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Abstract

Let k be a field of characteristic 0. We define a map from the additive higher
Chow group of I-cycles with strong sup m-modulus CH (A (m),n),,, to the module of
absolute Kéhler differentials of k with twisted k*-action Q,f"z {w) of weight . We will
call the map a regulator map, and we show that the regulator map is surjective if k is
an algebraically closed field. In case w = m + 1, this map specializes to Park’s regulator
map. We study a relationship between the cyclic homology and the additive higher

Chow group with strong sup modulus by using our regulator map.

1. Introduction

Let k£ be a field. Bloch and Esnault ([3], [4]) introduced the additive higher
Chow group of k as an additive version of Bloch’s higher Chow group CH(k,n)
of k. It was generalized and studied further by Riilling, Park, Krishna, Levine
([8], [9], [13], [14], [16]). In particular the additive higher Chow group of 0-cycles
of k is well-understood and related to the group of big de Rham-Witt forms of
k (see [16]). In this paper we study the additive higher Chow group of l-cycles
of k.

The additive higher Chow group is defined as the homology group of a
certain complex, called an additive cycle complex, which is built up from
algebraic cycles satisfying two conditions: One is the face condition which was
already used in the definition of Bloch’s higher Chow group. The other new
condition is called the modulus condition. In this paper, we use two kinds
of modulus conditions, the sup modulus condition and the strong sup modulus
condition. The corresponding additive higher Chow groups of k are denoted by

CHy(Ax(m),n)g, and CHy(Ax(m),n)y,,.

where m indicates the modulus (see §2 for definitions). There is a natural
map

(11) CHd(Ak(m)7n).y.yup - CHd(Ak(m)’n)sup'
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Let k be a field. For a k-vector space V' and an integer w, we define V'<{w)
to be the k-vector space which has the same underlying additive group and is
equipped with the twisted k*-action of weight @ given by

axx:=a“x, ack’, xeV.

A group homomorphism between groups with k*-actions which preserves the
k*-actions is called weight-preserving. The additive higher Chow group has a
natural k*-action and Park ([13]) defined the following weight-preserving map,
called a regulator map, from the additive higher Chow group of 1-cycles to the
module of absolute Kéahler differentials of k with a twisted k*-action:

Ry, : CHy(Ar(m),n),, — QI *(m+ 1).

sup

The first main result of this paper generalizes this result.

THEOREM 1.1 (See Corollary 3.20). Let k be a field of characteristic zero.
Let m>2 be an integer. For each integer ¢ with m < ¢ < 2m, there exists a
weight-preserving map

L! : CH\(Ax(m),n),,, — QZ72<C>

ssup
such that the composite of Park’s regulator map R, ,, and (1.1) coincides with
L Moreover, if k is an algebraically closed field, the map

L= @ Lf : CH] (Ak(m)’n)ssup - @ Q1:172<C>

m<c<2m m<c<2m

n
‘m+1°

is surjective.

In case of n =2, the above theorem provides the map

L*= @ L!:CH\(A(m),2),— @B k(.

m<c<2m m<c<2m

We expect that this map is related to the following map:
Li

Ki(k[e],e)? — By(kle) = @D k<w),

m<mw<2m

where kle] := k[x]/x™ is the truncated polynomial ring, and Kj(kle],é) @) s the
[?>-eigenspace for the /-th Adams operator (for any integer / > 1) of the relative
algebraic K-theory ([10, §11.2.19]), and Bs(kl[e]) is the Bloch group of k[¢] ([18,
§1.3]), and Li is an additive dilogarithm defined by Unver ([18, Thm. 1.3.2]), who
proved that the composite of the above maps is an isomorphism.

The second main result of this paper concerns a relationship between
CH, (Ak(m),Z)wp and the cyclic homology of the truncated polynomial ring.
Recall that the cyclic homology of a truncated polynomial ring has a natural
k*-action which induces a decomposition, called the weight decomposition
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([10, Def. 2.1.3], see also §4.2). We will see in Corollary 4.9 the following
isomorphism:

(1.2) HC,(k[x]/x™, (x)) = x"k[x] /x>,
where the left hand side is the relative cyclic homology of the truncated poly-
nomial ring ([10, §2.1.15]). We prove the following:

THEOREM 1.2 (See Theorem 4.10). Let k be a number field and m > 2 be an
integer. Then there exists a weight-preserving map

® : HCy(k[x]/x™, (x)) — CHi(Ax(m),2)g,,-
We also construct a map (see Definition 4.5 and Remark 4.7)
@' : x"k[x] — CH;(Ax(m),2)
such that the composed map
x"klx] 2 CH, (A (m), 2)
factor through x™k[x]/x?

Ssup

— CH(Ar(m),2)

Ssup sup

XMilx] —2— CHy(A(m),

n

"k[x]/x*" —— CHi(Ax(m),2)

)\xup

sup*

The composition of the lower horizontal map with (1.2) is the map ® of Theorem
1.2. We also show that the composed map

Xl 2 CH (Ax(m),2) 0y = @D k@) = x"k[x] /x>,

m<w<2m

where L is a direct sum of modifications of the regulator maps L, is a natural
quotient map. In particular ®’ is not a trivial map (see Corollary 4.12).

There is a folklore conjecture that the additive higher Chow group is related
to the motivic cohomology group (still conjectural) H,(kle|, (¢); Z(r)) of the
relative truncated polynomial ring. It is expected to relate to the relative
algebraic K-group K,(k[e],(¢)) by a spectral sequence of Atiyah-Hirzebruch
type as the motivic cohomology of smooth schemes X relates to the algebraic
K-group K.(X). On the other hand, there are isomorphisms K,.;(k[e], (¢)) =
S (ere 2f’)'” "and K, (k[¢], (¢)) = HC,_(k[e], (¢)), where the first isomorphism
was proved by Hesselholt [7], and the second isomorphism was proved by
Goodwillie [6]. Thus Theorems 1.1 and 1.2 give a modest evidence toward the
above conjecture.

This paper is organized as follows.

In section 2, we give the definition of the additive higher Chow groups with
m-modulus by using the strong sup and the sup modulus condition ([9]). We
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adopt the (strong) sup modulus condition (not the sum condition) to define the
regulator map by using the residue theory developed in [19], [12] and [13]. In
subsection 2.2, we give some examples of additive cycles and give some relations.
These examples will be used in later sections.

In section 3, we construct a weight-preserving regulator map from the group
of 1-cycles with the sup m-modulus condition to the module of absolute Kéhler
differentials of k& with the twisted k*-actions. This map is a generalization of
Park’s regulator map ([13]). We show that this regulator map is surjective. We
then show that this regulator map induces a map from the additive higher Chow
group of 1-cycles with strong modulus condition by using an argument similar to
that of Park ([13]).

In section 4, we relate the additive higher Chow groups and the cyclic
homology of a truncated polynomial ring over a number field k. Firstly, using
certain 2-cycles satisfying the sup modulus condition, we find some relations in
the additive higher Chow group of 1-cycles with sup modulus. Secondly, after
recalling the natural k*-action on the cyclic homology of the truncated poly-
nomial ring, we construct the following weight-preserving isomorphism via
Hochschild homology by using a technique of Loday ([10]):

HCy (k[x]/x™, (x)) = X" k[x] /2.

Finally, using this isomoprhism, we define a weight-preserving map from the
cyclic homology to the additive higher Chow group of l-cycles with sup
m-modulus.

In the appendix, we summarize some results for the residue theory from [12],
[13] and [19].

Acknowledgment. The author would like to thank Jinhyun Park and Shuji
Saito for several useful comments and corrections. The author is grateful to the
referee for careful reading of the paper and numerous valuable and constructive
comments which improved this paper.

