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¢-SERIES RECIPROCITIES AND FURTHER 7-FORMULAE
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Abstract

By examining reciprocal relations of basic well-poised, quadratic and cubic series,
we establish g-analogues of three infinite series for 1/7? due to Guillera (2003) and
J-parameter extensions of three infinite series for 1/z due to Ramanujan (1914).
Several further infinite series identities of Ramanujan-type are also derived as
consequences.

1. Introduction and motivation

One century ago, Ramanujan [19] discovered 17 remarkable infinite series
for 1/z. Recently, there has been growing interest in finding new identities of
Ramanujan-type. By using the WZ-method, Guillera [15-18] detected numerous
identities of Ramanujan-type. Borweins [4, 5], Chan et al [7, 8] and Zudilin [22]
found further formulae via modular equations. More comprehensive investi-
gation has been made by Chu and Zhang [9, 10, 12] through the hypergeometric
series approach.

Now that most hypergeometric series results have their g-series counterparts
(see Gasper-Rahman [14] for example), it is natural to ask whether these infinite
series expressions concerning 7 admit g-analogues. We find that some trans-
formations of g-series due to Chu-Zhang [11] can be employed to answer affir-
matively this question in some cases. Instead of presenting a full coverage of
this topic, we are limited here to exemplify a few representative series.

The objective of this paper is twofold. First in Section 2, we shall derive
g-analogues of three infinite series for 1/z7% of Guillera [15, 16] and A-parameter
extensions of three Ramanujan’s series by examining carefully one reciprocal
relation of well-poised series and two reciprocal relations of quadratic series.

Then in Section 3, we shall explore the reciprocal relation of iteration pattern
[30111] that is not covered by the compendium [12]. Even though this trans-
formation of cubic series is quite complicated, its reduction form (as ¢ — 1) will
be shown to be very useful, via bisection and trisection series, to deduce several
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new identities of Ramanujan-type. Four elegant formulae are anticipated below,
where the first one confirms the infinite series expression for {(3) conjectured
experimentally by Sun [20, Conjecture 8]:

+ Example 14:

21 * 11, 1, 1, 1, 1 13+38k+28k2
-3 |
2 O=203 3 1 s 5T

+ Example 22:

94\/§:§:‘§, 2 %'2+21kk

2983n =1, 1, 1] (=27)
+ Example 23:

zz\?:ig, 2, g‘5+42f

25/37 —Ll, 1, 1],(=27)

+ Example 26:
S S O (R RA U
=1 N N ] A
Throughout the paper, the following notations will be utilized. Let N be the set
of natural numbers. The shifted factorial in base ¢ is defined by
(x;9)y=1 and (x;¢),=(1—x)(1 —gx)---(1 —¢"'x) for neN.
When |g| < 1, we have two well-defined infinite products

(x:9),, = [[(1=¢"%) and (x;9), = (x;9)../(¢"x;9).,

k=0
The product and quotient of shifted factorials are abbreviated respectively to
o B, vl = (50), (B ), - (@),

When ¢ — 1, the ordinary corresponding shifted factorial reads as

(x)p=1=1 and (x),=x(x+1)---(x+n—1) forneN

with its multiparameter forms being given by

[a7ﬂ""7y:| ()( n'..(y)r”

)
|:OC,ﬁ,...,j/:| _ ()(ﬁ)n(y)n
A,B,....CJ, (A4),(B),-(C),
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The shifted factorial can also be expressed as the following quotient
(x), = T(x+n)/T(x)

where the I'-function is defined by the Euler integral

I'x) = J e du  with R(x) >0
0

and admits the well-known reciprocal relations

T 1 1 T
Ir'x)r{l-x) = 'z I'N--—x)= .
(IF(1 =) sin x and (2 * x) (2 x) COS X

2. Three reciprocal relations and consequences

For the partial sum of Bailey’s bilateral well-poised series defined by

1—q¢**a[ b, c, d, e qa* g
1 « \bede

Q(a;b,c,d,e) .=
(0. dve) l—a |qa/b, qajc, qa/d, qafe
the well known ¢-Dougall formula (cf. [14, II-20]) can be restated as

