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AN INFINITE SEQUENCE OF IDEAL HYPERBOLIC COXETER

4-POLYTOPES AND PERRON NUMBERS

Tomoshige Yukita

Abstract

In [7], Kellerhals and Perren conjectured that the growth rates of cocompact

hyperbolic Coxeter groups are Perron numbers. By results of Floyd, Parry, Kolpakov,

Nonaka-Kellerhals, Komori and the author [1], [3], [8], [10], [12], [13], [21], [22], the

growth rates of 2- and 3-dimensional hyperbolic Coxeter groups are always Perron

numbers. Kolpakov and Talambutsa showed that the growth rates of right-angled

Coxeter groups are Perron numbers [9]. For certain families of 4-dimensional cocom-

pact hyperbolic Coxeter groups, the conjecture holds as well (see [7], [19] and also

[23]). In this paper, we construct an infinite sequence of ideal non-simple hyperbolic

Coxeter 4-polytopes giving rise to growth rates which are distinct Perron numbers. This

is the first explicit example of an infinite family of non-compact finite volume Coxeter

polytopes in hyperbolic 4-space whose growth rates are of the conjectured arithmetic

nature as well.

1. Introduction

Let Hd denote the hyperbolic d-space and Hd its closure in Rd [ fyg.
A d-dimensional convex polytope P � Hd of finite volume is called a Coxeter

polytope if all of its dihedral angles are of the form
p

k
for an integer kb 2 or

k ¼ y, meaning that the intersection of the facets of P is a point on the bound-
ary qHd . The set S of reflections with respect to the facets of P generates a
discrete group G, called a (d-dimensional) hyperbolic Coxeter group, and the pair
ðG;SÞ is called the Coxeter system associated with P. If P is compact (resp. non-
compact), the hyperbolic Coxeter group G is called cocompact (resp. cofinite).
The growth series fSðtÞ of ðG;SÞ and of P is the formal power series 1þ

Py
l¼1 alt

l

where al is the number of elements of G whose word length with respect to S is
equal to l. Then tG :¼ lim supl!y

ffiffiffiffi
all

p
is called the growth rate of ðG;SÞ and of P.

It is known that the growth rate of a d-dimensional cofinite hyperbolic
Coxeter group is a real algebraic integer strictly bigger than 1 [5]. Recall that
a real algebraic number t > 1 is a Perron number if and only if all of its other
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algebraic conjugates are strictly less than t in absolute value. It is known that
the growth rates of cofinite 2- and 3-dimensional hyperbolic Coxeter groups are
always Perron numbers ([1], [3], [8], [10], [12], [13], [21], [22]). The growth rates
of right-angled Coxeter groups are also Perron numbers [9].

The goal of this work is the study of the arithmetic nature of growth rates
associated to 4-dimensional cofinite hyperbolic Coxeter groups. In the context
of compact hyperbolic Coxeter 4-polytopes P, Kellerhals and Perren [7] showed
that the growth rates of polytopes P with at most 6 facets are Perron numbers
and formulated a conjecture for arbitrary dimensions d. Then, Umemoto [19]
constructed an infinite sequence of compact hyperbolic Coxeter 4-polytopes as
garlands based on a totally truncated 4-simplex. Inspired by [23], she was able
to prove that their growth rates are 2-Salem numbers and therefore particular
Perron numbers.

In this paper, we construct and study growth rates of infinitely many non-
compact hyperbolic Coxeter 4-polytopes. More precisely, we first construct an
infinite family of ideal and non-simple hyperbolic Coxeter 4-polytopes starting
from a certain pyramid in H4, found by Tumarkin [18], whose apex at infinity
has a (Euclidean) cubical structure (see Figure 4, Section 4.2). By exploiting
results of Kronecker, we are able to prove that their growth rates are Perron
numbers. In this way, we provide the first example of an infinite sequence of
non-cocompact but cofinite 4-dimensional hyperbolic Coxeter groups satisfying
the (generalized) conjecture of Kellerhals and Perren.

The paper is organized as follows. In Section 2, we provide the necessary
background about the growth series fSðtÞ, representing the rational growth func-

tion
pðtÞ
qðtÞ , pðtÞ; qðtÞ A Z½t�; of a d-dimensional hyperbolic Coxeter group G with

natural generating system S. In Section 3, we explain in detail a method—going
back to Sturm and Kronecker—which helps to analyze the root distribution of
a real polynomial in the complex plane. Then, in Section 4, we construct an
infinite sequence fPngn AN of ideal non-simple hyperbolic Coxeter 4-polytopes
by glueing isometric copies of Tumarkin’s Coxeter pyramid with 7 facets, and
we provide a detailed analysis of the combinatorial and metrical structure of
fPngn AN. Finally, in Section 5, we apply the method described in Section 3 in
order to analyze the root distribution of the denominator polynomials DnðtÞ A Z½t�
of the growth functions fnðtÞ associated to the polyhedral sequence Pn. This
allows us to prove that the growth rate tn of each Pn, n A N, is a Perron number
(see Theorem 8). At the end, we attach an appendix listing the numerical data
about the polynomials DnðtÞ which were found by means of the software package
Mathematica.

2. Preliminaries

In this section, we introduce the relevant notation and review Solomon’s
and Steinberg’s formulas in order to calculate the growth functions of hyperbolic
Coxeter polytopes.
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A Coxeter system ðG;SÞ consists of a group G and a finite set of generators

S � G, S ¼ fsigN
i¼1, with relations ðsisjÞmij for each i, j, where mii ¼ 1 and mij b 2

or mij ¼ y for i0 j. We call G a Coxeter group. For any subset I � S, we
define GI to be the subgroup of G generated by fsigi A I . Then ðGI ; IÞ is a Coxeter
system in its own right and GI is called the Coxeter subgroup of G generated by
I . The Coxeter diagram X ðG;SÞ of ðG;SÞ is constructed as follows: Its vertex
set is S, and if mij b 3, we join the pair of vertices si, sj by an edge. For each
edge, we label it with mij if mij b 4. Note that the Coxeter diagram of ðGI ; IÞ for
each subset I � S is a subdiagram of XðG;SÞ. The growth series fSðtÞ of ðG;SÞ
is the formal power series 1þ

Py
l¼1 alt

l where al is the number of elements of G
whose word length with respect to S is equal to l. Then tðG;SÞ ¼ lim supl!y

ffiffiffiffi
all

p

is called the growth rate of ðG;SÞ. A Coxeter system ðG;SÞ is irreducible if the
Coxeter diagram X ðG;SÞ is connected.

Next, we recall Solomon’s formula and Steinberg’s formula which enable
us to express and calculate growth series of Coxeter systems as rational
functions.

Theorem 1 [16, Solomon’s formula]. The growth series fSðtÞ of an irre-
ducible finite Coxeter system ðG;SÞ is a polynomial of the form fSðtÞ ¼ ½m1 þ 1;
m2 þ 1; . . . ;mp þ 1� where ½n� ¼ 1þ tþ � � � þ tn�1, ½m; n� ¼ ½m�½n�, etc., and where
fm1;m2; . . . ;mpg is the set of exponents of ðG;SÞ.

Irreducible finite Coxeter groups are well-known. Their exponents are given
in Table 1 (see [6] for details).