2. Additive higher Chow groups over a field

2.1. Definition of additive higher Chow groups

We fix a base field k. Set P! :P,l = Proj k[Yy, Y1], and let y = Y1/Y,.
Let =P} — {1}. We denote by O the origin of A}. Letting ¢;: (P})" — P}
be the i-th projection, we use the coordinate system (yi,...,y,) on 1", with
yi=yogq;. For a scheme X, let X denote the set of all integral closed
subschemes of dimension d on X. A face of (1" is a closed subscheme F defined
by equations of the form

Yii =€y Vi. = &,y E/G{O,OO}
For 1 <i<wn, one denotes by F,, the Cartier divisor on (P})" defined by

{yi=1}. We omit the subscript n and write it simply as F; whenever it is clear
from the context. For each ie {1,...,n} and ¢ € {0, 0}, we have the codimen-
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sion 1 face maps

- I
=1, 0" — 0"

with
(yla"'7y}’l) = (J’la---7)71‘71,37}’i7~--7yn)-

For a Weil divisor D on X, let Dy = ordy (D) denote the coefficient of the prime
divisor ¥ on X.

DeriNiTION 2.1 ([13, Def. 2.1]). Let Dy,...,D, be Weil divisors on X.
Express D; =Y (D;)y[Y], where Y runs over all prime Weil divisors on X.
We define the supremum of Dj,...,D, as

sup D; = max (D; Y|.
1si2n ZY:(KK"( )Y>[ ]

DeriNITION 2.2 ([9, Def. 2.3]). Let k be a field, and m > 2 be an integer.
Let Y e ((A}\O) x [0")4) be an integral subscheme. Let Y be the Zariski

closure of Y in A} x (P})", and v=vy: YV — A} x (P})" be its normalization:

Y@A,ﬁxD"

P

v:YV — Y o A,lX(Pl)n.
The integral subscheme Y is said to satisfy a sup m-modulus condition if the
following inequality as Weil divisors on Y holds:
m-v*({x=0} x (PH)") < sup v (A} x F).
1<i<n
The integral subscheme Y is said to satisfy a strong sup m-modulus condition if

there exists an integer i such that the following inequality as Cartier divisors on
YV holds:

m-v ({x =0} x (P)") <v*(A} x F)).

DerNITION 2.3 ([9, Def. 2.6, Def. 2.7]). Let k be a field, and let m > 2
be an integer. For any integer d >0, let Cy(A4k(m),n)y,, be the set of all
integral closed subschemes W € ((A}\O) x (") (¢) Which satisfy the following two
conditions:

(i) W intersects properly with (A}\O) x F for each face F c (0"

(i) W satisfies the strong sup m-modulus condition.

Let z4(Ax(m),n),,, be the free abelian group on the set Cy(Ax(m),n) The

ssup ssup*
COI‘I‘CSpOl’ldCIlCG

n— Zn—c(Ak(m)vn)_ysup, n:= {Oa Oo}n
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gives rises to a cubical object in the category of abelian groups. The associated
non-degenerate complex is called an additive cycle complex and denoted by
Zy-c(Ak(m),n),,. The boundary map of the complex Z,_.(Ax(m),n),, is given
by

SSUp

0= 3 (1@ - ),

1<i<n

where 0; is the pullback along the face map :f. The homology group at
Za(Ax(m),n),, is denoted by CH (A (m), ) sup’

CHy(Ak(m),n)y,, = Ho(Zare(Ak(m),n + @), 0).

We call CHy(Ax(m),n),, the additive higher Chow group over the field &
with strong sup m-modulus.

Remark 2.4. Similarly we can define an additive higher Chow group over
a field k& with sup m-modulus ([13, §2]). Let Cy(A4k(m),n),,, be the set of all
integral closed subschemes W e ((A}\O) x (")) which satisfy the following
three conditions:

(i) W intersects properly with (A}\O) x F for each face F C [0".

(i) W satisfies the sup m-modulus condition.

(iii) For any codimension r face F, the associated cycle of the scheme F N W

lies in the group zg—,(Ax(m),n—r)g,,.

Let z4(Ax(m),n),,, be the free abelian group on the set Cy(Ak(m),n)g,,. Sim-
ilarly we define an associated non- -degenerate complex Z,_(Ax(m),n),,, and its
homology group CHy(Ax(m),n),,,. The latter group is called an additive higher
Chow group over the field & with sup m-modulus. We note that there is a
natural map

za(Ax(m),n) g, — za(Ax(m),n)g,,.

Example 2.5. We consider the conditions (i), (ii) for the set of 0-cycles
Co(Ax(m),n),,. Let pe Co(Ar(m),n),, be a O-cycle. The first condition (i)
implies that the closed point p e (A} x (")) does not lie on the closed sub-
scheme (A;\O) x F for each face F c [J". The second condition (ii) implies
that the closed point p e (A} x " )io) does not lie on the closed subscheme
{x=0} Cc A} xO".

Remark 2.6. Recall that the higher Chow group CHY (A,lc,n) is defined

as the n-th homology of the complex z (Ak, *)/z4 (A,“ *)4eg» Where the group

z?(Ai,n) is built out of the codimension d-cycles on A} x (1" which intersect

properly with A; x F for each face F C (0", and the complex z%(Ay, *) deg 18 the

subcomplex of degenerate cycles of z (Ak, ) (see [17, pp. 178-181]). By the

condition (i), the group za(Ax(m),n),,, is naturally viewed as the subgroup of
the group z"*'~¢(A},n), and this induces a natural morphism

CHy(Ar(m),n),, — CH" '~ (A},n).

)MW
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Remark 2.7. There is an another modulus condition called a sum modulus
condition ([9]). By using the sum modulus condition instead of (ii) in Defini-
tion 2.3, we define an additive higher Chow group with sum m-modulus and
the group is denoted by CH,(Ay(m),n) We note that there are natural
maps

sum*

CHd(Ak(m)7 n)ssup — CHy (Ak(m)7 n)sup - CHd(Ak(m)7 n).yum'

If d = 0, the above maps are isomorphism. It is not known whether these three
groups coincide in general.

Remark 2.8. Bloch-Esnault and Riilling ([4], [16]) studied the additive
higher Chow group of zero cycles over a field with the sum m-modulus. Let
m >2 be an integer. Let k be a field of char k # 2. By Bloch, Esnault, and
Rilling ([4], [16]), we have an isomorphism

CHO(Ak(m)’ n)sum = W’”—lgg

where W,,_;1Q/ is the big de Rham-Witt group of k.

Remark 2.9. Krishna, Levine, and Park generalized the definition of an
additive higher Chow group for any k-scheme X (see [8], [9]).

Let C C A} x [0" be an integral closed subscheme and v: CY — A} x (P})"
be a normalization of its Zariski closure in A} x (P})". If C satisfies the sup
modulus condition, for any irreducible component p of v*({x = 0} x (P})") seen
as a prime Weil divisor, there exists an index i e {l,...,n} such that

(= 0} x (P1)), < v (AL x L3y = 1)),

and we say that C satisfies the m-modulus condition on y; along p. If C satisfies
the strong sup modulus condition, we can choose an index i independently of a
choice of an irreducible component p.

2.2. Examples of additive cycles and their properties
We fix an integer m >2. Let O denote the origin of A}. In this sub-
section, we give some examples of additive cycles with strong sup modulus.

Example 2.10. Let V be a O-cycle on A; which satisfies O ¢ |V'|, where | V|
is the support of V. Then V satisfies the strong sup m-modulus condition for
any m > 2.

Example 2.11. Let Z C A; be a Zariski closed subset such that O ¢ Z. Let
Y c Zx[O" be a closed subscheme which intersects with Z x F properly for
each face F c [0". Then Y satisfies the strong sup m-modulus condition for any
m>2.
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Let C be the following curve, whose projections to [1* was used in the paper
of Totaro ([17])

b1 (l — bz)

C:t t,———
H<a’ ’ Z—b]bz

) eA} x[O?
where a,by,b, € k* are constants.

