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RELATIONSHIPS AMONG NON-FLAT TOTALLY GEODESIC
SURFACES IN SYMMETRIC SPACES OF TYPE A AND
THEIR POLYNOMIAL REPRESENTATIONS

HipEYA HasHIMOTO, MisA OHASHI AND KAZUHIRO SUZUKI

Abstract

We give computational systems of polynomial representations of the composition
maps of non-flat totally geodesic surfaces of the symmetric spaces of type A which are
obtained by K. Mashimo, and the Cartan imbeddings of symmetric spaces of type A
to SU(n). We obtain the relationships among the non-flat totally geodesic surfaces in
symmetric spaces of types Al, AIl and AIl by this methods.

1. Introduction

In [6], K. Mashimo classified non-flat totally geodesic surfaces in sym-
metric spaces of classical type. Since the induced metric on the symmetric
space by Cartan imbedding coincides with the normal metric (which comes
from Killing form on the symmetric space) up to positive constant, the com-
position map of Mashimo’s totally geodesic immersion and the Cartan im-
bedding is a totally geodesic immersion of two dimensional sphere S? to
SU(n).

We will show that this totally geodesic immersion is a some restriction of the
irreducible representation of the 3-dimensional simple Lie group SU(2) to SU(n).
By using this, we give methods of the computation of this composition map
by taking account of polynomials very quickly (Theorems 5.1-5.3). From these
explicit representations of totally geodesic immersions of S? of symmetric spaces
of type A, we obtain the relationships among non-flat totally geodesic immersions
of 3-types. Also we can compute the Gauss curvature of the totally geodesic
surface which is corresponding to the irreducible representation of SU(2) to
SU(n), in the unified way.
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2. Trreducible representation of SU(2)

We give the complex irreducible representations of special unitary group
SU(2). Let V(d) be the complex vector space of homogeneous polynomials
P(z,w) of degree d in two variables (z,w) of C?. That is

V(d) = spanc{z*w? ¥ |k €{0,...,d}}.
The Hermitian inner product {,) on V(d) is given by

d
(2.1) o foy =Y kNd — k)lagby,
k=0
for fi(z,w) = S0 garzFwd* and fa(z,w) = S0 bezbwd* e V(d). We set
kyyd—k

(2.2) Pi(z,w) = e,

kNd — k)!
for any ke€{0,...,d}. Then, (P Py --- P;) is an orthonormal basis of

V(d), with respect to (2.1).
Let p,: SU(2) — End{V(d)} be the representation which is defined by

23) ataP) e =P (£ ) = Pmia),

for any function Pe V(d), and ge SU(2). Then the representation matrix
Ug.1(g) of the representation p, with respect to the orthonormal basis is given

by
(Pa(@)Po pa(g)P1 -+ pa(g)Pa) =(Po P - Pa)itgi1(9),
then u,,,(g9) € SU(d + 1) C M(g41)x(@a+1)- We put n=d +1, then for any g =

(Z __b> e SU(2) and i,je {l1,...,n}, the (i, j)th entry of the matrix u,(g) is
a
given by

(2.4) (ﬂn(g)),-,-=</)n_1( )P, Pi1)

.Z ) (s Cs -1 C)at a1,

'St)

where s runs in the set {0,...,n — j} and ¢ runs in {0, ..., j — 1} with the relation
t=j—i+s.

3. Symmetric spaces of type A and Cartan imbeddings

In this section, we give the Cartan involutions of type A, and the decom-
position of the Lie algebra su(n) of SU(n) by these involutions. Let SU(n) be
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the special unitary group of degree n defined by
SU(n) = {g € Myxu(C) | <{gu,gvy = {u,vy for any u,ve C", det(g) = 1}.

We denote by o the Cartan involution of SU(n) and K = {g € SU(n) |o(g) = g}
is the isotropy subgroup of o.