Table 1. Exponents

Coxeter group Exponents growth series

An 1; 2; . . . ; n ½2; 3; . . . ; nþ 1�

Bn 1; 3; . . . ; 2n� 1 ½2; 4; . . . ; 2n�

Dn 1; 3; . . . ; 2n� 3; n� 1 ½2; 4; . . . ; 2n� 2�½n�

E6 1; 4; 5; 7; 8; 11 ½2; 5; 6; 8; 9; 12�

E7 1; 5; 7; 9; 11; 13; 17 ½2; 6; 8; 10; 12; 14; 18�

E8 1; 7; 11; 13; 17; 19; 23; 29 ½2; 8; 12; 14; 18; 20; 24; 30�

F4 1; 5; 7; 11 ½2; 6; 8; 12�

H3 1; 5; 9 ½2; 6; 10�

H4 1; 11; 19; 29 ½2; 12; 20; 30�

I2ðmÞ 1;m� 1 ½2;m�
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Theorem 2 [17, Steinberg’s formula]. Let ðG;SÞ be an infinite Coxeter
system. Set F :¼ fI � S jGI is a finite Coxeter subgroup of Gg. Denote by
fI ðtÞ the growth series of ðGI ; IÞ for each I � S. Then

1

fSðt�1Þ ¼
X
I AF

ð�1ÞjI j

fI ðtÞ
:

By Theorem 1 and Theorem 2, the growth series fSðtÞ of ðG;SÞ is rep-

resented by a rational function
pðtÞ
qðtÞ ðp; q A Z½t�Þ. The rational function

pðtÞ
qðtÞ is

called the growth function of ðG;SÞ. The radius of convergence R of fSðtÞ is
equal to the positive real root of qðtÞ which has the smallest absolute value
among all roots of qðtÞ.

In this paper, we are interested in Coxeter groups giving rise to discrete
subgroups generated by reflections in the isometry group IsomðHdÞ of Hd . The
references here are [15] and [20]. More concretely, we represent hyperbolic
d-space in the upper half-space model according to Hd ¼ fðx1; . . . ; xdÞ A Rd j

xd > 0g which is equipped with the metric
jdxj
xd

. The boundary qHd of Hd in

the one-point compactification Rd [ fyg of Rd is called the boundary at in-
finity of Hd . We denote the closure of a subset A � Rd [ fyg by A. By

identifying Rd�1 with Rd�1 � f0g in Rd , the boundary at infinity qHd is equal
to Rd�1 [ fyg. A subset H � Hd is called a hyperplane of Hd if and only
if it is either a Euclidean hemisphere or a half-plane in Hd orthogonal to
Rd�1.

A non-empty subset P � Hd is called a d-dimensional hyperbolic polytope
if P can be written as the intersection of finitely many closed half-spaces.
This means that P ¼

T
H�

i , where H�
i is the closed half-space of Hd

bounded by the hyperplane Hi with normal vector ui pointing outwards with
respect to P. Suppose that Hi \Hj 0j in Hd . Then, the dihedral angle be-
tween Hi and Hj is given as follows: Choose a point x A Hi \Hj and con-
sider their outer normal vectors ui and uj. The dihedral angle between Hi

and Hj is defined as the number y A ½0; p� satisfying cos y ¼ �ðui; ujÞ where

ð� ; �Þ denotes the Euclidean inner product on Rd at x. If Hi \Hj A Hd is a
point on qHd , then the dihedral angle between Hi and Hj is defined to be
zero.

A hyperbolic polytope P � Hd of finite volume is called a hyperbolic Coxeter

polytope if all of its dihedral angles have the form
p

k
for an integer kb 2 or

k ¼ y if the intersection of respective bounding hyperplanes is a point on qHd .
Notice that a hyperbolic polytope in Hd is of finite volume if and only if it
is the convex hull of finitely many points in Hd . If P � Hd is a hyperbolic
Coxeter polytope, the set S of all reflections with respect to the facets of P
generates a discrete group G in IsomðHdÞ. It is easy to see that ðG;SÞ is a
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Coxeter system so that G is a Coxeter group. We call G a d-dimensional
hyperbolic Coxeter group. The pair ðG;SÞ is called the Coxeter system associated
to P. In the sequel, we call the growth function and the growth rate of the
Coxeter system ðG;SÞ associated to P the growth function of P and the growth
rate of P. The growth function and the growth rate of P are denoted by fPðtÞ
and tP, respectively.

Let P ¼
TN

i¼1 H�
i be a hyperbolic Coxeter polytope. For every pair of

hyperplanes Hi and Hj, define

cij ¼

1 if i ¼ j;

�cos
p

mij

if they intersect at the dihedral angle
p

mij

;

�1 if its intersection is a point on qHd ;

�cosh dðHi;HjÞ if they do not intersect;

8>>>>><
>>>>>:

where dðHi;HjÞ is the hyperbolic distance between them. The N �N symmetric
matrix MðPÞ ¼ ðcijÞ is called the Gram matrix of P. The Coxeter scheme XðPÞ
of P is defined as follows: Its vertex set is fH1; . . . ;HNg, and for mij b 3, we
join the pair of vertices Hi, Hj by an edge. For each edge, we label it with mij

if mij b 4. Two vertices are joined by a dotted edge labeled with the hyperbolic
distance between corresponding hyperplanes if Hi and Hj do not intersect. A
subscheme of X ðPÞ is called elliptic (resp. parabolic) if the corresponding sub-
matrix of MðPÞ is positive definite (resp. positive semi-definite of rank d � 1).
Note that elliptic subschemes of order k, that is, with k vertices, correspond to
finite Coxeter systems ðG;SÞ with jSj ¼ k. In the hyperbolic context, they can be
characterized as follows.

Theorem 3 [20, Theorem 2.2, p. 109 and Theorem 2.5, p. 110]. Given a
hyperbolic Coxeter polytope P, the k-dimensional faces (resp. vertices at infinity) of
P correspond to the order n� k elliptic (resp. parabolic) subschemes of the Coxeter
scheme X ðPÞ of P.

3. Describing the root distribution of a real polynomial

In this section, we review Sturm’s theorem and Kronecker’s theorem.
Sturm’s theorem allows one to describe the distribution of the real roots of a
real polynomial, while Kronecker’s theorem is about counting the roots of a real
polynomial contained in a closed disk of radius r centered at the origin 0 in the
complex plane C. For references, see [2], [11] and [14].

3.1. Sturm’s theorem. Let f and g be real polynomials. We may assume
that deg f b deg g. By the Euclidean algorithm, there are polynomials f2; . . . ; fr
such that
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f ¼ q1g� f2; deg g > deg f2:

g ¼ q2 f2 � f3; deg f2 > deg f3:

f2 ¼ q3 f3 � f4; deg f3 > deg f4:

..

.

fr�2 ¼ qr�1 fr�1 � fr; deg fr�1 > deg fr:

fr�1 ¼ qr fr:

The finite sequence f0 :¼ f ; f1 :¼ g; f2; . . . ; fr of real polynomials is called the
Sturm sequence Sð f ; gÞ of f and g. Note that fr is the greatest common divisor
of f and g. For any t0 A R, the number of sign changes in Sð f ; gÞ at t0 is
denoted by wðt0Þ, that is, wðt0Þ is the number of sign changes in the sequence
f ðt0Þ; gðt0Þ; f2ðt0Þ; . . . ; frðt0Þ ignoring zeros.

