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EXTRINSIC CIRCULAR TRAJECTORIES ON TOTALLY #»-UMBILIC
REAL HYPERSURFACES IN A COMPLEX HYPERBOLIC SPACE

Tuvya Bao AND TOSHIAKI ADACHI

Abstract

A trajectory for a Sasakian magnetic field, which is a generalization of geodesics,
on a real hypersurface in a complex hyperbolic space CH" is said to be extrinsic circular
if it can be regarded as a circle as a curve in CH”. We study how the moduli space
of extrinsic circular trajectories, which is the set of their congruence classes, on a totally
n-umbilic real hypersurface is contained in the moduli space of circles in CH”. From
this aspect we characterize tubes around totally geodesic complex hypersurfaces CH”~!
in CH" by some properties of such trajectories.

1. Introduction

In their paper [12] Kajiwara and Maeda gave several characterizations of
nonnegatively curved geodesic spheres in a complex hyperbolic space. Among
them the authors are interested in the characterization of geodesic spheres by
using extrinsic circular geodesics. A smooth curve ¢ parameterized by its
arclength on a Riemannian manifold is said to be a circle of geodesic curvature
k (= 0) if it satisfies the system of differential equations V46 = kY, Vs Y = —ké
with a field Y of unit vectors along ¢. Equivalently, a smooth curve ¢ para-
meterized by its arclength is a circle if it satisfies V;V36 = —k?6. When k =0,
it is a geodesic. Hence we may say that circles are simplest curves next to
geodesics from the viewpoint of Frenet formula. A curve on a submanifold is
said to be extrinsic circular if it is a circle of positive geodesic curvature as a
curve in the ambient space. Thus Kajiwara and Maeda noted when geodesics
on a real hypersurface can be seen as ‘“‘nice’” curves in its ambient space.
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One can easily guess that some properties of extrinsic shapes of some curves
on a submanifold show properties of the embedding. For example, extrinsic
shapes of geodesics on a standard sphere in a Euclidean space are circles, and
this property characterize a standard sphere among hypersurfaces in a Euclidean
space. From this point of view Kajiwara and Maeda showed that a connected
real hypersurface in a complex hyperbolic space CH" is a geodesic sphere of
positive sectional curvature if geodesics orthogonal to the characteristic vector are
circles in CH" of geodesic curvature greater than the square root of holomorphic
sectional curvature of CH" (see §2 for more precisely).

Being inspired by this result we study extrinsic shapes of trajectories for
Sasakian magnetic fields on totally #-umbilic real hypersurfaces in CH", which
are geodesic spheres, horospheres and tubes around totally geodesic complex
hypersurfaces CH”~!. A Sasakian magnetic field is a constant multiple of the
canonical 2-form F; obtained by the characteristic tensor ¢ of a real hypersurface
in a Kéhler manifold (see §4). For a Sasakian magnetic field F, = «Fy, a
smooth curve y parameterized by its arclength is said to be its trajectory if it
satisfies the differential equation V,;y =#w¢y. When x =0 it is nothing but a
geodesic. Hence, trajectories for Sasakian magnetic fields on real hypersurfaces
are generalization of geodesics. Since trajectories are closely related with the
almost contact metric structure of the underlying real hypersurface, the authors
think that their properties show more properties of the real hypersurface than
geodesics. In this paper, we refine the study on extrinsic circular trajectories for
Sasakian magnetic fields on totally #-umbilic real hypersurfaces in CH" in [5].
We study the behavior of the set of congruence classes of these trajectories on
each totally n-umbilic real hypersurface in the moduli space of circles, which
is the set of all congruence classes of circles, on CH”. We show that moduli
spaces of extrinsic circular trajectories on geodesic spheres form a foliation on the
moduli space of bounded circles on CH”". Also, in view of those moduli spaces
we characterize tubes around totally geodesic CH”"~! in CH".

2. Supplemental results for Kajiwara-Maeda’s characterization

In order to make clear our standing point of studies, we shall start by
recalling a characterization of geodesic spheres of small radius given by Kajiwara
and Maeda [12], and by giving its supplemental results.

On a real hypersurface M of a Kihler manifold M, we have a canonical
contact metric structure which is induced by the complex structure J on M. For
a (local) unit normal vector field ./" on M in M and the Riemannian metric <, )
on M, we define a vector field & by £ = —J. 4", a 1-form 7 by 5(v) = {v,&) and a
(1,1)-tensor field ¢ by ¢(v) = Jv — 5(v)./" for each tangent vector v e TM. With
the induced metric {,» on M we have a contact metric structure (¢,&,7,{, )
on M. We call ¢ the characteristic vector field and ¢ the characteristic tensor
on M.

