Gðk þ 1ÞN

k:ð20Þ

4.1. Evaluation of J2. Exchanging the sum over r with the integral (this
can be done for k > 0; see §7) and using the substitution s ¼ Nz, we have

J2 ¼ � p1=2

2l

X
r

G
r

l

� �
1

2pi

ð
ð1=NÞ

eNzz�k�r=l�3=2 dzð21Þ

¼ � p1=2

2l

X
r

G
r

l

� �
Nkþr=lþ1=2 1

2pi

ð
ð1Þ

ess�k�r=l�3=2 ds

¼ � p1=2

2l

X
r

Gðr=lÞ
Gðk þ 3=2þ r=lÞN

kþr=lþ1=2;

again by (3). By the Stirling formula (30), we remark that the series in J2

converges absolutely for k > �1=2.

4.2. Evaluation of J3. Arguing as in §7 with �k � 1 which plays the
role of �k � 3=2 there, we see that we can exchange the sum with the integral
provided that k > 1=2. Hence, performing again the usual substitution s ¼ Nz,
we can write
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J3 ¼
1

2l

X
r

G
r

l

� �
Nkþr=l 1

2pi

ð
ð1Þ

ess�k�1�r=l dsð22Þ

¼ 1

2l

X
r

Gðr=lÞ
Gðk þ 1þ r=lÞN

kþr=l:

By the Stirling formula (30), we remark that the series in J3 converges absolutely
for k > 0.

5. Evaluation of I2 and conclusion of the proof of Theorem 1.1

We need k > 1 in this section. Using (16) and the definition of o2ðp2=zÞ
(see (5)) we have

I2 ¼
1

2pi

Gð1=lÞ
l

ð
ð1=NÞ

p

z

� �1=2 X
jb1

e�j 2p2=z

 !
eNzz�k�1�1=l dzð23Þ

� 1

2lpi

ð
ð1=NÞ

p

z

� �1=2 X
jb1

e�j 2p2=z

 ! X
r

z�r=lG
r

l

� � !
eNzz�k�1 dz

� logð2pÞ
2pi

ð
ð1=NÞ

p

z

� �1=2 X
jb1

e�j 2p2=z

 !
eNzz�k�1 dz ¼ J5 þJ6 þJ7;

say. We see now how to evaluate J5, J6 and J7. The proof in this section is
more delicate than in the previous one. We have to justify inversion as before,
but we are then faced with the problem of dealing with series containing values
of the Bessel functions, arising from the ‘‘modular’’ terms. We refer to §10 for a
detailed discussion of the problem.

5.1. Evaluation of J5. By means of the substitution s ¼ Nz, since the
exchange is justified in §8 for k > 1=2� 1=l, we get

J5 ¼ p1=2 Gð1=lÞ
l

Nkþ1=2þ1=l
X
jb1

1

2pi

ð
ð1Þ

ese�j 2p2N=ss�k�3=2�1=l ds:

Setting u ¼ 2pjN 1=2 in (8), we obtain

Jnð2pjN 1=2Þ ¼ ðpjN 1=2Þn

2pi

ð
ð1Þ

ese�j 2p2N=ss�n�1 ds;ð24Þ

and hence we have

J5 ¼
Nk=2þ1=4þ1=ð2lÞ

pkþ1=l

Gð1=lÞ
l

X
jb1

Jkþ1=2þ1=lð2pjN 1=2Þ
j kþ1=2þ1=l

:ð25Þ

The absolute convergence of the series in J5 is studied in §10.
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5.2. Evaluation of J6. With the same substitution used before, since the
double exchange between sums and the line integral is justified in §9 for k > 1,
we see that

J6 ¼ � p1=2

l

X
r

G
r

l

� �
Nkþ1=2þr=l

X
jb1

1

2pi

ð
ð1Þ

ese�j 2p2N=ss�k�3=2�r=l ds

 !
:

Using (24), we get

J6 ¼ �Nk=2þ1=4

pk

X
r

G
r

l

� �
N r=ð2lÞ

pr=l

X
jb1

Jkþ1=2þr=lð2pjN 1=2Þ
j kþ1=2þr=l

:ð26Þ

In this case, the absolute convergence of the series in J6 is more delicate; such
a treatment is again described in §10.