We write down the Cartan decomposition of the Lie algebra su(n) by
o. Since ¢ is the Cartan involution, the differential .|, at the identity ele-
ment e

g4, : su(n) — su(n)
has two eigenvalues +1. Let p and T be the eigenvector space corresponding to
the eigenvalue —1 and +1, respectively. Then the subspace p can be identified
with the tangent space T.x(SU(n)/K) at the origin eK € SU(n)/K. We recall

Cartan involutions of type A and the Cartan decomposition of su(n) by each
involution. To represent this, we put

J = <On><n _In )7 Ip.q — ( IP Op><‘]>.
In 0n><n ' qup _Iq

Then, the Cartan involutions and decompositions are given by

Type Cartan involution i P
Al o1..(9) = g (outer) so(n) v-1U
zZ, Z
All an2m(g) =JgJ ' (outer) sp(n) (Z; 7231 )

Opp Z)

AIL | 0w, (.(9) = Dpggq (inner) | s(u(p) ® u(a) (Z 0
axq

where U € M,,,,(R) satisfies ‘U = U, tr U =0, Z, € su(n), Z, € s0(n,C) and Z €
M,,(C). We give the definition of Cartan imbeddings as follows. For any
g € SU(n), the map Car, : SU(n) — SU(n) is defined by

Car,(g) = go(g™")-
The map Car, induces the imbedding
Car, : SU(n)/K — SU(n),
which is called Cartan imbedding. The image of this imbedding is a totally

geodesic submanifold in SU(n). The table of Cartan imbeddings of type A is
given by
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Type Source Target Cartan imbedding

Al SU(n)/SO(n) SU(n) Car,, ,(g-SO(n)) =g 'y

All SU(2n)/Sp(n) SU(2n) Carg, ,, (9 Sp(n)) = gJ 'gJ !

Alll | SU(p+q)/S(U(p) x Ulq)) | SU(p+q) | Catoy,,(9-SU(p) x U@))) = glp.q 'dlp.q

4. Lie triple system and the totally geodesic surfaces

In [6], K. Mashimo classified non-flat totally geodesic surfaces in symmetric
spaces of classical type. In this section, we briefly recall his result. For any / €
{I,I, I}, we define the map .# : R*> — SU(n)/K; as

A (t,s) = exp tX; exp sX{K;,

where K; is the isotropy group with respect to the symmetric space of type Al.
Here X}, X! € p; defined in the below. Then we obtain non-flat totally geodesic
immersions .#; (surfaces) in symmetric spaces of type Al

For Type Al, we set the two tangent vectors X,, X € p; as follows

n
(4.1) X} =V=1) (n+1-2)E;,
i—1
n—2
(42) X3I,a = —v-1 [Z \/ l(n — i)Sj,i+l +éevn — ISnfl,n s
i=1
for

1 if n=1 (mod2),
T4l if n=0 (mod2),

where E;; is the n x n matrix whose (i, j)-th entry is 1 and all of whose other
entries are 0, and S, ; = E; ; + E; ; is the symmetric matrix. We put the subspace
m = spang{X), X} in p;. In fact, [X;,X],] et=s0(n), and the 2-dimensional
non-abelian subspace m in p is a Lie triple system. We obtain the relationship
between the two vectors X;, X3, and the matrix of irreducible representation s,.
If we set the base of su(2) by

R )N S P )

then we can easily check that, for ¢ = +1,

= X1

i
=0

o n(explE)
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for any ie {l,2}, and

_ vyl
- X3,+1’

d
aﬂn(eer(tEa)) .

where X! =1[X), X]]et;. For e=—1, we set

Ad(1,-11) <5[#n(eXP(fEi))

for any i€ {l,2}, and

Ad(I,—11) (Z;,un(exp(t&))

> = X3I~71~
=0 '

In the same way, for type AIl set the two tangent vectors in,X3II € Py
by

n—1
(4.4) X' =" Viln=)(Giiv1 = Gusinyinn);
i=1

n—1
(4.5) X' =v-1 Z Vi(n =) (Siit1 + Spvintiv),
pm

where G;; = E;; — E;; is the skew-symmetric matrix. The 2-dimensional non-
abelian subspace m = spang{X,', XJ'} C py is a Lie triple system.
Next, set the matrix Q, € O(n) as

1
0 1
(4.6) O = € O(n),
L 0
1
that is (Qn); = 5]-’l+1_i. We define the matrix of reducible representation uy ,,(g)

of SU(2) by

47)  pn2a(9) = Ad(L, @ 0n)Au,(9)
. ( I, Onxn) (ﬂn((]) Opnxn ) ( I, Oyxn )1
B On><n Qn Onxn Hy (g) Onxn Qn .