k>0

qa,qa/bc,qa/bd, qa/cd
qa/b,qa/c,qa/d,qa/bcd

By means of the modified Abel lemma on summation by parts, Chu and Zhang
[11] established several transformation formulae from Q(a;b,¢,d,e) into fast con-
vergent series. Each transformation is derived by iterating a recurrence relation,
characterized by an “‘iteration pattern” [n,,ny,n.,ng, n.|, that expresses Q(a; b, c,
d,e) in terms of another shifted one Q(ag";bq", cq™,dq", eq"), with {n,,ny,n.,
ng,n.} being five integers. This section will carefully examine three of them that
leads to g-analogues of three Guillera’s series for 1/7> and A-parameter extensions
of three Ramanujan’s series.

For the sake of brevity, denote the quotient of shifted factorials in base ¢
by

(1) Q(a;b,¢,d,a) = [ ‘q} where |ga/bed| < 1.

2 2 2 2

q°x,qx/y*,qx/y*, qx/y

@) Wxy) = v/ ax/y.
qx/y,q9x/y,q9x/y.q°x/y

(x50, 9, ¥, %)

_ 3
} _leax/y
” 1 —gx

provided that |gx/y3| < 1 for the convergence of Q-series.
In view of the ¢g-Gamma function [14, §1.10]

() L) == S0 and - lim 1) =)

we can compute the following limits for W(x, y)
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LOLOLOLE o
(4) Jim W (q.4"%) = lim O (I, (3) ~ 32
. o W) = i PAOTADEOTD
®) Jim Wia' ) = i o O On,E) 3

that will be used to deduce limiting relations of g-series without explanation.

§2.1. Well-poised transformation from iteration pattern [20111]. We start
from the following expression of Q(a;b,c,d,e) in terms of well-poised series.

LeMMA 1 (Chu-Zhang [11, Theorem 15]: |qa?®/bcde| < 1).

a/e,qa*/bed

:| © 1_q2k+1a2/bcd (/2()
a,qa’ /bede

1 Z 1 — qa?/bed

Qa;b,c,d,e) = [
1 k=0

" [c,d,e,qa/bc,qa/bd, qa/be; q], (—qaz/cde)k
lga/c,qa/d,a/e,q*a* [bede; q). (qa/b;q)y
al e qa/bc,qa/bd L (—q2a®/cde)®
_[a,qa/b,qaz/bcde QL; (¢%a/b;q)y

[c,d,qe,q%a/be, 4%a/bd, ga/be; ), (x)
lga/c,qa/d, qa/e, q*a* | bede; qli .

Letting a=b=x and ¢c=d=e=y in Lemma 1, we can reformulate the
resulting equation as follows.

THEOREM 2 (Reciprocal relation of well-poised series).

E (1= gfx /) (1 = g% x /) gl
k=0 (1 - X)(l - qX) ((]7 q)Zk

k
.y va/y.aly.alyidl (qxz)
lax/y,qx/y,qx/y,q*x/y%; ql; \—»*

N e S
" J’; (1- x)(l = qx) (45 9) k41
" W, v,9/y: a4k [v, 4/, 4/ 5 i .

lax/y,qx/y,qx/y,q*x/y3; ql;

2k+1

W(X, y) =

Remark. According to the definition (2) of W (x, y), the last equality holds
for |gx/y3| < 1. However, the series on the right hand side converges uniformly
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for both x and y except for the following poles
{x=1,¢"Yu{y=0U{x/y=¢"|meN}yuU{gx/y’ = q7"|neN}.

Therefore, the formula displayed in Theorem 2 is valid, by analytic continuation,
for all the x and y excluding the above poles. The same explanation applies also
to the formulae appearing in Theorems 6 and 10.

The series in Theorem 2 can be further reduced so that g-analogues are derived
for two well-known infinite series for 1/z and 1/z°.

COROLLARY 3 (x = y = ¢'/? in Theorem 2).