Leti: M — M _denote an isometric embedding of a real hypersurface M into
the ambient space M. For a smooth curve y on M, we can regard it as a curve
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in M by considering 10y and call it the extrinsic shape of y. For the sake of
simplicity, we usually denote the extrinsic shape 10y also by y. In their paper
[12] Kajiwara and Maeda characterized geodesic spheres of nonnegative curvature
by a property of extrinsic shapes of geodesics.

THeOREM (Kajiwara-Maeda [12] (cf. [16])). Let M be a connected real
hypersurface in a complex hyperbolic space CH"(c) of constant holomorphic
sectional curvature c. Then the following conditions are mutually equivalent:

(1) M is locally congruent to a geodesic sphere all of whose sectional
curvatures are nonnegative;

(2) ]\\;Ils locally congruent to a geodesic sphere G(r) of radius r < (log 3)/

lel;

(3) At each point pe M there exist a constant k, with k, > \/|c| and
orthonormal vectors vy, ...,v2,2 € U,M orthogonal to &, satisfying that
the extrinsic shape of each geodesic y; on M with p,(0) = v; is a circle of
geodesic curvature k.

Since they restricted themselves to real hypersurfaces of nonnegative cur-
vature, they showed the above result. But their proof tells more. We consider
the following condition:

(ES) At each point pe M of a real hypersurface M in CH", there
exist linearly independent unit tangent vectors vy,...,v—2 € U,M
orthogonal to ¢, satisfying that the extrinsic shapes of geodesic y;
(i=1,...,2n—2) on M with y;(0) = v; are circles of common positive
geodesic curvature k.

We note that Condition (ES) is a bit weaker than the condition in the

third condition in Kajiwara-Maeda’s result, because we need not assume that
v1,...,0—2 € U,M are orthogonal. We have the following.

ProOPOSITION 1. A connected real hypersurface M in CH"(c) is locally
congruent to a geodesic sphere G(r) of radius r > (log 3)/+/|c| if and only if it
satisfies Condition (ES) and there is a point po € M with \/|c|/2 < k,, < +/]c].

PROPOSITION 2. A connected real hypersurface M in CH"(c) is locally
congruent to a horosphere HS if and only if it satisfies Condition (ES) and there
is a point py€ M with k,, = +/|c|/2.

PrOPOSITION 3. A connected real hypersurface M in CH"(c) is locally
congruent to a tube T(r) of radius r around totally geodesic CH"™' if and
only if it satisfies Condition (ES) and there is a point poe M with k,, < \/|c|/2.

Since one can easily show the above results along the same lines as in the
proof of Kajiwara-Maeda’s result, we here give outlines. We denote by Ay,
the shape operator of M in CH" associated with a unit normal ./". When the
characteristic vector field of a real hypersurface is principal at each point, it is
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said to be a Hopf hypersurface. Its principal curvatures satisfy the following
properties.

Lemma 1 ([14, 13])). Let M be a Hopf real hypersurface in CH"(c). Then
its principal curvatures satisfy the following.
(1) The principal curvature 0y associated with & is locally constant.
(2) If a nonnull vector ve TM satisfies Ayv = Av, then (24 —0p)Apmdv =
(OmA+ (c/2))gpv holds.

Under Condition (ES), we find that either Ayv; = kyv; or Ayv; = —kyv;
holds for i=1,...,2n—2. This shows that v; and ¢, are principal curvature
vectors, and in particular that M is a Hopf real hypersurface. Applying Lemma
1 we can conclude that M has at most three constant principal curvatures k, —k
and Jy,, where, J), denotes the principal curvature associated with the charac-
teristic vector field. As connected Hopf real hypersurfaces in CH"(c¢) all of
whose principal curvatures are constant are classified by Berndt [9], consider-
ing their principal curvatures we get the results. Here, such hypersurfaces are
horospheres HS, geodesic spheres G(r) of radius r, tubes T(r) of radius r around
totally geodesic CH"!, tubes T,(r) (/ =1,...,n—2) of radius r around totally
geodesic CH’, and tubes R(r) of radius r around totally geodesic real hyper-
surface RH”. When a real hypersurface M is one of HS, G(r) and T(r) it has
two principal curvatures;

\/H/zv \/m, when M = HS,
VYRS (\/H/Z) coth(\/ﬂr/Z), Oom = \/H coth \/|c|r, when M = G(r),
(\/Iel/2) tanh(+/c[r/2), Ve[ coth \/[e[r, when M = T(r).