By (4.3) and (4.6), we have
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d
@8) & i sa(exp(eE)| = x],
=0
d
(4.9) %ﬂn,zn(eXP(tES)) = —Xj,
=0
d
(4.10) %ﬂ]LZn(eXp(ZEﬁ) =X,
=0

where X' = 11X X1 e fy.
Lastly, for the symmetric space SU(p +¢)/S(U(p) x U(g)) of Type AIl,
where p =g or p=g¢q+1, set the two tangent vectors XU, XJ0 e py; by

q
(4.11) X" :Z\/(Zi_ D(p+q+1-20)Gi g4

i=1

p—1
+Y V2i(p+q—-20)Gpiiip,
i=1

(4.12) X' =v-1 Xq:\/(zi—l)(P+CI+1—2i)Sp+iﬁi
=1

i=

p—1
+ ) V2i(p+ g —20)Sis1 pri] -
i=1

Then the non-abelian 2-dimensional subspace m = spang{ X1, X1} C py; is a Lie
triple system. We give the relationship between the basis XM, XJI' and the
matrix of irreducible representation py (, ,(9). We set the matrix Q' € O(p + q)
by

N (1<i<p),
(4.13) (05 =19 a6 .
: J; (p+1<i<p+yq).
Let uy (,.4(g9) be the matrix of irreducible representation of SU(2) defined by
(4.14) fm (.0 (9) = Ad(Q )i, 4 (9) = Q'tty 4 (9)(Q') .
By (4.3), we have

d
(@15) s (exp(uEr) =X
=0
d
(4.16) Eﬂm,zn(exp(ﬂﬁ)) = _X31]17
=0
d
(4.17) Eﬂm,zn(eXP(sz)) =x",
=0

where X' =110 X1 e gy,
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5. Composition of Cartan imbedding and g,

In this section, we give the new methods of construction of non-flat totally
geodesic surfaces in symmetric spaces of type A. Since the images of the Cartan
imbeddings of type A are totally geodesic submanifolds and the irreducible
representation are the totally geodesic immersions of S? into symmetric spaces of
type A, the composition map of these two maps is the immersion of S? to SU(n).
In this case, we can show that the image of the composition map is a non-flat
totally geodesic surface (which is diffeomorphic to S or RP?) in SU(n). The
purpose of this paper is to give the system of computation of the representations
of these maps by polynomials. In order to show our result (Theorem 5.1), we
start by showing the following Lemma.

LemMa 5.1. Let u,: SU(2) — SU(n) be the irreducible matrix representa-
tion of SU(2) and o1, :SU(n) — SU(n) be the Cartan involution of type AL
Then

Oln© ﬂn(g) = U, o 0-1.2(9)7
for any g e SU(2).

Proof. For any g = (a __b>eSU(2), the (i, j)th entry of the matrix
t,(g) is given by b a

(UI,n © /un(g))zj = (lun(g))ll

for any i,je{l,...,n}. Hence we obtain the desired result. O

TurOREM 5.1. Let Car,,  : SU(n) — SU(n) be the map defined by
Car,, ,(h) = hoy (k™) = h 'h,

for any he SU(n). Then the composition map Car,,, o u, : SU(2) — SU(n) sat-
isfies
Carﬂl.n o ft,(9) = py © Caral.z(g)

for any g € SU(2) where p, : SU(2) — SU(n) is the irreducible matrix represen-
tation of SU(2) of SU(n).
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Proof. We see that

(5.1) Carg,, © 1,(9) = t2(9)T10((12(9)) ™) = 1a(9)T1n(tu(9 7))

By Lemma 5.1 and u, is a homomorphism, we get

(52)  wn(@)ora(tta(9™) = tal@)ttu(o12(97")) = (901,209 7")) = 1, © Carg,, (9)-
By (5.1),(5.2), we obtain the desired result. O

COROLLARY 5.1. Let Caram ou, be the map defined as above (in Theorem
5.1), then we can define the immersion ¢y : SU(2)/SO(2)(~ S*) — SU(n) as

@10 nl(g) = éar(f{,n O:un(g)a

for any g = (Z __b> e SU(2) where my: SU(2) — SU(2)/SO(2) in the natural
a
projection. By Theorem 5.1, the immersion is given by
o —1lu
= -S0(2)) = ,
promie) = mlo-50@) =m(( 2 V"))

where
< o \/1u>(a2+52 ab—&l;)car ((a —E))
V=lu & ab—ab @ +b? \\bp a))
Here o =a*>+b*>e C and u= —/—1(ab — ab) € R satisfy u*+ oz = 1.

