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A NOTE ON FAMILIES OF MONOGENIC NUMBER FIELDS

Joachim König

Abstract

We give a su‰cient criterion for specializations of certain families of polynomials to

yield monogenic number fields. This generalizes constructions in several earlier papers.

As applications we give new infinite families of monogenic number fields for several

prescribed Galois groups.

1. Introduction

A number field K jQ is called monogenic if its ring of integers has a power
basis, i.e. is of the form Zþ aZþ � � � þ anZ for some a A K. An easy criterion
for a field to be monogenic is the following: Let f A Z½x� be monic irreducible,
and K ¼ Q½x�=ð f Þ. If the discriminant of f equals the field discriminant of K ,
then K is monogenic, and a power basis is obtained via powers of a root a of f .
While quadratic fields are always monogenic, this is not the case any more for
cubic fields.

It is unclear for which finite groups there are infinitely many monogenic
number fields with Galois group (of the Galois closure) isomorphic to G. While
there are infinitely many examples for the symmetric group Sn, it has been shown
for cyclic groups G of prime order > 5 that there is at most one monogenic
G-number field ([8]).

Several recent works have obtained infinite families of monogenic fields for
prescribed Galois groups, including quintic D5-fields ([10]), sextic A4- ([5]) and
PSL2ð5Þ-fields ([16]) and septimic PSL2ð7Þ-fields ([11]).

In this work, we prove a general criterion which not only subsumes most
of the above existence results, but also makes verification of new results (under
certain conditions) very easy and comfortable. We demonstrate this with several
new infinite families of monogenic number fields.
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2. Prerequisites

2.1. Some basics on number fields and function fields. We will later use the
following well-known statement about exponents of ramified primes in discrim-
inants, which holds in number fields as well as in function fields (cf. e.g. [9], p. 100
and Prop. 6.3.1).

Lemma 1. Let LjK be a finite separable extension of number fields or func-
tion fields, MjK be its Galois closure, and D ¼

Qr
i¼1 p

ei
i the factorization of the

discriminant of LjK into prime ideals of K. If pi is tamely ramified in LjK , then
ei ¼ indðsiÞ, where si A GalðMjKÞ is a generator of the inertia group at pi, acting
naturally on the cosets of GalðMjLÞ, and the index indðxÞ of a permutation x A Sn

is defined as n minus the number of cycles of x.

Now, let K be a field of characteristic 0, K be its algebraic closure, t be
a transcendental over K , and NjKðtÞ be a Galois extension. A value ti A K [y
is called a branch point of NjKðtÞ if the ideal ðt� tiÞ (or ð1=tÞ in the special case
ti ¼ y) is ramified in NK jKðtÞ. Let G :¼ GalðNK jKðtÞÞ. Due to tame ram-
ification, the inertia subgroup at a branch point ti in NjKðtÞ is cyclic, generated
by some si A G.

We are particularly interested in the case that NjKðtÞ is the Galois closure of
an extension KðyÞjKðtÞ of rational function fields, i.e. the splitting field of some
irreducible polynomial f ðt; xÞ :¼ f1ðxÞ � tf2ðxÞ. In this case, information about
ramification is particularly easy to obtain.

In particular, the discriminant Dð f Þ A K ½t� factors in K ½t� as C �
Qr

i¼1ðt� aiÞei ,
where the ai are exactly the finite branch points of NjKðtÞ and ei ¼ indðsiÞ, where
si is an inertia group generator at t 7! ai in NjKðtÞ, in the permutation action on
the roots of f .

This can be seen as a ‘‘polynomial version’’ of the Riemann-Hurwitz formula,
and is essentially due to the fact that the extension KðyÞjKðtÞ is monogenic, in
the sense that fyi j i A f0; . . . ; degð f Þ � 1gg is a power basis over K½t�.

2.2. Ramification in specializations. Let EjkðtÞ be a Galois extension of
function fields. For t0 A k, the specialization Et0 jk is defined as the residue field
in E of any place extending the place t 7! t0 of kðtÞ (this is independent of the
choice of place over t 7! t0, since EjkðtÞ is Galois). If EjkðtÞ is the splitting field
of a polynomial f ðt; xÞ A k½t; x�, then for all but finitely many t0 A k, this is simply
the splitting field of f ðt0; xÞ.

