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A REGULATOR MAP FOR 1-CYCLES WITH MODULUS

Mirai Onoda

Abstract

Let k be a field of characteristic 0. We define a map from the additive higher

Chow group of 1-cycles with strong sup m-modulus CH1ðAkðmÞ; nÞssup to the module of

absolute Kähler di¤erentials of k with twisted k �-action Wn�2
k hoi of weight o. We will

call the map a regulator map, and we show that the regulator map is surjective if k is

an algebraically closed field. In case o ¼ mþ 1, this map specializes to Park’s regulator

map. We study a relationship between the cyclic homology and the additive higher

Chow group with strong sup modulus by using our regulator map.

1. Introduction

Let k be a field. Bloch and Esnault ([3], [4]) introduced the additive higher
Chow group of k as an additive version of Bloch’s higher Chow group CHdðk; nÞ
of k. It was generalized and studied further by Rülling, Park, Krishna, Levine
([8], [9], [13], [14], [16]). In particular the additive higher Chow group of 0-cycles
of k is well-understood and related to the group of big de Rham-Witt forms of
k (see [16]). In this paper we study the additive higher Chow group of 1-cycles
of k.

The additive higher Chow group is defined as the homology group of a
certain complex, called an additive cycle complex, which is built up from
algebraic cycles satisfying two conditions: One is the face condition which was
already used in the definition of Bloch’s higher Chow group. The other new
condition is called the modulus condition. In this paper, we use two kinds
of modulus conditions, the sup modulus condition and the strong sup modulus
condition. The corresponding additive higher Chow groups of k are denoted by

CHdðAkðmÞ; nÞsup and CHdðAkðmÞ; nÞssup;

where m indicates the modulus (see §2 for definitions). There is a natural
map

CHdðAkðmÞ; nÞssup ! CHdðAkðmÞ; nÞsup:ð1:1Þ
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Let k be a field. For a k-vector space V and an integer o, we define Vhoi
to be the k-vector space which has the same underlying additive group and is
equipped with the twisted k �-action of weight o given by

a ? x :¼ aox; a A k �; x A V :

A group homomorphism between groups with k �-actions which preserves the
k �-actions is called weight-preserving. The additive higher Chow group has a
natural k �-action and Park ([13]) defined the following weight-preserving map,
called a regulator map, from the additive higher Chow group of 1-cycles to the
module of absolute Kähler di¤erentials of k with a twisted k �-action:

R2;m : CH1ðAkðmÞ; nÞsup ! Wn�2
k hmþ 1i:

The first main result of this paper generalizes this result.

Theorem 1.1 (See Corollary 3.20). Let k be a field of characteristic zero.
Let mb 2 be an integer. For each integer c with ma c < 2m, there exists a
weight-preserving map

Ln
c : CH1ðAkðmÞ; nÞssup ! Wn�2

k hci

such that the composite of Park’s regulator map R2;m and (1.1) coincides with
Ln
mþ1. Moreover, if k is an algebraically closed field, the map

Ln ¼ 0
mac<2m

Ln
c : CH1ðAkðmÞ; nÞssup ! 0

mac<2m

Wn�2
k hci

is surjective.

In case of n ¼ 2, the above theorem provides the map

L2 ¼ 0
mac<2m

L2
c : CH1ðAkðmÞ; 2Þssup ! 0

mac<2m

khci:

We expect that this map is related to the following map:

K3ðk½e�; eÞð2Þ ! B2ðk½e�Þ !
Li

0
m<o<2m

khoi;

where k½e� :¼ k½x�=xm is the truncated polynomial ring, and K3ðk½e�; eÞð2Þ is the
l2-eigenspace for the l-th Adams operator (for any integer l > 1) of the relative
algebraic K-theory ([10, §11.2.19]), and B2ðk½e�Þ is the Bloch group of k½e� ([18,
§1.3]), and Li is an additive dilogarithm defined by Ünver ([18, Thm. 1.3.2]), who
proved that the composite of the above maps is an isomorphism.

The second main result of this paper concerns a relationship between
CH1ðAkðmÞ; 2Þsup and the cyclic homology of the truncated polynomial ring.
Recall that the cyclic homology of a truncated polynomial ring has a natural
k �-action which induces a decomposition, called the weight decomposition
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([10, Def. 2.1.3], see also §4.2). We will see in Corollary 4.9 the following
isomorphism:

HC2ðk½x�=xm; ðxÞÞG xmþ1k½x�=x2m;ð1:2Þ

where the left hand side is the relative cyclic homology of the truncated poly-
nomial ring ([10, §2.1.15]). We prove the following:

Theorem 1.2 (See Theorem 4.10). Let k be a number field and mb 2 be an
integer. Then there exists a weight-preserving map

F : HC2ðk½x�=xm; ðxÞÞ ! CH1ðAkðmÞ; 2Þsup:

We also construct a map (see Definition 4.5 and Remark 4.7)

F 0 : xmk½x� ! CH1ðAkðmÞ; 2Þssup
such that the composed map

xmk½x� !F
0

CH1ðAkðmÞ; 2Þssup ! CH1ðAkðmÞ; 2Þsup
factor through xmk½x�=x2m:

xmk½x� CH1ðAkðmÞ; 2Þssup???y
???y

xmk½x�=x2m ���! CH1ðAkðmÞ; 2Þsup:

�����!F 0

The composition of the lower horizontal map with (1.2) is the map F of Theorem
1.2. We also show that the composed map

xmk½x� !F
0

CH1ðAkðmÞ; 2Þssup !
~LL

0
mao<2m

khoiG xmk½x�=x2m;

where ~LL is a direct sum of modifications of the regulator maps Ln
c , is a natural

quotient map. In particular F 0 is not a trivial map (see Corollary 4.12).
There is a folklore conjecture that the additive higher Chow group is related

to the motivic cohomology group (still conjectural) H �Mðk½e�; ðeÞ;ZðrÞÞ of the
relative truncated polynomial ring. It is expected to relate to the relative
algebraic K-group Knðk½e�; ðeÞÞ by a spectral sequence of Atiyah-Hirzebruch
type as the motivic cohomology of smooth schemes X relates to the algebraic
K-group K�ðX Þ. On the other hand, there are isomorphisms Knþ1ðk½e�; ðeÞÞG
0

pb0
ðWn�2p

k Þm�1 and Knðk½e�; ðeÞÞGHCn�1ðk½e�; ðeÞÞ, where the first isomorphism
was proved by Hesselholt [7], and the second isomorphism was proved by
Goodwillie [6]. Thus Theorems 1.1 and 1.2 give a modest evidence toward the
above conjecture.

This paper is organized as follows.
In section 2, we give the definition of the additive higher Chow groups with

m-modulus by using the strong sup and the sup modulus condition ([9]). We
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adopt the (strong) sup modulus condition (not the sum condition) to define the
regulator map by using the residue theory developed in [19], [12] and [13]. In
subsection 2.2, we give some examples of additive cycles and give some relations.
These examples will be used in later sections.

In section 3, we construct a weight-preserving regulator map from the group
of 1-cycles with the sup m-modulus condition to the module of absolute Kähler
di¤erentials of k with the twisted k �-actions. This map is a generalization of
Park’s regulator map ([13]). We show that this regulator map is surjective. We
then show that this regulator map induces a map from the additive higher Chow
group of 1-cycles with strong modulus condition by using an argument similar to
that of Park ([13]).

In section 4, we relate the additive higher Chow groups and the cyclic
homology of a truncated polynomial ring over a number field k. Firstly, using
certain 2-cycles satisfying the sup modulus condition, we find some relations in
the additive higher Chow group of 1-cycles with sup modulus. Secondly, after
recalling the natural k �-action on the cyclic homology of the truncated poly-
nomial ring, we construct the following weight-preserving isomorphism via
Hochschild homology by using a technique of Loday ([10]):

HC2ðk½x�=xm; ðxÞÞG xmþ1k½x�=x2m:

Finally, using this isomoprhism, we define a weight-preserving map from the
cyclic homology to the additive higher Chow group of 1-cycles with sup
m-modulus.

In the appendix, we summarize some results for the residue theory from [12],
[13] and [19].

Acknowledgment. The author would like to thank Jinhyun Park and Shuji
Saito for several useful comments and corrections. The author is grateful to the
referee for careful reading of the paper and numerous valuable and constructive
comments which improved this paper.

2. Additive higher Chow groups over a field

2.1. Definition of additive higher Chow groups
We fix a base field k. Set P1 ¼ P1

k ¼ Proj k½Y0;Y1�, and let y ¼ Y1=Y0.
Let b¼ P1

k � f1g. We denote by O the origin of A1
k . Letting qi : ðP1

kÞ
n ! P1

k

be the i-th projection, we use the coordinate system ðy1; . . . ; ynÞ on bn, with
yi ¼ y � qi. For a scheme X , let XðdÞ denote the set of all integral closed
subschemes of dimension d on X . A face of bn is a closed subscheme F defined
by equations of the form

yi1 ¼ e1; . . . ; yir ¼ er; ej A f0;yg:
For 1a ia n, one denotes by Fn; i the Cartier divisor on ðP1

kÞ
n defined by

fyi ¼ 1g. We omit the subscript n and write it simply as Fi whenever it is clear
from the context. For each i A f1; . . . ; ng and e A f0;yg, we have the codimen-
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sion 1 face maps

iei ¼ ini; e :b
n !bnþ1

with

ðy1; . . . ; ynÞ 7! ðy1; . . . ; yi�1; e; yi; . . . ; ynÞ:
For a Weil divisor D on X , let DY ¼ ordY ðDÞ denote the coe‰cient of the prime
divisor Y on X .