Next, to prove Theorem 5.2, by (4.6) we prepare the following two
Lemmas.

LemMmA 5.2. For any g€ SU(2), we have
Ad(Q,)(uy 0 01,2(9)) =Wl 0 0111,(1,1)(9)-

Proof. By (2.2), we have

(5.3) Pu(@2)(Po o Puot)=(Py -+ Pyuy)On
Therefore, we obtain

(5.4) 1n(Q2) = On.

We can easily see that

(5.5) Ad(Q2)(01,2(9)) = om,(1,1)(9)-

By (5.5), we get
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(5.6) Ad(Q) (1, (01,2(9))) = Ad(1,(Q2)) (1, (91.2(9)))
= U, (Ad(Q2)(a1,2(9)))
= tu(om,1,1)(9))
By (5.6), we get the desired result. O

LemMma 5.3. Let py o, : SU(2) — SU(2n) be the reducible matrix represen-
tation of SU(2) in (4.7) and ou,2, : SU(2n) — SU(2n) be the Cartan involution of
type All.  Then

o1,2n © K, nm(9) = Hu,2n © 0[[1,(1,1)(9),

for any ge SU(2), where oy 1,1y : SU2) — SU(2) is the Cartan involution of
type AllL

Proof. By Lemma 5.2, we have

0n><n
O'H,znoﬂn.zn(g):Ad<< I )
n n><n

8((or, "*”))(’é",fif )
<

Ad(( Iy W)>Ad ( >></ln(g) 0)
Ouxn Ouxn Ouxn ﬂn(g)
1, Ouxn Ad Qn ,un ar 2(0)) Onxn
= Ad
Ouxn Ouxn Ad(Qn)ﬂn(al,2(g))
:Ad<< In nxn))(ﬂnoaﬂl 0n><n )
Ouxn Onsxn Hyp © aﬂl,(l.l)(g)
= HM11,2, © 0, (1, 1)(
Hence we obtain the desired result. O

TueoREM 5.2. Let Car,,, : SU(2n) — SU(2n) be the map given by
Cary, ,,(9) = gonan(g™") = gJg] ",
Then the composition of two maps Cary, , o iy 1, : SU(2) — SU(2n) satisfies

CarJﬂ.2n O M1, 26 (g) = Hi1,20 © Carﬁm,(l,l) (q)a

for any ge SU(2), where py,,:SU(2) — SU(2n) be the reducible matrix rep-
resentation of SU(2).

Proof. We see that
(5.7) Carau.zn o :u]I,Zn(g) = ﬂIL2n(9)011,2n((ﬂ11,2n(9))71) = ﬂH,Zn(g)GHQn(ﬂH,Zn(gil))'

By Lemma 5.3 and uy ,, is a homomorphism, we get
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(5.8) #n‘zn(Q)Ungn(ﬂu‘,zn(g*l)) = .2, (9)tn, 20 (0, 1, 1)(971))
=ty 2n(gom, 1,1y (97"))
= HUn,2, © Carﬂm,(l,l) (g)

By (5.7),(5.8), we obtain the desired result. O

COROLLARY 5.2. Let Caram o Uy o, be the map defined as above (in Theorem
5.2), then we can define the immersion gy ,,: SU(2)/S(U(1) x U(1)) — SU(2n)
as

@11,20 © I (g) = éaraH.Zn o iuIl,Zn(g)7

) _b> e SU(2) where my : SU(2) — SU(2)/S(U(1) x U(1)) is

the natural projection. By Theorem 5.2, the immersion is given by

for any g = <a

D1, 20 onm(g) = ¢H,2n(9 -S(U(1) x U(1))) Zﬂn,zn<(; _f))

<oc —ﬁ_> _ lal® — |b]? —2ab _ Car, <<a —E)).
ﬁ o Z(jb |a|2 o |b|2 I, (1,1) b a

Here o= |a|* = |b|* € R and = 2ab e C, satisfy o*+ pf = 1.

where

Lastly, to prove Theorem 5.3, we prepare the following Lemma.