Then C is a cycle in zi(A4x(m),2),,

oC = (a,bl) + (a, bz) — (a,blbz) € Zo(Ak(m), 1)

Therefore, we get the following lemma.

and the boundary of C is

ssup*

LemMA 2.12. Let a,by,bye k™. In the group zo(Ax(m), 1), /021(Ak(m),2)
we have the following relation:

(a,blbz) = (a,bl) + (a, bz)

Example 2.13. Let C be the following parametric curve used in the paper
of Bloch and Esnault ([4])

C:t— (t,(l —al _azt),L‘) €A} x 0%
1 — (a1 + a)t

where ai,a,c € k* are constants. This C is a normal irreducible curve, and this
cycle satisfies the strong sup modulus condition for m = 2. The boundary of C

C— 3 9 ’ (‘41 (“)’ )
(’ C C c EZO < ssup

Therefore, we get the following lemma.

LemMA 2.14. Let ay,ay € k* and put m=2. In the group zo(Ar(m),1)
0z1(Ar(m),2) .~ we have the following relation:

)+ @) -Ga)
—,c|+|(—,c|= ,C .
aj a ap +a
Example 2.15. Let ¢g(t) e k(¢)*, cek*, and suppose ¢g(0) e k*. Let C be
the parametric curves of the form

C:t— (t,1—1t"g(t),c) e A} x %

Then C satisfies the strong sup m-modulus condition.

ssup /

Ssup

Let aek*. We suppose that k has all m-th root of a. By putting
g(t) =a”!, ¢=a in Example 2.15, we have the following parametric curve

" 1 2
C:t— t,l—;,a e A, x 7
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and C € z(A4x(m),2) The boundary of C is

ssup*
(21) 0C = Z (Ca a) € ZO(Ak(m)’ l)ssup'
("=a

Similarly, the following parametric curve
Zm
C’:zH(t,l——,t)eA,l x O0°
a
satisfies the strong sup m-modulus condition. The boundary of C’ is

(2.2) aC" = (8,0 € z(Ai(m), 1),

Cm:a

ProrosITION 2.16. Let C, C' be as above. Let a€k*, and put a= o™,
Suppose that k has a primitive m-th root of unity. In the group zo(Ar(m),1)
0z1(Ax(m),2),, we have the following relation:

0C =moC’.

Ssup /

ssup

Proof. 1t follows from Lemma 2.12 and the above arguments. O

3. A regulator map

3.1. A regulator map and its properties

Let k be a perfect field, and let m,s > 2 be integers. Let F C (P!)" be a
union of all faces {y; =¢} C (P")" fori=1,2,...,n,¢€{0,0}. Forl<i<n,
let w"* eQZEi(PI)H/Z(Iog F)(#*{x=0}) be the following absolute Kéhler differ-
ential (n — 1)-forms similar to the ones used in the paper of Park ([13]):

ns _ L=yidyy  dyy
wl — 75‘ —_— =
X 2 Vn
1 — y; dy; dy, d dyi_

(3.1) win.s: 'yt Yit1  dyn ay1  dyi-i (1<i<n),

x5 Yit1 Yn N1 Yi-1
ns _ 1— Vn @ 'dyn—l
! x5y Vn-1
We omit the superscripts n or s whenever it is clear from the context.

In this subsection, we define the following map called a regulator map

()

Ly : z1(Ax(m),n),,, — Q'

ssup

for n > 2 by using the arguments similar to those in [13]. We use the residue
theory to define the regulator map. Let C be a normal curve over a perfect field
k, and let p € C be a closed point. For any rational absolute Kdhler differential
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form @ on C, we denote by res,(w) the residue value of w at p. The residue
theory was studied by El Zein, Beilinson, Parshin, Lomadze, Yekutieli ([1], [5],
[11], [12], [15], [19]), and generalized to higher dimensions. In §5, we summarize
some results for the generalized residue theory.

_ DeriNimion 3.1, Let € C A} x 0" be an irreducible curve and let v: CV —
C be a normalization of its Zariski closure in A} x (P')":

C - Al x[O"

P

v:CVN —— C —— Al x (PHY"
For any closed point p e v='(Cn{x=0}), we put
RI(C,p) = (1) res, (v'e)) € Q7

If C satisfies the sup modulus condition, we can find i e {1,...,n} such that
(32) mv(fx =0} x (P, < (A} x {y =1},
Moreover if C satisfies the strong sup modulus condition, there exists some i such
that (3.2) works for all p.

Under this strong sup modulus condition on C, we will prove the following

Lemma 3.3. If s < 2m, then R/(C, p) does not depend on the choice of such i.
Hence if s < 2m, we omit the subscript i and write

RS<C’ p) = Ri’v(Cv p)

For simplicity, we denote by |v*{x = 0}| the set of all closed points of a
support of the Weil divisor v*({x =0} x (P')").

DerFINITION 3.2, Let 5 <2m be an integer. For each irreducible curve
C e z1(Ax(m),n),,, let v: CV — C be a normalization of its Zariski closure in

Al x (P, We define a map

L": zy(Ax(m),n),,, — Q>

Ssup

by

LI(C):= Y R(C,p) for Ce Ci(A(m),n)
pelv{x=0}|

and we extend it Z-linearly. We omit the superscript # whenever it is clear from
the context.

_ Lewma 33, Let Cezi(Ax(m),n), be an irreducible curve and let v: CN —
C be a normalization of its Zariski closure in A} x (P')".  Then
(1) For s <2m, R}(C,p) does not depend on a choice of i.

(2) For s <m, L] is the zero map.
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Proof. For simplicity, we only show the case of n =2. A proof of the
general case is similar.

(1) Let C e zi(Ak(m),2),, be an irreducible curve, and take a closed point
pe|v*{x=0}. Suppose that C satisfies the modulus condition both on y1 and
V2 along - It is enough to show that Rj(C, p) = R;(C, p) =0 for s < 2m. Let
x'y yi, ¥ bei images of the coordinate functions x, yi, y, € CA (P12 in the DVR
A= 0x By using a uniformizing parameter ¢ on A, we ‘can ‘'write

C'v
(X 7y17y2) = ([ uvl_t’mfv _t g)

for some ue A*, f,ge A. Since p is a closed point on the support of
v ({x =0} x (P1)"), we have r > 1. By a direct computation,

. <1 — @) )

x$ V2 Sy 1 _ [rmg

_lr(mfs)f rmtrmflg dt + lrmgl dt
us 1 — trmg !

Hence we can write
v 1 - Y1 @ _ O”r(mfs)Jr(rmfl) dt = atZrmfrsg
x5 t
for some o€ A. Since

2im—rs>1<2rm—1>rs
1

S2m—— =,
r

and r>1, it follows that Rj(C,p)=0 for 2m >s. Similarly, we have
R;(C,p) =0 for 2m >s. This proves Lemma 3.3 (1).

(2) Let C e zi(Ak(m),2),, be an irreducible curve, and take a closed point
pev*{x=0}. We may assume that C satisfies the modulus condition on y,
by (1). By using the same notation as above, we can write

(x/myi)yé) = (tru7 1 - trmf‘ag)
for some ue A*, f,ge A, r > 1. By a direct computation,

(i)
xS

y) g

l‘<m7x)f g/ dt

us g

!
Let v, be the discrete valuation of 4. Since v, (gJ) > —1, there exists f € 4 such
[

that
1 —
v ( ’yl @) _ tr(mfs)ﬂé )
x5y t
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Since s < m, we get r(m —s)>r>1. Therefore we have R{(C,p)=0. This
completes the proof of Lemma 3.3 (2). O

DerFNITION 3.4. Let k be a field. Let V' be a k-vector space and let s > 0
be an integer. We define V' {s) to be the k-vector space which has the same
underlying additive group and is equipped with the twisted k*-action of weight s
given by

axv:=a’v, ack*,vel.
k* acts on A x 0" by

X
a*(xvylv“'vyn): Evylw"vyn 5

and this action induces a k*-action on the complex z,_(A4x(m),e),,. hence on
CHy(A(m),n),,-
By a direct computation, we have the following lemma.
LemMMA 3.5. Let s <2m and let o€ k*. Then we have
Li(ox C)=a’LJ(C).
Therefore, L! defines a map of k*-set:
LYz z1(Ag(m), n) g, — QL s).