Definition 2.1 ([13, Def. 2.1]). Let D1; . . . ;Dn be Weil divisors on X .
Express Di ¼

P
Y ðDiÞY ½Y �, where Y runs over all prime Weil divisors on X .

We define the supremum of D1; . . . ;Dn as

sup
1aian

Di :¼
X
Y

max
1aian

ðDiÞY
� �

½Y �:

Definition 2.2 ([9, Def. 2.3]). Let k be a field, and mb 2 be an integer.
Let Y A ððA1

knOÞ �bnÞðdÞ be an integral subscheme. Let Y be the Zariski

closure of Y in A1
k � ðP1

kÞ
n, and n ¼ nY : YN ! A1

k � ðP1
kÞ

n be its normalization:

Y A1
k �bn

??yV ??yV
n : Y N ���! Y H���! A1

k � ðP1Þn:

H����!

The integral subscheme Y is said to satisfy a sup m-modulus condition if the
following inequality as Weil divisors on Y N holds:

m � n�ðfx ¼ 0g � ðP1ÞnÞa sup
1aian

n�ðA1
k � FiÞ:

The integral subscheme Y is said to satisfy a strong sup m-modulus condition if
there exists an integer i such that the following inequality as Cartier divisors on
YN holds:

m � n�ðfx ¼ 0g � ðP1ÞnÞa n�ðA1
k � FiÞ:

Definition 2.3 ([9, Def. 2.6, Def. 2.7]). Let k be a field, and let mb 2
be an integer. For any integer db 0, let CdðAkðmÞ; nÞssup be the set of all
integral closed subschemes W A ððA1

knOÞ �bnÞðdÞ which satisfy the following two
conditions:

(i) W intersects properly with ðA1
knOÞ � F for each face F �bn.

(ii) W satisfies the strong sup m-modulus condition.
Let zdðAkðmÞ; nÞssup be the free abelian group on the set CdðAkðmÞ; nÞssup. The
correspondence

n! zn�cðAkðmÞ; nÞssup; n :¼ f0;ygn
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gives rises to a cubical object in the category of abelian groups. The associated
non-degenerate complex is called an additive cycle complex and denoted by
zn�cðAkðmÞ; nÞssup. The boundary map of the complex zn�cðAkðmÞ; nÞssup is given
by

q ¼
X

1aian

ð�1Þ iðq0i � qyi Þ;

where qe
i is the pullback along the face map iei . The homology group at

zdðAkðmÞ; nÞssup is denoted by CHdðAkðmÞ; nÞssup:
CHdðAkðmÞ; nÞssup :¼ H0ðzdþ�ðAkðmÞ; nþ �Þssup; qÞ:

We call CHdðAkðmÞ; nÞssup the additive higher Chow group over the field k
with strong sup m-modulus.

Remark 2.4. Similarly we can define an additive higher Chow group over
a field k with sup m-modulus ([13, §2]). Let CdðAkðmÞ; nÞsup be the set of all

integral closed subschemes W A ððA1
knOÞ �bnÞðdÞ which satisfy the following

three conditions:
(i) W intersects properly with ðA1

knOÞ � F for each face F �bn.
(ii) W satisfies the sup m-modulus condition.
(iii) For any codimension r face F , the associated cycle of the scheme F \W

lies in the group zd�rðAkðmÞ; n� rÞsup.
Let zdðAkðmÞ; nÞsup be the free abelian group on the set CdðAkðmÞ; nÞsup. Sim-
ilarly we define an associated non-degenerate complex zn�cðAkðmÞ; nÞsup and its
homology group CHdðAkðmÞ; nÞsup. The latter group is called an additive higher
Chow group over the field k with sup m-modulus. We note that there is a
natural map

zdðAkðmÞ; nÞssup ! zdðAkðmÞ; nÞsup:

Example 2.5. We consider the conditions (i), (ii) for the set of 0-cycles
C0ðAkðmÞ; nÞssup. Let p A C0ðAkðmÞ; nÞssup be a 0-cycle. The first condition (i)

implies that the closed point p A ðA1
k �bnÞð0Þ does not lie on the closed sub-

scheme ðA1
knOÞ � F for each face F �bn. The second condition (ii) implies

that the closed point p A ðA1
k �bnÞð0Þ does not lie on the closed subscheme

fx ¼ 0g � A1
k �bn.

Remark 2.6. Recall that the higher Chow group CHdðA1
k; nÞ is defined

as the n-th homology of the complex zdðA1
k; �Þ=zdðA1

k; �Þdeg, where the group
zdðA1

k; nÞ is built out of the codimension d-cycles on A1
k �bn which intersect

properly with A1
k � F for each face F �bn, and the complex zdðA1

k; �Þdeg is the

subcomplex of degenerate cycles of zdðA1
k; �Þ (see [17, pp. 178–181]). By the

condition (i), the group zdðAkðmÞ; nÞssup is naturally viewed as the subgroup of
the group znþ1�dðA1

k; nÞ, and this induces a natural morphism

CHdðAkðmÞ; nÞssup ! CHnþ1�dðA1
k; nÞ:
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Remark 2.7. There is an another modulus condition called a sum modulus
condition ([9]). By using the sum modulus condition instead of (ii) in Defini-
tion 2.3, we define an additive higher Chow group with sum m-modulus and
the group is denoted by CHdðAkðmÞ; nÞsum. We note that there are natural
maps

CHdðAkðmÞ; nÞssup ! CHdðAkðmÞ; nÞsup ! CHdðAkðmÞ; nÞsum:

If d ¼ 0, the above maps are isomorphism. It is not known whether these three
groups coincide in general.

Remark 2.8. Bloch-Esnault and Rülling ([4], [16]) studied the additive
higher Chow group of zero cycles over a field with the sum m-modulus. Let
mb 2 be an integer. Let k be a field of char k0 2. By Bloch, Esnault, and
Rülling ([4], [16]), we have an isomorphism

CH0ðAkðmÞ; nÞsum GWm�1W
n
k

where Wm�1W
n
k is the big de Rham-Witt group of k.

Remark 2.9. Krishna, Levine, and Park generalized the definition of an
additive higher Chow group for any k-scheme X (see [8], [9]).

Let C � A1
k �bn be an integral closed subscheme and n : CN ! A1

k � ðP1
kÞ

n

be a normalization of its Zariski closure in A1
k � ðP1

kÞ
n. If C satisfies the sup

modulus condition, for any irreducible component p of n�ðfx ¼ 0g � ðP1
kÞ

nÞ seen
as a prime Weil divisor, there exists an index i A f1; . . . ; ng such that

m � n�ðfx ¼ 0g � ðP1ÞnÞp a n�ðA1
k � fyi ¼ 1gÞp

and we say that C satisfies the m-modulus condition on yi along p. If C satisfies
the strong sup modulus condition, we can choose an index i independently of a
choice of an irreducible component p.

2.2. Examples of additive cycles and their properties
We fix an integer mb 2. Let O denote the origin of A1

k . In this sub-
section, we give some examples of additive cycles with strong sup modulus.

Example 2.10. Let V be a 0-cycle on A1
k which satisfies O B jV j, where jV j

is the support of V . Then V satisfies the strong sup m-modulus condition for
any mb 2.

Example 2.11. Let Z � A1
k be a Zariski closed subset such that O B Z. Let

Y � Z �bn be a closed subscheme which intersects with Z � F properly for
each face F �bn. Then Y satisfies the strong sup m-modulus condition for any
mb 2.
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Let C be the following curve, whose projections to b2 was used in the paper
of Totaro ([17])

C : t 7! a; t;
b1ðt� b2Þ
t� b1b2

� �
A A1

k �b2;

where a; b1; b2 A k � are constants.
Then C is a cycle in z1ðAkðmÞ; 2Þssup and the boundary of C is

qC ¼ ða; b1Þ þ ða; b2Þ � ða; b1b2Þ A z0ðAkðmÞ; 1Þssup:
Therefore, we get the following lemma.

Lemma 2.12. Let a;b1;b2 A k �. In the group z0ðAkðmÞ;1Þssup=qz1ðAkðmÞ;2Þssup
we have the following relation:

ða; b1b2Þ ¼ ða; b1Þ þ ða; b2Þ:

Example 2.13. Let C be the following parametric curve used in the paper
of Bloch and Esnault ([4])

C : t 7! t;
ð1� a1tÞð1� a2tÞ
1� ða1 þ a2Þt

; c

� �
A A1

k �b2;

where a1; a2; c A k � are constants. This C is a normal irreducible curve, and this
cycle satisfies the strong sup modulus condition for m ¼ 2. The boundary of C
is

qC ¼ � 1

a1
; c

� �
� 1

a2
; c

� �
þ 1

a1 þ a2
; c

� �
A z0ðAkðmÞ; 1Þssup:

Therefore, we get the following lemma.

Lemma 2.14. Let a1; a2 A k � and put m ¼ 2. In the group z0ðAkðmÞ; 1Þssup=
qz1ðAkðmÞ; 2Þssup we have the following relation:

1

a1
; c

� �
þ 1

a2
; c

� �
¼ 1

a1 þ a2
; c

� �
:

Example 2.15. Let gðtÞ A kðtÞ�, c A k �, and suppose gð0Þ A k �. Let C be
the parametric curves of the form

C : t 7! ðt; 1� tmgðtÞ; cÞ A A1
k �b2:

Then C satisfies the strong sup m-modulus condition.