(=D "2 (4'%59);

Wig'2q'%) =S
kz:;(_ql/2§ql/2)2k (4:9);

| 4 gF+1/2 4 geH1/2 o ¥l gg2k+1/2
(1 =¢'2)(1 = g32)(1 4 g*+1/2)

X

This is the g-analogue of the following beautiful formula discovered first by
Guillera (cf. Chu-Zhang [12, Example 5]).

Example 1 (Guillera [15, 17]).

S (Y b b :
— = — T2 ’ ’ 1+ 8k + 20k-1}.
Z(Hl,l,l,l,lk{++ s

COROLLARY 4 (x = y?> = ¢ in Theorem 2).
k k /2 (ql/z;q)z (1— ql/z)(l +q2/c+1 + 3qk+1/2>

1/2 i .
= ”2 7, ¢ (@ a)asa; (T=a) 1+ g )1+ gH1m)

This is the g-analogue of another interesting formula.

Example 2 (cf. Chu-Zhang [12, Example 3]).

2k
RERC

k=0

-
=~
I
N
-|>| |
—_
N~
~
| — |
— ol
NI N—
Bl N|—

§2.2. Quadratic transformation from iteration pattern [20101]. Recall the
following expression of Q(a;b,c,d,e) in terms of quadratic series.
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LeMMA 5 (Chu-Zhang [11, Theorem 9]: |qa®/bede| < 1).

© 1 — 332 Ibed {a*a?\*
| ()
1= 1 —qa*/bed ce
. [e;e.qa/be,qa/be, qa/cd, qa/de; gl (ga/bd; q)y
lga/b,qa/d.q*a* |bede; qly.  [qa/c,ale;q];
g{ e,qa/bc,qa/bd, qa/cd, q*a® | bde }
e la,qa/b,qa/d,qa® |bcde, g*a* /bede ql
N~ L= 2a bde (qPafbd: gy (¢"Fa?\
k—0 1— q2a2/bde [qa/c, qa/e; q]k ce

[c,qe, q*a/bc, qa/be, q*a/cd, qa/de; ip
[q%a/b, q*a/d, q3a? [bede; gy,

L a/e,qa*/bed
Qa;b,c,d,e) = { 4. qa® Jbede

Specifying a =c=x and b=d=e¢ =y in Lemma 5 and then making some
simplifications, we may state the result in the following theorem.

THEOREM 6 (Reciprocal relation of quadratic series).
f: 1—x/y)(l—q 3k“X/y)<L>
— (1 —x)(1 — gx) y
L evalyialy, qx/y?,qx/v* dl; (ax/y*: q)y
[ax/y,ax/y,q*x/y3; qly [q,x/; 4l
E I 1= g2y (9x/9% @) (qk“x)"
— (1 =x)(1 —gx) [q,9x/y:q)x y
[x qx/y?,ax/y*; i1y, a/v, /v ]/m
9/, 9%/, ®X/¥%; @y

This theorem can be analogously utilized to derive two elegant g-series formulae.
The first one is given in the following corollary.

COROLLARY 7 (x = y = ¢'/? in Theorem 6).
(q"2,¢"?) iquH‘ g2 q)k(ql/27q)2k (1 — g2F1/2)(1 — g¥+3/2)
~ 4.q ) (— 41/2741/2)% . - ¢ (1 = ¢32)

1_ 1 — o3k+1/2y(1 k+1/2)3
{1+q q>< ¢+ )

X

— gAY (1 = g3kH32)
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This is the g-analogue of the following infinite series identity originally found by
Guillera (cf. Chu-Zhang [12, Example 16]).

Example 3 (Guillera [15, 17]).
32 - 1 g %a %a %7 %7 % 2
FZZ<_> { Lo k{3+34k+120k }.