Example 1. Let f ðzÞ :¼ z5 � 3z� 1 and gðzÞ :¼ f 0ðzÞ ¼ 5z4 � 3. Then,
Sð f ; gÞ can be calculated as follows:

f ðzÞ ¼ z5 � 3z� 1:

gðzÞ ¼ 5z4 � 3:

f2ðzÞ ¼ 12zþ 5:

f3ðzÞ ¼ 1:

We consider the number of sign changes in the Sturm sequence Sð f ; gÞ at
t0 ¼ �2. We have f ð�2Þ ¼ �27, gð�2Þ ¼ 77, f2ð�2Þ ¼ �19, f3ð�2Þ ¼ 1, so
that wð�2Þ is equal to 3.

Theorem 4 [2, Theorem 8.8.15, Sturm’s theorem]. Let f be a real poly-
nomial and Sð f ; f 0Þ ¼ f f0; f1; . . . ; frg. Suppose that a; b A R, a < b, are not roots
of f . Then the number of distinct real roots of f in the closed interval ½a; b� is
equal to wðaÞ � wðbÞ.

From now on, we assume that the real polynomials f and g have no
common roots. For each real root t0 of f , the number of sign changes in
Sð f ; gÞ satisfies one of the following three conditions:

(i) The number of sign changes in Sð f ; gÞ decreases by 1 when t passes
through t0.

(ii) The number of sign changes in Sð f ; gÞ increases by 1 when t passes
through t0.

(iii) The number of sign changes in Sð f ; gÞ does not vary when t passes
through t0.

We assign the number et0 ¼ 1;�1 and 0 to each root t0 of f when the number of
sign changes of f ðtÞ, gðtÞ satisfies the condition (i), (ii) and (iii), respectively.
The following well-known theorem is proved analogously to Sturm’s theorem.
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Theorem 5. Suppose that the real numbers a and b, a < b, are not roots
of f . Then, the following identity holds for Sð f ; gÞ.

X
t0 A ½a;b�: f ðt0Þ¼0

et0 ¼ wðaÞ � wðbÞ:

3.2. Separation of complex roots. We use the following notation:
� Cz and Cv denote respectively the complex planes with coordinates z ¼
xþ iy and v ¼ uþ iv.

� Sr � Cz is a circle of radius r > 0 centered at the origin 0 A Cz.
� Br � Cz is an open disk of radius r > 0 centered at 0.
� A parametrization for Sr is given by

zðtÞ ¼ r
t2 � 1

t2 þ 1
� ir

2t

t2 þ 1
; t A R:

� f ðzÞ is a real polynomial of a complex variable z.
� Expanding f ðzðtÞÞ yields the representation

f ðzðtÞÞ ¼ jrðtÞ þ icrðtÞ
ðt2 þ 1Þdeg f

on Sr;

where jrðtÞ and crðtÞ are real polynomials of the real variable t.
Next, we explain Kronecker’s theorem.

Lemma 1. Suppose that f ðzÞ has no roots on Sr. Given M > 0 such that the
closed interval ½�M;M� contains all real roots of jr, the following identity holds
for Sðjr;crÞ.

X
t0 A ½�M;M�:jrðt0Þ¼0

et0 ¼ wð�MÞ � wðMÞ:

Proof. The assumption that f ðzÞ has no roots on Sr implies that the
polynomials jrðtÞ and crðtÞ do not have common real roots. Now, apply
Theorem 4 to jrðtÞ and crðtÞ, and the assertion follows. r

By considering f ðzÞ as a holomorphic function from Cz to Cv, we para-

metrise the closed curve f ðSrÞ according to vðtÞ ¼ jrðtÞ
ðt2 þ 1Þdeg f

þ i
crðtÞ

ðt2 þ 1Þdeg f
for

t A R. In order to calculate the winding number of f ðSrÞ, we divide f ðSrÞ into
oriented closed curves C1; . . . ;Cm as follows. Trace f ðSrÞ by starting from the
initial point f ðrÞ ¼ limt!�y vðtÞ, and if the curve f ðSrÞ crosses the v-axis in Cv

(at least) twice, we mark the (first) two crossing points by a1 and a2 on the v-axis.
and then go back to the initial point f ðrÞ along the straight line from the point a2
to the initial point f ðrÞ. This locus defines the oriented closed curve C1 (see the
top right part of Fig. 1). Next, we go back to f ðSrÞ along the straight line from
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f ðrÞ to a2 and repeat the procedure for the next pair of crossing points a3 and
a4 which provides an oriented closed curve C2 from f ðrÞ via a straight line to
a2, the part of f ðSrÞ from a2 to a4 and then back via a straight line to f ðrÞ.
By repeating this procedure, the closed curve f ðSrÞ gets subdivided and yields
oriented closed curves C1; . . . ;Cm (see Fig. 1). Let us add that the final inter-
section point af of f ðSrÞ with the v-axis gives rise to the oriented closed Cm given
by the straight line from f ðrÞ to af combined with the part of f ðSrÞ from af back
to f ðrÞ.

Given such a subdivision of f ðSrÞ, the winding number of f ðSrÞ equals the
sum of the winding numbers of oriented closed curves C1; . . . ;Cm. In order to
calculate the winding number of each curve Ci, we assign the number wak ¼ 1
(resp. wak ¼ �1) to a crossing point ak A Ci on the v-axis if the (angular) argument
in the parametrization of Ci is increasing (resp. decreasing) in the counterclock-
wise sense around the point ak (see Fig. 2). In this way, the winding number of
Ci is equal to the sum of 1

2 wa at each of its crossing points a. Note that if a

Figure 1. Subdivision of the closed curve f ðSrÞ

Figure 2. Assigning the numbers wa to crossing points a
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component Ci has no crossing points of v-axis, then the winding number of Ci

equals 0. For example, the winding number of C1, C2 and C3 in Fig. 2 is equal
to 0, �1 and 0, respectively. This observation shows that the winding number
of f ðSrÞ equals the sum of numbers 1

2 wa for each crossing point a of v-axis and
f ðSrÞ.

Let us now consider the Sturm sequence of polynomials jrðtÞ and crðtÞ.
Every crossing point of curve f ðSrÞ corresponds to a root of jrðtÞ. For any root
t0 A R of jrðtÞ, the argument of f ðSrÞ is increasing (resp. decreasing) if et0 ¼ �1
(resp. et0 ¼ 1). This observation, together with Theorem 4 and the argument
principle, give the following identities.

afz A Br j z is a root of f ðzÞg ¼ the winding number of f ðSrÞ

¼ 1

2

X
ak : a mark on f ðSrÞ

wak

¼ 1

2

X
t0:jrðt0Þ¼0

ð�et0Þ:

By Lemma 1, one can deduce Kronecker’s theorem as follows.

Theorem 6 [14, Theorem 1.4.6, Kronecker’s theorem]. Suppose that f ðzÞ
has no roots on Sr. Then, the number of roots of f contained in Br equals to
wðMÞ � wð�MÞ

2
, where M > 0 is a real number such that ½�M;M� contains all

roots of jrðtÞ.