Let a A k �. We suppose that k has all m-th root of a. By putting
gðtÞ ¼ a�1, c ¼ a in Example 2.15, we have the following parametric curve

C : t 7! t; 1� tm

a
; a

� �
A A1

k �b2;
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and C A z1ðAkðmÞ; 2Þssup. The boundary of C is

qC ¼
X
zm¼a
ðz; aÞ A z0ðAkðmÞ; 1Þssup:ð2:1Þ

Similarly, the following parametric curve

C 0 : t 7! t; 1� tm

a
; t

� �
A A1

k �b2

satisfies the strong sup m-modulus condition. The boundary of C 0 is

qC 0 ¼
X
zm¼a
ðz; zÞ A z0ðAkðmÞ; 1Þssup:ð2:2Þ

Proposition 2.16. Let C, C 0 be as above. Let a A k �, and put a ¼ am.
Suppose that k has a primitive m-th root of unity. In the group z0ðAkðmÞ; 1Þssup=
qz1ðAkðmÞ; 2Þssup we have the following relation:

qC ¼ mqC 0:

Proof. It follows from Lemma 2.12 and the above arguments. r

3. A regulator map

3.1. A regulator map and its properties
Let k be a perfect field, and let m; sb 2 be integers. Let F � ðP1Þn be a

union of all faces fyi ¼ eg � ðP1Þn for i ¼ 1; 2; . . . ; n, e A f0;yg. For 1a ia n,
let on; s

i A Wn�1
A1

k�ðP
1Þn=Zðlog FÞð�fx ¼ 0gÞ be the following absolute Kähler di¤er-

ential ðn� 1Þ-forms similar to the ones used in the paper of Park ([13]):

on; s
1 ¼

1� y1

xs

dy2

y2
� � � dyn

yn
;

on; s
i ¼

1� yi

xs

dyiþ1
yiþ1

� � � dyn
yn

dy1

y1
� � � dyi�1

yi�1
ð1 < i < nÞ;

on; s
n ¼

1� yn

xs

dy1

y1
� � � dyn�1

yn�1
:

ð3:1Þ

We omit the superscripts n or s whenever it is clear from the context.
In this subsection, we define the following map called a regulator map

Ls : z1ðAkðmÞ; nÞssup ! Wn�2
k

for nb 2 by using the arguments similar to those in [13]. We use the residue
theory to define the regulator map. Let C be a normal curve over a perfect field
k, and let p A C be a closed point. For any rational absolute Kähler di¤erential
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form o on C, we denote by respðoÞ the residue value of o at p. The residue
theory was studied by El Zein, Beilinson, Parshin, Lomadze, Yekutieli ([1], [5],
[11], [12], [15], [19]), and generalized to higher dimensions. In §5, we summarize
some results for the generalized residue theory.

Definition 3.1. Let C � A1
k �bn be an irreducible curve and let n : CN !

C be a normalization of its Zariski closure in A1
k � ðP1Þn:

C A1 �bn??yV ??yV
n : CN ���! C H���! A1 � ðP1Þn:

H����!

For any closed point p A n�1ðC \ fx ¼ 0gÞ, we put

Rs
i ðC; pÞ :¼ ð�1Þði�1Þ respðn�os

i Þ A Wn�2
k :

If C satisfies the sup modulus condition, we can find i A f1; . . . ; ng such that

m � n�ðfx ¼ 0g � ðP1
kÞ

nÞp a n�ðA1
k � fyi ¼ 1gÞp:ð3:2Þ

Moreover if C satisfies the strong sup modulus condition, there exists some i such
that (3.2) works for all p.

Under this strong sup modulus condition on C, we will prove the following
Lemma 3.3. If s < 2m, then Rs

i ðC; pÞ does not depend on the choice of such i.
Hence if s < 2m, we omit the subscript i and write

RsðC; pÞ :¼ Rs
i ðC; pÞ:

For simplicity, we denote by jn�fx ¼ 0gj the set of all closed points of a

support of the Weil divisor n�ðfx ¼ 0g � ðP1ÞnÞ.

Definition 3.2. Let s < 2m be an integer. For each irreducible curve
C A z1ðAkðmÞ; nÞssup, let n : CN ! C be a normalization of its Zariski closure in
A1

k � ðP1Þn. We define a map

Ln
s : z1ðAkðmÞ; nÞssup ! Wn�2

k

by

Ln
s ðCÞ :¼

X
p A jn �fx¼0gj

RsðC; pÞ for C A C1ðAkðmÞ; nÞ

and we extend it Z-linearly. We omit the superscript n whenever it is clear from
the context.

Lemma 3.3. Let C A z1ðAkðmÞ; nÞssup be an irreducible curve and let n : CN !
C be a normalization of its Zariski closure in A1

k � ðP1Þn. Then
(1) For s < 2m, Rs

i ðC; pÞ does not depend on a choice of i.
(2) For s < m, Ln

s is the zero map.
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Proof. For simplicity, we only show the case of n ¼ 2. A proof of the
general case is similar.

(1) Let C A z1ðAkðmÞ; 2Þssup be an irreducible curve, and take a closed point
p A jn�fx ¼ 0gj. Suppose that C satisfies the modulus condition both on y1 and
y2 along p. It is enough to show that Rs

1ðC; pÞ ¼ Rs
2ðC; pÞ ¼ 0 for s < 2m. Let

x 0, y 01, y 02 be images of the coordinate functions x; y1; y2 A O
A1

k�ðP
1Þ2 in the DVR

A ¼ O
CN ;p. By using a uniformizing parameter t on A, we can write

ðx 0; y 01; y 02Þ ¼ ðtru; 1� trmf ; 1� trmgÞ
for some u A A�, f ; g A A. Since p is a closed point on the support of
n�ðfx ¼ 0g � ðP1ÞnÞ, we have rb 1. By a direct computation,

n�
1� y1

xs

dy2

y2

� �
¼ trmf

trsus

dð1� trmgÞ
1� trmg

¼ �t
rðm�sÞf

us

rmtrm�1g dtþ trmg 0 dt

1� trmg
:

Hence we can write

n�
1� y1

xs

dy2

y2

� �
¼ atrðm�sÞþðrm�1Þ dt ¼ at2rm�rs

dt

t

for some a A A. Since

2rm� rsb 1, 2rm� 1b rs

, 2m� 1

r
b s;

and rb 1, it follows that Rs
1ðC; pÞ ¼ 0 for 2m > s. Similarly, we have

Rs
2ðC; pÞ ¼ 0 for 2m > s. This proves Lemma 3.3 (1).

(2) Let C A z1ðAkðmÞ; 2Þssup be an irreducible curve, and take a closed point
p A jn�fx ¼ 0gj. We may assume that C satisfies the modulus condition on y1
by (1). By using the same notation as above, we can write

ðx 0; y 01; y 02Þ ¼ ðtru; 1� trmf ; gÞ
for some u A A�, f ; g A A, rb 1. By a direct computation,

n�
1� y1

xs

dy2

y2

� �
¼ trmf

trsus

dg

g

¼ trðm�sÞf

us

g 0 dt

g
:

Let vt be the discrete valuation of A. Since vt
g 0

g

� �
b�1, there exists b A A such

that

n�
1� y1

xs

dy2

y2

� �
¼ trðm�sÞb

dt

t
:
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Since s < m, we get rðm� sÞb rb 1. Therefore we have Rs
1ðC; pÞ ¼ 0. This

completes the proof of Lemma 3.3 (2). r

Definition 3.4. Let k be a field. Let V be a k-vector space and let s > 0
be an integer. We define Vhsi to be the k-vector space which has the same
underlying additive group and is equipped with the twisted k �-action of weight s
given by

a ? v :¼ asv; a A k �; v A V :

k � acts on A1
k �bn by

a ? ðx; y1; . . . ; ynÞ ¼
x

a
; y1; . . . ; yn

� �
;

and this action induces a k �-action on the complex z��cðAkðmÞ; �Þssup, hence on
CHdðAkðmÞ; nÞssup.

By a direct computation, we have the following lemma.

Lemma 3.5. Let s < 2m and let a A k �. Then we have

Ln
s ða ? CÞ ¼ asLn

s ðCÞ:

Therefore, Ln
s defines a map of k �-set:

Ln
s : z1ðAkðmÞ; nÞssup ! Wn�2

k hsi:

Definition 3.6. We define a homomorphism Ln by

Ln ¼ 0
mas<2m

Ln
s : z1ðAkðmÞ; nÞssup ! 0

mas<2m

Wn�2
k hsi:

Ln is compatible with the k �-action. We denote by Kn
s :¼ ker Ln

s and Kn :¼
ker Ln ¼

T
s<2m K n

s .

Remark 3.7. By the same arguments, we can define the map from the group
of additive cycles with sup modulus:

Ln ¼ 0
mas<2m

Ln
s : z1ðAkðmÞ; nÞsup ! 0

mas<2m

Wn�2
k hsi:

By a direct computation, we get the following similar to Example 2.11.

