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AN INFINITE SEQUENCE OF IDEAL HYPERBOLIC COXETER
4-POLYTOPES AND PERRON NUMBERS
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Abstract

In [7], Kellerhals and Perren conjectured that the growth rates of cocompact
hyperbolic Coxeter groups are Perron numbers. By results of Floyd, Parry, Kolpakov,
Nonaka-Kellerhals, Komori and the author [1], [3], [8], [10], [12], [13], [21], [22], the
growth rates of 2- and 3-dimensional hyperbolic Coxeter groups are always Perron
numbers. Kolpakov and Talambutsa showed that the growth rates of right-angled
Coxeter groups are Perron numbers [9]. For certain families of 4-dimensional cocom-
pact hyperbolic Coxeter groups, the conjecture holds as well (see 7], [19] and also
[23]). In this paper, we construct an infinite sequence of ideal non-simple hyperbolic
Coxeter 4-polytopes giving rise to growth rates which are distinct Perron numbers. This
is the first explicit example of an infinite family of non-compact finite volume Coxeter
polytopes in hyperbolic 4-space whose growth rates are of the conjectured arithmetic
nature as well.

1. Introduction

Let H? denote the hyperbolic d-space and H? its closure in R?U {o0}.
A d-dimensional convex polytope P C H of finite volume is called a Coxeter
n
k
k = oo, meaning that the intersection of the facets of P is a point on the bound-
ary 0HY. The set S of reflections with respect to the facets of P generates a
discrete group T, called a (d-dimensional) hyperbolic Coxeter group, and the pair
(T, S) is called the Coxeter system associated with P. If P is compact (resp. non-
compact), the hyperbolic Coxeter group I' is called cocompact (resp. cofinite).
The growth series fs() of (T, S) and of P is the formal power series 1 + >, a;t’
where «¢; is the number of elements of I' whose word length with respect to S is
equal to /. Then zr :=limsup,_,, {/a; is called the growth rate of (I',S) and of P.

It is known that the growth rate of a d-dimensional cofinite hyperbolic
Coxeter group is a real algebraic integer strictly bigger than 1 [5]. Recall that
a real algebraic number 7 > 1 is a Perron number if and only if all of its other

polytope if all of its dihedral angles are of the form — for an integer k > 2 or
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algebraic conjugates are strictly less than 7 in absolute value. It is known that
the growth rates of cofinite 2- and 3-dimensional hyperbolic Coxeter groups are
always Perron numbers ([1], [3], [8], [10], [12], [13], [21], [22]). The growth rates
of right-angled Coxeter groups are also Perron numbers [9].

The goal of this work is the study of the arithmetic nature of growth rates
associated to 4-dimensional cofinite hyperbolic Coxeter groups. In the context
of compact hyperbolic Coxeter 4-polytopes P, Kellerhals and Perren [7] showed
that the growth rates of polytopes P with at most 6 facets are Perron numbers
and formulated a conjecture for arbitrary dimensions d. Then, Umemoto [19]
constructed an infinite sequence of compact hyperbolic Coxeter 4-polytopes as
garlands based on a totally truncated 4-simplex. Inspired by [23], she was able
to prove that their growth rates are 2-Salem numbers and therefore particular
Perron numbers.

In this paper, we construct and study growth rates of infinitely many non-
compact hyperbolic Coxeter 4-polytopes. More precisely, we first construct an
infinite family of ideal and non-simple hyperbolic Coxeter 4-polytopes starting
from a certain pyramid in H*, found by Tumarkin [18], whose apex at infinity
has a (Euclidean) cubical structure (see Figure 4, Section 4.2). By exploiting
results of Kronecker, we are able to prove that their growth rates are Perron
numbers. In this way, we provide the first example of an infinite sequence of
non-cocompact but cofinite 4-dimensional hyperbolic Coxeter groups satisfying
the (generalized) conjecture of Kellerhals and Perren.

The paper is organized as follows. In Section 2, we provide the necessary
background about the growth series fs(¢), representing the rational growth func-

tion %, p(t),q(t) € Z[tf], of a d-dimensional hyperbolic Coxeter group I' with
natural generating system S. In Section 3, we explain in detail a method—going
back to Sturm and Kronecker—which helps to analyze the root distribution of
a real polynomial in the complex plane. Then, in Section 4, we construct an
infinite sequence {P,},.n of ideal non-simple hyperbolic Coxeter 4-polytopes
by glueing isometric copies of Tumarkin’s Coxeter pyramid with 7 facets, and
we provide a detailed analysis of the combinatorial and metrical structure of
{P,},cn- Finally, in Section 5, we apply the method described in Section 3 in
order to analyze the root distribution of the denominator polynomials D,(7) € Z[{]
of the growth functions f,(f) associated to the polyhedral sequence P,. This
allows us to prove that the growth rate 7, of each P,, n € N, is a Perron number
(see Theorem 8). At the end, we attach an appendix listing the numerical data
about the polynomials D, (¢) which were found by means of the software package
Mathematica.

2. Preliminaries

In this section, we introduce the relevant notation and review Solomon’s
and Steinberg’s formulas in order to calculate the growth functions of hyperbolic
Coxeter polytopes.
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A Coxeter system (I',S) consists of a group I' and a finite set of generators
Scr,S= {s,-}ilil, with relations (s;s;)"" for each i, j, where m; =1 and m; > 2
or mj = oo for i # j. We call I' a Coxeter group. For any subset I C S, we
define I'y to be the subgroup of I' generated by {s;};,.;. Then (I';,I) is a Coxeter
system in its own right and I is called the Coxeter subgroup of I' generated by
I. The Coxeter diagram X (T',S) of (T',S) is constructed as follows: Its vertex
set is S, and if m; > 3, we join the pair of vertices s;, s; by an edge. For each
edge, we label it with m;; if m; > 4. Note that the Coxeter diagram of (I';,7) for
each subset / C S is a subdiagram of X (I',S). The growth series fs(t) of (I',S)
is the formal power series 1 + >, a;t' where a; is the number of elements of T’
whose word length with respect to S is equal to /. Then 7 g = limsup, ., /a
is called the growth rate of (I';S). A Coxeter system (I',S) is irreducible if the
Coxeter diagram X (I",S) is connected.