5.3. Evaluation of J7. With the same substitution used before, since the
exchange between sum and the line integral is justified in §8 for k > 1=2, we see
that

J7 ¼ �p1=2 logð2pÞNkþ1=2
X
jb1

1

2pi

ð
ð1Þ

ese�j 2p2N=ss�k�3=2 ds:

Using (24), we get

J7 ¼ � logð2pÞ
pk

N k=2þ1=4
X
jb1

Jkþ1=2ð2pjN 1=2Þ
j kþ1=2

:ð27Þ

The absolute convergence of the series in J7 is studied in §10.
Finally, inserting (19)–(27) into (18) and (17), we obtain

X
naN

rl;2ðnÞ
ðN � nÞk

Gðk þ 1Þ ¼ Nk
X7
j¼1

Mj;l;kðNÞ þ Ok;lðNkÞ;ð28Þ

for k > 1. Theorem 1.1 follows dividing (28) by Nk.

6. Lemmas

We recall some basic facts in complex analysis. First, if z ¼ aþ iy with
a > 0, we see that for complex w we have

z�w ¼ jzj�w expð�iw arctanðy=aÞÞ

¼ jzj�<ðwÞ�i=ðwÞ expðð�i<ðwÞ þ =ðwÞÞ arctanðy=aÞÞ;

so that

jz�wj ¼ jzj�<ðwÞ expð=ðwÞ arctanðy=aÞÞ:ð29Þ
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We also recall that, uniformly for x A ½x1; x2�, with x1 and x2 fixed, and for
jyj ! þy, by the Stirling formula we have

jGðxþ iyÞj@
ffiffiffiffiffiffi
2p

p
e�pjyj=2jyjx�1=2;ð30Þ

see, e.g., Titchmarsh [18, §4.42].
We will need the following lemmas from Languasco and Zaccagnini

[15].

Lemma 6.1 (See Lemma 1 of [15]). Let lb 1 be an integer, z ¼ aþ iy,
where a > 0 and y A R and let SlðzÞ be defined as in (16). Then ~SSlðzÞ ¼ SlðzÞ þ
Eða; z; lÞ where

Eða; z; lÞfl jzj1=2
1 if jyja a

1þ log2ðjyj=aÞ if jyj > a:

�
ð31Þ

Lemma 6.2 (See Lemma 2 of [15]). Let lb 1 be an integer, let r ¼ b þ ig
run over the non-trivial zeros of the Riemann zeta-function and a > 1 be a
parameter. The series

X
r:g>0

g

l

� �b=l�1=2ðþy

1

exp � g

l
arctan

1

u

� �
du

uaþb=l

converges provided that a > 3=2. For aa 3=2 the series does not converge.
The result remains true if we insert in the integral a factor ðlog uÞc, for any
fixed cb 0.

Lemma 6.3 (See Lemma 3 of [15]). Let lb 1 be an integer, a > 1, z ¼
aþ iy, a A ð0; 1Þ and y A R. Let further r ¼ b þ ig run over the non-trivial zeros
of the Riemann zeta-function. We have

X
r

g

l

����
����
b=l�1=2ð

Y1[Y2

exp
g

l
arctan

y

a
� p

2

g

l

����
����

� �
dy

jzjaþb=l
fa;l a

1�a�1=l;

where Y1 ¼ fy A R : yga 0g and Y2 ¼ fy A ½�a; a� : yg > 0g. The result re-
mains true if we insert in the integral a factor ðlogðjyj=aÞÞc, for any fixed
cb 0.

7. Interchange of the series over zeros with the line integral in J2, J3

We need k > 1=2 in this section. For J2 we have to establish the con-
vergence of X

r

G
r

l

� �����
����
ð
ð1=NÞ

jeNzj jzj�k�3=2jz�r=lj jdzj;ð32Þ
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where, as usual, r ¼ b þ ig runs over the non-trivial zeros of the Riemann zeta-
function. By (29) and the Stirling formula (30), we are left with estimating