DEerINITION 3.6. We define a homomorphism L" by

L"= @ L :za(de(m),n),, — @O Q.

m<s<2m m<s<2m

L" is compatible with the k*-action. We denote by K :=ker L and K" :=
ker L" = (,_,,, K.

Remark 3.7. By the same arguments, we can define the map from the group
of additive cycles with sup modulus:

L" = @ LY :zi(Ax(m),n )mp—> @ Q" <S>

m<s<2m m<s<2m

By a direct computation, we get the following similar to Example 2.11.

Lemma 3.8. Let a,by,by,...,b, €k Let C be the parametric curve of the
form

C:tl—><atbl( )b3,.--7bn>€AJlXD".

t—biby

Then C satisfies the strong sup modulus condition and C € K".
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COROLLARY 3.9. Under the same notations as in Lemma 3.8, we have the
Jollowing relation in zo(Ax(m),n — 1), /0K":

(a,b1b2,b3,...,bn) = (a,b1,b3,...,bn) + (a,b27b3,...,bn).
Proof. 1t follows from Lemma 2.12 and Lemma 3.8. O

LemMa 3.10. Let a #0, by,...,b,ek* —{1}. Then following cycles lie
in K":
(1) A l-cycle W on A,i x " which intersects properly with A,l x F for each
SJace F C 0" and is contained in {a} x [1".
(2) An additive cycle W € zi(Ay(m),n) contained in A} x I x {b1} x --- x
{bu_1}

Proof. This is just a direct computation. O

DEeriniTION 3.11. We denote by
Zd(Ak(m),n)mp‘a = ker(Z;(Ar(m), n)mp N Zg—1(Ap(m),n — l)s‘mp).
By the definition of additive higher Chow group, we get
CHy(Ar(m),n),, = Za(Ai(m),n)g,, o/ 0Zar1(Ax(m),n+ 1),

DEFINITION  3.12. Let ¢>2 be an integer. Let (k*); denote the
Z-submodule of k generated by the set
(k") :={a“ek*|aek"}.

For a field k, we consider the following condition é.:

() (k)7 = k.

Lemma 3.13. k has the property 8. when k satisfies one of the following
conditions.

(i) k is an algebraically closed field.

(i) ¢ < p=chark or chark =0.

(ili) k is a finite field, and ged(p —1,¢) = 1.

Proof. The cases of (i) and (iii) are clear since k* = (k*)°. We consider
the case of (ii). Let xek and let ae Z. Since

(X+a)c:x(3+<i>xc—la+...+<ci 1>Xa"—1_|_ac,

we have
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Therefore, by putting

¢ ¢\ > c |
(o G ()
¢ ¢ c 1 o
2. ¢ =2
ac| (e Qe (S| )
¢ c: ¢ o
(e G ()

we have
Ax = 0mod(k*)y.

Then A4 is the (¢ —1) x (¢ — 1) matrix with entries in Z, and

detAﬁ@ I (@-a.

I<i<j<c-1

Put a; =i. For the case of char k= p > 0, we have det 4 #Z 0 mod p. Hence
we get
x =0 mod(k™)y.
Especially x = 0 mod(k*);, we have x e (k*)y.
For the case of char k =0, put o« =det A. Then we have

ax = 0 mod (k™).
Especially, ox = 0 mod(k*);. By replacing x by =, we get x = 0 mod(k");, and
x € (k*);. This concludes the proof. o m

PrOPOSITION 3.14.  Let m < ¢ < 2m be an integer, and suppose that k satisfies
the condition #.. Suppose that k contains the primitive c-th root of unity. Then
the following map is surjective:

L!: zi(Ax(m),n) — Q,’g’2<c>.

ssup, 0

Proof. Let aek*, by,...,b,ek*—{1}. Put a=a‘. Let C be the para-
metric curve of the form

c

t
C:tr (t,la,a,bl,...,bn2>eAl x 0",

By Lemma 3.10, we have C e K".
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By the same argument as in (2.1) in §2.2, this C satisfies the strong sup
modulus condition when ¢ > m, and the boundary of C is

0C=> (La,a,by,...,by2).

(=1

Let C' be the parametric curve of the form

t(?
C' it (t,l —;,t,bl,...,bn2>eA1 x "

If ¢ > m, by the same argument as in (2.2) in §2.2, this C’ satisfies the strong sup

modulus condition and C' € zi(4k(m),n),,. The boundary of C’ is

oC" = (Lo, Lo by, .. by a).
=l
By Corollary 3.9, we have

c0C' =Y " c(lalayby, ... bya)
r=1

> (Lo, Lo by, . by) mod OK”
=1

> (Loaby,... byd)

=1

= aC.

Since C € K", there exists C” € K" such that

(3.3) cC' = C" e zi(A(m),n)y, o
On the other hand,
1- n
(3.4) L"(C) = res;_g v* (_y1 dy> dys dL)
' x5y ¥3 Yn
= res i ﬂ @ db;172
o =0 ats t ) by b,_»
db db,_
-1 -2 =c
= ¢ bl ban (S C)
0 (s #c¢)
By putting s = ¢, we have
C db] dbn_z

L'cC — "y =20
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Since k satisfies the condition #, and a e (k*)¢, we have
kD e(k*)y =ck =k.
Hence we get
Im L = Q2.
This implies that L. is surjective. O

COROLLARY 3.15. Suppose that k satisfies the condition #. for all integers
m<c<2m. Suppose that k contains the primitive c-th root of unity for all
integers m < ¢ < 2m. Then the following map is surjective:

L" 2y (Ae(m)n)ggp 0 — B Q7o)

m<c<2m

Proof. By the equations (3.3), (3.4) in the proof of previous Proposi-
tion 3.14 and the condition &, (Definition 3.12, see also Lemma 3.13), for
any dap,....am €k, bei,...,be 2 €k*, there exist cycles C* e z;(A4x(m),n)
(m < s < 2m) such that

ssup, 0

dbc, 1 dbc,n—2

LZI(CS) = e b(f,l bc,n—Z (S - C)
0 (s # 0).
By putting
C= Z C’,
m<s<2m
we have
db, db. ,—
L}(C)=ac L, a2 (m<c<2m). O
i bc.l bc,wz

3.2. A regulator map from the additive higher Chow group of 1-cycles
In this subsection, we will show that the map L = L" induces a surjective
map
L: CHy(Ak(m),n), — D Qs>

m<s<2m

by using an argument similar to that of Park ([13]). We will prove this using the
residue theorem of the generalized residue theory ([19]). First, we summarize the
notation used in the proof.

We define the map sgn: ZU {0} — {£1} in the following way: if i is an
integer, then sgn(i) = (—1)'. For i = o0, we define sgn(oo) = —1. We denote
sgn(a,b,...) = sgn(a) sgn(b)--- for simplicity.

Denote by F/, the face of (1" defined by the equation of the form y; =e.
When it does not cause confusions, we omit the superscript n.
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In what follows we assume char(k) =0. We fix natural numbers n,c.
Recall that we defined the differential (n— 1)-forms @/ on A} x (P')" for
I<i<n in (3.1) in §3.1. Here, we denote by c; the differential (n— 1)-
form o’ on A} x (P')", and denote by #, the differential n-form w’*' on
Al % (Pl)n+1

k Al 1\n+l 1 1\n gl .