Now let k be a number field, let a0 be an algebraic number, f A k½X � be its
minimal polynomial, and p be a finite prime of k. Assume that a0 is p-integral.1
For a A k, define Ipða; a0Þ as the multiplicity of p in the fractional ideal generated

1What follows is defined in the non-p-integral case as well. We keep the integrality assumption

to avoid a distinction into cases which is not necessary for the purpose of this paper.
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by f ðaÞ. Obviously, we have Ipða; a0Þ0 0 only for finitely many prime ideals p
of k. With this notation, we can state an important criterion, relating ramifica-
tion regular Galois extensions to ramification in specializations. It can be found
in [1], Thm. 1.2 and Prop. 4.2; see also Theorem I.10.10 in [13] for a version close
in wording to the one below.

Proposition 2. Let k be a number field and NjkðtÞ be a Galois extension
with Galois group G. Then there is a finite set S of primes of k (depending on
NjkðtÞ) such that for all primes p B S, the following holds:

If a A k is not a branch point of NjkðtÞ then the following condition is
necessary for p to be ramified in the specialization Najk:

ei :¼ Ipða; aiÞ > 0 for some ðautomatically uniqueÞ branch point ai:

Furthermore, the inertia group of a prime extending p in the specialization Najk is
then conjugate in G to hteii, where t is a generator of an inertia subgroup over the
branch point t 7! ai of kðtÞ.

The finite set S of exceptional (‘‘bad’’) primes in the above statement can
also be described explicitly. For sake of simplicity, we do this under a few extra
assumptions, all of which are fulfilled in our later examples.

Proposition 3. Assume in Prop. 2 that NjkðtÞ is k-regular, i.e. N \ k ¼ k,
and that ZðGÞ ¼ 1. Then it su‰ces to take the set S of ‘‘bad ’’ primes as the
union of the following sets:

i) The set of primes dividing jGj,
ii) the set of primes p at which two branch points t1, t2 of NjkðtÞ meet

(i.e. Ipðt1; t2Þ > 0),
iii) the set of primes dividing the discriminant of the minimal polynomial of

some branch point.

Proof. See Theorem 1.2 and Prop. 4.2 in [1]. r

3. A general criterion

Let f ðt; xÞ :¼ f1ðxÞ � tf2ðxÞ A Z½t; x� be monic in x, with coprime f1; f2 A
Z½x�. Let DðtÞ A Z½t� be the discriminant of f with respect to x. Write DðtÞ ¼Qr

i¼1 piðtÞ
ei with pairwise distinct irreducible elements piðtÞ in Z½t� (including

constants piðtÞ1 pi A P) and ei A N. Then we denote by D redðtÞ :¼
Qr

i¼1 piðtÞ the
reduced discriminant of f .

The following is a su‰cient criterion for f to possess specializations yielding
monogenic number fields. We use without further mention the well-known fact
that if p A Z½x� is monic irreducible with a root a A Q, such that the polynomial
discriminant of p equals the field discriminant of QðaÞ, then QðaÞ is monogenic,
with fa i j i A f0; . . . ; degðpÞ � 1gg forming a power basis of the ring of integers.
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Theorem 4. Let f ðt; xÞ :¼ f1ðxÞ � tf2ðxÞ A Z½t; x� be as above, with Galois
group G over QðtÞ, and let DredðtÞ A Z½t� be its reduced discriminant (with respect
to x). Assume that the following hold:

i) D redðtÞ has no irreducible factor of degreeb 4.2
ii) D redðtÞ has no fixed prime divisor, i.e. there exists no prime p A P dividing

all integer values of Dred .
Then there are infinitely many t0 A Z such that QðaÞjQ is a monogenic number
field with Galois group G, where a denotes a root of f ðt0; xÞ ¼ 0. More precisely,
fa i j i A f0; . . . ; degð f Þ � 1gg is a power basis of the ring of integers of QðaÞ.

Proof. Let F jQðtÞ be a splitting field of f and let S ¼ fp1; . . . ; png be the
set of bad primes for F jQðtÞ, in the sense of Prop. 2. By condition ii), for each
i A f1; . . . ; ng, there exists an integer ti such that DredðtiÞ0 0 mod pi. By the
Chinese remainder theorem, there then exists a A Z such that D redðaÞ is coprime
to all of p1; . . . ; pn (for short, say that it is coprime to S). The same then of
course holds for all D redðaþ t0bÞ with t0 A Z and b :¼ p1 � � � pn.

Let gðtÞ :¼ D redðaþ tbÞ. Note that g cannot have a fixed prime divisor p.
For p A fp1; . . . ; png, this is clear from the definition of g. For any other p,
the set aþ bZ of course intersects every mod-p residue class, and the assertion
follows from condition ii).

