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DEGENERATION OF PERIOD MATRICES OF STABLE CURVES
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Abstract

In the present paper, we study the extent to which linear combinations of period
matrices arising from stable curves are degenerate (i.e., as bilinear forms). We give a
criterion to determine whether a stable curve admits such a degenerate linear combi-
nation of period matrices. In particular, this criterion can be interpreted as a certain
analogue of the weight-monodromy conjecture for non-degenerate elements of pro-/ log
étale fundamental groups of certain log points associated to the log stack v%gl"g.
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Introduction

The anabelian geometry of hyperbolic curves concerns the problem of recon-
structing hyperbolic curves from their fundamental groups. In order to under-
stand these fundamental groups, many techniques of algebraic geometry are
applied. On the other hand, in the case of stable curves over algebraically closed
fields, an introduction of some ideas of a combinatorial nature allows one to
prove some results in much greater generality under very weak hypotheses (cf. [6],
[7], [15], [16]). By applying this point of view, we are able to discuss not only
phenomena that arise scheme-theoretically but also phenomena that arise purely
group-theoretically. Before we explain the main question that motivated the

2010 Mathematics Subject Classification. Primary 14H30; Secondary 14H10.
Key words and phrases. Period matrix, stable curve, log étale fundamental group.
Received October 20, 2015; revised April 11, 2017.

125



126 YU YANG

theory developed in the present paper, let us recall some basic facts concerning
period matrices.

Let X be a stable curve of genus g over an algebraically closed field k, T'y
the dual graph of X, and / # char(k) a prime number. Then one has a natural
exact sequence of free Z,-modules (cf. [15] Definition 1.1 (ii) and [15] Remark
1.1.3)

0—>M;}er—>MX—>M)t(Op—>O,

where Mg i= qp{adm ()b, M;(Op = 7l (Ty)™, M= Im(@veu(rx) ] (X,
Node(X))* — My) (cf. Notations and the beginning of Section 2.1), and
Node(X) denotes the set of nodes of X. The stable curve X determines a mor-
phism from s := Spec k to the moduli stack .7, and the pull-back log structure
of the natural log structure on ./#, determines a log structure on Spec k; denote
the resulting log scheme by s'°¢ which admits a chart (Spec k, @eee(FX)N)'
The pro-/ log étale fundamental group ={(s"°%) is naturally isomorphic to
@eee(rx) Z,(1). Therefore, we obtain a natural action of @eee(r){) Z,(1) on
the extension 0 — M} — My — M,® — 0. This extension determines an ex-
tension class [My], which may be regarded as a homomorphism, which we refer
to as the pro-/ period matrix morphism of X (cf. Proposition 2.3, Definition 2.4,
and the surrounding discussion)

frin{(8®) = @ Z/(1) — Hom(M{ ® M, Z,(1)).

ece(Ty)

For each element a € @ Z,(1), we refer to fy(a) as the pro-/ period matrix
associated to a.

If a= (ag)ee@gee(rx) Z,(1), is a positive definite element (cf. Definition
2.5), then the closed subgroup generated by a can be regard as the image of
the maximal pro-/ quotient of the inertia group of a p-adic local field (cf. the
discussion after Remark 2.5.1). Thus, by applying Faltings-Chai’s theory (or
the weight-monodromy conjecture for curves), we know that the pro-/ period
matrix fy(a) is positive definite, hence also non-degenerate. This non-degeneracy
property of pro-/ period matrices is the most non-trivial part in S. Mochizuki’s
proof of the combinatorial version of the Grothendieck conjecture (= ComGC)
for semi-graphs of anabelioids in the case of outer representations of IPSC-type
(cf. [15] Corollary 2.8). More precisely, Mochizuki proved that the pro-/ period
matrix associated to a positive definite element of any finite admissible covering
X" — X of X is non-degenerate. Moreover, Mochizuki gave a criterion to deter-
mine whether or not an isomorphism between fundamental groups of semi-graphs
of anabelioids that is compatible with the respective outer Galois actions by
inertia groups is graphic (i.e., the isomorphism preserves verticial subgroups
and edge-like subgroups). By considering the pro-/ log étale fundamental groups
which arise from cusps and applying the ComGC in the IPSC-type case,
Mochizuki gave an algebraic alternative proof of an injectivity theorem in the
affine case due to M. Matsumoto (cf. [16]). But if one wants to extend Matsu-
moto’s theorem to the projective case, it is natural to attempt to prove the

ece(Ty)
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ComGC in the case of outer representations of NN-type case (i.e., the outer
Galois action arising from a non-degenerate (= all the coordinates of the ele-
ment are nonzero) a = (a.), e@eee(rx) Z,(1) (cf. [6] Definition 2.4 (iii))). On
the other hand, if one attempts to imitate the proof of the ComGC in the IPSC-
type case, one has to consider whether or not the pro-/ period matrix arising
from a node is non-degenerate. Y. Hoshi and S. Mochizuki proved a version of
the ComGC in the NN-type case under certain assumptions. By applying this
version of the ComGC, they successfully extended the injectivity theorem to the
projective case (cf. [6]).

More generally, in the theory of combinatorial anabelian geometry, in order
to extend results (e.g., the ComGC) in the IPSC-type case to the NN-type case,
one has to consider whether or not the pro-/ period matrix arising from a non-
degenerate element of nf(s'°¢) =~ @eee(FX) Z,(1) is degenerate. It is difficult to
determine in general whether or not the pro-/ period matrix associated to a given
non-degenerate clement is degenerate. But at least we can ask which stable
curves admit a non-degenerate element that gives rise to a degenerate pro-/ period
matrix. This question may be formulated as follows:

QUuUEsTION 0.1. Does there exist a criterion to determine whether or not
the given stable curve X admits an element a = (a.), € @eee(l";() Z,(1) such that

a, # 0 for each e and, moreover, the pro-/ period matrix fy(a) is degenerate?

Our main theorem of the present paper is a criterion as follows (cf. Theorem
2.9):

THEOREM 0.2. Let X be a stable curve over an algebraically closed field k
and Ty the dual graph of X. Then X is a pro-{ period matrix degenerate curve
(¢f. Definition 2.6) if and only if the maximal untangled subgraph TS, (cf. Definition
2.8) of Ty is not a tree (ie., r(T'%) := rank(H' (%, Z)) # 0).

The weight-monodromy conjecture for curves may be formulated as the
assertion that the pro-/ period matrix associated to an element of the inertia
group associated with every stable curve is non-degenerate. Thus, our main
theorem may also be interpreted as a certain analogue of the weight-monodromy
conjecture for non-degenerate elements of r{(s'°¢) (cf. Corollary 2.11).

In Section 1, we recall some basic facts concerning log structures and log
¢tale fundamental groups of stable curves.

In Section 2, we discuss the topic of degeneracy of pro-/ period matrices
of stable curves and prove Theorem 0.2. Finally, we explain the relationship
between Theorem 0.2 and the weight-monodromy conjecture.
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Notations

Numbers:

If k is a field, we shall write (char(k),n) =1 if char(k) and n are relatively
prime or char(k) =0. Write Z for the ring of rational integers, and Q for the
rational field. We always use the notation / to denote a prime number such that
/ # char(k). The notations Z, and Q, denote the /-adic completions of Z and
Q, respectively.

Curves and their moduli stacks:

Let r and g be non-negative integers such that 29 —2+4r > 0. A pointed
stable curve (X,Dy) of type (g,r) over a scheme S consists of a flat, proper
morphism 7 : X — S, together with a set of r distinct sections Dy := {s;: S —
X}, such that for each geometric point § of S:

(i) The geometric fiber Xj; is a reduced and connected curve of genus g with
at most ordinary double points (i.e., nodes).

(i) X; is smooth at the points of s;(5) (1 <i<r).

(i) 5(5) # 5(5) for i # .

(iv) For every nonsingular rational component E of X; the sum of the
number of points of £ where E meets another component of X; and the number
of points in {s;(5)}._, included in E is at least 3.

Let (X,Dy) be a pointed stable curve of type (g,r) over S. We shall call
Dy the set of marked points of (X, Dy) and X the underlying scheme of (X, Dy).
We shall say that (X, Dy) is smooth if the morphism of schemes 7: X — S is
smooth. We shall say that (X,Dy) is a stable curve over S if Dy =0 (i.e.,
r=0). If (X,Dy) is a stable curve over S, for simplicity we also use the nota-
tion X to denote the pointed stable curve (X, Dy).