If we substitute zðtÞ ¼ r
t� i

tþ i
in f ðzÞ, then f ðzðtÞÞ can be rewritten according

to

f ðzðtÞÞ ¼ FðtÞ þ iCðtÞ
ðtþ iÞdeg f :

Since
1

2p

Ð
f ðSrÞ d log w ¼ 1

2p

Ð
f ðSrÞ d arg w (see [4]), the winding number of f ðSrÞ

equals
1

2p

Ðy
�y argfFðtÞ þ iCðtÞg dt� 1

2p

Ðy
�y argðtþ iÞdeg f

dt. For brevity, we

denote the quantities
1

2p

Ðy
�y argfFðtÞ þ iCðtÞg dt and

1

2p

Ðy
�y argðtþ iÞdeg f

dt by

YðFðtÞ þ iCðtÞÞ and Yððtþ iÞdeg f Þ. Then, YðFðtÞ þ iCðtÞÞ and Yððtþ iÞdeg f Þ
measure the extent of argument increase of the curves FðtÞ þ iCðtÞ and
ðtþ iÞdeg f , t A R, respectively (see [4] for details). Applying the previous argu-
ments to the curve FðtÞ þ iCðtÞ, t A R, we obtain the identification

YðFðRÞ þ iCðRÞÞ ¼ wðMÞ � wð�MÞ
2

:
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By substituting t ¼ tan y, a calculation yields

YððRþ iÞdeg f Þ ¼ � deg f

2
:

Therefore, we obtain the following corollary of Kronecker’s theorem.

Corollary 1. Suppose that f ðzÞ has no roots on Sr. Let wðtÞ denote the
number of sign changes in the Sturm sequence of FðtÞ and CðtÞ. Then, the

number of roots of f ðzÞ contained in Br equals to
wðMÞ � wð�MÞ þ deg f

2
.

For any real polynomial f , the sign of f ðtÞ for su‰ciently large (resp. small)
t A R is determined by its leading coe‰cient (resp. multiplied by ð�1Þdeg f ).
Therefore, in order to determine wðMÞ, we only have to consider the leading
coe‰cients of the polynomials in the Sturm sequence SðF;CÞ of FðtÞ and
CðtÞ. For the rest of the paper, wðyÞ (resp. wð�yÞ) denotes the number of
sign changes of the leading coe‰cients (resp. multiplied by ð�1Þdeg fi ) of
SðF;CÞ.

3.3. A method for describing the root distribution of a real polynomial.
Suppose f ðzÞ is a real polynomial. Then, we can describe its roots as follows.

In order to count the number of the real roots of f contained in the closed
interval ½a; b�, we proceed as follows.

1. Check that a and b are not roots of f .
2. Calculate the Sturm sequence Sð f ; f 0Þ of f ðtÞ and f 0ðtÞ.
3. By Sturm’s theorem, wðaÞ � wðbÞ is equal to the number of real roots of

f contained in ½a; b�.
In order to count the number of roots of f contained in Br, one performs the

following steps.
1. Calculate the two real polynomials FðtÞ and CðtÞ by substituting zðtÞ ¼

r
t� i

tþ i
into f ðzÞ.

2. Check that f ðzÞ has no roots on Sr. To this end, recall that if the
resultant of FðtÞ and CðtÞ is not 0, then f ðzÞ has no roots on Sr.

3. Calculate the Sturm sequence SðF;CÞ of FðtÞ and CðtÞ.
4. By Corollary 1 and the definition of wðyÞ and wð�yÞ, the number of

roots of f contained in Br is equal to
wðyÞ � wð�yÞ þ deg f

2
.

4. The construction of an infinite sequence of ideal non-simple hyperbolic
Coxeter polytopes

We construct an infinite sequence fPngn AN of non-simple ideal hyperbolic
Coxeter 4-polytopes by glueing copies of certain ideal hyperbolic Coxeter
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4-pyramid along their isometric facets. First, we consider the vertical projection
py from y to R3 and describe a hyperbolic 4-polytope by means of its projec-
tive image. In the sequel, we call polygonal faces of a 4-polytope faces for
brevity.

4.1. The vertical projection from y. A horosphere S ¼ Su based at a
point at infinity u A qHd is defined to be a 3-dimensional Euclidean sphere in H4

tangent to R3 at u (resp. a Euclidean hyperplane parallel to R3) if u is situated
on R3 (resp. u ¼ y). The restriction of the hyperbolic metric to the horosphere
S turns S into a Euclidean 3-space.

Lemma 2 [15, Theorem 6.4.5]. Suppose that P ¼
Tm

i¼1 H�
i is a non-

compact hyperbolic 4-polytope of finite volume and u is a vertex at infinity
of P. Let S be a horosphere based at u such that S intersects with P only at
the bounding hyperplanes incident to u. Then, LðuÞ :¼ P \ S has the following
properties.

� LðuÞ is a 3-dimensional Euclidean polytope in S.
� For any bounding hyperplane Hi incident to u, Hi \ LðuÞ is a bounding
hyperplane of LðuÞ in S.

� If two facets Fi :¼ Hi \ P and Fj :¼ Hj \ P form a face of P, then the
intersection of Fi \ LðuÞ and Fj \ LðuÞ is an edge of LðuÞ and the dihedral
angle JFi \ Fj is equal to the dihedral angle JðFi \ LðuÞÞ \ ðFj \ LðuÞÞ.

Consider the vertical projection from y denoted by

py : H4 ! R3; ðx; y; z; tÞ 7! ðx; y; zÞ:

Let P ¼
Tm

i¼1 H�
i be a non-compact hyperbolic 4-polytope of finite volume and u

be a vertex at infinity of P. By using the hyperbolic isometries induced by the
translation of R3 which maps u to 0 and the inversion with respect to the unit
sphere in R4, we may assume that u is y. If a hyperplane Hi is incident to
(resp. not incident to) y, then Hi is a Euclidean hyperplane (resp. hemisphere)
in H4 orthogonal to R3. Note that in our setting any closed half-space H�

i

contains y. Since the vertical projection py maps any horosphere S based at
y conformally onto R3, by using Lemma 2, we can treat dihedral angles between
two bounding hyperplanes of P incident to y as the corresponding dihedral
angles in the 3-dimensional Euclidean polytope pyðLðyÞÞ. Suppose that the
bounding hyperplanes Hi and Hj of P are not incident to y. By choosing a
point in Hi \Hj \ R3 and considering the outer normal vectors ui and uj, the
dihedral angle JHi \Hj in P is given by arccosð�ðui; ujÞÞ.

4.2. The ideal hyperbolic Coxeter pyramid P1. In [18], Tumarkin classified
all hyperbolic Coxeter 4-pyramids whose apex at infinity has a cubical structure.
In particular, there exists an ideal hyperbolic Coxeter 4-pyramid P1 with Coxeter
scheme shown in Figure 4.
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In the sequel, we use the following notations.
� The non-simple vertex of P1 is denoted by u.
� F0 denotes the unique cubical facet of P1.
� The pyramidal facets of P1 are denoted by F1; . . . ;F6. The facets have the
property that Fi and Fiþ1 ði ¼ 1; 3; 5Þ meet at the non-simple vertex u of P1

and the dihedral angle formed by Fi and F0 is equal to
p

4
for i ¼ 1; 2.

� If the intersection of facets Fi and Fj is a face of P1, we denote it by fij .
In particular, fij is the ridge of dihedral angle JFi \ Fj.

� The hyperplane carrying Fi is denoted by Hi.
Since the vertex link of u is a Euclidean right-angled cube given by ~AA1 �

~AA1 � ~AA1, and by using suitable isometries of H4, P1 can be normalized as follows.
� The vertex u is y.
� The hyperplane H0 is the unit hemisphere centered at origin.
� The hyperplanes H1 and H2 are orthogonal to the x-axis.
� The hyperplanes H3 and H4 are orthogonal to the y-axis.
� The hyperplanes H5 and H6 are orthogonal to the z-axis.