The second one is deduced by putting x = y> = ¢ in Theorem 6. The corre-
sponding euqation can be expressed as

1/2 i 1/2 1/2) (—q 1/2. 1/2) qk2+k/2(1 _ q3k+l)
= ( 1/2 ( 3/4 1/2) (1—g¢g )(1 +q1/2)
{1

g3/
4 e (1 12)(1 = 121 — 057
4 (1— q2k+3/2)3(1 — g3k+1) ’
For the sequence {A(k)} defined by the quotient of shifted factorials
(454" 2); (=4, gD (- g2
= (q3/4;q1/2)2 (_q3/4;q1/2)i 1+ (1 —¢?)

it is not hard to verify that the last series can be expressed as

B B ARk +1)
kZZOA(k) = kZZO{A(zk) +AQk+1)} = kZZOA(zk){l +—A(2k) }

in view of the bisection series. This leads to the following elegant formula.

COROLLARY 8 (x = y?> = ¢ in Theorem 6: Bisection series).
(1/2)("3')(1 PRI

Wig.qa'") :i(ql/z' ') (=44 q
’ (qz/4 1/2) (- q3/4;q1/2),§ (1+q1/2)(1_q2)

This is the g-analogue of another formula (cf. Chu-Zhang [12, Example 73]).

Example 4 (Guillera [18, §2.1]).

1
’ 3} {2+ 3k}.
k=0 2k

§2.3. Quadratic transformation from iteration pattern [31111]. There is

another expression of Q(a;b,c,d,e) in terms of quadratic series that we record

it below.



g-SERIES RECIPROCITIES AND FURTHER 7-FORMULAE 519
LeMMA 9 (Chu-Zhang [11, Theorem 17]: |qa?/bcde| < 1).
Q(a;b,c,d,e)

_la/e,qa® /bed; g}, A1 — ¢ aPJbed [ gPd’ ,
 [a,qa?/bcde; q 1 — ga?/bed bede

I k=0

[b,c,d,e,qa/bc,qa/bd, qa/be, qa/cd, qa/ce, qa/de; g, 5(4)
(qa/b.qac.qad,afe,a bedesqly,
ale,qa/bc,qa/bd,qa/cd, q 2a? /bde; q), Z ¢***2a? | bde 5(%)

¢ [a,qa/b,qafd; g}, (ga> [bede; q), I~ q%a?/bde !

. [b.c.d ge.q’a/be, g*a/bd, qa/be, q*a/cd, qa/ce, ga/de; ) ( q°a ‘
[q%a/b,qa/c,q*a/d, qale, g*a*/bede; gl bcde

4a® [c.e.qa/be,qa/bd. qa/be, qa/ed qa/desql, <~ q'a?\'
ce la,qa/b,qa/c,qa/d,qa/e;q),(qa* [bede; q), =\ bede 1
" [b,qc,d, qe,q*a/bc, g*a/bd, q*a/be, q*a/cd, qa/ ce, g*a/ de; q]
[¢’alb.q%aje, Pajd. ¢%ale, ¢ a Jbede qly,

Fora=d=xand b=c=e¢=y in Lemma 9, the last transformation can be
simplified into the following one.

THEOREM 10 (Reciprocal relation of quadratic series).
fi =gt/ =g ) (@ s
(1 =x)(1—¢x) —y3
Xy v yialy.aly.aly. a5/ ax/y? ax/y%; dl
9, 4x/y.9x/v,qx/,4>X/y*; 4]

x z“: ¢ 2x/y?) 9,4/, 4/9.95/V* iy
vz (L=x)(1 —gx) [q,qx/y,4*X/y%; q)yey

+

k
vy a)yax/y?ax/y?dl <q5x2> 0
[9x/y, 4/ )y -y’
2

k
&ZOO: X, ¥,4x/7; gl (q7x2> 0
y? = (1=x)(1—gx) \—)?

v, a/v.aly.aly.ax/y* ax/v*; 4l
[9,9x/,0x/y,9x/ v, 4*X/¥; qlop

Similarly, this theorem can be specialized to two interesting g-series formulae.
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COROLLARY 11 (x =y =¢'/? in Theorem 10).

1/2 1/2 i 1/2761) q(Sk +4k) /2(1 _ qk+1/2)(1 _ q3k+3/2)
= Oy 1+ (1= g'2)(1 - ¢*?)
- +qk+1/2) (1 quk)(l q3k+1/2)
1 _ k+1/2)(1 _ q3k+3/2)

q2k+1(1 _ qk+1/2)
(14 gk+1/2)2(1 — g3k+3/2) [

This is the g-analogue of the following formula also due to Guillera (cf. Chu-
Zhang [12, Example 64]).