Let .#,, be the moduli stack of pointed stable curves of type (g,r) over
Spec Z (cf. [10]) and .#, , the open substack of .7, , parametrizing pomted
smooth curves with the natural open immersion j : ., , — AMy,r. Then .4, l"g is
the log stack obtained by equipping .#, with the natural log structure asso-
ciated to the divisor with normal crossings .7, PN\lly,» C Wq, relative to Spec Z
(e, the log structure determined by the sheaf of monoids /.0 N0, i, ). Let
Ulq, — My, be the underlying stack of the universal pointed stable curve over
/%g, It is shown in [10] that Z, ¢, may be naturally identified with ﬂg 1. Let
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us denote by 3{’ g the log stack obtained by pulling back the log structure on

,//;Oil relative to this identification. Thus, we obtain a morphism of log stacks

I log M, log In particular, if » =0 (i.e., in the stable curve case), we use the
notatlon ,ﬂ (resp. .4,°¢, 2y, Z,°%) to denote My o (resp. ,/%10(;5, Xyo, Z, lOg)

For more details on stable curves, pointed stable curves and their moduh
stacks, see [3], [10].

Galois categories and their fundamental groups:

We denote the Galois categories of finite étale, finite Kummer log étale, and
finite admissible coverings of “(—)” by Cov(-), Cov(( )'°8) and Covadm( ),
respectively.  For any Galois category (—), write (=)’ for the subcategory of (—)
defined as follows: (i) the objects of (— )/ are either empty object or the objects
of (=) such that the Galois groups of their Galois closures are /-groups; (ii) for
any A,Be(—), Hom_ (A B) := Hom(_(4, B).

The notations m( ) w1 ((—)"8), and n3dm(—) will be used to denote the
¢tale, log étale, and admissible fundamental groups of “(—)”, respectively; the
notations 7{ (— ), {((—)"°%), and #{4m(—) will be used to denote the pro-/ étale,
pro-¢ log étale, and pro-/ adm1s51ble fundamental groups, respectively (i.e., the
maximal pro—/ quotients of 7;(—), 7 ((—)"¥), and nddm () respectively); the
notation (—)* denotes the abelianization of a profinite group (—) (i.e., the quo-
tient of (—) by the closure of the commutator subgroup of (—)).

For more details on Kummer log étale coverings, admissible coverings, log
admissible coverings, and their fundamental groups for pointed stable curves, see
(8], [13], [18].

1. Review of log étale fundamental groups of stable curves

In this section, we recall some basic facts concerning log structures and log
¢étale fundamental groups of stable curves.

1.1. Log structures on stable curves

In this subsection, we will recall some basic facts concerning log structures of
stable curves; for generalities on log schemes, see [§], [9].

Let X be a generically smooth stable curve over a complete discrete valua-
tion ring (R, mg) with algebraically closed residue field k:= R/mg and n a
uniformizer of R. Write K for the quotient field of R and X (resp. X)) for the
special fiber (resp. generic fiber) of X over R. Then the stable curve X — S, :=
Spec R induces a morphism ¢y : S, — .4, xz R. The completion of the local
ring of .4, xz R at the point ¢y :s:=Spec k — ./, xz R is isomorphic to
R[t1,...,135-3], where the #,..., 13,3 are indeterminates (cf. [3]).

If we denote the number of nodes of X; by m and assign labels i =1,...,m
to each of the nodes, then the completion of the local ring of X at the node
labeled i is isomorphic to R[x;, y;]/(xiy;i — n"), and the indeterminate #; may be
chosen so as to correspond to the deformations of the node of X labeled i.
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Then the log structure on S := Spec R[t1, ..., tm, tmi1, - - -, 134—3] induced by the
log structure of ./, 7°¢ x; R may be described as the log structure associated to the
following chart: !

N" — R[Z], ety bty l3g_3ﬂ,

where (a;); — [],.,,t". We denote the resulting log scheme by Slog More-

over, we also obtam a log structure on the closed point of S by restr1ct1ng the
log structure of S ; we denote the resulting log scheme by slog On the other
hand, the closed pomt of S, determines a log structure on S,, which admits a
chart

N—-R

1 +— 7.

We denote the resulting log scheme by Slog Write séog for the log scheme

obtained by restricting the log structure of S2Og to the closed point of S;. Thus,
we obtain a cartesian commutative diagram

1 1 7
X —— X[ e

[

R T

—where X ¢ (resp. X #) is defined so as to render the right- hand (resp. left-
hand) square in the dlagram cartesian; the underlylng scheme of X (resp. X %)
may be identified with 2, x i, Spec R[t1, ..., 134-3] (resp. X); for sultable ch01ces
of the indeterminates 71, .. lm, the lower horlzontal arrow in the left-hand square
of the diagram may be descrlbed as follows: the morphism of underlying schemes
is
S, = Spec R — S; = Spec R 11, ..., 1353]
"=t (1 <i<m)
00—t (m+1<j<3g-3),

and the morphism of charts is

N «— N"”
Z an; < (Cl,’).
i
Note that S{Og and Sé"g are log regular.

1.2. Log étale fundamental groups

For more details on the definition of the notion of a finite Kummer log
étale covering, see [8] Section 3. Let Y'°2 be a connected fs log scheme and let
jo8 — Ylo¢ be a strict geometric point (cf. [5] Section 2, Definition 1). Then
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there is a natural log geometric point 7'°¢ — Y!°2 which is constructed as in [8]
p284, associated to 7'°¢ — Y2, We shall call y'°¢ — Y2 the strict log geo-
metric point associated to y'°¢ — Y2 Note that there is a natural morphism of
log schemes 7'°¢ — y!°¢ which induces the identity on the underlying schemes.
Then the strict log geometric point 7'°¢ — 7'°¢ determines an associated log étale
fundamental group 7;(Y'°2).

Let / be a prime number that is # char(k). For a proof of the following
specialization theorem for log étale fundamental groups, see [18] Theorem 2.2.

PrOPOSITION 1.1.  Suppose that leog is as above. Let ij :== Spec K — Spec K
be a geometric point of Spec K. Write K' for the maximal tamely ramified
extension of K in K, Rg: for the integral closure of R in K/, = Spec K/,
(Spec RKr) for the log scheme obtained by equipping Spec RKx wzlh the log
structure determined by the sheaf of nonzero regular functions, and tz % for the log
scheme

Spec k Xspec Ry, (Spec RKx)log

—where we identify the reszdue ﬁeld of Rg: with k. Thus, we obtam a natural
strict log geometric point t2°g — SOg induced by 7. Write szk’g — SOg for the
strict log geometric point assoczated to s1 — S, ¢ Note that tlog S10g is iso-
morphic to sl £S5 ¢ Then there is a natural isomorphism between the pro-¢ log

étale fundamental groups at the respective fibers of leog over ij and 521°g, which is
well-defined up to composition with an inner automorphism, as follows:

/ 1 ~ 1 / 1 T / 1 1
”{((Xzog%) = ”{((Xzog)nl> - ”{((Xzog)gzbg) = lim 771/(/\/2% X glee (5%),);
A >

where the projective limit is over all reduced covering points (S;Og) 1= S;Og (cf [5]
Definition 1 (ii)).

Next, let U;, i = 1,2, be the interior (i.e., the largest open subset (possibly
empty) of the underlying scheme of a log scheme on which the log structure is
trivial) of S;°. Write X;, i = 1,2, for the underlying scheme of X;°%. For any
u; € U;, by the /-adic stable reduction criterion, we obtain that the image of the
natural morphism 7;(U;) — Aut(Hélt(X,- xs, i, F)) arising from X; xg, U; — U; 18
an /-group, where #; is a geometric point over #;. Thus, [17] Proposition 2.2 (iii)
implies the following exact sequence:

1 — ] (X; xs, ) — 7| (X; xs, U;) — 7] (U;) — 1.

Since, for i =1,2, S}Og is a log regular log scheme, by applying the theorem of
log purity and the deformation theory of log schemes (cf. [5] Section 4, Corollary
1), we obtain a homotopy exact sequence as follows:

COROLLARY 1.2. Suppose that X!°% — S!°% where i € {1,2}, is the morphism
discussed above. Let 5% — S| be the strict geometric point defined in Section
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1.1, and 5°¢ — S[°% the strict log geometric point associated to s\ — S\°%.  Then
the following sequence is exact:

1 —nf ((Xlog)~|og) = lim 7{ (Xlog X gloe (s}og)/l) — 7 (Xlog X gloe slog) (s 1Og) -1,
g 7

where the projective limit is over all reduced covering points (s\°%) L= S8 (cf [5]
Definition 1 (ii)).