These horospheres, geodesic spheres and tubes around totally geodesic complex
hypersurfaces are called totally #-umbilic real hypersurfaces because all tangent
vectors orthogonal to their characteristic vectors are principal. When M is either
T,(r) or R(r) it has two principal curvatures;

= (V1el/2) coth(v/[e[r/2), g = (v/]el/2) tanh(y/[c]r/2)

for vectors orthogonal to the characteristic vector and

_J Vel cothy/|e|r, when M = Ty(r),
V/|c| tanhy/|c|r, when M = R(r).

3. Circles on a complex hyperbolic space

By results in the previous section, it seems there is a relationship between
geodesic curvatures of circles on CH” and its real hypersurfaces. In order to
study this we here review some basic properties of circles on CH".
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Two smooth curves g;, g, on a Riemannian manifold N parameterized by
their arclengths are said to be congruent to each other if there is an isometry ¢
of N and a constant ¢y satisfying o2(t + t) = ¢ o g1(¢) for all 7. Being different
from circles on a Euclidean space or on a real hyperbolic space, even if two
circles on CH"(c¢) have the same geodesic curvatures they are not necessarily
congruent to each other. For a circle o of positive geodesic curvature on
CH"(c) which satisfies V46 = kY, V;Y = —k,6 with a field Y of unit vectors
along g, we define its complex torsion 7, by 7, = {g,JY ) with complex structure
J on CH". Since J is parallel, its complex torsion 7, is constant along ¢ and
satisfies |t,] < 1. It is known that two circles o1, 0, on CH"(c) are congruent
to each other if and only if k,, = k;, and |z, | = |74,| (see [17]). Therefore, the
moduli space .#,(CH") of circles of positive geodesic curvature, which is the set
of all congruence classes of such circles, on CH" is set theoretically identified with
a band (0,00) x [0, 1].

As CH”" is a Hadamard manifold, a simply connected complete manifold
of nonpositive curvature, we can consider its ideal boundary 0CH”. We say a
smooth curve : R — CH" to be unbounded in both directions, if both of the
sets {o(?)|t <0} and {o(¢)|t >0} are unbounded. For such a curve o we
set g(—o0) = lim,,_, o(f), a(c0) =lim,_, o(¢) if they exist in JCH", and call
them its points at infinity. If we define a function v: (0,0) — [0,1] by

0, if 0<k<+/|c|/2,
v(k) =9 (4k2 + ¢)*?/(3V3|clk), if \/]el/2 <k < /],
1, if k> +/]cl,

we can describe properties of circles on CH"(c) as follows ([6]):

1) A circle ¢ is bounded if and only if either k, > +/]c| or 7, < v(k,);

2) A circle ¢ is unbounded in both directions and has a single point at infinity
(6(—o0) = (o)) if and only if \/[c|/2 <k, < /Ic| and |t,] = v(k,);

3) A circle ¢ is unbounded in both directions and has two distinct points
at infinity if and only if either k, < \/[c|/2 or \/|c|/2 <k, < /|| and
|76 > v(ks);

4) Every bounded circle ¢ with 7, =0 is closed of length 4n/v4k? + c;

5) Every bounded circle o with 7, = +1 is closed of length 27/vk2 + c.

|
i bounded
| I k

FIGURE 1. The moduli space .#4(CH") of circles on CH"(c)
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We denote by V and V the Riemannian connections on a real hypersurface
M and on CH"(c), respectively. We recall that Gauss and Weingarten for-
mulae are given as Vy Y =VyY + Ay X, YO A and Vy N/ = —Ay X for vector
fields X, Y tangent to M. We take a geodesic y on M whose initial vector is
orthogonal to the characteristic vector. By use of Gauss formula, if the extrinsic
shape of y is a circle, then its complex torsion is null. Thus we may say that
Kajiwara-Maeda’s result and its supplements show a relationship between geo-
desic curvatures of circles of null complex torsion and real hypersurfaces from
the viewpoint of extrinsic shapes of geodesics. We are hence interested in some
relativity of real hypersurfaces and circles of other complex torsions.

4. Extrinsic shapes of trajectories for Sasakian magnetic fields

Let M be a real hypersurface in CH"(c¢). We here extend the notion of
geodesics on M. By using the characteristic tensor ¢ we define a 2-form F,
on M by Fy(u,.v) = {u,¢v). Since it is a closed 2-form (see [8]), we say its
constant multiples to be Sasakian magnetic fields. Generally, a closed 2-form on
a Riemannian manifold is called a magnetic field because it can be regarded as a
generalization of a static magnetic field on a Euclidean 3-space (see [10, 18] and
also [1], for example). A smooth curve y on M parameterized by its arclength
is said to be a trajectory for a Sasakian magnetic field F, = xF, if it satisfies
V7 = Kk¢y. As trajectories for Fy are geodesics, we can consider trajectories as
perturbations of geodesics.