Under this normalization for P1, we can depict pyðP1Þ according to Figure 5.
The coordinates of eight vertices A, B, C, D, E, F , G and H are

Figure 3. The dihedral angle in R3

Figure 4. The Coxeter scheme XðP1Þ
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A ¼ 1ffiffiffi
2

p ;
1

2
;
1

2

� �
B ¼ � 1ffiffiffi

2
p ;

1

2
;
1

2

� �
C ¼ � 1ffiffiffi

2
p ;� 1

2
;
1

2

� �

D ¼ 1ffiffiffi
2

p ;� 1

2
;
1

2

� �
E ¼ 1ffiffiffi

2
p ;

1

2
;� 1

2

� �
F ¼ � 1ffiffiffi

2
p ;

1

2
;� 1

2

� �

G ¼ � 1ffiffiffi
2

p ;� 1

2
;� 1

2

� �
H ¼ 1ffiffiffi

2
p ;� 1

2
;� 1

2

� �
:

In Figure 5, the hyperplanes carrying the quadrangular faces ADHE, ABFE
and ABCD are pyðH1Þ, pyðH3Þ and pyðH5Þ. Now, we take a copy of P1,
denoted by P 0

1, such that the facet F 0
k of P 0

1 is isometric to the facet Fk of P1 for
k ¼ 0; . . . ; 6. Glue the two 4-pyramids P1 and P 0

1 along the facet F1 of P1 and
the facet F 0

2 of P 0
1 to obtain a new polytope P2.

The projective image of P2 is depicted in Figure 7. By the glueing pro-
cedure, the facets F1 of P1 and F 0

2 of P 0
1 do not appear in P2. Since the hyper-

planes pyðH3Þ, pyðH4Þ, pyðH5Þ and pyðH6Þ of P1 and P 0
1 coincide with each

other, the faces f13, f14, f15, f16 in P1 and f23, f24, f25, f26 in P 0
1 do not appear in

P2 as well. On the other hand, P2 has some new faces; one is the quadrangular

Figure 5. The projective image pyðP1Þ of P1 in R3

Figure 6. The projective images of P1 and P 0
1
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face coming from the cubical facet F0 in P1 and P 0
1, and the other new faces are

composed by the unions of f34, f45, f56 and f63 in P1 [ P 0
1. Since the pyramidal

facets F2 in P1 and F 0
1 in P 0

1 do not contribute to the glueing procedure, P2 has
the two facets F1 and F2 in its boundary.

In summary, we obtain the following combinatorial data for P2.
� P2 has 8 facets; 2 cubical facets, 2 pyramidal facets and 4 facets with 6
faces.

� P2 has 23 faces; (i) 8 triangular faces come from F2 of P1 and F 0
1 of P 0

1,
(ii) 10 quadrangular faces come from F0 in P1 and P 0

1, (iii) only one
quadrangular face comes from the intersection of F1 in P1 and F 0

2 in P 0
1,

(iv) 4 quadrangular faces come from the union of f34, f45, f56 and f63 of P1

and P 0
1.

� P2 has 28 edges.
� P2 has 13 ideal vertices; only the vertex y is non-simple.

Since the two pyramidal facets of P2 are isometric to the pyramidal facets F1

and F2 of P1, we can repeat this procedure by glueing P1 and P2 along their
pyramidal facets, and the resulting 4-polytope is denoted by P3. By induction,
glueing a copy of P1 to Pn�1 gives rise to a new polytope denoted by Pn. In
fact, the ideal hyperbolic 4-polytope Pn is obtained by glueing n copies of P1

along the isometric facets F1 and F2.

4.3. The combinatorial structure of Pn.

Lemma 3. Pn has the following combinatorial data.
(Facets) ðnþ 6Þ facets; n cubical facets, 2 pyramidal facets and the other 4

facets have ðnþ 4Þ-gonal faces.
(Faces) ð5nþ 13Þ faces; 8 triangular faces, 5nþ 1 quadrilateral faces and 4

ðnþ 2Þ-gonal faces.
(Edges) ð8nþ 12Þ edges.
(Vertices) ð4nþ 5Þ vertices; 4nþ 4 simple vertices and only one non-simple

vertex.

Proof. It su‰ces to consider pyðPnÞ. Indeed, the projective image Pn con-
sists of n right-angled cubes inscribed in closed balls of radius 1 (see Fig. 8).

r

Figure 7. The projective image of the resulting 4-polytope P2.
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We use the following notation and terminology to describe Pn.
� The 2 pyramidal facets of Pn are denoted by F1 and F2.
� The n cubical facets of Pn are denoted by C1; . . . ;Cn. Moreover, we
suppose that C1 \ F1, Cn \ F2 and Ci \ Ciþ1 are the quadrilateral faces.

� The remaining facets of Pn are denoted by G1, G2, G3, G4. Moreover, we
suppose that Gi \ Giþ1 ði mod 4Þ is a ðnþ 2Þ-gonal face.

� Xn denotes the Coxeter scheme of Pn.
� If a face of Pn has the dihedral angle

p

m
, we call it a

p

m
-face.

Let us determine the elliptic and parabolic subschemes of Xn.
(1) By Lemma 3, Xn has nþ 6 vertices.
(2) Since each quadrilateral face Ci \ Ciþ1 is the intersection of glueing

facets, its dihedral angleJCi \ Ciþ1 is equal to
p

2
. If we glue Pn�1 and P1 along

their isometric pyramidal facets, then all faces of Pn�1 and P1 which are not
incident to the glueing facets are invariant. Therefore, we have the following
situation.

� The triangular faces Fi \ Gj are
p

2
-faces.

� The ðnþ 2Þ-gonal faces Gi \ Giþ1 are
p

2
-faces.

Figure 9. The front, top, back, and bottom planes are labeled by G1, G2, G3, and G4, respectively,

following the notations for Pn.

Figure 8. The projective image of Pn
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� The quadrilateral faces Gi \ Cj are
p

3
-faces.

� The quadrilateral faces C1 \ F1 and Cn \ F2 are
p

4
-faces.

(3) Each edge of Pn is expressed as the intersection of precisely three facets.
� If an edge is the intersection Fi \ Gj \ Gjþ1, it corresponds to the elliptic
subscheme A1 � A1 � A1 of Xn.

� If an edge is the intersection F1 \ Gi \ C1 or F2 \ Gi \ Cn, it corre-
sponds to the elliptic subscheme B3 of Xn.

� If an edge is the intersection Gi \ Giþ1 \ Cj, it corresponds to the
elliptic subscheme A3 of Xn.

� If an edge is the intersection Gi \ Cj \ Cjþ1, it corresponds to the
elliptic subscheme A3 of Xn.

(4) Each vertex corresponds to a parabolic subscheme of Xn.
� If a vertex is the intersection F1 \ Gi \ Giþ1 \ C1 or F2 \ Gi \ Giþ1 \ Cn,
then it corresponds to the parabolic subscheme ~BB3 of Xn.

� If a vertex is the intersection Gi \ Giþ1 \ Cj \ Cjþ1, then it corresponds
to the parabolic subscheme ~AA3 of Xn.