LEMMA 5.4. Let piy (.4 : SU(2) — SU(p + q) be the irreducible matrix rep-
resentation of SU(2) and o, (p.q) : SU(p +q) — SU(p + q) be the Cartan involu-
tion of type A, where p=¢q or p=q+ 1. Then

O, (p.q) © 1, (p,q)(9) = L, (p,q) © Om,(1.1)(9),

for any ge SU(2).

Proof. Let (P --- P . ) be the basis of V(p+g¢—1) defined by,
(5.9) (P(,) 1,J+q—1) =(Po - Pp+tI*1)(Ql)_l
where Q' is defined in (4.13). Then we have
(5.10) p(=h)(Py - P ) =Py - Py ).

By (5.9),(5.10), we get

(5.11) AdQ ity y(111) = Iy
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Therefore, by (4.14) and (5.11),

(512)  om (p.qg) © Hm,(p.q)(9) = Ad(L, 4) Ad(Q")it,,, ,(9)

O'ty g (111)(Q') ) Ad(Q")1ty 4 (9)
0") (1, (1)1t 4(9)
0"ty o(Ad(111)(9))
Oty q(om,1,1)(9))

= M, (p,q) © 0[[[,(1,1)(9)-

By (5.12), we obtain the desired result. O

THEOREM 5.3. Let Cargmvw) :SU(p+q) — SU(p+q) be the map given
by
Caryy , (h) = how, (o (h™") = hl, 4 'hI,

for any he SU(p+q). Then the composition map CarJIII o O 1, (p,g) P SUR2) —
SU(p + q) satisfies

Cargy ., © tm, (p.q)(9) = Hm,(p,q) © Caloy 1, (9),

for any g e SU(2) where uy (, o : SUQ2) — SU(p +q) be the matrix of irreduc-
ible representation of SU(2).

Proof. We see that

(513) Car”ﬂl(nq) © Hm, (p,q) (g) = Hm, (p.q)(g)aﬂl‘(p,q)((:u[[l.(p,q)(g))il)
=t (p.) (9T, (. ) (K, () (9 ))-

By Lemma 5.4 and uy (,,) 1s @ homomorphism, we get
(5.14) g (o)), (p.g) (B (.9 (97) = ttm, (p. ) (Dt () (Om, 1.1)(9"))
=t (p (90w, 1.1)(97"))

= Hm, (p,q) °© carﬂm\a‘u (9)-

By (5.13),(5.14), we obtain the desired result. O

COROLLARY 5.3. Let Cargm( o fm,(p,q) e the map defined as above (in
Theorem 5.3), then we can define lhe lmmerszon om:S*=SU2)/S(U(1) x U(1))
—SU(p+4q) a

¢m © mm(g) = caro’m,(p,q) ° ﬂm,(p,q)(g),
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for any g = (a _db) eSUQ2) and myy : SU2) — SU(2)/S(U(1) x U(1)) is a

b

natural projection. By Theorem 5.3, the immersion is given by

owe mn(s) = oua- SV < V) = (3 7)),

(a ﬂ)z al* = |b|*  —2ab _ Car, ((a b))
B« 2ab  |a* — |b? "E0\\ba

Here o = |a|2 - |b|2 €R and p =2ab e C, satisfy o>+ pf = 1.

where

By Corollaries 5.1 and 5.3, we obtain the topological structure of the image of
the totally geodesic surfaces.

ProPOSITION 5.1.  If n is odd, then the non-flat totally geodesic surface which
is corresponding to the irreducible representation of type Al or Al in SU(n) is
diffeomorphic to a 2-dimensional real projective planes. If n is even, the non-flat
totally geodesic surface of the same type in SU(n) is diffeomorphic to a
2-dimensional sphere.