We here consider trajectories for Sasakian magnetic fields whose extrinsic
shapes are circles. Given a trajectory y for F,, we define its structure torsion
p, by p, =<p,¢,», where ¢ denotes the characteristic vector of M. Since Gauss
formula and Weingarten formula lead us to Vy& = ¢4y X, we have

1
Py = Vi3, &0 = e, &) + <G pAmd) = 5 <0 (@Ay — Aud)i,

because the shape operator A, is symmetric and the characteristic tensor ¢ is
anti-symmetric. Thus p, is constant along y if 4y and ¢ are simultaneously
diagonalizable (A ¢ = ¢Ap). It is known that such a property holds for
geodesic spheres G(r), horospheres HS, and tubes T'(r) and T,(r) around totally
geodesic CH’ (/ =1,...,n— 1), which are usually called real hypersurfaces of
type (A).

We now restrict ourselves to G(r), HS and T(r) in CH"(¢). For a trajectory
y for F, on such a real hypersurface M, by using Gauss and Weingarten formulae
we have

Vii = kgp + (Zar(1 = p3) +Omp;) A,
Vilicdp + (A (1 = p2) + 6pp2).N]
= (= p2) + Gt + Ot — 2D
+ (A = 1, + Onr — 2a)p2) (i + Oar = 2a0)p,) (7 = &,)-

4.1)
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Thus we get conditions that the extrinsic shapes of trajectories are circles
(cf. [3, 5]).

LemmA 2. A trajectory y for ¥, on a real hypersurface M which is congruent
to one of G(r), HS and T(r) in CH"(c) is extrinsic circular if and only if it
satisfies one of the following conditions:

1) p, = =1,

2) Ayv — Kp, + (5M — /IM),D}2 =0,

3) K+ (6M — ;vM)Py =0.

Corresponding to each case, the geodesic curvature k, and the complex torsion t,
of the extrinsic shape of y are as follows:

1) ky :5M; Ty = 11,

2) ky = |xl|, 7y = —sgn(x),

3) k, = \/K2 —2AmKp, + B, T, = (2Kp}2, — Kk = dup,)/k,.

When M is one of G(r), HS and T(r), we have oy — Aar = |c|/(4Au1).
Thus in the case 4xy + [c|p, = 0, which is the third case of the above lemma,
we can express the geodesic curvature and the complex torsion of the extrinsic
shape as

(4.2)

2 2.2 A2 452
N PP N B . 22
2 164y 4,7

First we study extrinsic circular trajectories for Sasakian magnetic fields on
a given totally »#-umbilic real hypersurface M. We denote by &(M) the set of
all congruence classes of extrinsic circular trajectories on M of the third type
in Lemma 2. Since each isometry ¢ of M is equivariant, that is, there is an
isometry ¢ of CH" satisfying 10 ¢ = ¢ o1 with the isometric embedding 1 : M —
CH", we find that if two trajectories on M are congruent to each other then
their extrinsic shapes are congruent to each other in CH”. We can show the
converse holds (see [2, 7]). Thus we can identify the set &(M) with the set of
all congruence classes of circles which are extrinsic shapes of trajectories of the
third type in Lemma 2 on M.

As the structure torsion of each trajectory satisfies |p,| < 1, for an extrinsic
circular trajectory y of the third type in Lemma 2 on M, by the first equality of
(4.2) we have Ay <k, < Ay + (|c|/(42)). By substituting the first equality of
(4.2) into the second we obtain

(4.3) y (2= 22 (32032 + deily — 2)?
. 2 |
’ ||(823, — ¢)’k2

If we regard the right hand side of (4.3) as a function g(K)=g(K;1y) on
K = k7, we have

dg i3, (8K — ¢)(8K — 447 + ¢)(3215,K +4ciy, — )
dK |C|(8/1§/[—c)3]{2 .
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We hence get the following:
1) When M is either HS or G(r), then g is monotone increasing with respect

to k,, and g(/lzzu) =0, g (/IM+4|/1| > =1.
M

2) When M is T(r), then g is monotone increasing in the union of intervals

2
(), (42 — ©) /8] U | (—de + 2232) /32, (;M+4|;| )]

and is monotone decreasing in the interval
(423, — ©)/8, (—4c + *137)/32).
At the ends of these intervals we have

g(03) = g((=dc + 2237)/32) = 0,

| B s —(413, 4 ¢) (423, - )
g<<JM+4)>)—L (423 —¢)/8) = E2, — o) (< D).