Now for N A N, let Mðg;NÞ :¼ ft0 A f1; . . . ;Ng j gðt0Þ is squarefreeg. Then
by Theorem 1.1 in [2], there exists k A N such that jMðg;NÞjgN=logðNÞk
(this generalizes a classical result by Erdös ([6]), proving infinity of squarefree
values for cubic polynomials). We claim that all t0 A Mðg;NÞ lead to monogenic
number fields QðaÞjQ, where a denotes a root of f ðaþ t0b; xÞ.

This is because for all those t0, the polynomial discriminant Dredðaþ t0bÞ
(and then a fortiori the field discriminant of QðaÞjQ) is not divisible by any
bad primes of F jQðtÞ. Now let DredðtÞ ¼G

Qm
i¼1 hiðtÞ be the factorization into

irreducibles over Z (note that the leading coe‰cient has to be G1 by ii)). Let p
be a prime divisor of Dredðaþ t0bÞ, then p divides a unique hi, and exactly once.
Therefore Ipðaþ t0b; tiÞ ¼ 1, where ti is a root of hi. Prop. 2 then implies that
an inertia group generator at p in Galð f ðaþ t0b; xÞjQÞ equals an inertia group
generator si at t 7! ti in F jQðtÞ. So the exponent of p in the field discriminant
of QðaÞjQ equals degxð f Þ minus number of cycles of si. From Section 2.1, this
is however exactly the exponent of p in Dðaþ t0bÞ. So the two discriminants are
equal. This shows the claim.

Lastly, jMðg;NÞjgN=logðNÞk, but by Hilbert’s irreducibility theorem (see
e.g. [3] for a very general version) the set of values t0 A f1; . . . ;Ng such that
f ðaþ t0b; xÞ is reducible has cardinalityfN 1=2þe. Therefore, infinitely many
t0 A

S
N AN Mðg;NÞ (and in fact almost all, in a density sense) also lead to

extensions QðaÞjQ with Galois group G. The fact that this creates infinitely
many distinct number fields follows immediately from the fact that the corre-
sponding field discriminants are unbounded from above. r

2 In other words, the splitting field of f over QðtÞ has no branch point of degreeb 4 over Q.
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Remark 1. A few remarks on the conditions in Theorem 4:
� Condition i) can be dropped, conditional on the abc-conjecture. Namely,
it was only used in the above proof to ensure the existence of su‰cienty
large sets of squarefree specializations. As shown by Granville ([7]), the
abc-conjecture implies that for every integer polynomial gðtÞ A Z½t� which
does not have a fixed prime divisor, the set of t0 A N such that gðt0Þ is
squarefree has positive density.

� Condition ii) is obviously somewhat restrictive, since D red is in particular
required to be a primitive polynomial (otherwise, every value would be
divisible by the gcd of the coe‰cients).

However, even in the case that D red has a constant prime factor, the
conclusions of the theorem may still be obtained in certain cases; see
Section 4.3 for an example.

� The condition that f is of t-degree 1 is of course not strictly necessary
either to obtain the conclusion. It is however the most convenient assump-
tion to ensure that every root of the discriminant of f is in fact a branch
point.

It should also be noted that the assertion of Theorem 4 can be combined
with local conditions imposed on the monogenic number fields. In particular,
the proof shows that the discriminants obtained can be chosen coprime to any
given finite set of primes. Under modest extra assumptions, we can show more.

Corollary 5. In the setting of Theorem 4, assume additionally that the
splitting field L of f is a Q-regular extension of QðtÞ (i.e. L \Q ¼ Q). Let P
be a finite set of su‰ciently large prime numbers (with the bound only depending
on f ), and for each p A P let Cp be a conjugacy class of G. Then the monogenic
number fields QðaÞ can additionally be required to fulfill the following:

For each p A P, the extension QðaÞjQ is unramified at p, with Frobenius class
Cp.3

Proof. Let p A P. By Prop. 5.1 in [4], we can assume (for p su‰ciently
large) the existence of a residue class ap þ pZ such that for all integers t0 in
this class, the splitting field of f ðt0; xÞ has Frobenius Cp at p, and additionally
Dredðt0Þ0 0 mod p. By the Chinese remainder theorem, there is then a residue
class cþNZ, with N :¼

Q
p AS p, such that for all t0 A aþNZ, the above require-

ments are fulfilled for all p A S. Now simply repeat the proof of Theorem 4,
replacing the residue class aþ bZ occurring there by ðaþ bZÞ \ ðcþNZÞ, which
is non-empty under the assumption that no p A P is a bad prime. All one needs
to note is that the polynomial gðtÞ arising in the proof still has no fixed prime
divisor, which is guaranteed by the above requirement D redðt0Þ0 0 mod p for
p A P. r

3Of course, by the Frobenius of a number field extension, we mean the Frobenius of its Galois

closure.
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4. New examples

In the following, we apply Theorem 4 to some families of polynomials
f ðt; xÞ with prescribed Galois groups. In particular, we show:

Theorem 6. Let G be one of PGL2ð7Þ, AGL3ð2Þ or PSL2ð11Þ. Then there
are infinitely many monogenic number fields with Galois group (of the Galois
closure) isomorphic to G.