6. Isomorphism from the totally geodesic 2-sphere S> in SU(2) to
the complex projective space P!'(C)

Let ¥ :SU(2) — SU(2) be the map defined by

1/1 i 1 —i
‘P(g):Ad(Ko)gizKogK01:§<i l)g(—i 1)

1 /1 i
for g € SU(2), and K, :7§<i i) (see [3]). Then the map ¥ is an inner
automorphism of SU(2), and satisfies
cos  —sin 0 e 0
(6.1) ‘P<g<sin0 cos 0 ))‘P(g)( 0 e”’>'
The map ¥ induce the map
(6.2) W SU(2)/SO(2) — SU(2)/S(U(1) x U(1))(~ P (C)).

Therefore we get the following diagram;

SU(2) SU(2)

e e

SU()/S0(2) —— SUQ)/SU(1) x U(D)
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that is, they satisfy
(6.3) mmo ¥ = yom.
By (6.1), we also obtain
(6.4) ¥ o Car,,, = (Njarom_“‘l) o'.
6.1. Relationship between totally geodesic surfaces of type Al and
type AIIl

By (6.3), we note that the map ¢ : SU(2)/SO(2) — SU(2)/S(U(1) x U(1))
is a diffeomorphism and satisfies

Y (r1(g)) = Ad(Ko)mi(9)(= 7m 0 ¥(9))

for ge SU22). If n=p+q (p=¢q or p=g—+1), then we define the map
Fy :SU(n) — SU(n) =SU(p+q) as

Fu(h) = Ad(Q'1,(Ko)) (h).

for he SU(n). We note that the map Fy is a diffeomorphism. Then we
have

THEOREM 6.1. Let Fyy: SU(n) — SU(n) =SU(p+q), forn=p+q (p=¢q
or p=gq+1),and y : SU(2)/SO(2) — SU(2)/S(U(1) x U(1)) be maps defined as
above, then

Fuogy=opgoy.
Or equivalently,

om = Fuoproy .
where two maps ¢; and ¢y are defined in §5.

Proof. In fact, for any g e SU(2), we have

Fu o gy omi(g) = Fm o , o Carg, , (9)
= (Q'1,(Ko))t,(Carg,,(9))(Q'1,(Ko)) ™
= 0'u,(Ky Car,,,(9)K; )0
= fm (p.g © PO Carg,_z(g)
= Hm, (p,q) © éarom.(tl) °'¥(9)
= ¢m o 7m o ¥(g)
= gm0y om(g). O
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We note that if p = ¢+ 1, therefore n = 2¢ + 1, then

Fu(g) = Ad(Q'1,(Ko))(9)
for (g e SU(n)).

6.2. Relationship between totally geodesic surfaces of type AI and
type AIl
We define the map Fy: SU(n) — SU(n) x SU(n) (C SU(2n)) as

Fu(h) = Ad(p,(Ko) @ Onpt,(Ko))Ah
= Ad(u,(Ko) ® w,(02Ko))Ah

for he SU(n). Then Fy is a difftomorphism from SU(n) to its image of Fy.
We have

THEOREM  6.2. Let ( ) — SU(n) x SU(n) (C SU(2n))  and
Y :SUQ2)/SO(2) — SU(Z)/S(U( U(1)) be maps defined as above, then

Frogp=gpoy.
Or eqivalently
on = Fuogproy™

where two maps ¢; and ¢y are defined in §5.
Proof. In fact, for any g € SU(2), we have

Fo gy omi(g) = Fuou, o Carg,,(9)
= Ad(1, ® Q) A(Adu, (Ko)u,(Car,, ,(9)))
= Ad(I, ® 0,,)Au,(Ad(Ko)(Cary, ,(9)))
= Ad(I, ® 0,)A(u, o ¥ o Cary, , (9))
= Ad(I, ® 0,)A(, o Caryy , , 0 ¥(9))
=gpgonmo ¥(g)
=gpoyom(g). O

7. Gauss curvature of the non-flat totally geodesic surface in SU(n)/K

In order to define a bi-invariant Riemannian metric {,)» on SU(n), we set
the metric on 7,SU(n) as

(7.1) (X, Y), =Re(tr('XY)),
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for any X,Y € T,SU(n). We extends this metric whole on SU(n) by the left-
translation of SU(n). By (4.1),(4.2), we put

d n
le = Eun(exp(th))l,:o =v-l Z(” +1-20)E;;,
=1

d n—2 : :
X3 1= oo t(exp(sE3)) g = V=1 Vil =) i1+ V=18, 1]
i=1

Then <X}, X{>) =0. Define the map ¢): R> — SU(n) by
o)(t,s) = exp(tX;) exp(2sX317+1) exp(tX;).