X
r

g

l

����
����
b=l�1=2ð

R

exp
g

l
arctanðNyÞ � p

2

g

l

����
����

� �
dy

jzjkþ3=2þb=l
:ð33Þ

We have just to consider the case gy > 0, jyj > 1=N since in the other cases the
total contribution isfk N

kþ1=2þ1=l by Lemma 6.3 with a ¼ k þ 3=2 and a ¼ 1=N.
By symmetry, we may assume that g > 0. We have that the integral in (33)
is

fl

X
r

g

l

����
����
b=l�1=2ðþy

1=N

exp � g

l
arctan

1

Ny

� �
dy

ykþ3=2þb=l

¼ Nkþ1=2
X
r:g>0

N b=l g

l

� �b=l�1=2ðþy

1

exp � g

l
arctan

1

u

� �
du

ukþ3=2þb=l
:

For k > 0, this is fk;l N
kþ1=2þ1=l by Lemma 6.2. This implies that the integrals

in (33) and in (32) are both fk;l N
kþ1=2þ1=l, and hence this exchange step for J2

is fully justified.
For J3, we have to consider

X
r

G
r

l

� �����
����
ð
ð1=NÞ

jeNzj jzj�k�1jz�r=lj jdzj:ð34Þ

We can repeat the same reasoning we used for J2 just replacing k þ 3=2 with
k þ 1. This means that we need k > 1=2 here to get that the integral in (34) is
fk;l N

kþ1=l, and that this exchange step for J3 is fully justified too.

8. Interchange of the series over j with the line integral in J5, J7

We need k > 1=2 in this section. For J5 we have to establish the con-
vergence of X

jb1

ð
ð1=NÞ

jeNzj jzj�k�3=2�1=l
e�p2j 2<ð1=zÞjdzj:ð35Þ

A trivial computation gives

<ð1=zÞ ¼ N

1þN 2y2
g

N if jyja 1=N;

1=ðNy2Þ if jyj > 1=N:

�
ð36Þ

By (36), we can write that the quantity in (35) is

fl

X
jb1

ð1=N
0

e�j 2N

jzjkþ3=2þ1=l
dyþ

X
jb1

ðþy

1=N

e�j 2=ðNy2Þ

jzjkþ3=2þ1=l
dy ¼ U1 þU2;ð37Þ
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say, since the p2 factor in the exponential function is negligible. Using (14)–(15),
we have

U1 fl N
kþ1=2þ1=lo2ðNÞfl N

kþ1=lð38Þ
and

U2 fl

X
jb1

ðþy

1=N

e�j 2=ðNy2Þ

ykþ3=2þ1=l
dyð39Þ

fl N
k=2þ1=4þ1=ð2lÞ

X
jb1

1

j kþ1=2þ1=l

ð j 2N

0

uk=2�3=4þ1=ð2lÞe�u du

aG
2k þ 1þ 2l

4

� �
Nk=2þ1=4þ1=ð2lÞ

X
jb1

1

j kþ1=2þ1=l
fk;l N

k=2þ1=4þ1=ð2lÞ;

provided that k > 1=2� 1=l, where we used the substitution u ¼ j2=ðNy2Þ.
Inserting (38)–(39) into (37) we get, for k > 1=2� 1=l, that the quantity in

(35) is fNkþ1=l and so it is for J5.
For J7 we have to establish the convergence ofX

jb1

ð
ð1=NÞ

jeNzj jzj�k�3=2
e�p2j 2<ð1=zÞjdzj:ð40Þ

We can repeat the same reasoning we used for J5 just replacing k þ 3=2þ 1=l
with k þ 3=2. This means that we need k > 1=2 here to get that the integral in
(40) is fk;l N

k, and that this exchange step for J7 is fully justified too.

9. Interchange of series with the line integral in J6

We need k > 1 in this section. We first have to establish the convergence ofX
jb1

ð
ð1=NÞ

X
r

G
r

l

� �
z�r=l

�����
����� jeNzj jzj�k�3=2

e�p2j 2<ð1=zÞjdzj:ð41Þ

Using the Prime Number Theorem and (31), we first remark thatX
r

G
r

l

� �
z�r=l

�����
�����fl N

1=l þ jzj1=2 log2ð2NjyjÞ:ð42Þ

By (36) and (42), we can write that the quantity in (41) is

fl N
1=l
X
jb1

ð1=N
0

e�j 2N

jzjkþ3=2
dyþN 1=l

X
jb1

ðþy

1=N

e�j 2=ðNy2Þ

jzjkþ3=2
dyð43Þ

þ
X
jb1

ðþy

1=N

log2ð2NyÞ e
�j 2=ðNy2Þ

jzjkþ1
dy ¼ V1 þ V2 þ V3;
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say. V1 can be estimated exactly as U1 in Section 8 and we get V1 fk;l N
kþ1=l.