Lemma 3.8. Let a; b1; b2; . . . ; bn A k �. Let C be the parametric curve of the
form

C : t 7! a; t;
b1ðt� b2Þ
t� b1b2

; b3; . . . ; bn

� �
A A1

k �bn:

Then C satisfies the strong sup modulus condition and C A Kn.
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Corollary 3.9. Under the same notations as in Lemma 3.8, we have the
following relation in z0ðAkðmÞ; n� 1Þssup=qKn:

ða; b1b2; b3; . . . ; bnÞ ¼ ða; b1; b3; . . . ; bnÞ þ ða; b2; b3; . . . ; bnÞ:

Proof. It follows from Lemma 2.12 and Lemma 3.8. r

Lemma 3.10. Let a0 0, b1; . . . ; bn A k � � f1g. Then following cycles lie
in K n:

(1) A 1-cycle W on A1
k �bn which intersects properly with A1

k � F for each
face F �bn and is contained in fag �bn.

(2) An additive cycle W A z1ðAkðmÞ; nÞ contained in A1
k �b� fb1g � � � � �

fbn�1g:

Proof. This is just a direct computation. r

Definition 3.11. We denote by

zdðAkðmÞ; nÞssup;q :¼ kerðzdðAkðmÞ; nÞssup !
q
zd�1ðAkðmÞ; n� 1ÞssupÞ:

By the definition of additive higher Chow group, we get

CHdðAkðmÞ; nÞssup ¼ zdðAkðmÞ; nÞssup;q=qzdþ1ðAkðmÞ; nþ 1Þssup:

Definition 3.12. Let cb 2 be an integer. Let ðk �ÞcZ denote the
Z-submodule of k generated by the set

ðk �Þc :¼ fac A k � j a A k �g:

For a field k, we consider the following condition €c:
ð€cÞ ðk �ÞcZ ¼ k:

Lemma 3.13. k has the property €c when k satisfies one of the following
conditions.

(i) k is an algebraically closed field.
(ii) c < p ¼ char k or char k ¼ 0.
(iii) k is a finite field, and gcdðp� 1; cÞ ¼ 1.

Proof. The cases of (i) and (iii) are clear since k � ¼ ðk �Þc. We consider
the case of (ii). Let x A k and let a A Z. Since

ðxþ aÞc ¼ xc þ c

1

� �
xc�1aþ � � � þ c

c� 1

� �
xac�1 þ ac;

we have

c

1

� �
xc�1aþ � � � þ c

c� 1

� �
xac�1 1 0 modðk �ÞcZ:
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Therefore, by putting

A ¼

c

1

� �
a1

c

2

� �
a21 � � � c

c� 1

� �
ac�1
1

c

1

� �
a2

c

2

� �
a22 � � � c

c� 1

� �
ac�1
2

..

. ..
. . .

. ..
.

c

1

� �
ac�1

c

2

� �
a2c�1 � � � c

c� 1

� �
ac�1
c�1

0
BBBBBBBBBB@

1
CCCCCCCCCCA
; x ¼

xc�1

xc�2

..

.

x

0
BBB@

1
CCCA;

we have

Ax1 0 modðk �ÞcZ:

Then A is the ðc� 1Þ � ðc� 1Þ matrix with entries in Z, and

det A ¼
Yc�1
l¼1

c

l

� � Y
1ai<jac�1

ðaj � aiÞ:

Put ai ¼ i. For the case of char k ¼ p > 0, we have det A2 0 mod p. Hence
we get

x1 0 modðk �ÞcZ:

Especially x1 0 modðk �ÞcZ, we have x A ðk �ÞcZ.
For the case of char k ¼ 0, put a ¼ det A. Then we have

ax1 0 modðk �ÞcZ:

Especially, ax1 0 modðk �ÞcZ. By replacing x by
x

a
, we get x1 0 modðk �ÞcZ and

x A ðk �ÞcZ. This concludes the proof. r

Proposition 3.14. Let ma c < 2m be an integer, and suppose that k satisfies
the condition €c. Suppose that k contains the primitive c-th root of unity. Then
the following map is surjective:

Ln
c : z1ðAkðmÞ; nÞssup;q ! Wn�2

k hci:

Proof. Let a A k �, b1; . . . ; bn A k � � f1g. Put a ¼ ac. Let C be the para-
metric curve of the form

C : t 7! t; 1� tc

a
; a; b1; . . . ; bn�2

� �
A A1 �bn:

By Lemma 3.10, we have C A Kn.
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By the same argument as in (2.1) in §2.2, this C satisfies the strong sup
modulus condition when cbm, and the boundary of C is

qC ¼
X
z c¼1
ðza; a; b1; . . . ; bn�2Þ:

Let C 0 be the parametric curve of the form

C 0 : t 7! t; 1� tc

a
; t; b1; . . . ; bn�2

� �
A A1 �bn:

If cbm, by the same argument as in (2.2) in §2.2, this C 0 satisfies the strong sup
modulus condition and C 0 A z1ðAkðmÞ; nÞssup. The boundary of C 0 is

qC 0 ¼
X
z c¼1
ðza; za; b1; . . . ; bn�2Þ:

By Corollary 3.9, we have

cqC 0 ¼
X
z s¼1

cðza; za; b1; . . . ; bn�2Þ

1
X
z c¼1
ðza; zcac; b1; . . . ; bn�2Þ mod qKn

¼
X
z c¼1
ðza; a; b1; . . . ; bn�2Þ

¼ qC:

Since C A Kn, there exists C 00 A Kn such that

cC 0 � C 00 A z1ðAðmÞ; nÞssup;q:ð3:3Þ

On the other hand,

Ln
s ðC 0Þ ¼ rest¼0 n

� 1� y1

xs

dy2

y2

dy3

y3
� � � dyn

yn

� �
ð3:4Þ

¼ rest¼0
tc

ats
dt

t

� �
db1

b1
� � � dbn�2

bn�2

¼ a�1
db1

b1
� � � dbn�2

bn�2
ðs ¼ cÞ

0 ðs0 cÞ:

8<
:

By putting s ¼ c, we have

Ln
c ðcC 0 � C 00Þ ¼ c

a

db1

b1
� � � dbn�2

bn�2
:
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Since k satisfies the condition €c and a A ðk �Þc, we have

k 	 cðk �ÞcZ ¼ ck ¼ k:

Hence we get

Im Ln
c ¼ Wn�2

k :

This implies that Lc is surjective. r

Corollary 3.15. Suppose that k satisfies the condition €c for all integers
ma c < 2m. Suppose that k contains the primitive c-th root of unity for all
integers ma c < 2m. Then the following map is surjective:

Ln : z1ðAkðmÞ; nÞssup;q ! 0
mac<2m

Wn�2
k hci:

Proof. By the equations (3.3), (3.4) in the proof of previous Proposi-
tion 3.14 and the condition €c (Definition 3.12, see also Lemma 3.13), for
any a1; . . . ; am A k, bc;1; . . . ; bc;n�2 A k �, there exist cycles Cs A z1ðAkðmÞ; nÞssup;q
ðma s < 2mÞ such that

Ln
c ðCsÞ ¼ ac

dbc;1

bc;1
� � � dbc;n�2

bc;n�2
ðs ¼ cÞ

0 ðs0 cÞ:

8<
:

By putting

C ¼
X

mas<2m

Cs;

we have

Ln
c ðCÞ ¼ ac

dbc;1

bc;1
� � � dbc;n�2

bc;n�2
ðma c < 2mÞ: r

3.2. A regulator map from the additive higher Chow group of 1-cycles
In this subsection, we will show that the map L ¼ Ln induces a surjective

map

L : CH1ðAkðmÞ; nÞssup ! 0
mas<2m

Wn�2
k hsi

by using an argument similar to that of Park ([13]). We will prove this using the
residue theorem of the generalized residue theory ([19]). First, we summarize the
notation used in the proof.

We define the map sgn : Z [ fyg ! fG1g in the following way: if i is an
integer, then sgnðiÞ ¼ ð�1Þ i. For i ¼y, we define sgnðyÞ ¼ �1. We denote
sgnða; b; . . .Þ ¼ sgnðaÞ sgnðbÞ � � � for simplicity.

Denote by F n
i; e the face of bn defined by the equation of the form yi ¼ e.

When it does not cause confusions, we omit the superscript n.
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In what follows we assume charðkÞ ¼ 0. We fix natural numbers n; c.
Recall that we defined the di¤erential ðn� 1Þ-forms on

i on A1
k � ðP1Þn for

1a ia n in (3.1) in §3.1. Here, we denote by oi the di¤erential ðn� 1Þ-
form on

i on A1
k � ðP1Þn, and denote by hi the di¤erential n-form onþ1

i on

A1
k � ðP1Þnþ1.

Let pi : A
1 � ðP1Þnþ1 ! A1 � ðP1Þn be the projection that contracts the i-th

factor on ðP1Þnþ1. For 1a ia nþ 1, we put olðiÞ ¼ p�i ol the di¤erential
ðn� 1Þ-forms on A1

k � ðP1Þnþ1.
By a direct computation, we have the equality

halðiÞ ¼ sgnði; lÞolðiÞ5
dyi

yi
;ð3:5Þ

where al is the unique order preserving injective map

al : f1; . . . ; ng ! f1; . . . ; nþ 1gnflg:

We use the equality (3.5) in the following proof of Theorem 3.16.
For an irreducible closed subvariety W � A1

k �bn, we denote by n ¼
nW : WN !W ! A1

k � ðP1Þn a normalization of its Zariski closure in
A1

k � ðP1Þn. If W satisfies the sup modulus condition, for any prime Weil
divisor Y on WN , we denote by SðW ;YÞ the set of all integers i such that the
following inequality holds:

m � ordY n�fx ¼ 0ga ordY n�fyi ¼ 1g:

We denote by SðWÞ the set of all integers i such that the above inequality holds
for all prime Weil divisors Y on WN :

SðWÞ :¼
\
Y

SðW ;YÞ:

If W satisfies the sup modulus condition, we have SðW ;Y Þ0j for any
prime Weil divisor Y on WN . Moreover if W satisfies the strong sup modulus
condition, we have SðWÞ0j.