On the other hand, there is a classical scheme-theoretic description of the
group 7 (X, 10g>~log) that does not require one to apply the theory of log schemes,
namely, by means of the pro-/ admissible fundamental group. We use the nota-
tion 7{%™(X;) to denote the pro-/ admissible fundamental group of the special
fiber X We have a proposition as follows.

PROPOSITION 1.3. Let i€ {1,2}. Suppose that X,, X}°%, and 5°¢ are as in
Corollary 1.2.  Fix a strict log geometric point %°® — (X;%) iox 1= X;°% Xgios 5,8
associated to a strict geometric point whose image is a smooth point of the
underlying scheme of (X, lOg)sl_. Then there is a natural isomorphism of fundamental
groups, which is well-defined up to composition with an inner automorphism, as

follows:
m (X)) = w (X)) sor)
—where (=) is taken with respect to the base point determined by the strict log

geometric point xl (Xllog) o5 708 (—) s taken with respect to the base point

determined by the morphism of underlying schemes of x — (X -log)slog.

1

Proof. Write (51)°% (resp. (s,)\%) for the log scheme determined by the
morphism of monoids
L N" — k
n
a#0—0
0—1

(resp.
1
—--N—k
n
a#0—0
0 1),

where n is a positive integer such that (char(k),n) =1. If n’ and n” are positive
integers such that n’ divides n”, then we consider the morphism of log schemes

(51)1%8 — (51)1°% (resp. (52)/98 — (52).%%) determined by the morphism of monoids
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ar—a
(resp.
a a).

If we allow n’ and n” to vary, then these morphisms determine an inductive
system, and the reduced log scheme associated to the inductive limit is easily
seen to be isomorphic to §° (resp. 51). In the following, we shall fix one
such isomorphism, which we shall use to identify this inductive limit with §,°¢
(resp. 5)°%).

To complete the proof of the proposition, it suffices to construct, in a
natural way, an equivalence between the Galois categories Covadm(XS)/ and
COV((Xllog)jllog)( (resp. COV((leog)i’log)/). Here, we note that Cov((Xllog)illog)/

(resp. COV((leog)flog){) may be identified with lim, Cov((X; °8) X o (s1)1°8)” (resp.

n

lim,, Cov((X,%) X g (52)°8)/). Since any finitt Kummer log étale covering

n

of (X,°%) X o (s1)1°% (resp. (X,%) X og (52)1°%) determines a multi-log admissible
covering (i.e., a disjoint union of log admissible coverings) after base-change to
(51)1°% (resp. (s7)\%) for some sufficiently large positive integer m, the proposition

follows immediately from [12] Proposition 3.11. O

Remark 1.3.1. The isomorphism z{?™((X5),) = 7{((X,*) ) can be also
2

deduced by applying the log purity theorem, the specialization theorem for log
étale fundamental groups, and the specialization theorem for admissible funda-
mental groups.

2. Degeneration of period matrices of stable curves

In this section, let k& be an algebraically closed field.

2.1. Pro-/ period matrices of stable curves and their functorial properties

In this subsection, we give the definition of the pro-/ period matrix mor-
phism associated to a stable curve over k.

Let X be a stable curve of genus g over k. Write 'y for the dual graph
of X, v(I'y) for the set of vertices of 'y, e¢(I'y) for the set of edges of Iy,
and ITy := n{'adm(X ) for the pro-/ admissible fundamental group of X. We use
the notation X, to denote the irreducible component of X corresponding to
vev(l'y). Thus, for each vev(I'y), U, := X,\Node(X) is an open subscheme
of X,, where Node(X) denotes the set of nodes of X; the pro-/ étale fundamental



134 YU YANG

group of U,, which we denote by I, := n{(U,), may be regarded as the decom-
position group C ITy (which is well-defined up to ITy-conjugation) associated
to X, (cf. [14] Proposition 2.5 and [14] Example 2.10). For eee(I'x), write
I, (=Z,(1)) for the decomposition group C I1y (which is well-defined up to
I1y-conjugation) associated to the node corresponding to e. Write n{ (I'y) for
the pro-/ completion of the topological fundamental group of the dual graph I'y.
Finally, we use the notation My (resp. My>, M}"’r, M) to denote the abelia-
nization of Iy (resp. the abelianization of z{(I'y), Im(EP I — My),

Im(D,c.(ry) 2" — My)).
By the definitions given above, we obtain a filtration as follows:

vev(Ty)

edge ver
0C My C My C My.
Moreover, there are two natural exact sequences:
OHM;“HMXHM;(OPHO,
0— M;dge — M — M;,er/M;dge — 0.

For more details on the first exact sequence, see [15] Definition 1.1 and [15]
Remark 1.1.4. Furthermore, we have the following proposition which can be
proved by using the structure of Picard schemes of stable curves (cf. [1] Section
9.2, Example 8) and the theory of Raynaud extensions (cf. [4] Chapter II, Section
1). On the other hand, for a purely group-theoretic proof, see [6] Lemma 1.4.

ProOPOSITION 2.1.  For ve U(FX) write X for the normalization of X,, J(X)
for the Jacobian of X, and (Agpt) for the pro-¢ étale fundamental group of J(X)))
(ie., the (-adic Tate module associated to J(X])). Then, we have

M/ M = DA™
v

The stable curve X — Spec k determines a classifying morphism Spec k — M
to the moduli stack .#,. Thus, we obtain a log structure on Spec £, naturally
associated to the stable curve X, by restricting the log structure of .# l‘)g denote
the resulting log scheme by s\, Thus, we have an isomorphism Lo = nf(slog)
~ @eeer Z,(1),. We also obtain a stable log curve (for the “definition of
stable log curves “see [7] Section 0) X'og .= =2, 7 log x Vs sif over s} whose under-
lying scheme is X. Furthermore, there are natural actions of [ oz OTL the exact
sequences 0 — MY — My — M — 0 and 0 — M — M"er MY ) M
— 0. Denote the extension class corresponding to M x by

[My] e Ext}émg (MyP, My™).
X

By [11] Example 0.8, there is a spectral sequence converging to

p+q top ver
Ext] ! (My", M)
‘x



DEGENERATION OF PERIOD MATRICES OF STABLE CURVES 135

whose E>-term is given by H” (I o Extd(MP, M}*)). In particular, we obtain a
long exact sequence as follows:"

0— H! (L Homgz(My*®, My™")) — Ext; (My", M)
‘x

— H(I, s, Ext) (M®, M})).

Since My, MyP, M), M;dge are free Z,-modules of finite rank, we thus
conclude that the morphism H'(Z, o Homgz(M®, M) — Ext; . (MP, M) is

an isomorphism. Thus, the extension class [My] may be regard)éd as an element
of H'(L e, Homz (MP, M})).

Heré(, we observe that, for any two finitely generated free Z,-modules M, N,
we have natural isomorphisms

Homgz(M,N) = lim Homg,z(M/¢/"M,N//"N) = Homg, (M, N).
n

Thus, we shall use the notation Hom(—, —) to denote Homgy, (—, —).

PropOSITION 2.2. In the notatzon of the above discussion, the actions of I oz
on MYP, My, M and My /M are trivial.

Proof. First, we have two exact sequences as follows:
0— MSE o My — My/MI — 0
and
0—>M)V(er—>MX—>M;?p—>O.
By the Poincaré duality (cf. [15] Proposition 1.3), we have natural isomorphisms
M ~ Hom(M P, Z,(1))
and
MY ~ Hom(My /M, Z,(1)).
Thus to complete the proof of our proposition, it suffices to show (since

M & C My, and I s acts trivially on Z,(1)) that the action of I o on My v

(or My /M) is tr1v1al Next, let us write X; — Sy for the restriction of the
tautological curve Z, over the moduli stack ./, to the spectrum of the completion
of the local ring at the point of %, correspondmg to X. For each vertex v of
v(Ty), write U, := X,\Node(X) and M, for the image in M} of the decom-
position group associated to X,. Since every open subgroup of M, corresponds
to an abelian étale covering of the curve U,, and every étale covering of U, lifts
uniquely (up to unique isomorphism) without base change, to an étale covering
of the formal neighborhood of U, in Xj, the action of I oz 0N My is trivial.
Then the proposition follows.