For V2 we can work analogously to U2 thus obtaining

V2 fk;l N
1=l
X
jb1

ðþy

1=N

e�j 2=ðNy2Þ

ykþ3=2
dyfk;l N

k=2þ1=4þ1=l
X
jb1

1

j kþ1=2

ð j 2N

0

uk=2�3=4e�u du

fk;l G
2k þ 1

4

� �
Nk=2þ1=4þ1=l

X
jb1

1

j kþ1=2
fk;l N

k=2þ1=4þ1=l;

provided that k > 1=2, where we used the substitution u ¼ j2=ðNy2Þ. Hence,
we have

V1 þ V2 fk;l N
kþ1=l;ð44Þ

provided that k > 1=2.
Using the substitution u ¼ j2=ðNy2Þ, we obtain

V3 fk;l

X
jb1

ðþy

1=N

log2ð2NyÞ e
�j 2=ðNy2Þ

ykþ1
dy

¼ Nk=2

8

X
jb1

1

j k

ð j 2N

0

uk=2�1 log2
4j2N

u

� �
e�u du:

Hence, a direct computation shows that

V3 fk;l N
k=2
X
jb1

log2ð jNÞ
j k

ð j 2N

0

uk=2�1e�u duð45Þ

þNk=2
X
jb1

1

j k

ð j 2N

0

uk=2�1 log2ðuÞe�u du

fk;l Gðk=2ÞNk=2
X
jb1

log2ð jNÞ
j k

þNk=2 fk;l N
k=2 log2 N

provided that k > 1. Inserting (44)–(45) into (43) we get, for k > 1, that the
quantity in (41) is fk;l N

kþ1=l.
Now we have to establish the convergence of

X
jb1

X
r

G
r

l

� �����
����
ð
ð1=NÞ

jeNzj jzj�k�3=2jz�r=lje�p2j 2<ð1=zÞjdzj:ð46Þ

By symmetry, we may assume that g > 0. For y A ð�y; 0� we have

g arctanðy=aÞ � p

2
ga� p

2
g. Using (36), (15) and the Stirling formula (30), the
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quantity we are estimating becomes

f
X
jb1

X
r:g>0

g

l

� �b=l�1=2

exp � p

2

g

l

� �
ð47Þ

�
ð 0
�1=N

Nkþ3=2þb=le�j 2N dyþ
ð�1=N

�y

e�j 2=ðNy2Þ

jyjkþ3=2þb=l
dy

 !

fk;l N
kþ1=2þ1=l

X
jb1

e�j 2N
X
r:g>0

g

l

� �b=l�1=2

exp � p

2

g

l

� �

þNk=2þ1=4
X
jb1

1

j kþ1=2

X
r:g>0

N b=ð2lÞ

j b=l
g

l

� �b=l�1=2

exp � p

2

g

l

� �

�
ð j 2N

0

uk=2�3=4þb=ð2lÞe�u du

fk;l N
kþ1=l þ max

0aba1
G

b

2l
þ k

2
þ 1

4

� �� �
Nk=2þ1=4þ1=2l

�
X
jb1

1

j kþ1=2

X
r:g>0

g

l

� �b=l�1=2

exp � p

2

g

l

� �

fk;l N
kþ1=l;

provided that k > 1=2, where we used the substitution u ¼ �j2=ðNy2Þ, (14) and
standard density estimates.