� The non-simple vertex corresponds to the parabolic subscheme ~AA1 �
~AA1 � ~AA1 of Xn.

5. The growth function of Pn

By implementing the combinatorial data of Pn into Steinberg’s formula (see
Theorem 2), the growth function fnðtÞ of Pn can be calculated as follows.

1

fnðt�1Þ ¼ 1� nþ 6

½2� þ nþ 11

½2; 2� þ 4n

½2; 3� þ
2

½2; 4� �
8

½2; 2; 2� �
8

½2; 4; 6� �
8n� 4

½2; 3; 4� :

By using Mathematica, the growth function fnðtÞ, written as

fnðt�1Þ ¼:
NnðtÞ
DnðtÞ

;

can be expressed according to

NnðtÞ ¼ ðtþ 1Þ3ðt2 þ 1Þðt2 � tþ 1Þðt2 þ tþ 1Þ;

DnðtÞ ¼ t9 � ðnþ 3Þt8 � ðn� 4Þt7 þ ð2n� 8Þt6 þ ð2nþ 8Þt5 þ ð2n� 8Þt4

� ð2n� 11Þt3 þ ð3n� 5Þt2 þ ð3nþ 4Þt� 4ðnþ 1Þ:

Lemma 4. All the roots of DnðtÞ are simple.

Proof. We show that the resultant RðDnðtÞ;D 0
nðtÞÞ of DnðtÞ and D 0

nðtÞ is
not equal to 0 for any n A N. By using Mathematica, we can calculate it as
follows:
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RðDnðtÞ;D 0
nðtÞÞ ¼ 9367548196608n16 � 84315693201408n15 � 3211145218356480n14

� 13452086684085248n13 � 76883986729280512n12

� 221310749589989376n11 � 369276695931527424n10

� 436823682353681408n9 � 375744535536699392n8

� 227155659791212544n7 � 100271146222672128n6

� 28147372028425216n5 � 2791806794781440n4

� 1194005028478976n3 � 23952968404992n2 � 2787725279232n:

By using Descartes’ rule [14, Corollary 1, p. 28], RðDnðtÞ;D 0
nðtÞÞ has at most one

positive real root as a real polynomial with respect to the index n. We can check
the following equalities by using Mathematica.

RðD25ðtÞ;D 0
25ðtÞÞ ¼ �5236764089528548306162419869100800;

RðD26ðtÞ;D 0
26ðtÞÞ ¼ 18356309345841539117459400503775232:

Hence, RðDnðtÞ;D 0
nðtÞÞ0 0 for any n A N. r

5.1. The distribution of the real roots of DnðtÞ.

Lemma 5. Let wðtÞ be the number of sign changes in the Sturm sequence
SðDn;D

0
nÞ. Then,

wð0Þ ¼ 6 ð1a na 25Þ
5 ð26a nÞ

�
and wðyÞ ¼ 3 ð1a na 25Þ

2 ð26a nÞ

�
:

Moreover, by Sturm’s theorem, the number of positive real roots of DnðtÞ is equal
to 3 for any n A N.

Proof. The equality Dnð0Þ ¼ �4ðnþ 1Þ implies that 0 is not a root of DnðtÞ
for any n A N. By using Mathematica, the Sturm sequence SðDn;D

0
nÞ can be

calculated easily (see Appendix). Let us write SðDn;D
0
nÞ ¼: fd0; . . . ; d9g, and

denote the i-th coe‰cient of dkðtÞ A Q½t� as a
ðkÞ
i , that is,

dkðtÞ ¼
X9�k

i¼0

a
ðkÞ
i t i:(*)

Then, wð0Þ (resp. wðyÞ) is equal to the number of sign changes in the sequence

a
ð0Þ
0 ; . . . ; a

ð9Þ
0 (resp. a

ð0Þ
9 ; a

ð1Þ
8 ; . . . ; a

ð8Þ
1 ; a

ð9Þ
0 ). The sign of each coe‰cient a

ðkÞ
i de-

pends on n A N. Let us investigate these signs. For example, let us check the
sign of a

ð5Þ
0 . The sign of a

ð5Þ
0 depends on the following factor polynomial pðnÞ

(see Appendix):
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pðnÞ ¼ 13008n8 þ 20600n7 � 1607896n6 þ 2420092n5 þ 2017855n4

þ 899112n3 þ 1122697n2 � 1476508n� 45088:

The di¤erence of pðnþ 1Þ and pðnÞ equals

pðnþ 1Þ � pðnÞ ¼ 52032n7 þ 254212n6 � 4243164n5 � 5193210n4

þ 781934n3 þ 7841885n2 þ 7857749nþ 1704480:

By Descartes’ rule, the number of positive real zeroes of pðnþ 1Þ � pðnÞ is at
most 2. Consider

pð2Þ � pð1Þ ¼ 9055918 > 0;

pð3Þ � pð2Þ ¼ �140899954 < 0;

pð8Þ � pð7Þ ¼ �10316213144 < 0;

pð9Þ � pð8Þ ¼ 16414574600 > 0:

This observation shows that

pð2Þ > pð1Þ;
pð2Þ > pð3Þ > � � � > pð7Þ > pð8Þ;
pð8Þ < pð9Þ < � � � < pðnÞ < pðnþ 1Þ < � � � :

8><
>:

Moreover,

pð1Þ ¼ 3363872;

pð3Þ ¼ �260324200;

pð9Þ ¼ �39144733360;

pð10Þ ¼ 162088321532:

Therefore, we can determine the sign of a
ð5Þ
0 as follows.

a
ð5Þ
0

> 0 ðn ¼ 1; 2Þ
< 0 ð3a na 9Þ
> 0 ðnb 10Þ:

8><
>:

The remaining cases concerning a
ðkÞ
i follow by analogy. r

We can calculate wð�yÞ similarly to the proof of Lemma 5 in such a way
that

wð�yÞ ¼ 6 ð1a na 25Þ
7 ð26a nÞ:

�

Therefore, by combining Lemma 5 with Sturm’s theorem, we obtain the following
result.
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Proposition 1. The denominator polynomial DnðtÞ has the following real
roots:

three positive roots and no negative roots ð1a na 25Þ;
three positive roots and two negative roots ðnb 26Þ:

�

5.2. The distribution of the complex roots of DnðtÞ. By applying the
method presented in section 3.3, we can deduce an upper bound for the absolute
values of all complex roots of DnðtÞ.

1. Calculate the two real polynomials FðtÞ and CðtÞ which are given
according to

DnðzðtÞÞ ¼
FðtÞ þ iCðtÞ
ðtþ iÞdeg Dn

;

where zðtÞ ¼ 2
t� i

tþ i
. By using Mathematica, FðtÞ and CðtÞ can be written as

follows:

FðtÞ ¼ �ð162nþ 56Þt9 þ ð6456n� 6512Þt7 � ð2476n� 49792Þt5

� ð7176nþ 60048Þt3 þ ð894nþ 13752Þt;

CðtÞ ¼ ð2034n� 456Þt8 � ð8280n� 24880Þt6 � ð7188nþ 67136Þt4

þ ð4136nþ 36816Þt2 � ð14nþ 2808Þ:

2. By using Mathematica, we can show that the resultant of FðtÞ and CðtÞ
is not equal to 0 for any n A N. Therefore DnðtÞ has no roots on the circle S2

of radius 2 centered at the origin.
3. By using Mathematica, the Sturm sequence SðF;CÞ can be calculated.
4. In a manner similar to the argument in section 5.1, we can calculate the

numbers of sign changes wðyÞ and wð�yÞ in SðF;CÞ.