Next, we recall Solomon’s formula and Steinberg’s formula which enable
us to express and calculate growth series of Coxeter systems as rational
functions.

THEOREM | [16, Solomon’s formula]. The growth series fs(t) of an irre-
ducible finite Coxeter system (I',S) is a polynomial of the form fs(t) = [m; + 1,
my+1,...,my,+ 1] where ] =1+ t+ -+ "1, [m,n] = [m][n], etc., and where
{my,my, ... ,my} is the set of exponents of (I',S).

Irreducible finite Coxeter groups are well-known. Their exponents are given
in Table 1 (see [6] for details).

Table 1. Exponents

Coxeter group Exponents growth series
Ay 1,2,...,n 2,3,...,n+1]
B, 1,3,...,2n—1 [2,4,...,21]

D, 1,3,....2n—3,n—1 2,4,...,2n—2][n]

Eg 1,4,5,7,8,11 2,5,6,8,9,12]

E; 1,5,7,9,11,13,17 [2,6,8,10,12,14,18]

Eg 1,7,11,13,17,19,23,29 | [2,8,12,14,18,20,24,30]

Fy 1,5,7,11 2,6,8,12]

H; 1,5,9 [2,6,10]

Hy 1,11,19,29 [2,12,20,30]
L(m) Lm—1 (2,m]
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THEOREM 2 [17, Steinberg’s formula]. Let (I',S) be an infinite Coxeter
system. Set F :={I C S|y is a finite Coxeter subgroup of T'}. Denote by
Sfi1(t) the growth series of (I'y,I) for each I C S. Then

I (_1)\1\
AN A

By Theorem 1 and Theorem 2, the growth series fs(z) of (I',S) is rep-

resented by a rational function % (p,q € Z[t]). The rational function % is
called the growth function of (T',S). The radius of convergence R of fs(z) is
equal to the positive real root of ¢(f) which has the smallest absolute value
among all roots of ¢(1).

In this paper, we are interested in Coxeter groups giving rise to discrete
subgroups generated by reflections in the isometry group Isom(Hd ) of HY. The

references here are [15] and [20]. More concretely, we represent hyperbolic

d-space in the upper half-space model according to HY = {(x,...,x;) e RY|
L . . .| .
xqg > 0} which is equipped with the metric |x—x| The boundary dH? of H? in
d

the one-point compactification R? U {0} of R? is called the boundary at in-
finity of HY. We denote the closure of a subset 4 C R‘U{w} by 4. By
identifying RY"! with RY"! x {0} in RY, the boundary at infinity dH" is equal
to R'U{w}. A subset H Cc H? is called a hyperplane of H? if and only
if ditl is either a Euclidean hemisphere or a half-plane in HY orthogonal to
R

A non-empty subset P C H? is called a d-dimensional hyperbolic polytope
if P can be written as the intersection of finitely many closed half-spaces.
This means that P =) H,, where H; is the closed half-space of H’
bounded by the hyperplane H; with normal vector u; pointing outwards with
respect to P. Suppose that H; N H; # 0 in HY. Then, the dihedral angle be-
tween H; and H; is given as follows: Choose a point x e H; N H; and con-
sider their outer normal vectors u; and wu;. The dihedral angle between H,
and H; is defined as the number 0 e [0,7] satisfying cos 0 = —(u;,u;) where
(-,-) denotes the Euclidean inner product on RY at x. If F;NH;eH’ is a
point on AHY, then the dihedral angle between H; and H; is defined to be
Zero.

A hyperbolic polytope P C H? of finite volume is called a hyperbolic Coxeter

polytope if all of its dihedral angles have the form % for an integer k > 2 or

k = oo if the intersection of respective bounding hyperplanes is a point on dH?.
Notice that a hyperbolic polytope in H¢ is of finite volume if and only if it
is the convex hull of finitely many points in HY. If P c HY is a hyperbolic
Coxeter polytope, the set S of all reflections with respect to the facets of P
generates a discrete group I' in Isom(HY). It is easy to see that (I, S) is a
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Coxeter system so that I' is a Coxeter group. We call I' a d-dimensional
hyperbolic Coxeter group. The pair (T, S) is called the Coxeter system associated
to P. In the sequel, we call the growth function and the growth rate of the
Coxeter system (I, S) associated to P the growth function of P and the growth
rate of P. The growth function and the growth rate of P are denoted by fp(¢)
and 7p, respectively.

Let P= ﬂfi , H~ be a hyperbolic Coxeter polytope. For every pair of
hyperplanes H; and H;, define

1 if i=j,
T . . . T
—Ccos — if they intersect at the dihedral angle —,
Cij = mij mij
-1 if its intersection is a point on dHY,

—cosh d(H;, H;) if they do not intersect,

where d(H;, H;) is the hyperbolic distance between them. The N x N symmetric
matrix M(P) = (c;) is called the Gram matrix of P. The Coxeter scheme X (P)
of P is defined as follows: Its vertex set is {Hi,...,Hy}, and for m; > 3, we
join the pair of vertices H;, H; by an edge. For each edge, we label it with m;
if m; > 4. Two vertices are joined by a dotted edge labeled with the hyperbolic
distance between corresponding hyperplanes if H; and H; do not intersect. A
subscheme of X (P) is called elliptic (resp. parabolic) if the corresponding sub-
matrix of M(P) is positive definite (resp. positive semi-definite of rank d — I).
Note that elliptic subschemes of order k, that is, with k vertices, correspond to
finite Coxeter systems (I",.S) with |S| = k. In the hyperbolic context, they can be
characterized as follows.

THEOREM 3 [20, Theorem 2.2, p. 109 and Theorem 2.5, p. 110]. Given a
hyperbolic Coxeter polytope P, the k-dimensional faces (resp. vertices at infinity) of
P correspond to the order n — k elliptic (resp. parabolic) subschemes of the Coxeter
scheme X (P) of P.

3. Describing the root distribution of a real polynomial

In this section, we review Sturm’s theorem and Kronecker’s theorem.
Sturm’s theorem allows one to describe the distribution of the real roots of a
real polynomial, while Kronecker’s theorem is about counting the roots of a real
polynomial contained in a closed disk of radius r centered at the origin 0 in the
complex plane C. For references, see [2], [11] and [14].