Example 5 (Guillera [15, 17]).

c o/ —1NrL Lo L1l
%zz< 1) [2’ 222 (13 180k + 8204°),
k

COROLLARY 12 (x = y? = ¢ in Theorem 10).

1/2 i k 5k2/2 ,4)4(41/2§4)£ (1- q%ﬂ/z)(l — ¢
= (@ Du(@ gy 1= —¢)
. 3k+1/2(1 _ k+1)(1 _ qk+1/2)3(1 _ q3k+2)

+ g+ (1 — g2+1/2)(1 — qzk+3/2)2(1 — g3k+1)

q5k+2(1 _ qk+1)2(1 _ qk+1/2)5
+ (1 — g2k+1)(1 — g2k+1/2)(1 — q2k+3/2)4(1 — g3k ‘

When ¢ — 1, this corollary gives rise to a new infinite series identity

below.

Example 6 (Ramanujan-like series for 7).
81n2_i<_1 >k|:1’ 1, 1, %a %7 %’ %7 %
- 5 5 5 5 7 7
16 1024132, »» & & o o o 3l
x {50 + 587k + 2762k> 4 6664k> + 8738k* + 5936k> + 1640k°}.

§2.4. Limiting expressions. Letting e — oo in Lemmas 1, 5 and 9, we get

the following three reduced reciprocal relations.
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PrROPOSITION 13 (a=c=x, b=d=y and ¢ — oo in Lemma 1).
0 k
q} _ Zl - x/y? (61"_X) [, v, a/v,ax/y*; dli
. 1—x v ) la,9x/y;ali(ax/v; @)y

k=0

[ qx,qx/y*
qx/y,qx/y

I v dllaly ax /v din (/)"
= (0. 9x/vidl@x/y @)y 1—x

— X

PROPOSITION 14 (a=b=x, c=d=y and ¢ — oo in Lemma 5).

A= e\ gy a4 @)y D s
L_Z I—x (—y) @/ ax/vidh

[ qx,qx/y?
qx/y,qx/y

3 xi (=X /)" i @la/y ax/v? @1 (0)93 @) e 0.

— 1-x (9x/3@)1a, 4%/ o

PrOPOSITION 15 (a=d=x, b=c=y and e — o0 in Lemma 9).

{ qx, gx/y*

5 k
] il 3k+1x/y < 7 2) (X, 7, v.4/v,q/v.4x/v*; ql;
gx/y,qx/y | 1., ?

y [g,9x/v,9x/y; 4l

k=0
= (33 X2y T, v, vy 4/, a3y dle
1—x (@x/y; @), ax/; @lop i

|0 S ) [yl 0/ /9,45 sy
y &= 1-x 94X/ v, 4x/V; dlok sy

In view of the limiting relation

2
. g, 4
| 5

we recover the following three infinite series expression for 7.

lim ——= "L =—

] -t DT s
0 q—>1*1"q(1)l"q(2) 4

Example 7 (x = y*> = g and ¢ — 1 in Proposition 13: Chu [10, Example 3]).
00 1’

- Z 5

k=0L4>

Example 8 (x=y*>=¢ and ¢ — 1 in Proposition 14: Chu-Zhang [10,
Example 76]).

)

g] 5+ 21k + 20k*
e (4

EN[VNNE

7 %;

k=0

DO N|—

)
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Example 9 (x = y* =q and ¢ — 1 in Proposition 15: Chu [10, Example
50])).