For those examples, we will also make the results of Theorem 4 more
explicit. It should be understood that using Theorem 4, many more examples
can be produced, using polynomials from the literature. Also, several existing
results, such as those of [10], [11] or [16], can be regained as immediate corollaries
of Theorem 4.

4.1. The group AGL3ð2Þ. Let AGL3ð2Þ ¼ ðF2Þ3 zGL3ð2Þ be the a‰ne
linear group, in its natural transitive degree-8 action.

The following example is a special case of a multi-parameter family com-
puted by Malle in [12]. However, computation of the individual example below
is standard nowadays, e.g. using Gröbner basis methods.

Proposition 7. Let f ðt; xÞ :¼ x6ðx� 2Þ2 � tð5x2 þ 5xþ 2Þðx� 1Þ2. Then
f has Galois group AGL3ð2Þ over QðtÞ.

One computes, e.g. with Magma, that the discriminant of f with respect to t
equals DðtÞ ¼ t6ð288000t2 þ 40747tþ 221184Þ2. This has no fixed prime divisor,
since e.g. tð288000t2 þ 40747tþ 221184Þ, evaluated at �1, equals �292 � 557, and
evaluated at 1 equals 37 � 89 � 167. The monogeneity result now follows readily
from Theorem 4.

To be more explicit, note that bad primes for the splitting field of f over
QðtÞ are only 2, 3, 7 (prime divisors of the group order), 5 (modulo which the
degree-3 branch points are not integral, hence they meet the branch point at
infinity) and 29, 71 (modulo which discðt � ð288000t2 þ 40747tþ 221184ÞÞ ¼ 0,
hence two finite branch points meet).

Let N :¼ 2 � 3 � 5 � 7 � 29 � 71. Since Dð1Þ is coprime to N, the same holds for
all Dðt0Þ with t0 1 1 mod N. Furthermore DðNtþ 1Þ is a primitive polynomial,
so the proof of Theorem 4 shows that all t0 1 1 mod N such that Galð f ðt0; xÞjQÞ
¼ AGL3ð2Þ and Dredðt0Þ is squarefree yield monogenic octic AGL3ð2Þ-number
fields.

Furthermore, f ðt0; xÞ factors mod 2 into irreducible polynomials of degree 7
and 1, mod 3 into irreducible polynomials of degree 6 and 2, and mod 5 into
two irreducible polynomials of degree 4. By Dedekind’s reduction theorem, the
Galois group of f ðt0; xÞ over Q then contains elements of cycle structures ð7:1Þ,
ð6:2Þ and ð4:4Þ. One verifies that no proper subgroup of AGL3ð2Þ has this
property, hence the result follows for all t0 1 1 mod N such that Dredðt0Þ is
squarefree.
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4.2. The group PSL2ð11Þ. Let G be the projective special linear group
PSL2ð11Þ, in its (exceptional) transitive permutation action on 11 points. We
use the following family of polynomials, given e.g. in the appendix of [13].

Proposition 8. The polynomial f ðt; xÞ :¼ x11 � 3x10 þ 7x9 � 25x8 þ 46x7 �
36x6 þ 60x4 � 121x3 þ 140x2 � 95xþ 27þ tx2ðx� 1Þ3 A Z½t; x� has Galois group
PSL2ð11Þ over QðtÞ.

One computes that the discriminant DðtÞ A Z½t� of f A Z½t; x� (as a poly-
nomial in x) equals ð108t3 � 7472t2 þ 267408tþ 7987117Þ4, which again can easily
be seen to have no fixed prime divisor. Again, the monogeneity result follows
directly from Theorem 4.

For more explicit results, note that the bad primes (in the sense of Prop. 2)
are exactly 2, 3, 5, 11, 19 and 101, and Dð1Þ is coprime to all of them. In fact
D has no roots at all modulo 2, 3, 5 and 11, so here it su‰ces e.g. to set N ¼
19 � 101 and t0 1 1 mod N.