Let now y > 0. Using the Stirling formula (30) and (36), we can write that
the quantity in (46) is

fk;l

X
jb1

X
r:g>0

g

l

� �b=l�1=2

exp � p

4

g

l

� �ð1=N
0

e�j 2N

jzjkþ3=2þb=l
dyð48Þ

þ
X
jb1

X
r:g>0

g

l

� �b=l�1=2ðþy

1=N

exp
g

l
arctanðNyÞ � p

2

� �� �
e�j 2=ðNy2Þ

jzjkþ3=2þb=l
dy

¼ W1 þW2;

say. Using (15) and (14), we have that

W1 fk;l N
kþ1=2þ1=l

X
jb1

e�j 2N
X
r:g>0

g

l

� �b=l�1=2

exp � p

4

g

l

� �
fk;l N

kþ1=l;ð49Þ

by standard density estimates. Moreover, we get
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W2 fk;l

X
jb1

X
r:g>0

g

l

� �b=l�1=2ðþy

1=N

y�k�3=2�b=l exp � g

lNy
� j2

Ny2

� �
dy

fk;l N
k=2þ1=4

X
jb1

1

j kþ1=2

X
r:g>0

N b=ð2lÞgb=l�1=2

j b=l

�
ð j
ffiffiffi
N

p

0

vk�1=2þb=l exp � gv

lj
ffiffiffiffiffi
N

p � v2
� �

dv;

in which we used the substitution v2 ¼ j2=ðNy2Þ. We remark that, for k > 1,
we can set e ¼ eðkÞ ¼ ðk � 1Þ=2 > 0 and that k � e ¼ ðk þ 1Þ=2 > 1. We further
remark that maxvðvk�ee�v2Þ is attained at v0 ¼ ððk � eÞ=2Þ1=2, and hence we
obtain, for N su‰ciently large, that

W2 fk;l N
k=2þ1=4

X
jb1

1

j kþ1=2

X
r:g>0

N b=ð2lÞgb=l�1=2

j b=l

ð j
ffiffiffi
N

p

0

vb=l�1=2þe exp � gv

lj
ffiffiffiffiffi
N

p
� �

dv:

Making the substitution u ¼ gv=ð j
ffiffiffiffiffi
N

p
Þ, we have

W2 fk;l N
k=2þ1=2þe=2

X
jb1

1

j k�e

X
r:g>0

N b=l

g1þe

ð g
0

ub=l�1=2þee�u duð50Þ

fk;l N
k=2þ1=2þ1=lþe=2

X
jb1

1

j k�e

X
r:g>0

1

g1þe
max
0aba1

G
b

l
þ 1

2
þ e

� �� �

fk;l N
ð3=4Þkþ1=4þ1=l;

by standard density estimates and the definition of e. Inserting (49)–(50) into
(48) and recalling (47), we get, for k > 1, that the quantity in (46) is fk;l N

kþ1=l.

10. Absolute convergence of J5, J6 and J7

Using, for n > 0 fixed, u A R and u ! þy, the estimate

jJnðuÞjfn u
�1=2ð51Þ

which immediately follows from (10), and performing a direct computation, we
obtain that J5 converges absolutely for k > �1=l (and for N su‰ciently large)
and that J5 fk;l N

k=2þ1=ð2lÞ.
Again using (51) and performing a direct computation as in the previous

case, we obtain that J7 converges absolutely for k > 0 (and for N su‰ciently
large) and that J7 fk;l N

k=2.
For the study of the absolute convergence of the series in J6 we have a

di¤erent situation. In this case it is better to come back to the Sonine represen-
tation of the Bessel functions (8) on the line <ðsÞ ¼ 1. Using the usual substitu-
tion s ¼ Nz, we are led to consider the quantity
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X
r

G
r

l

� �
N r=ð2lÞ

pr=l

����
����X
jb1

Jkþ1=2þr=lð2pjN 1=2Þ
j kþ1=2þr=l

�����
�����

fk N
�k=2�1=4

X
r

G
r

l

� �����
����X
jb1

ð
ð1=NÞ

jeNzj jzj�k�3=2jz�r=lje�p2j 2<ð1=zÞjdzj;

which is very similar to the one in (46); the only di¤erence is that the sums are
interchanged. The argument used in (46)–(50) can be applied in this case too
thus showing that the double series in J6 converges absolutely for k > 1.

We thank the Referee for a very careful reading of the first version of this
paper.

References

[ 1 ] W. de Azevedo Pribitkin, Laplace’s integral, the Gamma function, and beyond, Amer.

Math. Monthly 109 (2002), 235–245.
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