For any birational surjective morphism f : ~WW !W from a normal variety
~WW , we define the set SfðW ;Y Þ similarly:

SfðW ;Y Þ ¼ fi jm ordY ðf�fx ¼ 0gÞa ordY ðf�fyi ¼ 1gÞg;

SfðWÞ ¼
\
Y

SfðW ;YÞ:

By the universality of normalization, the map f factors through the map n:

WN ���!n W ���! A1
k � ðP1Þnx???f

~WW :

��
�!
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Hence the set SfðWÞ is not empty if W satisfies the strong sup modulus
condition. We omit the subscript f whenever it is clear from the context.

This paper’s extension to general weights of the regulator maps of [13] for
strong sup 1-cycles is checked.

Theorem 3.16. Let W A z1ðAkðmÞ; nþ 1Þssup be an irreducible surface over k.
Let ma c < 2m be an integer. Then Ln

c ðqWÞ ¼ 0.

Proof. For simplicity, we denote L ¼ Ln
c . For an integer i and e A f0;yg,

we denote by ðqe
i WÞ

ð0Þ the set of all prime Weil divisors appearing with non-zero
coe‰cient.

By definition, we have

qW ¼
Xnþ1
i¼1

X
e

sgnði; eÞqe
i W

¼
Xnþ1
i¼1

X
e

X
Y A ðqe

i W Þ
ð0Þ

sgnði; eÞ ordY ðqe
i WÞY

¼
Xnþ1
i¼1

X
e

X
Y A ðqe

i W Þ
ð0Þ

sgnði; eÞ ordY ðq
e
i WÞY

where e runs over the set f0;yg. For any Y A ðqe
i WÞ

ð0Þ, we choose an integer
lðY Þ A SnY ðY Þ. Then we have

LðqWÞ ¼
Xnþ1
i¼1

X
e

X
Y A ðqe

i W Þ
ð0Þ

sgnði; eÞ ordY ðq
e
i WÞLðY Þ

¼ �
Xnþ1
i¼1

X
e

X
Y A ðqe

i W Þ
ð0Þ

sgnði; eÞ ordY ðq
e
i WÞ

�
X

p A n �
Y
fx¼0g
ð�1Þ lðY Þ ResðY N ;pÞðn

�
YolðY ÞðiÞÞ

¼ �
Xnþ1
i¼1

X
e

X
Y A ðqe

i W Þ
ð0Þ

X
p A n �

Y
fx¼0g

sgnði; e; lðYÞÞ ordY ðq
e
i WÞ

�ResðY N ;pÞðn
�
YolðY ÞðiÞÞ:

We can regard Y as a closed subscheme of W naturally. We define the
morphisms f1, f2, f, c, fY , nY as following. Let f1 : W1 !W be a composi-
tion of a sequence of blow-ups such that the strict transforms of all Y A ðqe

i WÞ
ð0Þ

are smooth. Let n : WN !W be a normalization of W . Let f2 : W2 :¼
WN

1 !W1 be a normalization of W1, and let c : W2 ¼WN
1 !WN be an

induced morphism by the universality of normalization. Let f ¼ f1 � f2 be the
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composite map. Let f1;Y : ~YY ! Y be the strict transform of Y under the blow-
up f1. For simplicity, we use the same notation f1 instead of f1;Y . Let

nY : Y N ! Y be a normalization of Y and let cY : ~YY ! Y N be an induced
morphism by the universality of normalization.

f

W2 ¼WN
1 ���!f2 W1 ���!f1 W ~YY ���!f1 Y

c n cY

???y nY

W N Y N
������

!
������

!

 ����
��

We note that all these morphisms are proper surjective birational.
By using the projection theorem (Theorem 5.11) in the residue theory for the

morphisms cY : ~YY ! Y N , f1 : W1 !W , we get

ResðY N ;pÞðn
�
YolðiÞÞ ¼

X
q!p

Resð ~YY ;qÞðf
�
1olðiÞÞ:

Hence we have

LðqWÞ ¼ �
Xnþ1
i¼1

X
e

X
Y A ðqe

i W Þ
ð0Þ

X
p A n �

Y
fx¼0g

sgnði; e; lðYÞÞ

� ordY ðq
e
i WÞ ResðY N ;pÞðn

�
YolðY ÞðiÞÞ

¼ �
Xnþ1
i¼1

X
e

X
Y A ðqe

i W Þ
ð0Þ

X
p A f �1 fx¼0g

sgnði; e; lðYÞÞ

� ord ~YY ðgqe
i Wqe
i WÞ Resð ~YY ;pÞðf

�
1olðYÞðiÞÞ

¼ �
Xnþ1
i¼1

X
e

X
Y A ðqe

i W Þ
ð0Þ

X
p A f �1 fx¼0g

sgnði; lðYÞÞ

�ResðW1; ~YYÞ f�1
dyi

yi

� �
Resð ~YY ;pÞðf

�
1olðYÞðiÞÞ;

where the last equality follows from a direct computation of a residue values at
the normal variety ~YY . By a direct computation, we have the following lemma.

Lemma 3.17. With the above notations,

sgnði; lÞ ResðW1; ~YYÞ f�1
dyi

yi

� �� �
f�1olðiÞ ¼ ResðW1; ~YYÞ sgnði; lÞf�1olðiÞ5f�1

dyi

yi

� �
¼ ResðW1; ~YYÞðf

�
1halðiÞÞ:
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By using this lemma, we have

LðqWÞ ¼ �
Xnþ1
i¼1

X
e

X
Y A ðqe

i WÞ
ð0Þ

X
p A f �1 fx¼0g

sgnði; lðYÞÞð3:6Þ

�ResðW1; ~YYÞ f�1
dyi

yi

� �
Resð ~YY ;pÞðf

�
1olðY ÞðiÞÞ

¼ �
Xnþ1
i¼1

X
e

X
Y A ðqe

i WÞ
ð0Þ

X
p A f �1 fx¼0g

Resð ~YY ;pÞðResðW1; ~YYÞðf
�
1halðY ÞðiÞÞÞ

¼ �
Xnþ1
i¼1

X
e

X
Y A ðqe

i WÞ
ð0Þ

X
p A f �1 fx¼0g

ResðW1; ~YY ;pÞðf
�
1halðYÞðiÞÞ

¼ �
Xnþ1
i¼1

X
e

X
Y A ðqe

i WÞ
ð0Þ

X
p A f �1 fx¼0g

�
X

ðW2;C;qÞ!
f2 ðW1; ~YY ;pÞ

ResðW2;C;qÞðf�halðYÞðiÞÞ;

where we use the transitivity of residue maps (Theorem 5.9) and the projection
theorem (Theorem 5.11) for the map f2 : W2 !W1.

Consider a chain x ¼ ðW2;C; qÞ on W2 satisfying ResxðhlÞ0 0. By the
shape of the di¤erential form hl , we notice that fðCÞ is a subset of W \ fx ¼ 0g
or a subset of qe

i W for some i, e. We note that all the chain x ¼ ðW2;C; qÞ in
the equation (3.6) satisfying that fðCÞ is a subset of qe

i W for some i, e.
By using the residue theorem for varying curves (Theorem 5.10(1)), we

have

LðqWÞ ¼ �
Xnþ1
i¼1

X
e

X
Y A ðqe

i WÞ
ð0Þ

X
p A f �1 fx¼0g

X
ðW2;C;qÞ!

f2 ðW1; ~YY ;pÞ

ResðW2;C;qÞðf�halðYÞðiÞÞ

¼
Xnþ1
i¼1

X
e

X
Y A ðqe

i WÞ
ð0Þ

X
p A f �1 fx¼0g

X
q AD;fðqÞ¼p

ResðW2;D;qÞðf�halðYÞðiÞÞ;

where all chains ðW2;D; qÞ satisfying that fðDÞ is a subset of W \ fx ¼ 0g.
The following lemma follows from a direct computation.

Lemma 3.18. Under the same notations as above, let D2 � f�fx ¼ 0g be an
irreducible component, and put D ¼ cðD2Þ � n�fx ¼ 0g. Let q A C \D2 be a
closed point, and put

p1 ¼ f2ðqÞ A ~YY ; p ¼ cY ðp2Þ:
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Then we have

SðW ;DÞ ¼ SfðW ;D2Þ � SfðY ; qÞ ¼ Sf1ðY ; p1Þ ¼ SðY ; pÞ:

Especially we can replace the index lðYÞ by an element of SðW ;DÞ. Since
W satisfies the strong sup modulus condition, we have j0SðWÞ � SðW ;DÞ.
Hence we can choose l ¼ lðY Þ independently of Y , so we get

LðqWÞ ¼
Xnþ1
i¼1

X
e

X
Y A ðqe

i W Þ
ð0Þ

X
p A f �1 fx¼0g

X
q AD;fðqÞ¼p

ResðW2;D;qÞðf�halðiÞÞ:ð3:7Þ

By using the residue theorem for varying closed points (Theorem 5.10(2)) and the
transitivity of residue maps (Theorem 5.9), the right hand side in equation (3.7) is
equal to 0. Hence we get LðqWÞ ¼ 0. r

Remark 3.19. If one attempts the above argument for the sup modulus
cycles, then one cannot necessarily choose l ¼ lðYÞ independently of Y in the
sentence just above (3.7). The referee had informed the author that the main
theorem of [13] is probably incorrect for the sup modulus 1-cycles that do not
satisfy the strong sup modulus condition. According to the referee via a private
communication with the author of [13], the author of ibid. knows about the
problem and said he obtained a counterexample as well for sup modulus condi-
tion, which will be available in a forthcoming paper on this subject.