Let 7; : A" x (P')"" — A" x (P")" be the projection that contracts the i-th
factor on (PY)"™'. For 1<i<n+1, we put w(i)=n'w the differential
(n —1)-forms on A} x (P1)"*!,

By a direct computation, we have the equality

‘ N i
(3.5) Noy(i) = sgn(i, e (i) A 7{17

where o; is the unique order preserving injective map

o {1,...,n} = {1,....n+ 1}\{/}.

We use the equality (3.5) in the following proof of Theorem 3.16.

For an irreducible closed subvariety W C A,i x 1", we denote by v=
vip - WN — W — Al x (P")" a normalization of its Zariski closure in
A,i x (P1)". If W satisfies the sup modulus condition, for any prime Weil
divisor ¥ on W¥ we denote by S(W,Y) the set of all integers i such that the
following inequality holds:

m-ordy v'{x =0} <ordy v'{y; = 1}.

We denote by S(W) the set of all integers i such that the above inequality holds
for all prime Weil divisors ¥ on WV:

S(W):=()S(W,Y).

If W satisfies the sup modulus condition, we have S(W,Y) # @ for any
prime Weil divisor ¥ on WV, Moreover if W satisfies the strong sup modulus
condition, we have S(W) # 0. .

_ For any birational surjective morphism ¢ : W — W from a normal variety
W, we define the set Sy(W,Y) similarly:

Sy(W,Y) ={i|mordy(¢*{x =0}) <ordy(¢*{yi=1})},
SsW) =) Sp(W, Y).

By the universality of normalization, the map ¢ factors through the map v:

WN ; W Emm— A/iX(Pl)n

~
\\ P
~

w.
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Hence the set S;(W) is not empty if W satisfies the strong sup modulus
condition. We omit the subscript ¢ whenever it is clear from the context.

This paper’s extension to general weights of the regulator maps of [13] for
strong sup 1-cycles is checked.

THeOREM 3.16.  Let W e zi(Ax(m),n+ 1), be an irreducible surface over k.
Let m < ¢ <2m be an integer. Then L!'(0W) = 0.

Proof. For simplicity, we denote L = L”. For an integer i and ¢ € {0, 0},
we denote by (0; W) © the set of all prime Weil divisors appearing with non-zero

coefficient.
By definition, we have

n+1
GW:ingn(i,a)a w
=1 &
n+1
:iz Z sgn(i,e) ordy (0; W)Y
¢ ye(arw)©
n+1
:iz Z sgn(i,e) ordy (X W)Y
¢ ye@w)®

where ¢ runs over the set {0,00}. For any Y € (0; W) (0>, we choose an integer
I(Y)eS,,(Y). Then we have

n+1
Z > sgn(i,e) ord 3 (0FW)L(Y)
¢ ve@m)©

n+1

=-> > sgn(i,e) ord;(0; W)
P

¢ ye@iw)

x> (=)' Res g, (yoyy) (i)

pevy{x=0}

n+1

:_ZZ Z Z sgn(i,e,[(Y)) ordy(0; W)
pm

& ye(oiw)® pevy{x=0}

x Res gy, (vywiy)(i).

We can regard Y as a closed subscheme of W naturally. We define the
morphisms ¢, ¢,, ¢, ¥, y, vy as following. Let ¢, : W; — W be a comp051-
tion of a sequence of blow-ups such that the strict transforms of all ¥ € (07 W)< )
are smooth. Let v: WY — W be a normalization of W. Let ¢,: W, :=
WY — W, be a normalization of Wj, and let : Wo = W} — WV be an
induced morphism by the universality of normalization. Let ¢ ¢, o ¢, be the
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composite map. Let ¢, y : : Y — Y be the strict transform of ¥ under the blow-
up ¢,. For 31mp11c1ty, we use the same notation ¢, instead of ¢, y. Let

: YN — Y be a normalization of Y and let ¥, : ¥ — YV be an induced
morphlsm by the universality of normalization.

/’¢\
h™ = v $ v

S Al

We note that all these morphisms are proper surjective birational.
By using the projection theorem (Theorem 5.11) in the residue theory for the
morphisms Yy : Y - YN , 91 Wi — W, we get

W, =

Res zv ) (vyou(i ZRes (P e(D)).
4—p

Hence we have

n+1

ZZ > > sen(i,e [(Y))

§ ye(dr w)© pevy{x=0}
X ord;(@f W) RCS(}_/A’J,)(V;Q)I(Y)(I.))

n+l

:_ZZ 3 > sen(ie ()

& ye(orw) O pegi{x=0}

x ordy(0° W) Res y ) (d1 oy (7))

n+1
— ZZ Z Y sen(i/(Y))
¢ ye(orw) O pegi{x=0}
x Resy, ¢ <¢1 dy‘,) Res y (1 wi(y) (i),

where the last equality follows from a direct computation of a residue values at
the normal variety Y. By a direct computation, we have the following lemma.

LemMA 3.17. With the above notations,

sen(i ) (Resyr, (81 22) )01 = Resi, 3, (sen(ino 1 67 22

Vi Yi
= Resy, 7)(8171)-
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By using this lemma, we have

n+1

(3.6) ZZ S > sen(i/(Y))

& ye(orw) pegi{x=0}

* dyl * ;
X Res(Wlﬁy)( ) Resy ) (d1 oy (i)

i

n+1

== Z Z Z Z Res(?ap)(Res(Wu Y) (¢f77fl1()')(i)))

& ye(orw) O pegi{x=0}

n+1

_ZZ Z Z ReS(Wl.f/,p)(¢T’7a,<y)(i))

& ye(oiw) O pegi{x=0}

n+1

=22 2 )

& ye(orw)® pedi{x=0}

X Z ReS(WLC,q)(¢*7/1/(y)(i))a

(W2, Cf]) 2w, ¥.p)

where we use the transitivity of residue maps (Theorem 5.9) and the projection
theorem (Theorem 5.11) for the map ¢, : Wr — Wj.

Consider a chain &= (W,,C,q) on W, satisfying Res:(7;) #0. By the
shape of the differential form #,, we notice that ¢(C) is a subset of W N {x =0}
or a subset of 0; W for some i, ¢. We note that all the chain & = (W, C,q) in
the equation (3.6) satisfying that ¢(C) is a subset of J; W for some i, e.

By using the residue theorem for varying curves (Theorem 5.10(1)), we
have

n+1

Z Z Z Z Z Res(Wz-C,Q)(¢*’7al(y)(i))

(0) =l N
£ ove@mOredit=0t ., ¢ %, 7,p)

n+1

- Z Z Z Z Z Res(W2,D~q)(¢*’7a1m(i))7

& ye(oiw) O pedi{x=0} qeD,¢(q)=p
where all chains (W5, D, q) satisfying that ¢(D) is a subset of W N {x=0}.

The following lemma follows from a direct computation.

Lemma 3.18.  Under the same notations as above, let Dy C ¢*{x =0} be an
irreducible component, and put D = y(D;) Cv*{x=0}. Let ge CND,y be a
closed point, and put

=h(q)eY, p=ivy(p).
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Then we have
S(W,D) = Sy(W,Dz) C Sy(Y,q) = Sy,(Y,p1) = S(Y, p).

Especially we can replace the index /(Y) by an element of S(W,D). Since
W satisfies the strong sup modulus condition, we have 0 # S(W) C S(W, D).
Hence we can choose / =/(Y) independently of Y, so we get

n+1

BT LEm) =33 > > > Resung (@ m,0)-
i=l ¢ y

e(@:w) 0 pedi{x=0} ge D, g(q)=p

By using the residue theorem for varying closed points (Theorem 5.10(2)) and the
transitivity of residue maps (Theorem 5.9), the right hand side in equation (3.7) is
equal to 0. Hence we get L(dW) = 0. O

Remark 3.19. If one attempts the above argument for the sup modulus
cycles, then one cannot necessarily choose / =/(Y) independently of Y in the
sentence just above (3.7). The referee had informed the author that the main
theorem of [13] is probably incorrect for the sup modulus 1-cycles that do not
satisfy the strong sup modulus condition. According to the referee via a private
communication with the author of [13], the author of ibid knows about the
problem and said he obtained a counterexample as well for sup modulus condi-
tion, which will be available in a forthcoming paper on this subject.