O

|
8
—

~
Il
<)

1 7+ 42k + 75k + 42k3
e e

~
R [V Jy—
Bl o=
A=

We remark that the series in Example 8 is equivalent to the formula of BBP-type
(see also Examples 29 and 30) due to Adamchik and Wagon [1]:

E_i S o2
2 4=\ 4 ) \1+4k 2+4k  3+4k)

Further formulae of BBP-type can be found in the papers [1, 2, 6, 21].
Instead, letting x = y = ¢* in Propositions 13, 14 and 15, and then taking
into account of the limiting relation
{qw.’ g q] — lim r,(1)T,(1) _sinzd
q, q ° g—1- Fq(l + l)rq(l - i) A

we find the following three infinite series identities containing a free parameter A.

lim
g—1-

COROLLARY 16 (x =y =¢”* and ¢ — 1 in Proposition 13).

sinmi ”},—/12+k(2+3k)[2, A 1=, 1—/1}
k

k 3
T 4 L1, 3

) )

COROLLARY 17 (x =y =¢” and ¢ — 1 in Proposition 14).

—

sinni_i Ay 1=2, 1—2, LA 24
no L, 1, 3, 31,
X(1+3k—)»)(1+2k)2—(1+2k—i)(1+k—/1)2
(—4)" .
COROLLARY 18 (x = y=¢” and ¢ — 1 in Proposition 15).
sinzh  [A A A 1—i, 1—4, 1-4
i S

(=0
(143, -2 +2k) — (14 3k + 1) (1 +k—2)°
64k ‘

These formulae can be considered as A-parameter extensions of three Ramanu-
jan’s identities for 1/z. In fact, they reduce, when 1 = 1/2, to the three typical
known formulae due to Ramanujan [19, 1914].
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Example 10 (Ramanujan [19, Equation 28]: cf. Chu-Zhang [12, Example 9]).

b b e
T =1, 1, 1] 4

) )

Example 11 (Ramanujan [19, Equation 35]: cf. Chu-Zhang [12, Example
10)).

oS
T —llL, 1

Example 12 (Ramanujan [19, Equation 29]: cf. Chu-Zhang [12, Example
116]).

16 _~[4 4 4] 5+4%
1, 1], 64k

3. Cubic transformation and further formulae

In the same paper [11], Chu and Zhang established, under the iteration
patterns [30111] and [41111], two further expressions of Q(a;b,c,d,e) in terms
of cubic and quartic series in Theorem 11 and Theorem 13. The latter does
not produce interesting results due to its complexity. However from the former
one, we can derive, through multisection series, several remarkable infinite series
identities, that are not covered in the compendium by Chu-Zhang [12].

First we record the following transformation of cubic series.

LemMmA 19 (Chu-Zhang [11, Theorem 11]: |ga?/bede| < 1).

ale,qa*/bed
a,qa® /bede

} i lc,d,e,qa/cd,qa/ce,qa/de; q],

Q . =
(a;b,c,d,e) [ = [qa/b, q*a? |bcde; g5,

" qa/be, qa/bd, qa/be 1 — ¢%*1a? /bed (q**a® ,
qajc, qajd, aje ||, 1—qa*/bcd cde
g[ e,qa/bc,qa/bd, qa/cd, q*a® | bde ]
a,qa/b,qa/d, qa*/bcde, g*a® | bede 1 1
21 — ¢*+2a? /bde [qza/bc, q*a/bd, qa/be
X S —
1 —q%a?/bde | qa/c, q*a/d, qaje

e

d
2k

k=0

[Cadaqe,qza/cd,qa/ce,qa/de;q]k q3k+2a3 k
lq%a/b, ¢3a? |bdce; gl cde
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‘ILZ [c,e,qa/bc,qa/be,qa/cd, qa/de, q3az/bé‘€; q),(qa/bd; q),
ce la,qa/c,qa/d, qa/e; q],(qa/b; q),(qa* /bede; q),

21 — g*%+3a? /bce {qza/bc, q’a/bd, q*a/be ]
I—qafbee | gaje, qPa/d, gqPaje |7y

k=0

lge. d. ge.q>a/cd, ga/ce, ?a/de; gl (4 a®\'
[g3a/b,q*a? /bede; q)y, cde )

For this lemma, we shall not examine its particular cases of g-series in order to
avoid lengthy expressions. However its limiting case ¢ — 1 can be written, after
some routine simplifications, as the following transformation formula, that will be
utilized to derive several remarkable infinite series identities.