Lemma 6. For any n A N, wðyÞ ¼ 8 and wð�yÞ ¼ 1. By Corollary 1, the
number of roots of DnðtÞ contained in the closed disk of radius 2 centered at the
origin in the complex plane C is equal to 8.

Theorem 7. The growth rate of Pn is a Perron number for any n A N.

Proof. By Lemma 6, the absolute values of eight roots of DnðtÞ are strictly
less than 2. Since deg DnðtÞ ¼ 9, it is su‰cient to prove that DnðtÞ has a positive
real root which is greater than 2. In order to prove that, we consider wð2Þ. By
section 3.3, we obtain

wð2Þ ¼ 4 ð1a na 25Þ
3 ð26a nÞ:

�

Therefore, by Sturm’s theorem, the polynomial DnðtÞ has a unique positive real
root which is strictly greater than 2 for any n A N. r
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6. Appendix: the Sturm sequence of DnðtÞ and D 0
nðtÞ

In this section, we provide the details about the Sturm sequence SðDn;D
0
nÞ ¼

fd0; . . . ; d9g with polynomial ingredients d0; . . . ; d9 A Q½t� given by (*) in section
5.1.

d0ðtÞ ¼ t9 � ðnþ 3Þt8 � ðn� 4Þt7 þ ð2n� 8Þt6 þ ð2nþ 8Þt5 þ ð2n� 8Þt4

� ð2n� 11Þt3 þ ð3n� 5Þt2 þ ð3nþ 4Þt� 4ðnþ 1Þ

d1ðtÞ ¼ 9t8 � 8ðnþ 3Þt7 � 7ðn� 4Þt6 þ 6ð2nþ 8Þt5 þ 5ð2nþ 8Þt4

þ 4ð2n� 8Þt3 � 3ð2n� 11Þt2 þ 2ð3n� 5Þtþ ð3nþ 4Þ

d2ðtÞ ¼
1

81
fð8n2 þ 66nÞt7 þ ð7n2 � 61nþ 132Þt6 þ ð�12n2 � 60n� 144Þt5

þ ð�10n2 � 160nþ 240Þt4 þ ð�8n2 þ 116n� 498Þt3

þ ð6n2 � 204nþ 216Þt2 þ ð�6n2 � 224n� 258Þt� 3n2 þ 311nþ 312g

d3ðtÞ ¼
81

4n2ð4nþ 33Þ2
fð39n4 þ 266n3 � 2673n2 � 1848n� 1936Þt6

þ ð36n4 þ 612n3 þ 3956n2 þ 4480nþ 2112Þt5

þ ð54n4 þ 470n3 � 1872n2 � 4372n� 3520Þt4

þ ð�88n4 � 776n3 þ 3866n2 þ 6246nþ 7304Þt3

þ ð150n4 þ 1374n3 � 3216n2 � 1660n� 3168Þt2

þ ð162n4 þ 2508n3 þ 8540n2 þ 8870nþ 3784Þt

� 259n4 � 3428n3 � 7161n2 � 8548n� 4576g

Next, we list the coe‰cients a
ðkÞ
i , 0a ia 9� k, of polynomials dkðtÞ, 4a

ka 8, according to (*) in section 5.1. We also provide the denominator of dkðtÞ
as given by the least common multiple of coe‰cients a

ðkÞ
i .

The denominator of d4ðtÞ ¼ 81ð1936þ nð1848þ nð2673� nð266þ 39nÞÞÞÞ2

a
ð4Þ
5 ¼ 8n2ð4nþ 33Þ2ð270n6 � 930n5 � 59765n4 � 72316n3

� 51247n2 � 34920nþ 11920Þ

a
ð4Þ
4 ¼ �16n2ð4nþ 33Þ2ð51n6 þ 1630n5 þ 7368n4 � 68445n3

� 3176n2 � 41152nþ 16768Þ

a
ð4Þ
3 ¼ 8n2ð4nþ 33Þ2ð471n6 þ 6452n5 � 5086n4 � 176746n3

� 54403n2 � 120344n� 8944Þ
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a
ð4Þ
2 ¼ 16n2ð4nþ 33Þ2ð153n6 � 411n5 � 32385n4 � 33106n3

� 44007n2 � 20216n� 7664Þ

a
ð4Þ
1 ¼ �8n2ð4nþ 33Þ2ð579n6 þ 14834n5 þ 101041n4 þ 47610n3

þ 25760n2 þ 3472n� 25280Þ

a
ð4Þ
0 ¼ 16n2ð33þ 4nÞ2ð10304þ 60992nþ 92088n2 þ 112317n3

þ 78944n4 þ 5932n5 þ 33n6Þ

The denominator of d5ðtÞ ¼ 4n2ð33þ 4nÞ2ð11920� 34920n� 51247n2

� 72316n3 � 59765n4 � 930n5 þ 270n6Þ2

a
ð5Þ
4 ¼ �81ð39n4 þ 266n3 � 2673n2 � 1848n� 1936Þ2ð246n8 � 5794n7 þ 360959n6

þ 5606880n5 � 3313218n4 þ 6140122n3 � 3491843n2 þ 2584756n� 544176Þ

a
ð5Þ
3 ¼ 162ð39n4 þ 266n3 � 2673n2 � 1848n� 1936Þ2ð5289n8 þ 5992n7 � 788952n6

� 810030n5 � 5107313n4 þ 118907n3 � 2823408n2 þ 1353973n� 43828Þ

a
ð5Þ
2 ¼ �81ð39n4 þ 266n3 � 2673n2 � 1848n� 1936Þ2ð8442n8 � 32742n7

� 1868957n6 � 1946748n5 � 4253223n4 � 1203496n3 � 1818280n2

þ 440564n� 127008Þ

a
ð5Þ
1 ¼ �162ð39n4 þ 266n3 � 2673n2 � 1848n� 1936Þ2ð6261n8 þ 27352n7

� 543939n6 þ 1168425n5 � 740209n4 � 333809n3 � 454006n2

� 793981nþ 269220Þ

a
ð5Þ
0 ¼ 81ð39n4 þ 266n3 � 2673n2 � 1848n� 1936Þ2ð13008n8 þ 20600n7

� 1607896n6 þ 2420092n5 þ 2017855n4 þ 899112n3 þ 1122697n2

� 1476508n� 45088Þ

The denominator of d6ðtÞ ¼ 81ð�1936� 1848n� 2673n2 þ the266n3 þ 39n4Þ2

ð�544176þ 2584756n� 3491843n2 þ 6140122n3

� 3313218n4 þ 5606880n5 þ 360959n6

� 5794n7 þ 246n8Þ2

a
ð6Þ
3 ¼ �8n2ð4nþ 33Þ2ð270n6 � 930n5 � 59765n4 � 72316n3 � 51247n2 � 34920n

þ 11920Þ2ð403481n10 þ 2480778n9 � 37969219n8 � 158119702n7
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� 1100390746n6 � 216055166n5 � 1160964773n4 þ 282443786n3