The map ¢! is the local parametrization of the immersion ¢;. In order to
compute the induced metric, the local tangent vector fields along the immersion
¢ are given by

0
(12) ot () = Xioh(es) + b33
and
0 J 1 1 0
(13) ot (%) =2 Ad(erw X)X b0
= 207(1,5) Ad(exp(—1X))) X5 ;.

PropoSITION 7.1.  Let @) : R* — SU(n) be the immersion defined as above.
Then the induced metric pY*{,» is given by

(74) o0 oy = 20X + <X3, Ad(exp(=2sX ) X))} di” + 4|1 X5, ||* ds”.
The Gauss curvature K of image of ¢? with respect to the induced metric is given
by

2
X xS L 3

7.5 - _ ‘
- 42X 1P nle =D+ 1)

—xl

where [X3, X3 341

3,+1] :XZIXI

$ X, is a usual Lie bracket.

Proof. Since the immersion ¢) is a totally geodesic, the Gauss curvature K
of this surface coincides with the sectional curvature of the 2-dimensional sub-
space spanned by X, and X; , of SU(n) (with respect to the bi-invariant metric
{,> defined as above). That is, K is given by

) o RO X
. - 2 2 ’
X145
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where R(X,Y)Z = ([Vx,Vy] = Vix,y))Z = —$[[X, Y]Z] is the curvature tensor
of SU(n) where V is a Levi-Civita connection of the bi-invariant metric which
satisfies VyY =1[X, Y] for left-invariants vector fields X, Y, Z on SU(n) (for
details see [1]). By (7.6) and Theorem (3.9) in [1], we obtain

2
(R(X;, X3 )X5 X (11X X5

(7.7) = .
PERIXE L AP
By (4.1),(4.2), we have
nn—1)(n+1
(18) X7 = a2 =M= e D)
and
(79) jxd xd, g = e Dt D)

3
Therefore, we obtain
P52 < 0
A XFPI XL 1F nle—D(n+1)

By Proposition 7.1, we obtain

COROLLARY 7.1. The Gauss curvature of non-flat totally geodesic surfaces
which are corresponding to the irreducible representation of SU(2) to SU(n), (with
the same codimension in SU(n)) in symmetric space of type Al and type Alll is the
same value

3

K:n(n—l)(n—&—l)'

COROLLARY 7.2. The Gauss curvature K of non-flat totally geodesic surface
of SU(2n) (which is corresponding to the irreducible representation of SU(2) of
SU(n)) in symmetric space of type All is given by

1 3
G —
2 n(n—1)(n+1)

8. Examples
By Corollaries 5.1, 5.2 and 5.3, we obtain the following example.
8.1. Type Al

The subspace m which is spanned by the following matrices X,, Xj | is a
Lie triple system of py;
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4 0 0 0 O 0o 2 0 0 O
20 0 0 2.0 V6o 0 0
Xy=v-110 00 0 0|, X3 =-V-1l0 V6 0 V6 0
000 -2 0 0 0 Vo 0 2
00 0 0 -4 0o 0 0 2 0

The matrix of irreducible representation of SU(2) in SU(5) is given by

us(g) =

at 2ab V6a%h? 2ab? b*

—2a°b  a(la]> =3p*)  Veab(la]’ = [b]*)  B(3la]’ —[b*)  2ab’
V6a?h? Veab(|b|* — |a*) |a|* —4|a)?|b|* + [b|* V6ab(|al* - |b]*) V6a*h?
—2ab®  B*(3la* = |p])  Veab(|p]’ —[a|*)  a*(al*-3[p*)  2a%b
bt —2ab? V6ah? —2a%h at

where g = (a _b) € SU(2). Then the map from SU(2)/SO(2) to SU(5) is

given by a

p1(m(g))