136 YU YANG

Alternatively, the proposition may be verified by observmg that every open
subgroup of My /M€ corresponds to an abelian étale covering of the stable
curve X, and every étale covering of X lifts uniquely (up to unique isomorphism)
to an étale covering of X; without base change.

This completes the proof of our proposition. O

By using Proposition 2.2, we can prove a proposition as follows:

PROPOSITION 2.3. In the notation of the above discussion, the natural map
H' (£, Hom(M™ , M) — H (I jog, Hom(M P, M3FT))
X

is injective, and (if, by abuse of notation, we identify the domain of this injection
with its image via the injection, then) the extension class [My] is contained in

H' (£, Hom (M, MEY),

Proof. The short exact sequence 0 — M — MY — My /M — 0 of
I 1:-modules determines a long exact sequence
“X

log

1 1og 1
0 — Hom(M®, M) ¥* — Hom(M P, My™)"r

L 10g

— Hom(M P, MY /M) " — H! (L, Hom (M P, M)

- H (I 1"35 Hom( )t(op7 M)\;er» i H (I log, Hom(wa Mver/Medge))

—where the superscript “/, 1%” denotes the submodule of I log-lnvarlants Since
the functor Hom(M P, —) i exact, and the actions of I o on M P MY and
MY/ M are trivial (cf. Proposition 2.2), the morphlsm

log 1 loz

1
Hom (M P, M{™) %" — Hom(M P, My~ /M) x

is a surjection. Thus, the morphism
d ver
HI(I;’gaHom(M)[(Opa M)e( ge)) - Hl(lsjy"ga Hom(M;’op7 MXe ))

is an injection.

Since the action of [ on My/My g s trivial (cf. Proposition 2.2),
it follows formally that the' image of the extension class [My] via the mor-
phism H' (7, log,Hom(M;;’P,M,V;r)) —HY(I, log,Hom(M;;’p,M;ef/M;dge)) is 0. This
implies that"

[My] € H' (1,0, Hom(M”, My™)).

This completes the proof of the proposition. O

Remark 2.3.1. Let Y*:=(Y,D) be a pointed stable curve over Spec k.
Then just as in the non-pointed case, we have a filtration as follows:

0C M C M C MY C My. — MYP = My [ M},
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where My. denotes the abelianization of 7{m(Y*); M} (resp. M, MESP)
denotes the closed subgroup of My. generated by the subgroups that arlse from
the irreducible components (resp. nodes and cusps, cusps). Similar arguments to
the arguments given in the proofs of Propos1t10n 2.2 and Proposition 2.3 imply
that the actions of Iylog on My, MyS, My e My./ M ¢ are trivial, and, more-
over, that we obtain a corresponding extens1on class

[My-] € H' (1,1, Hom(M;?, MSEY).

Since H'(I, k,g,Hom( M M) ~ Hom(/, mg,Horn(MtOp M%) (cf. Prop-
osition 2.2), by the Pomcare duality (cf. [15] Prop0s1t10n 1.3), the extension class
[My] corresponds to a continuous group homomorphism

S Low = Hom(M,® @ My*,Z,(1)).

DEerFINITION 2.4.  We shall refer to the morphism fy discussed above as the
pro-{ period matrix morphism associated to X. For an element a € [ oz, We shall
refer to the quadratic form fy(a) on M,* as the pro-/ period matrix associated
to a. Note that fy(a) is a symmetric quadratlc form on My WP for each a e I log
(cf. [4] Chapter III Section 8).

In the next two remarks, we will explain the functorial properties of period
matrices.

Remark 2.4.1. We discuss a certain functorial property that relates the pro-
¢ period matrix morphism associated to a stable curve to the corresponding mor-
phism associated to a stable ‘“‘sub-curve”.

Let X be a stable curve over s := Spec k which is sturdy (i.e., the genus of
the normalization of each irreducible component of X is > 2), I'y the dual graph
of X, and V a subset of v(I'y)Ue(I'y). Suppose that Uy := X\((U,.p Xo) U
(U.cp ) is a connected curve. Write X for the compactification of Uy (i.e.,
the closure of Uy in the scheme obtained by normalizing the closure of Uy in X
at the nodes of X contained in X\Uy). Thus, the pair (Xy, X)\Uy) determines
a pointed stable curve X} of type (gy,ry), which may be regarded as associated
to V. Thus, if we write s (resp. 5% (s¥)"°%) for the log scheme whose
underlying scheme is s, and whose log structure is obtained by pulling back the
log structure of the log stack .#,°¢ (resp. ./,°%; 4,8, ) via the classifying mor-
phism & (resp. oy; o) ass001ated to X — s (resp Xy — s Xp — s, 1e, for a
suitable choice of ordering of the cusps), then we obtain a stable log curve

Xlog s?g (resp. Xlog — ng X'log (sg)log)

by pulling back the morphism of log stacks %, 7 log M, 7'°¢ (resp. 2, l"g — M, l°g
A8, — A0, ). I & is a Deligne-Mumford ‘stack over Spec Z, write 4, Tor
the stack ? Xspecz 8 over 5. Then the geometry of the stable curve X, together
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with the original choice of a subset V' of v(I'y) Ue(I'y), determine a clutching
morphism of moduli stacks (i.e., for a suitable choice of ordering of the cusps):

W r N = (ﬂ_ gv, VV) s H('%_‘Clrs"v)s - (%_(/)&

veV

Let 4°¢ be the log stack whose underlying stack is /7, and whose log
structure is the pull-back of the log structure of (.4Z,), log by lﬁ On the other
hand, we also have a log structure determined by the d1V1sor given by the union
of pull-backs to ./ of the divisors at infinity of each of the factors (.7, ,,) and
(My, 1), for veV; write N} ¢ for the resulting log stack, which, as is easily

verified, is isomorphic to the log stack (A, )18 X, Hbe,,(,/%_ l)log. We have

S
a natural morphism between the two log stacks .4"°¢ and (.7, _L,V)log obtained by
composing the following three morphisms:

/Vlog - Vlog (ﬂlh ,V)log - ('%_gv);og'

Here, the first morphism of log stacks is obtained by forgetting the portion of the
log structure of .4#"'°¢ that arises from the irreducible components of the divisor
(My)\(My), which contain the image of (A, ), Xs [1,cv(Ay, 1), The sec-
ond morphism of log stacks is the natural projection. The third morphism of log
stacks is obtained by forgetting the marked points.

Next, let us describe the local structure of the morphisms .48 —
(%_gy,r,,);og — (ﬁqy);og. First, let us observe that the geometry of X determines
a morphism 7:s— ./ such that o=y or1. Then for suitable charts defined
over étale neighborhoods of 7, ¥ and oy, the morphisms 4"°¢ — (.7, ,, )8
(gﬂ_g,,)log may be described in terms of morphisms of monoids as follows:

(—D N, — (—D N, — (—D N..

eeNode(Xy) eeNode(Uy) eeNode(X)

Here, the first arrow is induced by the natural bijection Node(Uy) = Node(Xy);
the second arrow is the assignment (ae),cnode(ty)) — ((de)eenode(ty)): 05+ - -5 0)
induced by the natural inclusion Node(Uy ) — Node(X). Thus, the associated
morphisms of pro-/ log étale fundamental groups may be written as follows:

iz @ Z(), ()™= D Z),

eeNode(X) eeNode(Uy)

Sallt = D ZAl),
eeNode(Xy)

where the morphlsms are the natural prOJect1ons

Write (X,°%) w for the stable log curve X% x e S8 Write (Up)™® for
the log scheme over s} whose underlying scheme is U v, and whose log structure
is the pull-back of the log structure of X'°¢. Thus, we have a commutative
diagram of log schemes as follows:
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XII/Og - (Xll/og)slog - (UV)log _ ., xlog

| |

log log log log
Sy Sy Sy Sy
. . . ~log ;log log 7710
Choose a strict log geometric point §y° (resp. §),°) over sy° — .#,°¢ (resp.

sl,fg — /Z,}ig) (cf. Section 1.2). Thus, by a similar argument to the argument

given in the proof of Proposition 1.3, we have a natural (outer) isomorphism

7] (((X}°8) jos ) gre) = 7] ((X}°) 1) induced by the morphism of log schemes
X X Vv

log

—
~10g)
Sy

(X2 g)s;og — X,%8. Moreover, the natural (outer) homomorphism 7{((Uy)
nf(((XII})g)Ylog)flog) induced by the morphism of log schemes (Uy)'*® — (X}°%) s is
“X X “X

~1
5.8

My, (resp. M, ij(ige’ MgP, M ,ijp)x to denote the group My, (resp. My,
M;(j,ge, M)l(();p, M;T./Sp) defined in Remark 2.3.1.