Corollary 3.20. Ln
c induces a map

Ln
c : CH1ðAkðmÞ; nÞssup ! Wn�2

k hci:

We have a surjective map

Ln : CH1ðAkðmÞ; nÞssup ! 0
mas<2m

Wn�2
k hsi:

4. A weight structure of the cyclic homology and the additive higher
Chow group

4.1. Preliminary
Let k be a field k. For f ðxÞ; gðxÞ A kðxÞ, define ½x; f ; g� to be the para-

metric curve of the form

t 7! ðt; f ðtÞ; gðtÞÞ A A1 � ðP1Þ2:
We naturally regard it as a 1-cycle on A1 �b2. For f ðxÞ A k½x�, define Cf to be
the parametric curve of the form

Cf : t 7! ðt; f ðtÞ; 1� f ðtÞÞ A A1 �b2:ð4:1Þ
Let vx be the valuation of the DVR k½x�ðxÞ. If vxð f ðxÞÞbm, we have Cf A
z1ðAkðmÞ; 2Þsup;q.
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Recall that (the cubical version of ) Bloch’s higher Chow groups CHdðK ; nÞ
of a field K are defined as follows. Let zdðK ; nÞ be the group of codimen-
sion d-cycles on Spec K �bn which intersect properly with Spec K � F for each
face F �bn. We define the boundary q ¼

Pn
i¼1ð�1Þ

iðq0i � qyi Þ : zdðK ; nÞ !
zdðK ; n� 1Þ and get the complex of abelian groups ðzdðK ; �Þ; qÞ. The n-th
homology of the associated non-degenerate complex is the Bloch’s higher Chow
group CHpðK ; nÞ (see [17, pp. 178–181]). In the following Lemma 4.1, we use
the fact that CH 1ðK ; 2Þ ¼ 0 ([2, Thm. 6.1]).

Lemma 4.1. Let p A A1
knO be a closed point, and let C A z1ðAkðmÞ; 2Þsup be

an irreducible curve satisfying the condition C � p�b2. Then we have

½C� ¼ 0 A CH1ðAkðmÞ; 2Þsup:

Proof. Let ip : Spec kðpÞ ! A1 be the closed immersion. Then ip induces a
closed immersion

fp : Spec kðpÞ �bq ! A1
k �bq;

hence it induces the push-forward fp : z
q�rðkðpÞ; qÞ ! zrðA1

k �bqÞ, where

zrðA1
k �bqÞ is a group of r-cycles on A1

k �bq. Since this map factor through
zrðAkðmÞ; qÞsup, we have

zq�rðkðpÞ; qÞ ���!fp zrðA1
k �bqÞ

f
q
p

x??
U

zrðAkðmÞ; qÞsup:

 �
��
�

By the following commutative diagram

z1ðkðpÞ; 3Þ z1ðkðpÞ; 2Þ z1ðkðpÞ; 1Þ

f3
p

???y f2
p

???y f1
p

???y
z2ðAkðmÞ; 3Þsup ���! z1ðAkðmÞ; 2Þsup ���! z0ðAkðmÞ; 1Þsup;

������! ������!

we have

f2
p : CH 1ðkðpÞ; 2Þ ! CH1ðAkðmÞ; 2Þsup:

Since CH 1ðkðpÞ; 2Þ ¼ 0, we notice that f2
p is the zero map. We can easily check

that ½C� A Im fp, hence we get

½C� ¼ 0 A CH1ðAkðmÞ; 2Þsup: r

This lemma says if our 1-cycle is constant on the first coordinate A1
k , this

1-cycle is the boundary of some 2-cycle. Hence we can disregard 1-cycles which
are constant on A1

k .
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Remark 4.2. Lemma 4.1 is motivated by the fact

LðCÞ ¼ 0

where C � A1
k �b2 is a curve satisfying C � fag �b2.

Corollary 4.3. Let f A xmk½x�, g; h A kðxÞ. Then we have the following
relation in CH1ðAkðmÞ; 2Þsup:

½x; 1� f ; g� þ ½x; 1� f ; h� ¼ ½x; 1� f ; gh�:

Proof. We consider the parametric 2-cycle of the form

C : ðx; yÞ 7! x; 1� f ðxÞ; gðxÞðy� hðxÞÞ
ðy� gðxÞhðxÞÞ ; y

� �
A A1 �b3:

On easily sees that C satisfies the sup modulus condition. By Lemma 4.1, we get

qC1�½x; 1� f ; h� þ ½x; 1� f ; gh� � ½x; 1� f ; g�
since the solutions of the equation 1� f ðxÞ ¼ 0 define closed points of A1

k .
r

Proposition 4.4. Let f A x2mk½x�. Then we have

½Cf � ¼ 0 A CH1ðAkðmÞ; 2Þsup:

Proof. Put f ¼ fðxÞ A kðxÞ so that f ¼ x2mfðxÞ. Let S be the parametric
2-cycle of the form

S : ðx; yÞ 7! x; 1� xmfðxÞ
y

; 1� xmy; y

� �
A A1

k �b3:

We must show that it satisfies the sup modulus condition. The scheme A1
k �b3

is covered by the standard a‰ne open sets, such as Spec k½x; y1; y2; y3�,
Spec k½x; y�11 ; y2; y3�, and so on. In any a‰ne open sets, if there exists i such

that
yi � 1

xm
is integral on S, the 2-cycle S satisfies the sup modulus condition.

On Spec k½x; y1; y2; y3�, the 2-cycle S is given by the equations of the form

y1 ¼ 1� xmf

y
; y2 ¼ 1� xmy; y3 ¼ y:

These equations are equal to

y1 ¼ 1� xmf

y3
; y2 ¼ 1� xmy3:

Hence in this coordinate, we have

y2 � 1

xm
¼ �y3;
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so S satisfies the modulus condition on Spec k½x; y1; y2; y3�. Let y 03 ¼ y�13 and
consider the modulus condition on Spec k½x; y1; y2; y 03�. In this case, the 2-cycle
S is given by the equations of the form

y1 ¼ 1� xmfy 03; y2 ¼ 1� xm

y 03
:

Hence we have

y1 � 1

xm
¼ �fy 03;

so S satisfies the modulus condition in this coordinate. We can easily check that
S satisfies the modulus condition for any other coordinates, thus we have S A
z2ðAkðmÞ; 3Þsup.

The boundary of S is calculated by using Corollary 4.3 as follows:

qS ¼ ½x; 1� x2mf; xmf� � x; 1� x2mf;
1

xm

� �
1 ½x; 1� f ; f �:

Thus we get the desired relation. r

Recall Cf is the parametric curve defined in the equation (4.1) in §4.1. This
Cf satisfies the sup modulus condition if vxð f Þbm where vx is a valuation of
k½x�ðxÞ.

Definition 4.5. We define the map F : xmk½x� ! z1ðAkðmÞ; 2Þsup as follows.
For a homogeneous element fc ¼ axc A xmk½x� where a A k and cbm is an
integer, we define

Fð fcÞ ¼ Cfc ;

and extend it linearly. By Proposition 4.4, we get the following:

Corollary 4.6. The map F induces

F : xmk½x�=ðx2mÞ ! CH1ðAkðmÞ; 2Þsup:

The abelian group xmk½x�=ðx2mÞ has a natural k �-action defined by

a ? f ðxÞ 7! f ðaxÞ:

Hence we have the decomposition of k �-set

xmk½x�=ðx2mÞG 0
mas<2m

k � xs G 0
mas<2m

khsi:

If f A xmk½x�, we have
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a ? Cf ¼
x

a
; f ðxÞ; 1� f ðxÞ

� �
¼ ½x; f ðaxÞ; 1� f ðaxÞ�

¼ ½a; a ? f ðxÞ; 1� a ? f ðxÞ� ¼ Ca?f :

Hence the map F is compatible with k �-actions.

Remark 4.7. For f A xmk½x�, we can check that Cf satisfies the strong sup
modulus condition. Hence we can define the map similarly:

F 0 : xmk½x� ! z1ðAkðmÞ; 2Þssup ! CH1ðAkðmÞ; 2Þssup:

However the irreducible surface which is used in the proof of Proposition 4.4
does not satisfy the strong sup modulus condition in general.

4.2. A weight structure of the Hochschild homology and the cyclic
homology

Let k be a number field. In this subsection, we study a weight structure of
the Hochschild homology and the cyclic homology of the truncated polynomial
rings over k. We calculate a weight decomposition of the cyclic homology via
the Hochschild homology by using a technique of Loday ([10]).