� 329580155n2 þ 172728524n� 35052620Þ

a
ð6Þ
2 ¼ 16n2ð4nþ 33Þ2ð270n6 � 930n5 � 59765n4 � 72316n3 � 51247n2 � 34920n

þ 11920Þ2ð169494n10 þ 14649n9 � 18830064n8 þ 62828800n7

� 387398843n6 þ 226406803n5 � 413299018n4 þ 245275527n3

� 138927361n2 þ 67186063n� 4007124Þ

a
ð6Þ
1 ¼ 8n2ð4nþ 33Þ2ð270n6 � 930n5 � 59765n4 � 72316n3 � 51247n2 � 34920n

þ 11920Þ2ð474903n10 þ 4516538n9 � 11601465n8 þ 104831670n7

þ 294141284n6 � 180768204n5 þ 111338775n4 � 296355112n3

þ 31452859n2 � 39181768nþ 10452012Þ

a
ð6Þ
0 ¼ �16n2ð4nþ 33Þ2ð270n6 � 930n5 � 59765n4 � 72316n3 � 51247n2 � 34920n

þ 11920Þ2ð252601n10 þ 1535932n9 � 10172760n8 þ 137682333n7

þ 130244020n6 þ 208421539n5 þ 143139607n4 þ 2115857n3

þ 44003972n2 � 41200307nþ 18745192Þ

The denominator of d7ðtÞ ¼ 4n2ð33þ 4nÞ2ð11920� 34920n� 51247n2 � 72316n3

� 59765n4 � 930n5 þ 270n6Þ2ð�35052620

þ 172728524n� 329580155n2 þ 282443786n3

� 1160964773n4 � 216055166n5 � 1100390746n6

� 158119702n7 � 37969219n8 þ 2480778n9

þ 403481n10Þ2

a
ð7Þ
2 ¼ 81ð39n4 þ 266n3 � 2673n2 � 1848n� 1936Þ2ð246n8 � 5794n7 þ 360959n6

þ 5606880n5 � 3313218n4 þ 6140122n3 � 3491843n2 þ 2584756n

� 544176Þ2ð48400755n12 þ 245803454n11 � 4721345357n10

� 11572421870n9 � 124324436353n8 � 146160412422n7 � 206861074257n6

� 134297550268n5 � 66775078001n4 � 24225751096n3 þ 3620403819n2

� 813838328nþ 111404496Þ

a
ð7Þ
1 ¼ 162ð39n4 þ 266n3 � 2673n2 � 1848n� 1936Þ2ð246n8 � 5794n7 þ 360959n6

þ 5606880n5 � 3313218n4 þ 6140122n3 � 3491843n2 þ 2584756n
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� 544176Þ2ð9127365n12 þ 43738914n11 � 1050600669n10 � 2134594907n9

� 221052668n8 þ 8764159647n7 þ 11937399782n6 þ 16709700491n5

þ 4028829086n4 þ 2954840024n3 � 2598459169n2 � 405956928n

� 67672272Þ

a
ð7Þ
0 ¼ �81ð39n4 þ 266n3 � 2673n2 � 1848n� 1936Þ2ð246n8 � 5794n7 þ 360959n6

þ 5606880n5 � 3313218n4 þ 6140122n3 � 3491843n2 þ 2584756n

� 544176Þ2ð59130903n12 þ 320783028n11 � 5921870437n10

� 16668405100n9 � 117418503841n8 � 151967821848n7 � 180213457131n6

� 140644288440n5 � 51131969275n4 � 32331152680n3 þ 5676560341n2

� 2814520288n� 23940048Þ

The denominator of d8ðtÞ ¼ 81ð�1936� 1848n� 2673n2 þ the266n3 þ 39n4Þ2

ð�544176 þ 2584756n� 3491843n2 þ 6140122n3

� 3313218n4 þ 5606880n5 þ 360959n6 � 5794n7

þ 246n8Þ2ð111404496� 813838328n

þ 3620403819n2 � 24225751096n3 � 66775078001n4

� 134297550268n5 � 206861074257n6

� 146160412422n7 � 124324436353n8

� 11572421870n9 � 4721345357n10 þ 245803454n11

þ 48400755n12Þ2

a
ð8Þ
1 ¼ 16n2ð4nþ 33Þ2ð270n6 � 930n5 � 59765n4 � 72316n3 � 51247n2 � 34920n

þ 11920Þ2ð403481n10 þ 2480778n9 � 37969219n8 � 158119702n7

� 1100390746n6 � 216055166n5 � 1160964773n4 þ 282443786n3

� 329580155n2 þ 172728524n� 35052620Þ2ð1462545045n14

� 10472627469n13 � 402243294759n12 � 1104112693071n11

� 8571517376059n10 � 16797900884717n9 � 22904507347277n8

� 22168784110521n7 � 14235620251809n6 � 6907194126551n5

� 2062300172501n4 � 196719185377n3 � 72614586920n2

þ 4391952n� 226865664Þ
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a
ð8Þ
0 ¼ �16n2ð4nþ 33Þ2ð270n6 � 930n5 � 59765n4 � 72316n3 � 51247n2 � 34920n

þ 11920Þ2ð403481n10 þ 2480778n9 � 37969219n8 � 158119702n7

� 1100390746n6 � 216055166n5 � 1160964773n4 þ 282443786n3

� 329580155n2 þ 172728524n� 35052620Þ2ð682442280n14

� 13967744415n13 � 318617986273n12 � 866028050552n11

� 5973136686946n10 � 11470936502501n9 � 15278417145211n8

� 15018314214172n7 � 9591556809634n6 � 5038052836203n5

� 1582742665577n4 � 286371055374n3 � 76587929392n2

� 3723242592n� 226865664Þ

Finally, we give the details of d9 ¼ d9ðnÞ A Q.

The numerator of d9 ¼ 81ð39n4 þ 266n3 � 2673n2 � 1848n� 1936Þ2

ð246n8 � 5794n7 þ 360959n6 þ 5606880n5 � 3313218n4

þ 6140122n3 � 3491843n2 þ 2584756n� 544176Þ2

ð48400755n12 þ 245803454n11 � 4721345357n10

� 11572421870n9 � 124324436353n8 � 146160412422n7

� 206861074257n6 � 134297550268n5 � 66775078001n4

� 24225751096n3 þ 3620403819n2 � 813838328n

þ 111404496Þ2ð36591985143n15 � 329358176568n14

� 12543536009205n13 � 52547213609708n12

� 300328073161252n11 � 864495115585896n10

� 1442487093482529n9 � 1706342509194068n8

� 1467752091940232n7 � 887326796059424n6

� 391684164932313n5 � 109950671986036n4

� 10905495292115n3 � 4664082142496n2

� 93566282832n� 10889551872Þ

The denominator of d9 ¼ 4nð4nþ 33Þ2ð270n6 � 930n5 � 59765n4 � 72316n3

� 51247n2 � 34920nþ 11920Þ2ð403481n10 þ 2480778n9

� 37969219n8 � 158119702n7 � 1100390746n6
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� 216055166n5 � 1160964773n4 þ 282443786n3

� 329580155n2 þ 172728524n� 35052620Þ2

ð1462545045n14 � 10472627469n13 � 402243294759n12

� 1104112693071n11 � 8571517376059n10

� 16797900884717n9 � 22904507347277n8

� 22168784110521n7 � 14235620251809n6

� 6907194126551n5 � 2062300172501n4

� 196719185377n3 � 72614586920n2 þ 4391952n

� 226865664Þ2
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