By considering the right-hand square of the commutative diagram discussed
above, together with the natural projection M — M ffyge (cf. also Remark 2.3.1)
and the natural morphism M g’f — M,t(Op induced by the natural open immersion
Uy — X, we obtain a commutative diagram:

a surjection. Note that since 7{((Uy)'%8) = z{((X I}log)ibg), we use the notation
X

nf(sg?g) —— Hom(M >, M;dge)

|

n{ (sy%) —— Hom(MP, M)

Note that the natural open immersion Uy — X induces natural isomorphisms
MjP = MyP and M ch/ge Q.M ;‘ige ® M, oor. Thus, by applying a similar argu-
ment to the argument applied to obtain the commutative diagram of the pre-
ceding display, we obtain a commutative diagram

!
(5

Hom(M®, M ¥

|

7] (s8) ———— Hom(MyP, M5*)

|

a{ (sy¥) —— Hom(My® ® MyP, Z/(1)),

where the lower vertical arrow on the right-hand side Hom(M P, M f(?/ge) —

Hom(M )‘("Vp QM )tgf’,Z/(l)) is the isomorphism induced by the Poincaré duality.
On the other hand, since the actions of z{ (sy®) and 7{(s)%) on 0 — M} —

My, — M};’Vp — 0 are compatible, we thus obtain a commutative diagram
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7 (sy%) —— Hom(My> ® My, Z/(1))

| |

n{ (sp%) —— Hom(My» ® MyP, Z,(1)),

where the lower horizontal arrow is the pro-/ period matrix morphism (cf.
Definition 2.4) associated to X). So we have a functorial property of pro-/
period matrix morphism as follows:

7f (s)%8) —L Hom(M @ M, Z,(1))

.| J

7{(s1%) L Hom(M @ M, Z,(1)),

where the vertical morphism of the left-hand side is the natural projective, and
the vertical morphism of the right-hand side is the morphism determined by the
pro-/ completion of the natural morphism of topological fundamental groups
m(Tx,) — m(Cx) which is induced by the embedding 'y, < T'yx.

Remark 2.4.2. 1In this remark, we will explain a functorial property that
relates the various pro-/ period matrix morphisms associated to deformations of
a stable curve.

First, let us explain how to deform a stable curve along a set of nodes.
Let R be a complete discrete valuation ring with algebraically closed residue field
k, K the quotient field of R, and K an algebraic closure of K. Write S :=
Spec R for the spectrum of R and # := Spec K — S (resp. s := Spec k — S) for
the subscheme determined by the generic point (resp. closed point) of S. Let
X be a stable curve over s of genus g, 'y the dual graph of X, and m :=
#E(F)().

Let L be a subset of e(I'y). We claim that we can deform the stable curve
X along L to obtain a new stable curve over # := Spec K such that the set of
edges of the dual graph of the new stable curve may be naturally identified with

e(Tx)\L. Write ¢, : s — .4, for the classifying morphism determined by X — s.
Thus the completion of the local ring of the moduli stack /% xz R over R at
s — My xz, R induced by ¢, is isomorphic to R[z,...,3,3]. Furthermore the
indeterminates t,...,t,, may be chosen so as to correspond to the deformatlons
of the nodes of X. Write {¢,...,74} for the subset of {¢,...,#,} corresponding
to the subset L C ¢(T'y). Now fix a morphism S — Spec R[71,...,135-3] over S
such that #;41,...,4,— 0€ R, but 1,...,t; map to nonzero elements of R.
Then the composite morphism \;¢ : S — Spec R[1,...,135-3] — .4, determines a
stable curve \; 2" over S. Moreover, the special fiber of \;Z" is naturally isomor-
phic to X over s. Write \; X for the geometric generic fiber \; 2" x, 7 and I' x
for the dual graph of \; X. It follows from the construction of \; X that we have



DEGENERATION OF PERIOD MATRICES OF STABLE CURVES 141

two natural maps
o(Fx) = v(T,x), e(Tx)\L = e(l,x)

(the latter of which is a bijection); we shall denote this pair of maps by the
notation

FX — F\LX

which we shall refer to as the contracting morphism associated to the deformation.
Similarly, we can deform the stable curve X along e(I'y)\L (i.e., by taking “L”
to be e(I'y)\L). This yields a new stable curve, which we denote by 2, over S
such that the set of nodes e(I", x) of the dual graph of the geometric generic fiber
X of ;2 may be naturally identified with L, together with a natural contracting
morphism

FX — FLX~

Furthermore, we have a classifying morphism ;¢:S — .4, determined by
L% — S.

On the other hand, we have a log scheme \;S'"%¢ (resp. ;S'°¢) whose under-
lying scheme is S, and whose log structure is the log structure obtained by pulling
back the log structure of .7, 7°¢ via \r¢ (resp. r¢). Thus, we obtain a stable log
curve | Lo = %glog X o \LS °¢ over \;S™¢ (resp. 14 log. z’log X e LS2 over
1.5'0¢) whose underlylng scheme is \; 4 (resp. 1 Z). erte

_log . glog log . log
M,x" =S8 x Xsh, Sy = S\Lx X5 §
—log . log log . log
(resp. i,y =Sy xs7, sy =8y xs5),

where we observe that the log schemes Sfi, xss and S xss are naturally
isomorphic. Thus, we have a natural injection of log fundamental groups as
follows:

L =082 @ 2= r{( (8% 2 L =n{(6 = @ 20
L

eee(I‘\Ly) eee(Ty)
(resp.
Loy =] (7%= @ Z/(1), = n{(,S"%) = L = (s = @ Z.1),)

ece(l, x) eee(ly)

where the ), ) yZs(1), (resp. @eee(FL;{) Z,(1),) maps to the portion of

@eee () Ze(1), indexed by e(T',x) (resp. e(I,x)).

Write M, x, My and My for the abelianizations of the pro-/ admis-
sible fundamental groups of \;X, 1 X and X, respectively. By applying the
specialization theorem (cf. Proposition 1.1), we obtain a commutative diagram as
follows:
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0 —— MY —— M,y M'¢ 0
ver top

0 —— My My My 0

0 —— MY} —— M,y M\f}} 0,

where the vertical morphisms in the middle (resp. on the right-hand side; on the
left-hand side) are the isomorphisms induced by the inverses of the respective
specialization isomorphisms (resp. surjective morphisms induced by the respective
contracting morphisms; injective). From the commutative diagram above, it

follows immediately, by considering the respective actions of I tog I 1%<—>I.1%

x \LX
on the relevant modules in the above commutative diagram, that we obtaln the
following commutative diagram of pro-/ period matrix morphisms:

L —“ Hom(M'Y ® MY, Z/(1))

LX

/| J

Lee SN Hom(M P @ My, Z,(1))
X

\LII \LJI
fox

L —— Hom(M, MR, Z(1)).

¥
2.2. Degeneration of pro-/ period matrices

In this subsection, we study the degeneracy of pro-/ period matrices of stable
curves. We continue to use the notation of Section 2.1.

DEFINITION 2.5.  An element a = (a,), € I, jor = @La( ) Z¢(1) is called non-
degenerate if a, # 0 for each eee(T'y). A non- degenerate element a = (a.), €
Im . (—Deee (T'y) Z/(l) is called positive definite if, for any ej,e; € e(I'y), it holds

that e, /e, € Qup C Q.

Remark 2.5.1. Let S10g Slog be a morphism of log schemes defined at the
ending of Section 1.1 and = ( éog) — 7 (S|°®) = 7{(s\¥) the morphism of log
étale fundamental groups induced by the morphism Slog — Slog. Then the dis-
cussion at the ending of Section 1.1 implies that all the elements of the image of

7l (S%) — 7! (S|°8) = n{ (s'%) are positive definite.

Given a positive definite element a = (a,), € Lo = @eee(r,() Z,(1), observe
X

that, for a suitable choice of generator £ € Z,(1), it holds that @, € N - ¢ for each
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e. In particular, one verlﬁes 1mmed1ately that, in the notation of Section 1.1,
there exists a morphism S)°¢ — §\°¢ such that « is contained in the image of
| (S;Og) — 7] (SI°%) = 7{(sy%). Thus the pro-/ period matrix fy(a) associated
to a is a positive definite matrix (cf. [4] Chapter III Corollary 7.3, or, alter-
natively, the explicit computations given in the proof of [4] Chapter III Theorem
8.3), hence, in particular, non-degenerate. The fact that fx(a) is non-degenerate
may also be regarded as a special case of the weight-monodromy conjecture for
curves.