3.1. Sturm’s theorem. Let /' and g be real polynomials. We may assume
that deg /' > degg. By the Euclidean algorithm, there are polynomials f,..., f,
such that
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S =qg— f, degg>deg fo.
g=aqfo— f3, deg fr >deg f;.
L =aq:3fs— fa, deg f3 > deg fa.

Jr-2=qr1fr-1 — fr, deg fr-1 > deg f.
frfl = qrfi“

The finite sequence fy:= f, fi :=¢, f>,...,fr of real polynomials is called the
Sturm sequence S(f,g) of f and g. Note that f, is the greatest common divisor
of f and g. For any # € R, the number of sign changes in S(f,g) at f is
denoted by w(z), that is, w(#) is the number of sign changes in the sequence

f(t0),9(t0), fo(t), - .-, fr(ty) ignoring zeros.

Example 1. Let f(z):=z>—3z—1 and g(z):= f'(z) = 5z* — 3. Then,
S(f,g) can be calculated as follows:

flz)=2=3z—-1.

g(z) = 5z — 3.
fo(z) =12z +5.
f3(z) = 1.

We consider the number of sign changes in the Sturm sequence S(f,g) at
to=—2. We have f(-2)=-27, g(-2)=77, f2(=2)=-19, f3(-2)=1, so
that w(—2) is equal to 3.

THEOREM 4 [2, Theorem 8.8.15, Sturm’s theorem]. Let f be a real poly-
nomial and S(f, 1) = {fo, fi,-.., fr}. Suppose that a,b € R, a < b, are not roots
of f. Then the number of distinct real roots of f in the closed interval |a,b] is
equal to w(a) — w(b).

From now on, we assume that the real polynomials f and g have no
common roots. For each real root 7y of f, the number of sign changes in
S(f,g) satisfies one of the following three conditions:

(i) The number of sign changes in S(f,g) decreases by 1 when ¢ passes

through ¢,.

(i) The number of sign changes in S(f,g) increases by 1 when ¢ passes

through ¢,.

(i) The number of sign changes in S(f,g) does not vary when ¢ passes

through ¢,.
We assign the number ¢, =1, —1 and 0 to each root #y of f when the number of
sign changes of f(f), g(¢) satisfies the condition (i), (ii) and (iii), respectively.
The following well-known theorem is proved analogously to Sturm’s theorem.
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THEOREM 5. Suppose that the real numbers a and b, a < b, are not roots
of f. Then, the following identity holds for S(f,g).

&, = w(a) —w(b).
[()E[a.,b]:f(to):o

3.2. Separation of complex roots. We use the following notation:

+ C. and C. denote respectively the complex planes with coordinates z =

x+iy and c=u+iv.
+ S, CC; is a circle of radius r > 0 centered at the origin 0 € C..
* B, C C, is an open disk of radius r > 0 centered at 0.
* A parametrization for S, is given by

-1 2
Z([):}’m—lrm7 teR.

+ f(z) is a real polynomial of a complex variable z.
+ Expanding f(z(¢)) yields the representation

o) + i (1)
1) =

where ¢,(¢) and ,(¢) are real polynomials of the real variable .
Next, we explain Kronecker’s theorem.

rs

LemMa 1. Suppose that f(z) has no roots on S,. Given M > 0 such that the
closed interval [—M, M| contains all real roots of o,, the following identity holds

Jor S(g,,¥r,).

fhe [7M, M]Z(pr([()):o

Proof. The assumption that f(z) has no roots on S, implies that the
polynomials ¢,(f) and ,(f) do not have common real roots. Now, apply
Theorem 4 to ¢,(¢f) and ¥,(¢), and the assertion follows. O

By considering f(z) as a holomorphic function from C. to C., we para-
o) o @ o
2+ 1% (2t
teR. In order to calculate the winding number of f(S,), we divide f(S,) into
oriented closed curves Ci,...,C, as follows. Trace f(S,) by starting from the
initial point f(r) = lim,_., ¢(¢), and if the curve f(S,) crosses the v-axis in C;
(at least) twice, we mark the (first) two crossing points by o) and o, on the v-axis.
and then go back to the initial point f(r) along the straight line from the point o,
to the initial point f(r). This locus defines the oriented closed curve C; (see the
top right part of Fig. 1). Next, we go back to f(S,) along the straight line from

metrise the closed curve f(S,) according to ¢(¢) =



AN INFINITE SEQUENCE OF IDEAL HYPERBOLIC COXETER 4-POLYTOPES 339

FIGURE 1. Subdivision of the closed curve f(S;)

f(r) to o and repeat the procedure for the next pair of crossing points a3 and
oy which provides an oriented closed curve C, from f(r) via a straight line to
o, the part of f(S,) from «, to o4 and then back via a straight line to f(r).
By repeating this procedure, the closed curve f(S,) gets subdivided and yields
oriented closed curves Ci,...,C,, (see Fig. 1). Let us add that the final inter-
section point oy of f(S,) with the v-axis gives rise to the oriented closed C,, given
by the straight line from f(r) to oy combined with the part of f(S,) from oy back
to f(r).

Given such a subdivision of f(S,), the winding number of f(S,) equals the
sum of the winding numbers of oriented closed curves Ci,...,C,. In order to
calculate the winding number of each curve C;, we assign the number y, =1
(resp. x,, = —1) to a crossing point o, € C; on the v-axis if the (angular) argument
in the parametrization of C; is increasing (resp. decreasing) in the counterclock-
wise sense around the point o (see Fig. 2). In this way, the winding number of
C; is equal to the sum of % X, at each of its crossing points «. Note that if a

v 1
o
e
.y - N
U i U CUf('r) u
3

FIGURE 2. Assigning the numbers y, to crossing points o
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component C; has no crossing points of v-axis, then the winding number of C;
equals 0. For example, the winding number of C;, C, and C; in Fig. 2 is equal
to 0, —1 and 0, respectively. This observation shows that the winding number
of f(S;) equals the sum of numbers % x, for each crossing point a of v-axis and
1),

Let us now consider the Sturm sequence of polynomials ¢,(¢) and (7).
Every crossing point of curve f(S,) corresponds to a root of ¢,(¢). For any root
to € R of ¢.(¢), the argument of f(S,) is increasing (resp. decreasing) if &, = —1
(resp. &, =1). This observation, together with Theorem 4 and the argument
principle, give the following identities.