COROLLARY 3.20. L! induces a map

L": CH\(Ax(m),n),, — QI ).

ssup
We have a surjective map
L": CHy(Ax(m),n),, — @D Qs

m<s<2m

4. A weight structure of the cyclic homology and the additive higher
Chow group

4.1. Preliminary
Let k£ be a field k. For f(x),g(x) € k(x), define [x, f,g] to be the para-
metric curve of the form

L (1.1(1). (1) € AT x (P12,
We naturally regard it as a 1-cycle on A! x (0°. For f(x) € k[x], define Cr to be
the parametric curve of the form
(4.1) Crote (tf(),1-f(1) e A x O
Let vy be the valuation of the DVR k[x],). If vi(f(x)) >m, we have Cye
z1(Ak(m),2)

sup,0*
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Recall that (the cubical version of) Bloch’s higher Chow groups CHY(K,n)
of a field K are defined as follows. Let z¢(K,n) be the group of codimen-
sion d-cycles on Spec K x [1" which intersect properly with Spec K x F for each
face F C[d". We define the boundary 0= 37, (—1)'(8) —o"): z4(K,n) —
z9(K,n—1) and get the complex of abelian groups (z(K,*),0). The n-th
homology of the associated non-degenerate complex is the Bloch’s higher Chow
group CH”(K,n) (see [17, pp. 178-181]). In the following Lemma 4.1, we use

the fact that CH'(K,2) =0 ([2, Thm. 6.1]).

LemMa 4.1. Let pe AJ\O be a closed point, and let C e z1(Ak(m),2),, be
an irreducible curve satisfying the condition C C p x [(0°.  Then we have

[C] = 0 e CH/(Ak(m), 2)

sup*

Proof. Let 1, : Spec k(p) — A! be the closed immersion. Then 1z, induces a
closed immersion

¢, : Spec k(p) x 07 — A, x 07,

hence it induces the push-forward ¢, :z97"(k(p),q) — z,(A} x 0%, where
z,(A} x %) is a group of r-cycles on A} x [19. Since this map factor through
zy(Ak(m), q),,» We have

27 (k(p), q) —s 2 (AL x 0

i~
zr(Ak(m), q)sup'

By the following commutative diagram

2 (k(p),3) ———— z'(k(p),2) ——— z'(k(p),1)

i ‘| ‘|

2(Ak(m), 3),, — z1(Ak(m),2);,, —— zo(Ax(m), 1)

sup sup?

we have

¢, : CH'(k(p),2) — CH,(Ax(m),2)

sup*
Since CH!(k(p),2) = 0, we notice that ¢§ is the zero map. We can easily check
that [C] € Im ¢,, hence we get

[C] =0e CH, (Ak(m)’z)sup' [l

This lemma says if our l-cycle is constant on the first coordinate A}, this
I-cycle is the boundary of some 2-cycle. Hence we can disregard 1-cycles which
are constant on Aj.
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Remark 4.2. Lemma 4.1 is motivated by the fact
L(C)=0
where C C A} x [1% is a curve satisfying C C {a} x (.

COROLLARY 4.3. Let f e x"k[x|, g,he€k(x). Then we have the following
relation in CHy(Ax(m),2),,,:

[X,l _f7g] + [X,l—f,h} = [X,l _fagh]
Proof. We consider the parametric 2-cycle of the form
oy X — h(x)) T
C:(x,y) — (x,l—f(X),—,y eA x [
(¥ = g(x)h(x))
On casily sees that C satisfies the sup modulus condition. By Lemma 4.1, we get
C = —[X,l _fvh] + [X,l —f,gh} - [.X,l _fag]
since the solutions of the equation 1 — f(x) =0 define closed points of A;.

O

PROPOSITION 4.4. Let f e x*k[x|. Then we have
[C/] = 0 € CH(Ak(m),2)

sup*

Proof. Put ¢ = ¢(x) € k(x) so that f = x*"¢(x). Let S be the parametric
2-cycle of the form

m
S:(x,p)— <x,1 _xi(x)’l —x'”y,y) €A} x 0.

We must show that it satisfies the sup modulus condition. The scheme A} x [1°
is covered by the standard affine open sets, such as Spec k[x, yi, y2, ¥3),
Spec k[x, yi'!, 2, 3], and so on. In any affine open sets, if there exists i such

i1
that Y
m

is integral on S, the 2-cycle S satisfies the sup modulus condition.

On Spec k[x, y1, y2, y3], the 2-cycle S is given by the equations of the form

xﬂl ¢

yi=1- 5 y=1=x"y, y3=y.

These equations are equal to

m
=1 —xy¢, y2=1-=x"y;.
3

Hence in this coordinate, we have

-1
x”’l

= -3,
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so S satisfies the modulus condition on Spec k[x, y1, y2, y3]. Let y; = y;! and
consider the modulus condition on Spec k[x, yi, y2, ¥5]. In this case, the 2-cycle
S is given by the equations of the form

m

yi=1=x"¢p}, ypp=1-—.
V3

Hence we have

yn—1
xm = _¢y§7

so S satisfies the modulus condition in this coordinate. We can easily check that
S satisfies the modulus condition for any other coordinates, thus we have S e

22(Ak(m), 3) -
The boundary of S is calculated by using Corollary 4.3 as follows:

1
0S8 = [x,1 — x*¢, x"¢] — [x, 1 —x¢, ﬁ]

=[x, 1-f,f]

Thus we get the desired relation. O

Recall Cy is the parametric curve defined in the equation (4.1) in §4.1. This
Cr satisfies the sup modulus condition if v.(f) > m where v, is a valuation of
k[x] .-

DerFINITION 4.5, We define the map @ : x"k[x] — z1(4k(m),2),,, as follows.
For a homogeneous element f. = ax®e x"k[x] where aek and ¢>m is an
integer, we define

O(fe) = G,

and extend it linearly. By Proposition 4.4, we get the following:

COROLLARY 4.6. The map ® induces

(O ka[X]/(sz) — CH| (Ak(m)v 2)3‘1411'

The abelian group x™k[x]/(x?") has a natural k*-action defined by

ax*f(x)— f(ax).
Hence we have the decomposition of k*-set

NN/ 2 D kX @ k).

m<s<2m m<s<2m

If fex™k[x], we have
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axCr ==, £(x), 1= f(x)| = [x, f(ax), 1 = [ (ax)]

a7
=[a,ax f(x),1 —ax* f(x)] = Cay.

Hence the map ® is compatible with k*-actions.

Remark 4.7. For f e x"k([x], we can check that C; satisfies the strong sup
modulus condition. Hence we can define the map similarly:

@' : x"k[x] — z1(Ax(m),2),,, — CH{(Ax(m),2)

ssup ssup*

However the irreducible surface which is used in the proof of Proposition 4.4
does not satisfy the strong sup modulus condition in general.

4.2. A weight structure of the Hochschild homology and the cyclic
homology

Let k& be a number field. In this subsection, we study a weight structure of
the Hochschild homology and the cyclic homology of the truncated polynomial
rings over k. We calculate a weight decomposition of the cyclic homology via
the Hochschild homology by using a technique of Loday ([10]).