Recall [10, §1.1.3] that the Hochschild complex CðAÞ ¼ CðA=QÞ of
Q-algebra A is defined by

CnðAÞ ¼ Anðnþ1Þð4:2Þ

bða0 n a1 n � � �n anÞ ¼
Xn�1
i¼0
ð�1Þ iða0 n � � �n aiaiþ1 n � � �n anÞ

þ ð�1Þnðana0 n � � �n an�1Þ;

where n¼nQ. The n-th homology group HnðC�ðAÞÞ of this complex is called
the n-th Hochschild homology group and denoted by HHnðAÞ. The polynomial
ring k½x� has the natural k �-action defined by

l ? f ðxÞ :¼ f ðlxÞ:ð4:3Þ

This action induces an action on the truncated polynomial ring A ¼ k½e� ¼
k½x�=xm, hence it induces an action on the Hochschild homology HHnðAÞ and the
cyclic homology HCnðAÞ. Let 10 l A k �. l defines a linear map

HHnðAÞ ! HHnðAÞ; f 7! l ? f :

For any integer o, we denote by HHnðAÞo the eigenspace of the above linear
map associated with lo.

For a homogeneous element aen A A where a A k �, we define a new weight as
follows:

jaenj :¼ n:
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This weight is called an x-weight and it induces an x-weight on CnðAÞ ¼ Anþ1

defined by

ja0 n � � �n anj :¼
X
jaij

where ai is a homogeneous element of A. Hence we have a natural weight
decomposition of the Hochschild complex

CðAÞ ¼ 0
ob0

CðAÞo;

where CðAÞo consists of all elements which is 0 or whose x-weight is o.
Hence HHnðAÞo is an n-th homology group of the complex CðAÞo and
HHnðAÞo does not depend on the choice of l. Similarly, we define a weight
structure on the cyclic homology HCnðAÞ. The cyclic homology is defined to
be the total homology of certain bicomplex CCðAÞ, called the cyclic bicomplex.
This is the bicomplex CCðAÞ whose component in bidegree ðp; qÞ is CCpqðAÞ ¼
CqðAÞ ¼ Anqþ1. We will not explane the definitions of vertical and horizontal
di¤erentials of CCðAÞ; we refer to [10, Def. 2.1.3] for more details.

Let I be an ideal of A. The relative Hochschild homology groups HHnðA; IÞ
are defined to be the homology groups of the complex KerðCðAÞ ! CðA=IÞÞ.
Similarly, we define the relative cyclic homology groups HCnðA; IÞ to be the
homology groups of TotðKerðCCðAÞ ! CCðA=IÞÞÞ (see [10, §1.1.16 and §2.1.15]).
Hence we have a following long exact sequence

� � � ! HCnðA; IÞ ! HCnðAÞ ! HCnðA=IÞ ! HCn�1ðA; IÞ ! � � � :ð4:4Þ

Let k be a number field and consider the Hochschild and cyclic homologies
of the truncated polynomial ring k½e� :¼ k½x�=xm. Then we have isomorphisms
([10, E.1.1.8, E.4.4.3])

HH2nðk½e�Þ !
F

HH2nðQ½e�ÞnQ k;

HC2nðk½e�Þ !
F

HC2nðQ½e�ÞnQ k:

Hence it is su‰cient to assume that k ¼ Q to calculate the weight structure
of the cyclic homology HC2ðk½e�Þ. We can easily check that HC2n�1ðkÞ ¼ 0,
HC2nðkÞ ¼ k. By using a long exact sequence (4.4), we have a split exact
sequence

0! HC2ðk½e�; ðeÞÞ ! HC2ðk½e�Þ ! k ! 0:

By using the following commutative diagram

0 ���! HH2ðk½e�; ðeÞÞ ���!G HH2ðk½e�Þ ���! 0???y
???y

0 ���! HC2ðk½e�; ðeÞÞ ���! HC2ðk½e�Þ ���! k ���! 0

ð4:5Þ
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and isomorphisms HH2ðk½e�ÞG km�1, HC2ðk½e�ÞG km ([10, E.4.1.8]), we have

HC2ðk½e�ÞGHC2ðk½e�; ðeÞÞl kGHH2ðk½e�Þl k:ð4:6Þ

Now we calculate the weight structure of the Hochschild homology HH2ðk½e�Þ by
using the technique of Loday.

Let k ¼ Q and consider the Hochschild homology of k½x�=xm. Let V ¼
k � xl k � y be the graded free k-module of rank 2 with jxj ¼ deg x :¼ 0, jyj ¼
deg y :¼ 1. Then the graded symmetric algebra over V is

5V G k½x; y�=y2 ¼ k½x�l k½x�y:

We define the di¤erential d on 5V by the assignment

x 7! 0; y 7! xm:

We see immediately that d2 ¼ 0 and that it satisfies the Leibniz rule. By using
the Leibniz rule, we get an endomorphism of 5V . Then ð5V ; dÞ becomes a
commutative di¤erential graded algebra. We consider k½x�=xm as a commutative
di¤erential graded algebra with the trivial di¤erential. Then the following com-
mutative diagram

k½x� k½x�y  ���0
0

p

???y
???y

???y
k½x�=xm 0 0;

 �����d

 �����0  �����0

where p is a natural quotient map, gives a quasi-isomorphism of complexes.
Hence we get isomorphisms ([10, Theorem 5.3.5])

HHnðk½x�=xmÞFHHnðk½x�=xm; 0ÞFHHnðk½x; y�=y2; dÞ;ð4:7Þ

where the groups HHnðk½x�=xm; 0Þ and HHnðk½x; y�=y2; dÞ are the Hochschild
homology of di¤erential graded algebra ([10, §5.3.2]), which is defined as follows.
For any di¤erential graded k-algebra ðA; dÞ, let ðA; dÞnn be the iterated tensor
product of the complex ðA; dÞ. Similarly as in the equation (4.2), we define the
map

b : ðA; dÞnnþ1 ! ðA; dÞnn;

bða0; a1; . . . ; anÞ ¼
Xn�1
i¼0
ð�1Þ iða0; . . . ; aiaiþ1; . . . ; anÞ

þ ð�1Þnð�1Þjanjðja0jþ���þjanjÞðana0; . . . ; an�1Þ;

where the elements ai are all homogeneous of ðA; dÞ of degree jaij. The
Hochschild complex C�ðA; dÞ is the total complex of the bicomplex ðA; dÞ�,
whose component in bidegree ðp; qÞ is ððA; dÞnqþ1Þp. The Hochschild homology
HH�ðA; dÞ is defined to be its homology.
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We calculate the x-weight structure of the last group HHnðk½x; y�=y2; dÞ
in the isomorphisms (4.7). For this we need to recall some definitions about
the module of di¤erentials of graded commutative algebra and related topics
([10, §5.4]).

Let A be a graded commutative algebra. We define a graded A-module
W1

A=k as follows. Let I be the kernel of the multiplication m : AnA! A. Then

I is a graded A-bimodule, and we define W1
A=k :¼ I=I 2. The group W1

A=k is
generated as a graded A-module by the set of all elements fda j a A Ag where da is
the image of the following map

d : A! W1
A=k; a 7! da :¼ 1n a� an 1 mod I 2:

Note that the map d preserves the homogeneous degrees, so we have an equality
of homogeneous degrees jaj ¼ jdaj for any homogeneous element a A A. We
define the graded module of the n-th di¤erentials Wn

A=k as the quotient of the
n-fold tensor product ðW1

A=kÞ
nn by the submodule generated by

dan dbþ ð�1Þjdaj jdbjdbn dað4:8Þ

for all homogeneous elements da; db A W1
A=k. The n-th di¤erentials Wn

A=k is
the graded module and we denote by ðWn

A=kÞq the homogeneous submodule of
degree q. Moreover if A is a graded commutative di¤erential algebra with
di¤erential d, there is an obvious extension of the di¤erential map d to Wn

A=k:

dða0 da1 � � � danÞ ¼ ð�1Þnðda0 da1 � � � dan þ ð�1Þja0ja0 dðda1Þda2 � � � dan

þ � � � þ ð�1Þja0jþ���þjan�1ja0 da1 � � � dðdanÞÞ:

So we get the complex

ððWn
A=kÞ�; dÞ : � � � ! ðWn

A=kÞq !
dq ðWn

A=kÞq�1 ! � � � :

Put A ¼ k½x; y�=y2. Then we have ([10, Proposition 5.4.6])

HHnðA; dÞF 0
ib0

Hn�iððW i
A=kÞ�; dÞ;

where W i
A=k is the i-th di¤erentials. Note that W1

A=k is generated by symbols dx,
dy as an A-module with degrees jdxj ¼ 0, jdyj ¼ 1. By the definition of W�A=k (see
also (4.8)), the module of di¤erentials W�A=k is generated by the symbols dx; dy as
an A-module with the relations

dxdx ¼ 0; dxdy ¼ �dydx:

Hence W
q

A=k is generated by

xiðdyÞq; xi dxðdyÞq�1; xiyðdyÞq; xiy dxðdyÞq�1

as a k-module. The complex ððWq

A=kÞ�; dÞ is the form

0 �! ðWq

A=kÞqþ1 �!
dqþ1 ðWq

A=kÞq �!
dq ðWq

A=kÞq�1 �!
dq�1

0:
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Hence we have an isomorphism

HH2ðA; dÞGH1ððW1
A=kÞ2 !

d2 ðW1
A=kÞ1 !

d1 ðW1
A=kÞ0Þ:

By a direct computation, we have

dðxiðdyÞqÞ ¼ xidððdyÞqÞ ¼ qmxiþm�1 dxðdyÞq�1

dðxi dxðdyÞq�1Þ ¼ xi dxdððdyÞq�1Þ ¼ xi dxðq� 1Þmxm�1 dxðdyÞq�2 ¼ 0

dðxiyðdyÞqÞ ¼ xidðyÞðdyÞq þ xið�1ÞjyjydððdyÞqÞ

¼ xiþmðdyÞq � xiyqmxm�1 dxðdyÞq�1

¼ xiþmðdyÞq � qmxiþm�1y dxðdyÞq�1

dðxiy dxðdyÞq�1Þ ¼ xidðyÞ dxðdyÞq�1 þ xið�1ÞjyjydðdxðdyÞq�1Þ ¼ xiþm dxðdyÞq�1:

Hence if we set vi ¼ xi dy�mxi�1y dx, we get

Ker d1 ¼0
0<i

kvi

Im d2 ¼ 0
mai

kvi:

Since kvi F khmþ ii, we get

HH2ðk½x�=xmÞF 0
0<i<m

kvi F 0
m<o<2m

khoi:

This is the desired weight decomposition.