#{z€ B,|z is a root of f(z)} =the winding number of f(S;)

1
= E Z Koy

or: a mark on f(S,)

1
= E Z (—8,0).

t0:0,(t0)=0

By Lemma 1, one can deduce Kronecker’s theorem as follows.

THEOREM 6 [14, Theorem 1.4.6, Kronecker’s theorem]. Suppose that f(z)
has no roots on S,. Then, the number of roots of [ contained in B, equals to
w(M) —w(—M)

2
roots of ¢,(1).

, where M >0 is a real number such that [—-M,M] contains all

. r—1. . .
If we substitute z(¢) = VF; in f(z), then f(z(¢)) can be rewritten according
to

D(1) +1¥(1)
(t+ i)/

1 1
Since %f . d logw :—nff d argw (see [4]), the winding number of f(S,)

f(=(1) =

equals —j_ arg{®(t ) + V(1) } dt — —f_ arg(t + ')deg Idt. For brevity, we
denote the quantities —j arg{®(7) + i¥(¢)} dr and —f arg(r + i)t/ dt by

O(d(1) +i¥(r)) and @((z+z)degf). Then, @(®(z) +i¥(z)) and O((z+i)*t/)
measure the extent of argument increase of the curves ®(f) +i¥(¢) and
(t+1) de/ teR, respectively (see [4] for details). Applying the previous argu-
ments to the curve ®(r) + i¥(z), t € R, we obtain the identification

w(M) —w(—M)

O(D(R) + I¥(R)) = .
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By substituting ¢ = tan 8, a calculation yields

O((R +i)*2/) = ——de§ S

Therefore, we obtain the following corollary of Kronecker’s theorem.

COROLLARY 1. Suppose that f(z) has no roots on S,.. Let w(t) denote the
number of sign changes in the Sturm sequence of ®(t) and ¥(t). Then, the
w(M) —w(—M) +deg [

3 :

number of roots of f(z) contained in B, equals to

For any real polynomial f, the sign of f(z) for sufficiently large (resp. small)
teR is determined by its leading coefficient (resp. multiplied by (—1)deg ! ).
Therefore, in order to determine w(M), we only have to consider the leading
coefficients of the polynomials in the Sturm sequence S(®,¥) of ®(¢) and
W(¢). For the rest of the paper, w(co) (resp. w(—o0)) denotes the number of
sign changes of the leading coefficients (resp. multiplied by (—1)degf") of
S(D,Y¥).

3.3. A method for describing the root distribution of a real polynomial.
Suppose f(z) is a real polynomial. Then, we can describe its roots as follows.

In order to count the number of the real roots of f contained in the closed
interval [a,b], we proceed as follows.

1. Check that a and b are not roots of f.

2. Calculate the Sturm sequence S(f,f’) of f(¢) and f'(z).

3. By Sturm’s theorem, w(a) — w(b) is equal to the number of real roots of
f contained in [a,b].

In order to count the number of roots of f contained in B,, one performs the
following steps.

1. Calculate the two real polynomials ®(z) and W(r) by substituting z(¢) =

t—i . .
T into f(z).
2. Check that f(z) has no roots on S,. To this end, recall that if the
resultant of ®(¢) and W(¢) is not 0, then f(z) has no roots on S,.
3. Calculate the Sturm sequence S(®,¥) of ®(¢) and W(z).
4. By Corollary 1 and the definition of w(oo) and w(—o0), the number of
w(o0) — w(—o0) + deg f

roots of f contained in B, is equal to 5

4. The construction of an infinite sequence of ideal non-simple hyperbolic
Coxeter polytopes

We construct an infinite sequence {P,},.n of non-simple ideal hyperbolic
Coxeter 4-polytopes by glueing copies of certain ideal hyperbolic Coxeter
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4-pyramid along their isometric facets. First, we consider the vertical projection
Pe from oo to R? and describe a hyperbolic 4-polytope by means of its projec-
tive image. In the sequel, we call polygonal faces of a 4-polytope faces for
brevity.

4.1. The vertical projection from oco. A horosphere X =%, based at a
point at infinity u e dH? is defined to be a 3-dimensional Euclidean sphere in H*
tangent to R? at u (resp. a Euclidean hyperplane parallel to R?) if u is situated
on R? (resp. u = o). The restriction of the hyperbolic metric to the horosphere
Y turns X into a Euclidean 3-space.

LemmAa 2 [15, Theorem 6.4.5]. Suppose that P=(\_, H~ is a non-
compact hyperbolic 4-polytope of finite volume and u is a vertex at infinity
of P. Let X be a horosphere based at u such that X intersects with P only at
the bounding hyperplanes incident to w. Then, L(u):= PNX has the following
properties.
* L(u) is a 3-dimensional Euclidean polytope in X.
« For any bounding hyperplane H; incident to u, H; N\ L(u) is a bounding
hyperplane of L(u) in X.

* If two facets F;:= H;,NP and F;:= H;NP form a face of P, then the
intersection of F; N L(u) and F; N\ L(u) is an edge of L(u) and the dihedral
angle L F; N F; is equal to the dihedral angle [ (F; N L(u)) N (F; N L(u)).

Consider the wvertical projection from oo denoted by
P tHY =R (3, 0,2,0) = (x,9,2).

Let P =", H; be a non-compact hyperbolic 4-polytope of finite volume and u
be a vertex at infinity of P. By using the hyperbolic isometries induced by the
translation of R® which maps u to 0 and the inversion with respect to the unit
sphere in R* we may assume that u is co. If a hyperplane H; is incident to
(resp. not incident to) co, then H; is a Euclidean hyperplane (resp. hemisphere)
in H* orthogonal to R?. Note that in our setting any closed half-space H~
contains oo. Since the vertical projection p.,, maps any horosphere X based at
o0 conformally onto R®, by using Lemma 2, we can treat dihedral angles between
two bounding hyperplanes of P incident to oo as the corresponding dihedral
angles in the 3-dimensional Euclidean polytope p.,(L(c0)). Suppose that the
bounding hyperplanes H; and H; of P are not incident to co. By choosing a
point in H; N H; NR? and considering the outer normal vectors u; and u;, the
dihedral angle ZH;,N H; in P is given by arccos(—(u;,u;)).