Ifael log is an arbitrary (i.e., not necessarily positive definite) non-degenerate
element, then Sfx(a) will not necessarlly be a non-degenerate matrix. It is easy to
construct a counterexample (for instance, see [7] Remark 5.9.2).

DEerFINITION 2.6.  The stable curve X over s := Spec k will be called a pro-/
period matrix degenerate curve if the dual graph T'y is not a tree (ie., r(I'y) :=
rank(H'(Ty,Z)) # 0), and, moreover, there exists a non-degenerate element
a eIS;>g such that the pro-/ period matrix fy(a) is degenerate.

Next, we prepare for the proof of our main theorem. We begin by observ-
ing that for Question 0.1, we can assume without loss of generality that X is
sturdy. More precisely, we have the following lemma.

LemMmA 2.7. Let X be a stable curve over k of type (gx,0) and Ty the dual
graph of X. Then there exist a sturdy stable curve Y over k and a finite morphism
VY — X over k such that the following two properties hold: (i) the morphism of
dual graphs Ty — Uy induced by W is an isomorphism; (ii) the pro-{ period matrix
morphisms fy and fx fit into the following commutative diagram:

Lis = @, yr)) Zo(1), —— Hom(M}® ® M{¥, Z,(1))

4 |

/:
Is;‘g = @eee(r,\') Z/(l)e —— Hom( )t(op ® M)t(Op’ Z,(1)),
where the vertical arrow on the right-hand side is the multiplication by ¢ relative
to the identification of Hom( My ® MyP, Z,(1)) with Hom(My® ® My®, Z,(1))
by the isomorphism M},Op — M o mduced by the isomorphism T'y = Ty of (i), and
the vertical arrow on the left-hand side is the morphism determined by multiplying
by .

Proof. Let vev(I'y). Then we shall write X, for the irreducible compo-
nent of X associated to v, n, : X" — X, for the normalization morphism asso-
ciated to X,, and P, for the set

n ' (X, N Node(X))

which is a subset of the set of closed points of X,*. In the following, we shall use
the notation (=) to denote the set of closed points of (—). Choose a finite
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nonempty set
QU C XU*CI

such that Q, N P, = @, and, moreover, the cardinality of the set [v] := Q,U P,
is a positive even number 2m, such that m, > /. Thus, we obtain a pointed
smooth curve (X, [v]) of type (gx,,rx,), where gy, denotes the genus of X* and
rx, = #[v] = 2m,. For simplicity, we use the notation X; [‘] to denote the resultlng
pointed smooth curve.

Recall that the pro-/ admissible fundamental group of X, ;] admits a presen-
tation as follows:

n{-adm<x[;]>z<{a}s_ ..... Abdimr g ek, on | [Tl Hcl—l>

where (—»’ denotes the pro-/ completion of the group (—>. We construct a
surjective morphism /i, : /adm(X;) — Z/(Z as follows: for s,te{l,...,gx},
hy(as) = hy(b) =0; hy(cr) =1L h(ca) =—1,... h(coim1) =1, hy(c) =—1,...,
hy(cam—1) =1, hy(com,) = —1. Thus, we obtain a connected Z//Z-admissible
covering ¥, : Y, — X [Z] that is totally ramified over all the marked points in [v]
and étale over X \[v]. We denote the underlying curve of Y; by Y,.

Write Qy for the set (J,c,r,) Q- Thus, we obtain a pointed stable curve
X°*:=(X,Qyx) of type (g9x,rx), where ry = #Qy. By gluing the {Y,}, along the
set ULEL o Yo '(P,) in a fashion that is compatible with the gluing of the {X,},
that gives r1se to X, we obtain a stable curve Y over s. Write Oy for the set
Useory) ¥, '(Q,). Thus, we obtain a new pointed stable curve ¥* := (Y, Qy) of
type (gy,ry), where gy := dim; H'(Y,0y) and ry = #Qy = #Qx = ry, together
with an admissible covering ' : Y* — X*. It follows from the construction of
Y and the Hurwitz formula that Y is sturdy, and, moreover, that the morphism
of dual graphs I'y — 'y induced by ¥’ is an isomorphism.

On the other hand, we have a morphism from s to the moduli stack .7, ,,
(resp. My, ,Y) determined by X — s (resp Y —s5). By pulling back the log
structure of 2" g,X and ./, 1°g . (resp. Q”q g,, and ./, 7. ,,) to X and s (resp. Y and
s), respectlvely, we obtaln a stable log curve X ot — sE (resp yelog _, g8y,

One verifies immediately that the log scheme s}g (resp. sYg) admits a chart
I .,
(Spec k,N") (resp. (Spec k,z -N")), where r = #e(I'y) (resp. r = #e(I'y)). Thus,

it follows from [12] Section 3.9 that the admissible covering ' determines a
commutative diagram as follows:

1 I
Yolog - X/. og = Xolog leog SYog N Xolog
J J ‘X l
log log log
Sy Sy Sy s
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where, for a suitable choice of charts for sX and sY , the morphism of log
structures induced by the morphism leg — s;’g may be described as the morphism

of log structures induced by the morphlsm of charts determined by the morphism
. |
of monoids N’—>Z~N' such that (0,...0,1,0,...,0)— (0,...,0,1,0,...,0),

and Y*°t — X% is the log admissible covering determined by the admissible
covering '

Next, write My., My., My, My for the abelianizations of the pro-/
admissible fundamental groups of X*, Y*, X, Y, respectively. Then we obtain
a commutative diagram as follows (cf. Remark 2.3.1):

0 —— My —— My-. MyF 0
el
0 —— M —— My. MY 0,

where V), denotes the morphism induced by the admissible covering '. By
forgetting the marked points in Qy and Qy, we conclude that ¥’ determines a
finite morphism ¢ : ¥ — X. Moreover, there is a natural surjection My. — My
(resp. My — M X) whose kernel is My, cusp (resp. My.?) (cf. Remark 2.3.1). Note
that the image ¥}, (My.T) is contained in M YT, so we obtain a commutative
diagram by passing to quotients as follows:

0 —— My My MyP —— 0
0 —— My~ My M? —— 0.

Moreover, since i : ¥ — X is totally ramlﬁed over all the nodes of X, we obtam
that the image of the morphism M — M induced by y is /- M
M. Since this commutative dlagram is compatlble with the actions of I o =
nf (slﬁg) = Lo = n{(si%), the pro-/ period matrix morphisms associated to X
and Y fit 1nto a commutative diagram

p
Isl;)g = @eee(ry) Z/(l)e s Hom( tOp ® Mtop Z/(l))

/l {
Is;’g = @eee(FX) Z/(l)e L} Hom( )I(Op ® M;)pa Z/(l)),
where the vertical arrow on the right-hand side is the multiplication by ¢ relative
to the identification of Hom( MP ® MyP, Z,(1)) with Hom(M ;> ® M;(Op, Z,(1))
by the isomorphism M;® = My [P 1nduced by the 1somorph1sm 'y = Ty of (i),
and the vertical arrow on the left hand side is the morphism determined by
multiplying by /. This completes the proof of the lemma. O
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DeriNITION 2.8, Let X be a stable curve over k and I'y the dual graph of
X. For any edge e € e(T'y), write v(e) for the set of vertices which abut to e.
Write

e (Ty) :={e° ee(Ty)|#v(e®) =1}

for the set of edges which form loops of I'y. Note that #v(e) =2 for each
eece(I'y)\e°(T'y). We shall refer to the subgraph I'§y :=T'y\e°(I'y) as the
maximal untangled subgraph of T y.

THEOREM 2.9. Let X be a stable curve over k and Ty the dual graph of X.
Then X is a pro-{ period matrix degenerate curve if and only if the maximal
untangled subgraph T% of Tx is not a tree (i.e., r(T'%) := rank(H'(T'%,Z)) # 0).

Proof. By Lemma 2.7, we can assume that X is sturdy.

If Ty is a tree, then by definition, X is not a pro-/ period matrix degenerate
curve. Hence, we can assume that ['y is not a tree.