THEOREM 20. For five complex parameters {a,b,c,d,e} satisfying the condi-
tion R(1+2a—b—c—d—e) >0, there holds the transformation formula

o0

b d
<a+2k)|:1 ’ C; ) e

s +a—-b, 1+a—-c, 1+a—-d, l4+a—-e],

:Z’“:g) 1—|—a—b—c,1+a—b—d,1+a—b—e]2k
l4+a—cl+a—d1+a—el,,,

[c del+a—c—dl+a—-c—el+a—d—e]
(I+a—>b)y (1 +2a—b—c—d—e)y 4

where P (k) is a polynomial of degree 9 in k, given explicitly by

Pk)=142a-b—c—d+4k)(1 +a— c+ 2k)
x(1+a—-d+2k)(a—e+2k)(1+a—e+2k)
x(1+a—-b+3k)24+a—-b+3k)2+2a—b—c—d—e+3k)
Xx(3+2a—b—c—d—e+3k)
+(Q242a—b—-d—e+4dk)e+k)(l+a—c—d+k)
x(1+a—c+2k)(1+a—e+2k)
x(l+a—b—c+2k)(1+a—->b—d+2k)
Xx2+a—-b+3k)3+2a—b—c—d—e+3k)
+3B34+2a—b—c—e+4k)(c+k)e+k)
x(l+a—c—d+k)(l+a—d—e+k)
l+a—b—c+2k)(14+a—b—d+2k)
x2+a—-b—d+2k)(14+a—b—e+2k).

X

~~ A~ o~ o~ o~ o~
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Remark. When one of parameters {b,c,d,e} is equal to a (for example
e =a) in the last theorem, the sum on the left can be evaluated by Dougall’s
formula (cf. [3, §4.4]) as the I'-function quotient

l+a-bl14+a—c1+a—-d,1+a—b—c—d
al+a-b—-—cl+a-b—-dl+a—c—d |

This is analytic in the whole complex space of dimension 4 except for the
hyperplanes determined by

{b—aeN}U{c—aeN}U{d—aeN}yU{b+c+d—aeN}

which is covered also by the convergence domain of the infinite series displayed
on the right hand side of Theorem 20. Therefore in this case, the parameter
restriction R(1 +2a —b—c—d —e) >0 can be removed by analytic continua-
tion, which justify the validity of Examples 18 and 22 where the parameter
settings don’t obey the condition R(1 +2a—b—c—d —e) > 0.

By specifying the parameters in Theorem 20 and then considering eventually
bisection and trisection series, we find numerous new formulae of Ramanujan-
type concerning 7, {(3) and the Catalan constant G. The selected examples are
displayed below with parameter settings and references being highlighted in the
headers.

Example 13 (a=2, b=c=d=e=1: Chu-Zhang [12, Example 118]).

= {17 I, 1, 1} 173 + 501k + 364k>
4 4 5 5 k
30030 30 30 (1+2k)(729)

1. Bisection series).
, 1 1] 13 + 38k + 28k
ol (2t
This series has been conjectured experimentally by Sun [20, Conjecture §].

Example 15 (a=c¢=1,d=1%,e=3%,b— —oo: Trisection series [13, p. 89)).

0

2 (W (N T !
3\/§—kz_;(3/2)k(4) Apéry series: 33 ;n<2n>.

Example 16 (a=c=d=e=1%, b— —oo: Bisection series [12, Example
87]).

[\

—_— N

: %} 1+ 6k
’ 11((_8)](

Ell

0
k=0
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Example 17 (a=c=d=e= %, b — —oo: Bisection series [12, Example

88)).

Example 18 (a=0b

40)).

Example 19 (a=c

or1 13
- [2, o 4} 1+k8k
—LlL 1, 1] 9
1, d=1% e=3: Trisection series).
i[l, 8 %]5+8k
303 3| o
=oL2: 20 3lk

Example 20 (a=2, b=c=d=1, e > —o0: Chu-Zhang [12, Example

24)).

Example 21 (a=b=1,

Example 27]).

