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Abstract

Rossby waves are generally expected to dominate the b plane dynamics in

geophysics, and here in this paper we give a number theoretical observation of the

resonant interaction with a Diophantine equation. The set of resonant frequencies does

not have any frequency on the horizontal axis.

1. Introduction

We consider three-wave interactions of the Rossby waves in a number
theoretical approach. Such waves are observed in an incompressible two-
dimensional flow on a b plane (in geophysics). The b-plane approximation
was first introduced by meteorologists (see [1, 2]) as a tangent plane of a sphere
to approximately describe fluid motion on a rotating sphere, assuming that the
Colioris parameter is a linear function of the latitude. A formal derivation of
the b-plane approximation is given in [4]. It has been known that in the
incompressible two-dimensional flow on a b plane, as time goes on, a zonal
pattern emerges, consisting of alternating eastward and westward zonal flows,
similar to the zonal band structure observed on Jupiter. From a physical point
of view, one of the most important properties of the flow on a b plane is linear
waves called ‘‘Rossby waves’’. The Rossby waves originate from the following
dispersion relation (see [6] for example),

o ¼ � bk1

k2
1 þ k2

2

;ð1:1Þ

where o and ðk1; k2Þ are the angular frequency and the wavenumber vector. The
Rossby waves have been considered to play important roles in the dynamics of
geophysical fluids (see [5] for example). In [6], they proved a mathematical
rigorous theorem which supports the importance of the resonant pairs of Rossby
waves. However, none of studies tried to consider such resonant waves in
number theoretical approach, and in this paper we attempt to consider it in an
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elementary number theory. Let us be more precise. We define the wavenumber
set consisting of wavenumbers in non-trivial resonance as follows:

Definition 1.1 (Wavenumber set of non-trivial resonance). Let L be a
wavenumber set such that

L :¼
�
n A Z2 with n1 0 0 :

n1

n21 þ n22
� x

x2 þ y2
� n1 � x

ðn1 � xÞ2 þ ðn2 � yÞ2
¼ 0;

for some ðx; yÞ A Z2 with x0 0 and n1 � x0 0

�
:

The role of the above non-trivial resonance L can be found in [6] in PDE
sense. Thus we omit to explain how it works to the two-dimensional flow on a b
plane (in PDE sense). We would like to figure out the exact elements of L
without any numerical computation. The following remark ensures that L has
at least infinite elements.

Remark 1.2 (Infinite elements). At least, n ¼ ðn1; n2Þ ¼ ðm4;ml3Þ (m; l A N,
m0 l) is in L. In this case, we just take ðx; yÞ ¼ ðl4;�m3lÞ. Thus L has at
least infinite elements.

L itself is not only mathematically but also physically interesting. In a turbulent
flow, every wavenumber component should have nonzero energy. Suppose
that the initial energy distribution in a wavenumber space is isotropic. Two-
dimensional turbulence is known to transfer the energy from small to largescale
motions (energy inverse cascade). If there is no e¤ect of rotation (no Coriolis
e¤ect), then the energy therefore becomes concentrated isotropically around the
origin in wavenumber space. However, if the rotation e¤ect (Coriolis e¤ect)
is dominant, the energy transfer becomes governed by the resonant interaction
of Rossby waves L, and the number of resonant triads gives a rough estimate of
the strength of the nonlinear energy transfer. Therefore, roughly speaking (in a
physical point of view), the wavenumbers not in L are then expected to gain less
energy compared with wavenumbers in L. In a numerical computation (see [6]),
we can expect that L has anisotropic distribution. Thus our aim is to know L
rigorously, and prove (in a number theoretical approach) that its distribution is
anisotropic (however, it seems so di‰cult that we need to progress little by
little). For the first step, in this paper, we give nonexistence of three wave
interaction on n1-axis by using a Diophantine equation. The main theorem is as
follows:

Theorem 1 (Nonexistence of the three wave interaction on n1-axis). If
n1; x; y A Z and

1

n1
¼ x

x2 þ y2
þ n1 � x

ðn1 � xÞ2 þ y2
;ð1:2Þ

then n1xðn1 � xÞ ¼ 0.
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Remark 1.3. In order to consider more general setting, namely, to figure
out whether ðn1; n2Þ (n1; n2 A Z, n1 0 0) belongs to L or not, we need to consider
the following equality ( just derived from Definition 1.1):

y4 � 2n2 y
3 � 2xðn1 � xÞy2

þ 2n2x n1 � xþ n22
n1

� �
y� xðn1 � xÞðx2 � n1xþ n21 þ 2n22Þ �

n42x

n1
¼ 0

for x; y A Z with x0 0.
This equality might be related to ‘‘elliptic curve’’ more or less. In this

point of view, the ideas of Mordell’s theorem and ‘‘infinite descent’’ might be
useful.