First, let us prove the “only if” portion of the theorem. Write L :=e°(I'y).
Let R be a complete discrete valuation ring with residue field k£ and K an
algebraic closure of the quotient field K of R. By applying Remark 2.4.2, we
can deform the stable curve X along L (resp. e(I'y)\L) so as to obtain a new
stable curve \; X (resp. X) over K such that the set of edges e(I" x) (resp.
e(T",x)) of the associated dual graph may be identified with e(T'yx)\L (resp. L).

It is easy to see that the restriction of the contracting morphism I'y — I'
to I'y is an isomorphism. Suppose that I'§ is a tree. Thus, the rank of 'y
(i.e., the rank of HI(F\LX,Z) as a free Z-module) is 0. By applying Remark
2.4.2, we obtain a commutative diagram of pro-/ period matrix morphisms fy,

foxs fix as follows:

Sox
]ﬁlog = @€€€<rx)\l, Z/(l)e 0

X
\l_ll \l_jJ/

S
IA}?E = (@eee(rx)\L Z/(l)e) ® (@eeLZ/(l)e) R Hom(M;(Op ® M)t(opvzf(l))

b | J

S
1;71:’)% ;@)QQLZ/(]‘)E = Hom(MZ‘i,"@ML“;}’,Z/(l)%

where 1 j is induced by the contracting morphism I'y — I',x. Moreover, rj is
an isomorphism. Thus, it follows immediately from this commutative diagram
that, by replacing X by X, we may assume without loss of generality that
X =,X.

Let /ee(l'y). Then we can also deform the stable curve X along
e(T'x)\{/}. This yields a stable curve ;X whose set of nodes is {/}, together
with a commutative diagram of pro-/ period matrix morphisms fy, fy as




DEGENERATION OF PERIOD MATRICES OF STABLE CURVES 147

follows:

fx

Hom(M Y ® MY, Z,(1)) = Z,(1)

b !
ﬂl 1.{
/:
Is;’g = (@eee(r,\/)\{/} Z/(l)e) @ Z/(l)l) — Hom(M)t(op ® M;’Op7 Z/(l))

top

Furthermore, we have M P~ E}—) Then for any non-degenerate
)es

element a = (a,), € @eee(rx (1 e have a quadratic form

Z tha

eee(Ty)

where we write A,y :=,.j(f x(a.)). Since h,x restricts to a non-degenerate form
on M:;p and to 0 on @e’ee(rx)\{e} tIOX, it follows that Ay is a non-degenerate

quadratic form. That is to say, X is not a pro-/ period matrix degenerate curve.
This completes the proof of the “only if” part of the theorem.

Next, let us prove the “if” part of the theorem. Let R be a complete
discrete valuation ring with residue field k¥ and K an algebraic closure of the
quotient field K of R. Since I'§ is not a tree, one verifies immediately that there
exists an element / € e(I'§) such that / is not of separating type (cf. [7], Definition
2.5 (i)). By applying Remark 2.4.2, we can deform the stable curve X along /
(resp. e(I'x)\{/}) so as to obtain a stable curve \;X (resp. ;X) over K such that
the set of edges of the associated dual graph may be identified with e(T'x)\{/}
(resp. ). One verifies immediately that since / is not of separating type, it
follows that /, regarded as an element of e(I',x), is a loop, and hence that the
rank of Mf;p is 1. Let us consider the pro-/ period matrix morphisms of ;X
and ;X with Q,-coefficients. By applying Remark 2.4.2 after tensoring with Q,,
we obtain a commutative diagram of pro-/ period matrix morphisms of X, ;X
and \;X over Q, as follows:

1y
L ®Q(1) = Q1) — " Hom(M'P @ M'? Z,(1)) ®, Q,

[iQ/ //'Q/l

-Q/

jX O] 0]
Islxog ®Q/(1)=Q/ )@ (@eee(ﬂ{)\ﬂ} Q/(1),) —— Hom(My” ® My*,Z(1)) ®, Q,

0 \,jQ/T
f 4

\)(

1,7\“/’5/ ® Q/(l) = @eee(rx)\{[} Q/(l) E— HOIII(M\KI?\P ® Ml,(;(pazf(l)) ®Z/ Qh
\

\[,'Q/

—

where f ¢ (resp. \;j /Q/) is an isomorphism (resp. the natural isomorphism induced
by the isomorphism M P = M\tf;}’) By applying the commutative diagram

above, for any element a := (a, (a.),.;) € Q/(1), ® (@G#Q/(l)e), we obtain a
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quadratic form hy := fy”(a) on M,
/’ZX = h/)(|M;,op®M)t(0p + h\,Xa

where we write /1,y (resp. /x| M@ h,,x) for the quadratic form f,y*(a;) (resp.

le/(f,X/ (Cl])), \le/(f\IQX/<<aE’>eee(l"\IX)))) on MII/X(ip (resp. Mtopv M)l(op)'

Write p; for the node of X corresponding to /, X; for the stable curve
obtained from the (sturdy) stable curve X by normalizing at p;, and Iy, for the
dual graph of X;. Note that since / is not of separating type, Iy, may be
regarded as a connected subgraph of I'y whose rank (i.e., the rank of H'(T'y,, Z)
as a free Z-module) is r(T'y) — 1. By applying Remark 2.4.1, we have a com-
mutative diagram of pro-/ period matrix morphisms of X; and X over Q, as
follows:

Q

Q/(1); @ (Beeerranp 1)) L Hom(MP ® M. Z,(1)) @2, Q/

ulQ/l v’Q/l
f)g/ top top
@geg(rx)\{]} Q/(l)e Hom(MX, ® MX, aZ/(l)) ®Z, Q/~

On the other hand, it follows immediately from the structure of the graphs Ty,
I'x, and I'y, that we have a natural exact sequence as follows:

top top top
OHMX[ — My" — My — 0.

Thus, we obtain a quadratic form hy, := le ((de)ecerongn) ON M)t(0 which
is equal to the quadratic form given by the restricted forms /y]| MM =

\[X|Mlop®Mmp
Here we follow the notational conventions of the discussion preceding
Lemma 2.10 below. Write

det(iy) e A\ My® ® /\ My"
(resp. det(h,x) AM“’p ® /\M}(Op,
det( hX, e NM® @ \ M,
det(hy) e A\ MY @ \MYP),

for the determinants associated to the quadratic forms introduced above.
If T x and Ty, are not trees, then the rank of M;® is >2. Thus, by
applying Lemma 2.10 to Ay = h x + hx|po0g 00, We obtain that
X X

det(hy) = det(h, x) + det(hy,) A det(h,x).

Let us take (ac),.; € (—De#,Q/(l)e to be positive definite and a; € Q,(1), to be
arbitrary. This implies that the quadratic forms h\, x and hy, are positive definite
(cf. [4] Chapter III Corollary 7.3). Hence, in particular, det(h, x) and det(hy,)
are # 0 and, moreover, (by definition) independent of the choice of @;. Thus,
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since the pro-/ period matrix morphism f, % is an isomorphism, we may modify
a; € Q(1); (which determines det(h,x) = f¥"(a;)) so that

)?’((al, (ae), 1)) = det(hy) = det(h,x) + det(hy,) A det(h,x) = 0.

Finally, by clearing denominators, we conclude that we may choose a non-
degenerate element

(af(a)er)) € D Z(1)

eee(ly)

such that the quadratic form fx((a/,(a}),.;)) is degenerate. This completes the
proof of the theorem in the case under consideration.

If Ty, is a rree, then My is 0, so My® = MP = M\“}F is of rank 1. Then,
by applying Lemma 2.10 to hy = h,x + hx| M@ We obtain that

det(hy) = det(h,x) + det(h,x| g p0) € M @ MyP.

Let us take (a.),,; € @e ,Q,(1), and a; € Q,(1), to be positive definite. This
implies that det(/ x) and det(/, x| M wa) are non-zero (cf. [4] Chapter III
Corollary 7.3). Since det(h,x) is (by deﬁmtlon) independent of the choice of a,
we can modify a € Q,(1), (which determines det(h,x|y gy r) = JU Y (@)
so that det(sy) =0. Finally, by clearing denommators we conclude that we
may choose a non-degenerate element

(@ (a))eu)) e @D Z(1

ece(ly)

such that the quadratic form Ay is degenerate.
If F\IX is a tree, then I'y, hence also I'}, is a tree. This contradicts our
assumption that I'{, is not a tree. This completes the proof of the theorem.

O

Let W be an n-dimensional vector space over a field ky and Q: W ® W —
kw a quadratic form on W. Then Q induces a morphism W — W from W to
the dual space W := Hom(W, ky). Thus, by forming n-th exterior powers, we
obtain a natural morphism

detQ:kw—>/\W®/\W.