4.2. The ideal hyperbolic Coxeter pyramid P,. In [18], Tumarkin classified
all hyperbolic Coxeter 4-pyramids whose apex at infinity has a cubical structure.
In particular, there exists an ideal hyperbolic Coxeter 4-pyramid P; with Coxeter
scheme shown in Figure 4.
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FIGURE 3. The dihedral angle in R®

FIGURE 4. The Coxeter scheme X (P;)

In the sequel, we use the followmg notations.
+ The non-simple vertex of P; is denoted by u.

+ Fy denotes the unique cubical facet of P;.

+ The pyramidal facets of P; are denoted by Fi,...,Fs. The facets have the
property that F; and F;; (i =1,3,5) meet at the non-simple vertex u of P

and the dihedral angle formed by F; and Fj is equal to g for i=1,2.

+ If the intersection of facets F; and F; is a face of P;, we denote it by f;.
In particular, f; is the ridge of dihedral angle /F; N F;.
+ The hyperplane carrying F; is denoted by H;.
Since the vertex link of u is a Euchdean right-angled cube given by A4, x
A x Al, and by usmg suitable isometries of H*, P; can be normalized as follows.
+ The vertex u is oo.
+ The hyperplane H, is the unit hemisphere centered at origin.
+ The hyperplanes H, and H, are orthogonal to the x-axis.
* The hyperplanes H; and H; are orthogonal to the y-axis.
+ The hyperplanes Hs and Hg are orthogonal to the z-axis.
Under this normalization for P;, we can depict p.,(P;) according to Figure 5.
The coordinates of eight vertices 4, B, C, D, E, F, G and H are
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1 I 1 1 I 1
o~(-v5-21) #-(7r2)

In Figure 5, the hyperplanes carrying the quadrangular faces ADHE, ABFE
and ABCD are p..(H)), po(H3) and p.(Hs). Now, we take a copy of P,
denoted by Pj, such that the facet F; of P] is isometric to the facet Fj of P; for
k=0,...,6. Glue the two 4-pyramids P; and P; along the facet F; of P; and
the facet F; of P| to obtain a new polytope Ps.

The projective image of P, is depicted in Figure 7. By the glueing pro-
cedure, the facets F) of P; and F; of P| do not appear in P,. Since the hyper-
planes p., (H3), poo(Hs), po(Hs) and p.(Hg) of Py and P coincide with each
other, the faces fi3, fi4, fis, fie In Py and fo3, fo4, f25, f26 in P| do not appear in
P, as well. On the other hand, P, has some new faces; one is the quadrangular
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FIGURE 7. The projective image of the resulting 4-polytope P,.

face coming from the cubical facet Fy in Py and P;, and the other new faces are
composed by the unions of f, fis, fs¢ and fe3 in P; U P{. Since the pyramidal
facets F, in Py and F| in P{ do not contribute to the glueing procedure, P, has
the two facets F) and F, in its boundary.
In summary, we obtain the following combinatorial data for P;.
« P, has 8 facets; 2 cubical facets, 2 pyramidal facets and 4 facets with 6
faces.
* P, has 23 faces; (i) 8 triangular faces come from F, of Py and F| of Pj,
(i) 10 quadrangular faces come from Fy in P; and Pj, (iii) only one
quadrangular face comes from the intersection of F; in P; and F; in Pj,
(iv) 4 quadrangular faces come from the union of fi4, fas, fs¢ and fe3 of Py
and Pj.
+ P, has 28 edges.
« P, has 13 ideal vertices; only the vertex oo is non-simple.
Since the two pyramidal facets of P, are isometric to the pyramidal facets F;
and F, of P;, we can repeat this procedure by glueing P; and P, along their
pyramidal facets, and the resulting 4-polytope is denoted by P;. By induction,
glueing a copy of Py to P, gives rise to a new polytope denoted by P,. In
fact, the ideal hyperbolic 4-polytope P, is obtained by glueing n copies of P,
along the isometric facets F; and F».

4.3. The combinatorial structure of P,.

Lemma 3. P, has the following combinatorial data.

(Facets) (n+ 6) facets; n cubical facets, 2 pyramidal facets and the other 4
facets have (n—+ 4)-gonal faces.

(Faces) (51 + 13) faces; 8 triangular faces, 5n+ 1 quadrilateral faces and 4
(n+ 2)-gonal faces.

(Edges) (8n+ 12) edges.

(Vertices) (4n+5) vertices; 4n+ 4 simple vertices and only one non-simple
vertex.

Proof. Tt suffices to consider p.,(P,). Indeed, the projective image P, con-
sists of n right-angled cubes inscribed in closed balls of radius 1 (see Fig. 8).
Ul
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FiGURe 8. The projective image of P,

FIGURE 9. The front, top, back, and bottom planes are labeled by G|, G,, G3, and Gy, respectively,
following the notations for P,.

We use the following notation and terminology to describe P,.
+ The 2 pyramidal facets of P, are denoted by F; and F;.

* The n cubical facets of P, are denoted by C,...,C,. Moreover, we
suppose that CyNF;, C,NF, and C;N C;.; are the quadrilateral faces.
+ The remaining facets of P, are denoted by Gi, G,, G3, G4. Moreover, we

suppose that G;N Gy (imod4) is a (n+ 2)-gonal face.
« X, denotes the Coxeter scheme of P,. - 7
« If a face of P, has the dihedral angle s we call it a o ace.

Let us determine the elliptic and parabolic subschemes of X;,.
(1) By Lemma 3, X, has n+ 6 vertices.
(2) Since each quadrilateral face C;N C;y; is the intersection of glueing

facets, its dihedral angle 2 C; N Cy;1 is equal to g If we glue P,_; and P; along

their isometric pyramidal facets, then all faces of P, ; and P; which are not
incident to the glueing facets are invariant. Therefore, we have the following
situation. -

* The triangular faces F; N G; are E-faces.