(5 73")

ot —2v—=Tcu —V6u2u? —2v—-Tu’n u*
—2vV/=1du  o2(|a* = 3u?) —vV/=16ou(|a)* — |u|?) —u2(3af* — u?) O NEST
=| —v6u2u? V=16 —|o*) ot — 4ol +ut vV =TV6au(|a)? —u?)  —V6atu? |,
2V = Toud —u2(3la)? — u?) V=1v6au(u? — af?) 72(|of? = 3u?) —2V/=15%u
u 2v/—lau? —V6a%u? —2v—-1a%u at

where o =a?>+b> and V—lu=ab—ab as above ni(g) € SU(2)/SO(2). The
Gauss curvature K is given by

K=—.
40

8.2. Type Alll
The subspace m which is spanned by the following matrices sz, X3m is a
Lie triple system of py;

0 0 0 2 0 0 0 0 2 0
0 0 0 —vV6 V6 0 0 0 V6 V6
xf=10 0o o o 2|, xr=vV-1]0 0 0 0 2
-2 V6 0 0 0 2 V6 0 0 0
0 —vV6 2 0 0 0 V6 2 0 0
The matrix of irreducible representation of SU(2) in SU(5) is given by
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ﬂm,(s,z)(g)
= ((5 7))
Hm, (3,2 b a
a* V6a2b? bt 2a3b 2ab3
V6a?b? |al* — 4lal’|b|* + [b]* V6ab?> V6ab(|b|* — |a|*) V6ab(|al® — |b|*)
= b* V6a2b? at —2ab? —2a%b

—2a*h  Veab(la|* — |b*)  2ab*  @*(ja]’ = 3[p*)  B*(3lal* - |B]?)
—2ab®  Veab(|p|* —|a’) 2% b*(3lal* = |p]*)  @(ja® - 3]b]?)
The map of SU(2)/S(U(1) x U(1)) to SU(5) is given by

¢m(7m(g))
ool )
o4 \/gazﬁ‘z B 2438 2033
Veu2p® ot —aa?|p) + Bt V6B Veop(fIF —2) Veup(a® — %)
= I V602 B> ot —2uf? —2038 ,

—203f  Veaf(a? —|B%)  20p o223 B3 - IB)
“2f Veap(p o) 208 PGS -1 22 =3I
where o = |a|* + |b|* and f# = 2ab. Then the Gauss curvature is constant and its

value is
1

K=—.
40

From these two examples, we see that

Fig o gy omi(g) = oy o mm o P (g).

This relation is a prototype of Theorem 6.1. We note that the following relation
holds

Ad(Q")us(g) = A, (3‘2)(9)

1 00 0O
001 00
where O'=10 0 0 0 1
01 000
00010

8.3. Type All
The subspace m which is spanned by the following matrices Xy, X! is a
Lie triple system of py.



RELATIONSHIPS AMONG NON-FLAT TOTALLY GEODESIC SURFACES 221

0o 2 0 0 0
-2 0 V6 0 0}
0 —v6 0 V6 0 Osxs
0 0 -6 0 2
I B} T |
0 -2 0 0 0
2 0 —vV6 0 0
Osys 0 vV6 0 V6 0
0 0 Vv6 0 2
0 0 0 20
0 2 0 0 0
2 0 V6 0 0
0 V6 0 V6 0 Osys
0 0 V6o 0 2
= IR R R
‘0 2 0 0 0
2 0 V6 0 0
Osy5 0 V6 0 V6 0
0 0 Vv6 0 2
0 0 0 2 0

The following is the corresponding matrix of reducible representation of SU(2)
in SU(10).

9 Osy
8.1) um(g)_(f.‘%?!?_.________f__s _____ )

(en(@) (usonm(g) Osxs )

mm(g)) =\ il )

P ot Osxs 1 Ad(Qs)us o tm(g)

where

(8.2)

Ad(Qs)py o mi(g)
at 2534 V632 25 B
236 #(jaf> =387 Veap(pt—lo®)  BGl—IBP)  —2ap’

= | vea2p* Veap(|e)* — 1B17) (lo* — 4lal?|BI” + IBI*) V6ap(BI> - |of*) V6u2p?
wp POl - 187 VBl — IB1P) (e = 31817 —208
B 203 V6e2B? 203p ot
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Here o = |a|*+|b|* and B =2ab as above my;(g) € SU2)/SU(U(1) x U(1)).
By (8.2), we get the Gauss curvature as

1
K=—.
80
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