Recall [10, §1.1.3] that the Hochschild complex C(4)= C(4/Q) of
Q-algebra 4 is defined by

(4.2) Cu(A4) = A®0HD

n—1

blap ® a1 ®"'®an):Z(_l)i(a0®"‘®aiai+l®"'®an)

i=0
+ (=1)"(@na0 ® - - ® a-1),
where ® = ®q. The n-th homology group H,(C.(A4)) of this complex is called

the n-th Hochschild homology group and denoted by HH,(A). The polynomial
ring k[x] has the natural k*-action defined by

(4.3) I f(x) = f().

This action induces an action on the truncated polynomial ring A = kle] =
k[x]/x™, hence it induces an action on the Hochschild homology HH,(A) and the
cyclic homology HC,(A). Let 1 #Jek*. A defines a linear map

HH,(A) — HH,(A); f— Axf.

For any integer w, we denote by HH,(A4), the eigenspace of the above linear
map associated with 1%,

For a homogeneous element ac” € 4 where a € k*, we define a new weight as
follows:

|ag"| := n.
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This weight is called an x-weight and it induces an x-weight on C,(4) = A"*!
defined by

a0 ® -+ @ an| ==Y _ |ail

where a; is a homogeneous eclement of 4. Hence we have a natural weight
decomposition of the Hochschild complex

C4) = @ Cc4),,

w>0

where C(A), consists of all elements which is 0 or whose x-weight is .
Hence HH,(A), is an n-th homology group of the complex C(4), and
HH,(A4), does not depend on the choice of A. Similarly, we define a weight
structure on the cyclic homology HC,(A4). The cyclic homology is defined to
be the total homology of certain bicomplex CC(A), called the cyclic bicomplex.
This is the bicomplex CC(4) whose component in bidegree (p,q) is CC,y(4) =
C,(A) = A®4*!. We will not explane the definitions of vertical and horizontal
differentials of CC(A); we refer to [10, Def. 2.1.3] for more details.

Let 7 be an ideal of A. The relative Hochschild homology groups HH,,(A4, 1)
are defined to be the homology groups of the complex Ker(C(4) — C(A4/I)).
Similarly, we define the relative cyclic homology groups HC,(A4,I) to be the
homology groups of Tot(Ker(CC(A4) — CC(A/I))) (see [10, §1.1.16 and §2.1.15]).
Hence we have a following long exact sequence

(44) - — HCy(A, 1) — HCy(A) — HCy(A/T) — HCp (A1) — ---.

Let k be a number field and consider the Hochschild and cyclic homologies
of the truncated polynomial ring kle] := k[x]/x™. Then we have isomorphisms
(10, E.1.1.8, E.4.4.3])

HHy,(k[e]) = HH,,(Q[e]) ®q k,
HCs, (k[e]) = HCy,(Qle]) ®q k-

Hence it is sufficient to assume that k = Q to calculate the weight structure
of the cyclic homology HC,(k[e]). We can easily check that HCy, (k) =0,
HCy,(k) =k. By using a long exact sequence (4.4), we have a split exact
sequence

0 — HCs(K[e], () — HCy(k[e]) — k — 0.

By using the following commutative diagram

0 —— HH(k[e], (8)) —— HH,(k[e])) —— 0

N

0 —— HOC(K[d], (2) —— HCy(k[e]) —— k —— 0
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and isomorphisms HH;(k[e]) = k!, HCy(kle]) = k™ ([10, E.4.1.8]), we have
(4.6) HCy(kle]) = HCy(k[g], () @ k =~ HH,(k[e]) @ k.

Now we calculate the weight structure of the Hochschild homology HH,(kle]) by
using the technique of Loday.

Let £k =Q and consider the Hochschild homology of k[x]/x". Let V =
k-x@k-y be the graded free k-module of rank 2 with |x| =degx:=0, |y| =
deg y:=1. Then the graded symmetric algebra over V is

NV = klx, y]/y* = klx] @ k[x]y.
We define the differential 6 on /\ V' by the assignment
x—0, y—x™

We see immediately that 6> = 0 and that it satisfies the Leibniz rule. By using
the Leibniz rule, we get an endomorphism of /\ V. Then (/\ V,6) becomes a
commutative differential graded algebra. We consider k[x]/x”" as a commutative
differential graded algebra with the trivial differential. Then the following com-
mutative diagram

Kx] —— kx]y <20
7
k[x] /x 0 0,

where p is a natural quotient map, gives a quasi-isomorphism of complexes.
Hence we get isomorphisms ([10, Theorem 5.3.5])

(4.7) HH, (k[x]/x") ~ HH,(k[x]/x",0) ~ HH,(k[x, y]/y*,0),

where the groups HH,(k[x]/x™,0) and HH,(k[x,y]/y?J) are the Hochschild
homology of differential graded algebra ([10, §5.3.2]), which is defined as follows.
For any differential graded k-algebra (4,), let (4,0)®" be the iterated tensor
product of the complex (A4,0). Similarly as in the equation (4.2), we define the
map

b: (4,02 — (4,6)%",

n—1

blag,ay,...,a,) = Z(—l)i(a07...,a,-ai+1, ceeydy)
i=0

+ (=) (= g, ),

where the elements «; are all homogeneous of (4,5) of degree |a;j|. The
Hochschild complex C.(4,d) is the total complex of the bicomplex (A4,0)°,
whose component in bidegree (p,q) is ((A,5)®q+l)p. The Hochschild homology
HH.(A4,0) is defined to be its homology.
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We calculate the x-weight structure of the last group HH,(k[x, y]/y*6)
in the isomorphisms (4.7). For this we need to recall some definitions about
the module of differentials of graded commutative algebra and related topics
([10, §5.4]).

Let A4 be a graded commutative algebra. We define a graded A-module
Q) s as follows.  Let I be the kernel of the multiplication u: 4 ® A — A. Then
I is a graded A-bimodule, and we define Ql,/k :=1/I>. The group Qll/k is
generated as a graded A-module by the set of all elements {da|a € A} where da is
the image of the following map

d:A—>QL/,€, a—da=1®a—a® 1 mod I

Note that the map d preserves the homogeneous degrees, so we have an equality
of homogeneous degrees |a| = |da| for any homogeneous element a e A. We
define the graded module of the n-th differentials Q) as the quotient of the
n-fold tensor product (Q}l /k)®” by the submodule generated by

(4.8) da ® db + (=) gb @ da

for all homogeneous elements da,dbeQ),. The n-th differentials Q" is
the graded module and we denote by (€2,), the homogeneous submodule of
degree ¢. Moreover if 4 is a graded commutative differential algebra with
differential o, there is an obvious extension of the differential map J to Q) Ik

6(‘10 day - - -da,,) _ (—1)”(5&0 da; - -da, + (_1)|a0|a0 d(ém)daz - day,
N (_1)\a()|+...+\a,,71|a0 day - d(éan))

So we get the complex

5
(( Z/k)*)é) e (QZ/k)q - (QA/k)qfl —
Put 4 = k[x, y]/y>. Then we have ([10, Proposition 5.4.6])
HH,(4,0) ~ @ani((gii/k)*vé)a

i>0

where QQ sk 1s the i-th differentials. Note that Qll Jk is generated by symbols dx,
dy as an A-module with degrees |dx| =0, |dy| = 1. By the definition of Q} , (see
also (4.8)), the module of differentials Q , is generated by the symbols dx, dy as
an A-module with the relations

dxdx =0, dxdy = —dydx.