* The (n+ 2)-gonal faces G;N Gy are g-faces.
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3)

“)

* The quadrilateral faces G;N C; are g—faces.
* The quadrilateral faces C; N F; and C, N F, are g-faces.

Each edge of P, is expressed as the intersection of precisely three facets.

+ If an edge is the intersection F; N G; N Gj41, it corresponds to the elliptic
subscheme A4; x Ay x Ay of X,,.

« If an edge is the intersection Fy NG;NC; or F,NG;NC,, it corre-
sponds to the elliptic subscheme Bj; of X,.

+ If an edge is the intersection G;N Giy1 N C;, it corresponds to the
elliptic subscheme 43 of X,,.

 If an edge is the intersection G;N C; N Cyyy, it corresponds to the
elliptic subscheme A3 of X,.

Each vertex corresponds to a parabolic subscheme of X,.

+ If a vertex is the intersection F1 N G; N Giy1 N Cy or ;N GN G NGy,
then it corresponds to the parabolic subscheme Bj of X,.

* If a vertex is the intersection G; N G;y1 N C; N Cjyy, then it corresponds
to the parabolic subscheme A3 of X,. ~

* The non-simple vertex corresponds to the parabolic subscheme A; x
A] X A] of Xn.

5. The growth function of P,
By implementing the combinatorial data of P, into Steinberg’s formula (see
Theorem 2), the growth function f,(z) of P, can be calculated as follows.
n+6 n+11  4n 2 8 8 8n—4
———=1- - fom o — — - :
Ja(t7h) 2 22 23] 24 [2,22] [2,4,6] [2,3,4]
By using Mathematica, the growth function f,(#), written as
1y . Na(0)
1 n
n\ =: s
f( ) Dn(l)

can be expressed according to

No(0) = 1+ 1D+ D=1+ D)2+ 1+ 1),
Dy(t) =1 — (n+3)* — (n—4)t" + (2n — 8)t° + (2n + 8)¢° + (2n — 8)¢*

—2n =11+ Bn -5+ Bn+4)t—4n+1).

LemMmA 4.  All the roots of D,(t) are simple.

Proof. We show that the resultant R(D,(z),D,(t)) of D,(¢) and D) (z) is

n

not equal to 0 for any ne N. By using Mathematica, we can calculate it as

follows:
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R(D,(1), D),

n

(1)) = 9367548196608n'¢ — 84315693201408n "> — 3211145218356480n'*
— 13452086684085248n'* — 76883986729280512n "
— 221310749589989376n'" — 369276695931527424n'°
— 436823682353681408n° — 375744535536699392n°
— 227155659791212544n" — 1002711462226721281°
— 28147372028425216n° — 2791806794781440n*
— 1194005028478976n° — 23952968404992n> — 2787725279232n.

By using Descartes’ rule [14, Corollary 1, p. 28], R(D,(t), D} (t)) has at most one
positive real root as a real polynomial with respect to the index n. We can check
the following equalities by using Mathematica.

R(Dss(1), Dis (1)) = —5236764089528548306162419869100800,
R(Da(1), Dl (1)) = 18356309345841539117459400503775232.

Hence, R(D,(t),D,(t)) #0 for any neN. O
5.1. The distribution of the real roots of D,(7).

LEMMA 5. Let w(t) be the number of sign changes in the Sturm sequence
S(Dy,, D). Then,

6 (1<n<25)
W(O){s (26 < n)

3 (1<n<25)
and w(oo){2 (26 < n)

Moreover, by Sturm’s theorem, the number of positive real roots of D,(t) is equal
to 3 for any neN.

Proof. The equality D,(0) = —4(n+ 1) implies that 0 is not a root of D, (¢)
for any neN. By using Mathematica, the Sturm sequence S(D,,D,) can be
calculated easily (see Appendix). Let us write S(D,,D)) =: {d,...,ds}, and
denote the i-th coefficient of dj(z) € Q[f] as a,-(k), that is,

9—k
(+) de(t) =S alr.
i=0

Then, w(0) (resp. w(o0)) is equal to the number of sign changes in the sequence
aéo),...,aég) (resp. aé()),aél),...,a1(8>,a(<)9>). The sign of each coefficient al(k) de-
pends on ne N. Let us investigate these signs. For example, let us check the
sign of a(<)5>. The sign of a(()5 depends on the following factor polynomial p(n)

(see Appendix):
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p(n) = 13008n® + 206001 — 16078961° 4 2420092n° + 2017855n*
+ 899112n% 4 11226971 — 14765081 — 45088.
The difference of p(n+ 1) and p(n) equals
p(n+1) — p(n) = 5203217 +254212n° — 4243164n° — 5193210n*
+ 781934n* 4- 78418851 + 78577491 + 1704480.

By Descartes’ rule, the number of positive real zeroes of p(n+ 1) — p(n) is at
most 2. Consider

p(2) — p(1) = 9055918 > 0,
p(3) — p(2) = —140899954 < 0,
p(8) — p(7) = —10316213144 < 0,
p(9) — p(8) = 16414574600 > 0.
This observation shows that
p(2) > p(1),

p(2) > p3)>---> p(7) > p(8),
p(8) <p9) <---<pn) <pn+1)<

Moreover,
p(l) = 3363872,
p(3) = —260324200,
p(9) = —39144733360,
p(10) = 162088321532.

Therefore, we can determine the sign of a(<)5> as follows.

>0 (n=1,2)
a(()s) <0 (3<n<9)
> 0 (n=>10).
The remaining cases concerning a ) follow by analogy. O

We can calculate w(—o0) similarly to the proof of Lemma 5 in such a way
that

6 (1<n<25)
wi= )_{7 (26 < n).

Therefore, by combining Lemma 5 with Sturm’s theorem, we obtain the following
result.



350 TOMOSHIGE YUKITA

PropOSITION 1. The denominator polynomial D,(t) has the following real
roots:

three positive roots and no negative roots (1 <n < 25),
three positive roots and two negative roots (n > 26).

5.2. The distribution of the complex roots of D,(:). By applying the
method presented in section 3.3, we can deduce an upper bound for the absolute
values of all complex roots of D,(7).