Proposition 4.8. Let k be a number field. Then the weight decomposition
of the Hochschild homology induces an isomorphism

HH2ðk½x�=xmÞ ¼ 0
m<o<2m

HH2ðk½x�=xmÞo G 0
m<o<2m

khoi:ð4:9Þ

Hence there exists a weight preserving isomorphism

HH2ðk½x�=xmÞG xmþ1k½x�=x2m;ð4:10Þ

where the weight structure of xmþ1k½x�=x2m is induced by (4.3).

Corollary 4.9. Let k be a number field. Then the weight decomposition of
the cyclic homology induces isomorphisms

HC2ðk½x�=xm; ðxÞÞ ¼ 0
m<o<2m

HC2ðk½x�=xmÞo G 0
m<o<2m

khoiG xmþ1k½x�=x2m:

Proof. It follows immediately from the isomorphisms (4.6), (4.9) and (4.10).
r
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4.3. The cyclic homology, the additive higher Chow group,
and the regulator map

Theorem 4.10. There exists a weight preserving map

F : HC2ðk½x�=xm; ðxÞÞ ! CH1ðAkðmÞ; 2Þsup:

Proof. By Corollary 4.9 we have a weight preserving isomorphism

HC2ðk½x�=xm; ðxÞÞ !F xmþ1k½x�=x2m:

By Corollary 4.6 we have a weight preserving map

xmk½x�=x2m ! CH1ðAkðmÞ; 2Þsup:
By composing above maps and the natural inclusion xmþ1k½x�=x2m ,!
xmk½x�=x2m, we get a weight preserving map

F : HC2ðk½x�=xm; ðxÞÞ ! CH1ðAkðmÞ; 2Þsup: r

Corollary 4.11. We have the following commutative diagram

xmk½x� CH1ðAkðmÞ; 2Þssup???y
???y

xmk½x�=x2m ���!
F

CH1ðAkðmÞ; 2Þsup;

�����!F 0

where F 0 is from Remark 4.7, and the map F 0 is a nontrivial homomorphism.

Proof. By definition F 0ðxmþiÞ is the parametric curve C of the form

C : t 7! ðt; tmþi; 1� tmþiÞ A A1 �b2

and C satisfies the strong sup modulus condition on y2. By an easy compu-
tation, we have

L2
mþiðCÞ ¼ �rest¼0 n�

1� y2

xmþi
dy1

y1

� �
¼ �ðmþ iÞ A khmþ ii;

where n : CN ! C is a normalization of its Zariski closure in A1
k � ðP1Þ2. r

Corollary 4.12. Let ~LL2 ¼0
m<o<2m

�1
o

L2
o be a direct sum of modifica-

tions of the regulator maps Ln
o. Then the composed map

xmþ1k½x� !F
0

CH1ðAkðmÞ; 2Þssup !
~LL2

0
m<o<2m

khoi

FHC2ðk½x�=xm; ðxÞÞF xmþ1k½x�=x2m

is the natural quotient map.
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5. Appendix: The residue theory

In this section, we summarize some results for the residue theory from [12],
[13] and [19]. For details, see ibids. In what follows all fields which appear are
perfect.

Definition 5.1 ([19, Def. 3.1.1]). Let X be a scheme. A saturated chain
of length n is a sequence x ¼ ðx0 > x1 > � � � > xnÞ of points such that xi is an
immediate specialization of xi�1. Denote by CnðXÞ the set of all saturated
chains of length n. Denote by CðX Þ :¼

S
n CnðX Þ the set of all saturated

chains.

For simplicity, instead of a saturated chain we will simply say a chain.

Definition 5.2 ([19, Def. 3.1.2]). Let x A CðXÞ be a chain and let F be
a quasi-coherent sheaf. Then we can define the Beilinson completion of F
along x ([19, Def. 3.1.2]). We denote by Fx the Beilinson completion of F
along x. For any chain x ¼ ðx0; . . . ; xnÞ A CðX Þ, we shall write kðxÞ :¼ kðx0Þx ¼
OX ;x=ðmx0Þx the residue field of Beilinson completion.

Remark 5.3. If x ¼ ðxÞ is a chain of length 0, the Beilinson completion
Fx ¼FðxÞ coincides with the mx-adic completion of Fx. In general, we can
calculate the Beilinson completion by an n-fold zig-zag of inverse and direct
limits.

Definition 5.4 ([19, Thm. 2.4.3]). Let k be a perfect field and f : K ! L be
a morphism of topological local fields and set n ¼ dimð f Þ :¼ dim L� dim K .
Then there is a homomorphism

ResL=K ¼ Resf : W
�; sep
L=k ! W

��n; sep
K=k

of semi-topological di¤erential graded left W
�; sep
K=k -modules of degree �n. (For a

proof and the definition of W�; sep
K=k , see [19, Thm. 2.4.3 and Def. 1.5.3].) We call

ResL=K a residue map.

Remark 5.5. If L ¼ Kððt1; . . . ; tnÞÞ, we can calculate the residue map by

ResL=K
dtn

tn
5� � �5 dt1

t1

� �
¼ 1:

In general, since any morphism K ! L factors as K ! KððtÞÞ ! L with
KððtÞÞ ! L finite, we can calculate the residue by using the natural trace map.

Remark 5.6. More generally, for any morphism f : A! B of cluster of
topological local fields which are reduced (see [19, Def. 2.2.1 and p. 52]), we can
define a residue map similarly. (For detail, see [19, Cor. 2.4.20].)
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Definition 5.7 ([19, Def. 4.1.3]). Let X be a scheme of finite type over
a perfect field k. Let x ¼ ðx; . . . ; yÞ A CðXÞ be a chain of length n and let
s : kðyÞ ! OX ; ðyÞ be a coe‰cient field. Then there is a natural homomorphism

s : kðyÞ !s OX ; ðyÞ ! OX ;x !! kðxÞ:

This map is a morphism of cluster of topological local fields of dimension n
(see [19, Def. 2.2.1]). Define

Resx;s : W
�
kðxÞ=k ��! W

�; sep
kðxÞ=k ��!Ress

W��nkðyÞ=k:

We say that Resx;s is a residue map.

For simplicity, we will often omit the subscript s if no confusion arises.
Let X be a variety over a field k. Then we have W�kðX ÞGW�k nk W

�
kðXÞ=k.

By using this isomorphism, we define an absolute residue map as follows.

Definition 5.8 ([13, §1.3]). Let X be a d-dimensional variety over a perfect
field and let x ¼ ðx; . . . ; yÞ A CðX Þ be a chain of length r. We define an absolute
residue map of degree �r

Resx : W
n
kðxÞ ! Wn�r

kð yÞ

as follows. For nb d, we define Resx as a composite of

Wn
kðxÞ ����! Wn�d

k nk W
d
kðxÞ=k ����!1nResx

Wn�d
kðyÞnk W

d�r
kðyÞ=kH���! Wn�r

kðyÞ:

For n < d, we define Resx as a composite of

Wn
kðxÞ ��! Wn

kðxÞ=k ��!Resx
Wn�r

kðyÞ=kH��! Wn�r
kðyÞ:

Under appropriate assumptions, the residue map satisfies the transitivity and
reciprocity (Theorem 5.9, Theorem 5.10). Clearly the absolute residue map
inherits these properties.

Theorem 5.9 ([19, Cor. 4.1.16]). Let x ¼ ðx; . . . ; yÞ, h ¼ ðy; . . . ; zÞ A CðX Þ
be chains and let s, t be coe‰cient fields of y, z respectively. We assume s and t
are compatible coe‰cient fields for h ([19, p. 87]). Then

Resx4h ¼ Resh �Resx : W
�
kðxÞ ! W�kðzÞ;

where x4h ¼ ðx; . . . ; y; . . . ; zÞ is the concatenation of chains.

Theorem 5.10 ([19, Thm. 4.2.15]). (1) Let W be a surface and let p A W be
a closed point. Then X

W>?>p

ResW>?>p ¼ 0:
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(2) Let C be a proper curve. ThenX
C>?

ResC>? ¼ 0:

Theorem 5.11 ([10, Thm. 2]). Let X , Y be n-dimensional varieties over a
perfect field k. Let f : X ! Y be a surjective birational proper morphism. Let
x A CðYÞ be a chain of length n. Then KðY Þ ¼ KðXÞ and

ResYx ¼
X
f :h!x

ResXh : W�kðXÞ ! W��nk :
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