(=21

=01, 1, 1] 5+ 7k
3 4
2 3

3
3

=d=1e— —oo: [10, Example 31] & [12,
_i[l, %} 6+ Tk
Sl sl(-2n*

=32, e=32: Bisection series).

iF, 2, é}2+21k.
Lo 1 eanf

=oth b
Example 23 (a=b=c=d =1}, e=1: Bisection series).

_ [g, 2, g}5+4zf

o tl Lo 1] (=27)

3 _ 1
4> d—Z, e—>—OO).

3, 1439} 15+28k.
2 (=27)"

»o120 1
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Example 25 (a=c=%, b=4%, d=3, e > —0).

—_
(9%}
—_

7

3
4>
1oL 3] 1+124k+224k2.
17 2 12 27 k

—

Example 26 (a=c=d=e=1%, b=1: Bisection series).

%} 1+ 10k + 28k>
¢ (—27)f

SN =

Example 27 (a=c=1, b=2, d=1%, e=1: Bisection series).

1036.22/371:2”:{2, 1 %} 347k
999\/§ 10 13 16 (_27)k

Example 28 (a=c=1, b=1, d=3, e=2: Bisection series).
8023 & [1, 3 g} 21 + 61k + 42k2
V=15 R G L
Example 29 (a=b=1, ¢c=3, d=1%, e=3%: Bisection series).
ErL L2710 4 44k + 4242
27[\/§ — Z |:§7 431’ g:| + +k
k=0L2> 3> 3k (=27)

This is equivalent to the following BBP-type formula:

1\ 2 3 1
”ﬁ:;(f) {1+2k+1+3k+2+3k}'

Example 30 (a=b=1, c=3, d=}, e=3: Bisection series).

} 41 + 116k + 84k>
v (=2n)F

This is equivalent to another BBP-type formula:

LI o Vel AV S BN B
23 &\27) \1+6k 3+6k 5+06kf

Example 31 (a=c=1%, b=1, d=e=1: Bisection series).

, q 7 + 26k + 21k?
k

% 11
3 6 (—27)"
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Example 32 (a=c=1}, b=3%, d=e=1: Bisection series).
677:_2062[51, %, é] 11+31k+k21k2.
3=l 3 ek (—=27)

Example 33 (a=3, b=c=d=1, e— —oo: Chu-Zhang [12, Example
29]).

%{1, 1] 83 + 192k + 11242
¢ (14 4k) (3 + 4k)(=27)%

Example 34 (a=b=1, c=1, d=1, e=3: Bisection series).

R - [%, 5] 19 + 107k + 192k% + 112k3
T = .
13 3, (1 +4k)(3 +4k)(—27)"
Example 35 (a=c=1, b=1, d=%, e — —0).
1607122”:[71, 1%1, 1%4, 127] 33+227k+438k2+252k3.
W3 =l v o5 Sk (—27)"
Example 36 (a=c=1, b:%, d:%, e — —o0).

2807 i[ 1, %, 3 |\ } 57 + 308k + 498k> + 252k
9\/§—k:0 u oo . (_27)k ‘

Example 37 (a=2, c=d=e=1, b— —oo: Chu-Zhang [12, Example
114]).

‘-lk
WY
[}
I
[+
—
I —
[SS][FSJupu—

, 1] 13+ 21k
e
Example 38 (a=d=1, c=1%, e=3%, b— —co: Chu-Zhang [12, Example
115]).
8 + 27k + 21k
e

o= v

Example 39 (a=d=1, c=e= %, b — —oo: Chu [10, Example 50]).

317+ 42k + 75k% + 423
e |
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Example 40 (a=c=%, d=1 e=2 b— —o0).

o Lol 1o 30 37 01 4 24k + 752k2 + 672Kk3
VIS [T R = .
k=0 8 8 8 8 Jk

Concluding comments. We have examined three instances of g-analogues for

infinite series expressions of 1/z and 1/7?, respectively, discovered by Ramanujan
and Guillera. For other identities, it is possible to work out their g-analogues by
following the approaches devised by Chu-Zhang [11, 12]. The interested reader
is encouraged to try further.
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