1. Calculate the two real polynomials ®(¢) and W(z) which are given
according to

O(r) + P(t
D(=(0) = 2O,
(l + l) n
r—i . . .
where z(¢) = 2—1,. By using Mathematica, ®(¢) and ¥(f) can be written as
follows: Exi

O(1) = —(162n + 56)1° + (6456n — 6512)t7 — (2476n — 49792)1°
— (7176n 4 60048)¢> + (894n + 13752)t,

W(1) = (2034n — 456)13 — (8280n — 24880)1% — (7188n + 67136)1*
+ (41361 + 36816)1> — (14n + 2808).

2. By using Mathematica, we can show that the resultant of ®(z) and ¥(¢)
is not equal to 0 for any ne N. Therefore D,(¢) has no roots on the circle S,
of radius 2 centered at the origin.

3. By using Mathematica, the Sturm sequence S(®,¥) can be calculated.

4. In a manner similar to the argument in section 5.1, we can calculate the
numbers of sign changes w(co) and w(—o0) in S(®,¥).

LemmA 6. For any ne N, w(oo) =8 and w(—o) =1. By Corollary 1, the
number of roots of D,(t) contained in the closed disk of radius 2 centered at the
origin in the complex plane C is equal to 8.

THEOREM 7. The growth rate of P, is a Perron number for any n e N.

Proof. By Lemma 6, the absolute values of eight roots of D, () are strictly
less than 2. Since deg D, (f) =9, it is sufficient to prove that D,(¢) has a positive
real root which is greater than 2. In order to prove that, we consider w(2). By
section 3.3, we obtain

(4 (1<n<25)
’”(2)_{3 (26 < n).

Therefore, by Sturm’s theorem, the polynomial D,(7) has a unique positive real
root which is strictly greater than 2 for any n e N. O
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6. Appendix: the Sturm sequence of D,(f) and D) (1)

In this section, we provide the details about the Sturm sequence S(D,,D,) =
{dy,...,dy} with polynomial ingredients d, ...,ds € Q[f] given by (x) in section
5.1.

do(t) =1 — (n+3)* — (n— 4"+ (2n — 8)t° + (2n + 8)¢° + (2n — 8)¢*
—2n =11+ Bn =5+ Bn+4)t—dn+1)

di(t) =965 —8(n+3)t7 —7(n—4)1t° + 6(2n + 8)r° + 5(2n + 8)r*
+402n —8) —=32n—11)> +2(3n —5)t + (3n+4)

dy (1) = S0 (8n% + 66n)t” + (Tn* — 61n + 132)1° 4+ (—12n* — 60n — 144)1°
+ (—10n* — 160n 4 240)¢* 4 (—8n* + 116n — 498)r°
+ (6n* — 204n + 216)1* + (—6n* — 224n — 258)t — 3n* + 311n + 312}
81
d3 (1) = ———————{(39n* + 266n° — 2673n*> — 1848n — 1936):°
4n2(4n + 33)

+ (36n* + 612n° + 3956n> + 44800 + 2112)1°

+ (54n* + 4701 — 18721 — 4372n — 3520)¢*

+ (—88n* — 776n° + 3866n* + 6246n + 7304)¢°
+ (150n* + 1374n* — 32161 — 16601 — 3168)1*
+ (162n* + 25081 4 8540n° + 8870n + 3784)t
— 2591 — 3428n> — 7161n°> — 8548n — 4576}

Next, we list the coeflicients a , 0<i<9—k, of polynomials di(z), 4 <
k <8, according to () in section 5. 1. We also prov1de the denominator of di(t)
as given by the least common multiple of coefficients a;

The denominator of dy(z) = 81(1936 + n(1848 + n(2673 — n(266 + 39n))))*
Y = 8n2(4n + 33)2(270n° — 930n° — 59765n* — 723160
— 51247n% — 34920n + 11920)
al?) = —16n%(4n + 33)*(51n° + 1630n° + 7368n* — 68445n°
— 31761 — 41152n + 16768)
al?) = 8n?(4n + 33)%(471n° + 6452n° — 5086n* — 176746n°
— 544030 — 120344n — 8944)
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al?) = 160 (4n + 33)*(153n° — 411n° — 32385n* — 33106n°
— 44007n% — 202161 — 7664)
al? = —8n?(4n + 33)%(579n° + 14834n° + 101041n* + 476101
+ 25760n* + 3472n — 25280)
al? = 160> (33 + 4n)?(10304 + 609921 + 920881 + 1123171
+ 78944n* + 59321° + 33n°)
The denominator of ds(r) = 4n?(33 + 4n)* (11920 — 34920n — 51247n>
— 72316n° — 59765n* — 930n° + 270n°)?
al)) = —81(39n* + 266n° — 2673n> — 1848n — 1936)*(246n° — 5794n" + 360959n°
+ 5606880n° — 3313218n* 4 61401221 — 3491843n> 4 25847561 — 544176)
al) = 162(39n* + 266n° — 2673n> — 1848n — 1936)*(5289n° + 599217 — 788952n°
— 8100301° — 5107313n* + 118907n> — 2823408n> + 13539731 — 43828)
al¥ = —81(39n* + 266n° — 2673n> — 1848n — 1936)°(8442n® — 32742n’
— 1868957n° — 1946748n° — 4253223n* — 12034961 — 1818280n>
+ 440564n — 127008)
al? = —162(39n* + 266n° — 2673n> — 1848n — 1936)%(6261n° + 273521
— 543939n° 4 11684251° — 7402091 — 3338091° — 454006n°
— 7939811 + 269220)
al? = 81(39n* + 266n° — 2673n> — 1848n — 1936)(130081° + 206001
— 16078961° + 2420092n° 4- 20178557 + 899112n° + 1122697n°
— 14765081 — 45088)

The denominator of dg(f) = 81(—1936 — 1848n — 2673n> + the266n’ + 39n*)*
(—544176 + 25847560 — 3491843n> + 6140122n°
—3313218n* + 5606880n° + 360959n°
— 5794n" + 246n%)?
al® = —8n?(4n + 33)%(270n° — 930n° — 59765n* — 72316n° — 51247n> — 34920n
+ 11920)%(4034811'0 + 2480778n° — 379692191° — 15811970217
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— 11003907461° — 216055166n° — 1160964773n* + 282443786n°