2. Proof of the Theorem 1

Assume there is n1 and x such that n1xðn1 � xÞ0 0, and we only consider
the case n1 > x > 0. The other cases are the same. From (1.2), we see

ðx2 þ y2Þfðn1 � xÞ2 þ y2g ¼ n1xfðn1 � xÞ2 þ y2g þ n1ðn1 � xÞðx2 þ y2Þ

, y4 þ fx2 þ ðn1 � xÞ2 � n1x� n1ðn1 � xÞgy2

þ fx2ðn1 � xÞ2 � n1xðn1 � xÞ2 � n1x
2ðn1 � xÞg ¼ 0

, y4 � 2xðn1 � xÞy2 þ x2ðn1 � xÞ2 � n21xðn1 � xÞ ¼ 0

, y2 ¼ xðn1 � xÞG n1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xðn1 � xÞ

p
:

Clearly, we do not treat complex numbers in this consideration, thus n1 � x > 0.
By 0 < xðn1 � xÞ < n21 (we have already assumed that n1 > x > 0, thus

n1 � xa n1), we have 0 < xðn1 � xÞ < n1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xðn1 � xÞ

p
. Thus

y2 ¼ xðn1 � xÞ þ n1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xðn1 � xÞ

p
:

Otherwise, y becomes a complex number. In particular, xðn1 � xÞ ¼: p2 ðp A NÞ
and p2 þ n1 p are square numbers (if xðn1 � xÞ is not square number, then y2

is not in Z and it is in contradiction).
Here, we can assume x and n1 are relatively prime (namely, x and n1 � x

are relatively prime). In fact, if the greatest common divisor is d > 1, we set
x 0 ¼ x=d A N and n 0

1 ¼ n1=d A N and then

ðy=dÞ2 ¼ x 0ðn 0
1 � x 0Þ þ n 0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x 0ðn 0

1 � x 0Þ
q

:

Since the left hand side of the above equality is a rational number, then
x 0ðn 0

1 � x 0Þ is a square number. This gives us that the right hand side is a
natural number. Thus y 0 :¼ y=d A N. Therefore we can regard n 0

1, x 0 and y 0

the same as n1, x and y.
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Since x and ðn1 � xÞ are relatively prime and xðn1 � xÞ is a square number, x
and n1 � x are also square numbers. In fact, if either x or n1 � x is not square
number, then (at least) two pj in the following expression

xðn1 � xÞ ¼ p2 ¼ p21 p
2
2 � � � p2N

( p1; . . . ; pN are prime numbers, and some pi and pj (i0 j) may be the same)
must belong to both x and ðn1 � xÞ. In this case, x and n1 � x are not relatively
prime. Therefore

x ¼ q2; ðn1 � xÞ ¼ r2; n1 ¼ q2 þ r2; p ¼ qr;ð2:1Þ

where q; r A N are relatively prime.
We see that q, r and q2 þ qrþ r2 are all relatively prime. For example, if

q and q2 þ qrþ r2 are not relatively prime, there is a prime number p1 such that
q ¼ s1 p1 and q2 þ qrþ r2 ¼ s2 p1 (s1; s2 A N). Since q2 þ qr is multiple of q
(namely, multiple of p1) then r2 is also multiple of p1. However, if r2 is
multiple of p1, then r itself must be multiple of p1. This means that q and r are
not relatively prime. It is in contradiction to (2.1).

Recall that p2 þ n1p ¼ q2r2 þ ðq2 þ r2Þqr ¼ qrðq2 þ qrþ r2Þ is a square

number. Since q, r and q2 þ qrþ r2 are all relatively prime, each q, r and
q2 þ qrþ r2 are square numbers, we can rewrite

q ¼ s2; r ¼ t2; s4 þ s2t2 þ t4 ¼ u2; s; t; u A N:

However it is in contradiction to the following lemma. This concludes the proof
of Theorem 1.

Lemma 2.1 (see [3] for example). The following Diophantine equation

X 4 þ X 2Y 2 þ Y 4 ¼ Z2; X ;Y ;Z A Z

only has trivial integer solutions: X ¼ 0 or Y ¼ 0.
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