We use the notation

det(Q)e AN\WR AW
to denote detp(l). We have a lemma as follows.
LemMA 2.10. Let 0 — Vi — Vo — Vo, — 0 be an exact sequence of vector

spaces of finite dimension over a field ky. Suppose that dim(Vy) =:n > 1 (resp.
dlm(Vl) =n-—- l, dlm(Vz) = 1) Let Aé,Ag € HOIIl(V() ® Vo,kV) (resp. A e
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Hom(V) ® Vi,ky), A» e Hom(V, ® Va,ky)) be two symmetric quadratic forms on
Vo (resp. a quadratic form on Vi, a quadratic form on V,). Furthermore, we
suppose that the following conditions are satisfied: (i) A5|V1®V1 = Ay; (i) 43 =
Alyer, (50 A3y gy, = Let Ag:= A} + A3. Then we have

=0).
det(Ag) = det(A4}) + det(43), if n=1;
det(Ag) = det(A}) + det(4;) Adet(4,), if n=2.

Proof. Choose a basis of V) that extends a basis of }/;. Then the lemma
follows from an elementary matrix computation. O

2.3. Relationship with the weight-monodromy conjecture

In this subsection, we explain the relationship between Theorem 2.9 and the
weight-monodromy conjecture for curves.

Let K be a p-adic local field (i.e., a finite extension of Q,), K an algebraic
closure of K, R the rrng of integers of K, k the residue field of R, R"™ the
integral closure of R in the maximal unramified extension of K in K, and k the
residue field of R"™. Let X be a projective hyperbolic curve over K of genus
g. Suppose that X admits a stable model Zx over R. Write X (resp. Xi, X)
for the geometric generic fiber (resp. special fiber, geometric special fiber) of
Zr. Then the reduction curve X; — Spec k determines a classifying morphlsm
Spec k — .#,. Write si}’g for the log scheme whose underlying scheme is Spec k
and log structure is the"pull-back log structure of %gl"g

Write My, and M X for the respective abelianizations of the pro-/ admissible
fundamental groups 7{®™(X%) and n{- “‘dm(X ) (cf. the discussion immediately
preceding Proposition 1 3). Note that there is a natural isomorphism M x; = My
induced by the specialization morphism of the pro-/ admissible fundamental
groups 71{ %M (X) and 7{*™(X;) (cf. Proposition 1.1). Recall the natural exact
sequence

1—>IK—>GK—>G1{—>1,

where Ig, Gk, and Gj denote the inertia group of K determined by K, the
absolute Galois group of K determined by K, and the absolute Galois group of
k determined by k, respectively. By the /-adic cohomology criterion for stable
reduction of curves (cf. [3] Theorem 2.4 and [1] Theorem 7.4.6), the action of the
inertia group Ix of Gx on W := My_ ® Q, is unipotent. Thus, any lifting to Gg
of the Frobenius element € G, determines a filtration on W (corresponding to
weights > 2, > 1, > 0), which is called the weight filtration, and which does not
depend on the choice of the lifting, as follows:

0C W, C W, CW. ()

Since the action of the inertia group Ix of Gg on W is unipotent, the action of Ix
factors through the maximal pro-/ quotient of Ix, which we denote by I7. Write

ph < 1{ — GL(W)
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for the resulting Galois representation. Since the action of 1} on W is unipotent,
for any generator a of I, f(, there exists a uniquely determined monodromy operator
N, : W — W such that p] (a) = exp(N,). Note that Remark 2.5.1 implies that a
induces a positive definite element & e nf( Xg).

For the geometric special fiber X7, we have the following filtration defined in
Section 2.1:

0C Medge ®Q CME®Q C My, ®Q =W ()

Since M is 1somorphlc to a direct sum of copies of Z,(1), the weight of M %€
is equal t6 2. Furthermore, by applying Proposmon 2.1 and the Weil conjecture
for abelian varieties, the weight of My / M e/ge is equal to 1. Since My./M X =
M P (cf. the discussion at the beglnmng of Section 2.1), the weight of My /My
is 0. Thus, the filtration (x) coincides with the filtration (xx). Since any con-
nected etale covering of the geometric special fiber X lifts uniquely to an étale
covering of Zx xspec & Spec R"™ whose domain is a stable curve over Spec R,
the action of Iy on W/W,= My. /Medlge ® Q, = Hom(M§*, Z,(1)) ® Q, =
Hom(W,,Q,(1)) (where the second 1somorph1sm is the isomorphism arising
from the Poincaré duality discussed at the beginning of the proof of Proposition
2.2) is trivial, so we have (p; (a) — 1)>=0. Since pj (@) — 1 may be written as
the product of N, with an invertible matrix that commutes with N,, this implies
that N2 =0, Im(N,) C W, C W, C Ker(N,). Thus, we obtain a monodromy
filtration assomated to a as follows (cf. [2] Proposition 1.6.1):

0 C Im(N,) C Ker(N,) C W.

Write N, for the isomorphism W /Ker(N,) = Im(N,) induced by N,. Thus,
rank(N,) = dimg, (W /Ker(N,)) = dimgq, (Im(N,))) = rank(fx.(a)), where fx.(a)
is the pro-/ period matrix associated to @, and

dimg, (M ® Q) = dimg, (W/W1) = dimq, (W),

where the equalities follow from the discussion at the beginning of the proof of
Proposition 2.2. The weight-monodromy conjecture asserts that the weight filtra-
tion coincides with the monodromy filtration associated to a. To prove this asser-
tion, let us first recall that by Faltings-Chai’s theory, fX (a) is non-degenerate.
Thus, we have rank(N,) = rank(fy(a)) = dimg, (M " ®Q,) dimg, (W /W) =
dimgq, (W>). These equalities, together with the 1nc1us10ns Im(N,) C W, C W,
C Ker(N,), imply that W, = Ker(N,) and W, =Im(N,). Thus, the weight-
monodromy conjecture for curves holds.

On the other hand, let us consider the action of 7{ (s lOg) on W induced by
the homotopy exact sequence of pro-/ log étale fundamental groups of stable
log curves (cf. Corollary 1.2). Moreover, by the /-adic cohomology criterion for
stable reduction, this action is unipotent. For any non-degenerate element b in
| (s; ), by applymg similar arguments to the arguments discussed above, we can
definé a monodromy operator N, associated to b such that N} =0, and b acts
on W as exp(b) = 1 + Nj; moreover, N, determines a monodromy ﬁltratlon On
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the other hand, the Frobenius element of Gj determines, by applying similar
arguments to the arguments discussed above, a filtration on W, which is called
the weight filtration, and which, in fact, as can be easily verified, coincides with the
weight filtration (%) discussed at the beginning of the present subsection. On the
other hand, by Theorem 2.9, if the maximal untangled subgraph of the dual
graph of X is not a tree, then there exists a non-degenerate element b € n{ (s ;’g)
whose pro-/ period matrix is degenerate Thus, we have dimg, (W /Ker(N;))'=

rank(Ny) = rank(fx, (b)) < dimq, (M P ®Q,) = dimg, (W /W), which implies

that Ker(N,) # W;. In particular, the weight filtration does not coincide with
the monodromy filtration defined by 4. Put another way, we have shown that
Theorem 2.9 implies that if the maximal untangled subgraph of the dual graph of
X; is not a tree, then there exist non-degenerate elements of 7{ (sy log £) for which
the weight-monodromy conjecture does not hold. Moreover, we obtam an equiv-
alent form of Theorem 2.9 as follows.

COROLLARY 2.11. Let X be a smooth projective hyperbolic curve over a
p-adic local field K, K an algebraic closure of K, R the ring of integers of K, k
the residue field of R, R™ the integral closure of R in the maximal unramified
extension of K in K, and k the residue field of R"™. Suppose that X admits
a stable model Ag over R. Write Xy for the special fiber of Zr, X for the
geometric special fiber of Xr, and Ix. Jor the dual graph of X;. The geometric
special ﬁber X determines a classzfytng morphism Spec k — 4,, and we shall

write ng for lhe log scheme whose underlying scheme is Spec k, and whose
log strutture is the pull-back of the log structure of %log Then the weight-
monodromy conjecture for X holds for all the non- degenerate elements of n{(s log)

(i.e., the weight filtration on W coincides with the monodromy filtration on W
defined by an arbitrary non-degenerate element of w{(s log)) if and only if the
maximal untangled subgraph of Ux. is a tree.
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