— 3295801551 4 172728524n — 35052620)

16n%(4n + 33)2(270n° — 930n° — 59765n* — 723166 — 512470 — 34920n
+ 11920)(169494n'° + 14649n° — 18830064n° + 62828800n"

— 387398843n° + 2264068031 — 413299018n* 4 2452755271

— 1389273611 + 671860631 — 4007124)

8n2(4n + 33)%(270n° — 930n° — 59765n* — 72316n° — 51247n> — 34920n

+ 11920)%(474903n'° + 4516538n° — 11601465n° + 1048316701
+294141284n° — 180768204n° + 111338775n* — 296355112n°

+ 31452859n% — 391817681 + 10452012)

—16n%(4n + 33)%(270n° — 930n° — 59765n* — 72316n° — 51247n% — 34920n
+ 11920)%(2526011'° + 15359321° — 10172760n° + 137682333’

4 1302440201° + 2084215391° + 143139607n* 4- 2115857n°

+ 44003972n% — 412003071 4 18745192)

The denominator of ds(¢) = 4n*(33 + 4n)* (11920 — 34920n — 51247n% — 72316n°

o =

o =

— 59765n* — 930n° + 270n°)*(—35052620

+ 172728524n — 3295801551 + 2824437861

— 1160964773n* — 216055166n° — 11003907461°
— 158119702n" — 379692191% + 2480778n°
+403481n'%)*

81(39n* + 266n° — 2673n> — 1848n — 1936)%(246n° — 5794n" + 360959n°
+ 5606880n° — 3313218n* + 6140122n° — 3491843n> + 2584756n

— 544176)%(48400755n'% + 245803454n'! — 47213453570 '°

— 11572421870n° — 124324436353n% — 146160412422n" — 206861074257n°
— 1342975502681° — 66775078001n* — 24225751096n° + 36204038191>

— 8138383287 4 111404496)

162(39n* + 266n° — 2673n% — 1848n — 1936)*(246n° — 5794n" + 3609591°
+ 5606880n° — 3313218n* + 61401221 — 3491843n> + 25847561
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— 544176)%(9127365n'% + 43738914n'! — 105060066910 — 21345949071°
— 2210526681 4 87641596471 4 11937399782n° + 167097004911°
+ 4028829086n* + 2954840024n° — 25984591691 — 405956928n
— 67672272)
al!) = —81(39n* + 266n° — 26730 — 1848n — 1936)*(246n° — 5794n" + 360959n°
+ 56068801° — 3313218n* 4 6140122n° — 3491843n> + 25847561
— 544176)(59130903n "2 + 320783028n"'" — 59218704371
— 16668405100n° — 117418503841n® — 151967821848n" — 180213457131n°
— 140644288440n° — 51131969275n* — 32331152680n° + 5676560341n>
— 28145202881 — 23940048)
The denominator of ds(r) = 81(—1936 — 1848n — 2673n” + the266n” + 39n*)?
(—544176 + 2584756n — 3491843n> + 6140122n°
— 3313218n* + 5606880n° + 3609591n° — 5794n’
+ 246n%)%(111404496 — 813838328n
+ 36204038191 — 242257510961 — 66775078001n*
— 134297550268n° — 206861074257n°
— 146160412422n" — 124324436353n®
— 11572421870n° — 4721345357n'° 4 245803454n'!
+ 48400755n'2)?
al¥ = 16n>(4n + 33)%(270n° — 930n° — 59765n* — 72316n° — 51247n> — 34920n
+ 11920)%(403481n'° + 2480778n° — 37969219n° — 1581197021
— 11003907461 — 216055166n° — 1160964773n* + 282443786n°
—329580155n> 4 172728524n — 35052620)* (14625450451
— 10472627469n" — 402243294759n'2 — 110411269307 1n'!
— 8571517376059 — 16797900884717n° — 22904507347277n®
—22168784110521n" — 142356202518091° — 6907194126551n°

—20623001725011* — 196719185377n° — 72614586920n>
+ 43919521 — 226865664)
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al® = —160°(4n + 33)%(270n° — 930n° — 59765n* — 723160 — 51247n> — 34920n
+ 11920)%(403481n'° + 2480778n° — 37969219n° — 1581197021’
— 1100390746n° — 216055166n° — 1160964773n* + 282443786n°
— 329580155n> + 172728524n — 35052620) (6824422800
— 13967744415n" — 318617986273n'% — 866028050552n'!
— 5973136686946n'" — 114709365025011° — 15278417145211n®
— 15018314214172n" — 9591556809634n° — 5038052836203n°
— 1582742665577n* — 286371055374n> — 76587929392n>
— 37232425925 — 226865664)
Finally, we give the details of dy = do(n) € Q.
The numerator of do = 81(39n* + 266n° — 2673n* — 1848n — 1936)°
(246n® — 5794n" 4 360959n° + 56068801 — 3313218n*
+ 61401221 — 34918430 + 25847560 — 544176)*
(48400755n'2 + 245803454n'! — 4721345357n'°
— 11572421870n° — 124324436353n% — 1461604124221
— 2068610742571 — 1342975502681° — 66775078001n*
— 242257510961 + 36204038197% — 813838328~
+ 111404496) (36591985143n'> — 329358176568n'*
— 125435360092051"3 — 52547213609708n'2
—300328073161252n'! — 864495115585896n'°
— 1442487093482529n° — 1706342509194068n°
— 1467752091940232n" — 887326796059424n°
— 391684164932313n° — 109950671986036n*
— 109054952921151° — 4664082142496n°
— 935662828321 — 10889551872)
The denominator of dy = 4n(4n + 33)%(270n° — 930n° — 59765n* — 723161
— 51247n% — 34920 + 11920)(403481n'° + 2480778n°
—37969219n% — 158119702n" — 1100390746n°
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— 216055166n° — 1160964773n* 4 282443786n°
— 3295801551 4 172728524n — 35052620)*
(14625450451 — 1047262746913 — 4022432947592
— 1104112693071n'! — 85715173760591'°
— 16797900884717n° — 22904507347277n®
— 22168784110521n" — 14235620251809n°
— 6907194126551n° — 2062300172501n*
— 1967191853771 — 726145869201 + 4391952n
— 226865664)*
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