The mod-19 reduction of f ðt0; xÞ is irreducible, while the one mod 101
factors into irreducible polynomials of degree 6, 3 and 2. So Galð f ðt0; xÞjQÞ is
a subgroup of PSL2ð11Þ containing elements of order 11 and 6, and in particular
is of order divisible by 66. However, the largest proper subgroup of PSL2ð11Þ
is of order 60. Therefore Galð f ðt0; xÞjQÞGPSL2ð11Þ for all t0 1 1 mod 19 � 101.
We therefore obtain monogenic number fields of degree 11 with group PSL2ð11Þ
for all t0 1 1 mod 19 � 101 such that Dredðt0Þ is squarefree.

Remark 2. So far we have used the elementary Dedekind criterion to
ensure arithmetic progressions of specializations with the correct Galois group.
Stronger results could be obtained using Siegel’s finiteness theorem about integral
points on curves. We only sketch this approach very briefly. See [15] for a
much deeper introduction into the connection between Siegel’s theorem and
Hilbert’s irreducibility theorem. Siegel’s theorem ensures that a curve covering
X ! P1 over Q (corresponding to a function field extension K jQðtÞ) with infi-
nitely many integral points has to have genus zero and an inertia group generator
with at most two orbits (and of equal length) at t 7! y. This translates to the
assertion that a polynomial f ðt; xÞ with Galois group G over QðtÞ can only have
a strictly smaller Galois group U < G for infinitely many specializations t 7!
t0 A Z if G has a genus zero tuple including an element with at most two orbits
in the coset action on G=U . Since PSL2ð11Þ has no genus zero action ful-
filling these requirements, we conclude that f ðt0; xÞ remains irreducible for all
but finitely many t0 A Z (this is a very special case of a general theorem by Müller
([14])). We then obtain the above result on monogenic PSL2ð11Þ-extensions for
all but finitely many t0 A Z such that D redðt0Þ is squarefree and coprime to
19 � 101.

4.3. The group PGL2ð7Þ. Here we give an example that demonstrates how
the restrictive condition ii) in Theorem 4 may be softened. Many more similar
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examples can be found. Again the polynomial below is a special case of a
family computed in [12].

Proposition 9. Let f ðt; xÞ :¼ x7ðxþ 1Þþ tð7x2 þ xþ 1Þ. Then f has Galois
group PGL2ð7Þ over QðtÞ.

The discriminant of f with respect to x equals DðtÞ ¼ 77t6ð108t� 1Þ3. This
shows that the bad primes for the splitting field of f over QðtÞ are only 2, 3
and 7. Ignoring the constant factor 77 of DðtÞ, one verifies, just as in the proof
of Theorem 4, that there are infinitely many t0 A Z such that the root field of
f ðt0; xÞ is a PGL2ð7Þ number field whose discriminant di¤ers from the discrim-
inant of f ðt0; xÞ at most by a 7-powera 77. Now let t0 :¼ 1. The discriminant
of a root field of f ð1; xÞ equals 77 � 1073. More precisely, this extension is totally
tamely ramified at 7, which can be seen easily from the fact that f ð1; x� 1Þ is
a 7-Eisenstein polynomial. Now by Krasner’s lemma, every t0 A Z which is
7-adically su‰ciently close to 1 leads to the same behaviour at the prime 7 (in
fact, t0 1 1 mod 7 is su‰cient here due to Eisenstein, since f ðt; x� 1Þ has con-
stant coeficient 7t). We therefore obtain a whole arithmetic progression of
integers t0 such that a root field of f ðt0; xÞ has discriminant divisible by 77. But
now it follows exactly as in the proof of Theorem 4 that infinitely many of those
fields are monogenic PGL2ð7Þ-fields (by looking at suqarefree specializations of
the reduced discriminant tð108t� 1Þ).

Remark 3. As in Remark 2, Siegel’s theorem may be used to ensure the full
Galois group PGL2ð7Þ. Firstly, note that for t0 1 1 mod 7, the decomposition
group of f ðt0; xÞ at the prime 7 is of order 16 (and equals the normalizer of a
cyclic subgroup of order 8 in PGL2ð7Þ). This is because this decomposition
group has to contain a cyclic normal subgroup of order 8 (the inertia subgroup),
but cannot equal this subgroup, as Q7 has no totally ramified C8-extension.
Therefore Galð f ðt0; xÞjQÞ contains a subgroup of order 16 and can then only
equal either this subgroup (which is maximal in PGL2ð7Þ) or PGL2ð7Þ. By simple
order arguments, no element of PGL2ð7Þ has two or less cycles in the (degree-21)
action on the cosets of the order-16 subgroup. Therefore, Siegel’s theorem yields
that for all but finitely many t0 1 1 mod 7, f ðt0; xÞ has Galois group PGL2ð7Þ.
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