Hence QZ Ik is generated by
X! (dy), X dx(dy) ! X p(dy)?, Xy de(dy)?!

as a k-module. The complex ((Q4 /k)*,é) is the form

RENTeY)

5,,,]
A/k)q

2@ %0,

0— (Q 4/k)g—1

i)
Ak’ g+1
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Hence we have an isomorphism
HH,(4,0) = Hl((QL/k) (QA/k) (QA/k) ).
By a direct computation, we have
S(x'(dy)?) = X'5((dy)?) = gmx™""" dx(dy) "
S(x" dx(dy)?™") = x" dxd((dy)T™") = x" dx(g — Dmx""" dx(dy)T* =0
S(x'y(dy)?) = x'3(y)(dy)? + x'(=1)"y8((dy)?)
= X" (dy)® = x'ygmx""! dX(dy)q 1
= X (dy) — gy dn(dy)
o'y dx(dy)"™") = x'a(y) dx(dy)q” + (=) Pyo(dx(dy) ) = X" dx(dy) "

Hence if we set v; = x' dy — mx™'y dx, we get

Ker 6; = P kv
0<i
Im 52 = @ kv,-.
m<i
Since kv; ~ k{m + i), we get
HHy(K[X]/x") =~ @ ki~ @ ko).
0<i<m m<w<2m

This is the desired weight decomposition.

PropPOSITION 4.8. Let k be a number field. Then the weight decomposition
of the Hochschild homology induces an isomorphism

(4.9) HH>(k[x]/x") = @ HHy(klx]/x"),= D ko).

m<w<2m m<w<2m
Hence there exists a weight preserving isomorphism
(4.10) HH, (k[x]/x™) = x"k[x] /x>,

where the weight structure of x"*'k[x]/x*" is induced by (4.3).

COROLLARY 4.9. Let k be a number field — Then the weight decomposition of
the cyclic homology induces isomorphisms

HO(k[x]/x™, (x)) = @ HG(K/x™), = @D kiw) = x"k[x]/x*"

m<mw<2m m<w<2m

Proof. 1t follows immediately from the isomorphisms (4.6), (4.9) and (4.10).
O
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4.3. The cyclic homology, the additive higher Chow group,
and the regulator map

THEOREM 4.10. There exists a weight preserving map
© : HGy(k[x]/x", (x)) — CHy(Ak(m),2)

sup*®

Proof. By Corollary 4.9 we have a weight preserving isomorphism
HC(k[x)/x™, (x)) = x" ke [x] /",
By Corollary 4.6 we have a weight preserving map

X"k[x]/x*" — CH{(Ax(m),2)

sup*
By composing above maps and the natural inclusion x"Flk[x]/x*" —
x"k[x] /x>, we get a weight preserving map

oD : HCz(k[x]/xm, (x)) — CHl(Ak(m),Z)SW,. O

COROLLARY 4.11.  We have the following commutative diagram

xX"k|[x] — . cH, (Ai(m),2)

l

x"k[x]/x?" — CH,(Ay(m),2)

ssup

sup’?

where @' is from Remark 4.7, and the map ®' is a nontrivial homomorphism.

Proof. By definition ®'(x”*) is the parametric curve C of the form
C:t ([’ Z‘eri’ 1= tm+i) eAl % D2

and C satisfies the strong sup modulus condition on y;. By an easy compu-
tation, we have

1=y dy
L2 (C) = —res_g v* Eaa
m+z( ) re8=0 v ( xmti V1

where v: C¥ — C is a normalization of its Zariski closure in A} x (P')*. [

):—(m—i—i)ek(m-i-i},

-1

m<w<2m w

COROLLARY 4.12. Let L* = P Li be a direct sum of modifica-

tions of the regulator maps L. Then the composed map
’ 72
kN D CHy(Ar(m),2),, 5 @ ko)

e m<w<2m
~ HC,(k[x]/x™, (x)) =~ x" k[x]/x>"

is the natural quotient map.
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5. Appendix: The residue theory

In this section, we summarize some results for the residue theory from [12],
[13] and [19]. For details, see ibids. In what follows all fields which appear are
perfect.

DEerFINITION 5.1 ([19, Def. 3.1.1]). Let X be a scheme. A saturated chain
of length n is a sequence & = (xo > x; > --- > x,) of points such that x; is an
immediate specialization of x; ;. Denote by C,(X) the set of all saturated
chains of length n. Denote by C(X):=J, C,(X) the set of all saturated
chains.

For simplicity, instead of a saturated chain we will simply say a chain.

DeriNiTION 5.2 ([19, Def. 3.1.2]). Let £ e C(X) be a chain and let # be
a quasi-coherent sheaf. Then we can define the Beilinson completion of
along & ([19, Def. 3.1.2]). We denote by % the Beilinson completion of #
along . For any chain ¢ = (xo, ..., x;) € C(X), we shall write k(&) := k(xo): =
Ox.¢/(my,): the residue field of Beilinson completion.

Remark 5.3. If &= (x) is a chain of length 0, the Beilinson completion
Fe = F(y coincides with the m,-adic completion of .. In general, we can
calculate the Beilinson completion by an n-fold zig-zag of inverse and direct
limits.

DEerINITION 5.4 ([19, Thm. 2.4.3]). Let k be a perfect field and f: K — L be
a morphism of topological local fields and set n = dim(f) := dim L — dim K.
Then there is a homomorphism
Res;/x = Resy : Qz/jf” — Q;}Z’“p

*, sep

of semi-topological differential graded left Qg7 "-modules of degree —n. (For a
proof and the definition of Q. see [19, Thm. 2.4.3 and Def. 1.5.3].) We call
Res; x a residue map.

Remark 5.5. 1f L=K((t1,...,t,)), we can calculate the residue map by

In general, since any morphism K — L factors as K — K((f)) — L with
K((t)) — L finite, we can calculate the residue by using the natural trace map.

Remark 5.6. More generally, for any morphism f: A — B of cluster of
topological local fields which are reduced (see [19, Def. 2.2.1 and p. 52]), we can
define a residue map similarly. (For detail, see [19, Cor. 2.4.20].)
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DeriNITION 5.7 ([19, Def. 4.1.3]). Let X be a scheme of finite type over
a perfect field k. Let £=(x,...,y) e C(X) be a chain of length n and let
o :k(y) — Oy, (y) be a coefficient field. Then there is a natural homomorphism

[ k(y) £> (QX,(y) — @X,é —» k(é)

This map is a morphism of cluster of topological local fields of dimension n
(see [19, Def. 2.2.1]). Define

% *, 8¢ Res;
Resg 5 : Qk(x)/k - Qk(é)l/’k — k(y )/k

We say that Res:, is a residue map.

For simplicity, we will often omit the subscript ¢ if no confusion arises.
Let X be a variety over a field k. Then we have Q) = Qp ®; Q) /-
By using this isomorphism, we define an absolute residue map as follows.

DEeriNiTION 5.8 ([13, §1.3]). Let X be a d-dimensional variety over a perfect
field and let & = (x,..., y) € C(X) be a chain of length r. We define an absolute
residue map of degree —r

as follows. For n >d, we define Ress as a composite of
n n—d 1®Res: n—d n—r.
S L Qk(x e — () Ok Qk( Y B 20
For n < d, we define Res: as a composite of

n n Res n—r
Q) — Yo — XU — )

Under appropriate assumptions, the residue map satisfies the transitivity and
reciprocity (Theorem 5.9, Theorem 5.10). Clearly the absolute residue map
inherits these properties.

THEOREM 5.9 ([19, Cor. 4.1.16]). Let &= (x,...,»), n=(y,...,z) € C(X)
be chains and let o, t be coefficient fields of y, z respectively. We assume o and ©
are compatible coefficient fields for n ([19, p. 87]). Then

Rescyy = Res; o Res + Q) — Q).
where Evn = (x,...,y,...,z) is the concatenation of chains.

THEOREM 5.10 ([19, Thm. 4.2.15]). (1) Let W be a surface and let p € W be
a closed point. Then

E RGSW>7>1, =0.
W>7>p
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(2) Let C be a proper curve. Then

Z Rescsr = 0.

Cc>?

THEOREM 5.11 ([10, Thm. 2]). Let X, Y be n-dimensional varieties over a
perfect field k. Let f: X — Y be a surjective birational proper morphism. Let
Ee C(Y) be a chain of length n. Then K(Y)=K(X) and

Y X * *—
Res) = ) Res) : Q) — Q"
Sm—<
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