We note that Ay + (|¢|/(44m)) =O0m. Moreover, when M = T(r) we have
1) /(@44 — 0)/8 < VId/2 <\ (—4e + 23) /32,

2) \/( de+c2037)/32 < \/]e] if and only if r > (2 log(v/7 + 1) —log 6)/+/]c],

3) g((423, - ¢) /8) is monotone decreasing with respect to Aj.

By the above argument, we find that the moduli space &(M) of extrinsic
circular trajectories of the third type in Lemma 2 on M is a curve on the
moduli space .#,(CH") of circles like Figures 2 and 3. Also, we find that the
congruence class of extrinsic circular trajectories of the first type in Lemma 2
on M, which is expressed as {(dy, 1)} in .#,(CJ") = (0, 0) x [0, 1], is contained
in &(M). Thus, the moduli space of all extrinsic circular trajectories on M is
EM)U{(k,1)|k > 0}.

‘ k
0 el Am O 0 Xy i omr

2 2

FIGURE 2. &(M) for M = G(r) FIGURE 3. &(M) for M =T(r)
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Next we study how the curve &(M) for a totally #-umbilic real hypersurface
M behaves with respect to the radius. We regard the right hand side of (4.3) as
a function i(A) =h(A;k,) on A =73, We have

dA e[ (8A — ¢)*k2

2
dh (8k7 — ¢)" (32 A + 4cA — ¢*)(4A + ¢) |

When M =G(r), as k, >y >+\/[c[/2, we see 32k?A+4cA—¢?*>0 and
473, +¢>0. Hence we find that dh/dA <0 for iy <k, <Jy. Since
(\/]¢l/2) coth(y/]e[r/2) is monotone decreasing with respect to r, if we take two
geodesic spheres M = G(r;), M’ = G(r2) (r1 < ra2), the curves §(M) and &(M’)
do not have intersections (see Figure 4). Moreover, as lim,_,, Ag() = Vel/2,
lim, ., dg() = +/|c| and lim,|o Ag(,) = lim,o dg() = o0, we find that the moduli
space A %,(CH") of bounded circles on CH" is covered by {&(G(r))|r > 0}.

When M =T(r), as iy < \/|c|/2, we find that dh/dA <0 for Ay <

k, < \/ (—dc+c22,7)/32 and dh/dA >0 for \/ (—de+ 20,7)/32 <k, < .
Since (+/]¢[/2) tanh(y/]¢[r/2) is monotone increasing with respect to r and
V/Je| coth \/[c|r is monotone decreasing with respect to r, if we take two tubes
T(r1), T(r2) (r1 >r2), we find that &(T(r;)) and &(T(r2)) intersect with each
other only at one point (see Figure 5). The k-coordinate x(ri,r;) of this point
satisfies (—4c+ ¢?A7),))/32 < x(r1,r2)* < (—4c+ 2Ar),))/32. As &(T(r)) con-
verges to &(HS) when r goes to infinity, we see that the intersection of &(7(r;))
and &(T(r)) lies in .#%,(CH"). Since lim,o(—4c + czl}(z,.))/32 = lim, g d7(;) =
oo, we see that .#%,(CH") is covered by {&(T(r))|r > 0}. We set .#U,(CH")
= Mr(CH")\.#%,(CH") and denote by 7 the set of all congruence classes
of circles on CH"(c) of geodesic curvature not greater than /[c| and of
complex torsion *1. As we have limpjo 2(A) =1, and limppe h(A) =0 for
each k,, and have lim,jo A7() = 0, we find that the set .#,(CH")\J is covered by
{&(T(r))|r > 0}, and that {&(T(r)) N M U(CH")|r > 0} covers M U,(CH")\T .
Summarizing up we have

T T
1| 1|
I I
| VAN
} I k } I k
0 Vid A Au omr YRS VRVAL] om O
2 2
FIGURE 4. &(M), (M) for M = G(r1), M' = FIGURE 5. &(M), §(M') for M =T(r), M' =

G(l‘z) with r<r T(I‘z) with ry>n
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THEOREM 1. (1) The family {&(G(r)) |r > 0} forms a foliation of the moduli
space MB(CH") of bounded circles on CH".

(2) The family {&(T(r)) |r > 0} covers the set M>,(CH")\T of all congruence
classes of circles except unbounded circles of complex torsion +1.

(3) Two distinct &(T(r1)),8(T(rp)) intersect each other only at one point.
This point lies in #%B,(CH").

(4) The family {&(T(r)) N MU(CH")|r >0} forms a foliation of
MU (CH)\T .

In the above we studied the moduli space of extrinsic circular trajectories
on each totally #-umbilic real hypersurface. Being concerned with Propositions 1
and 3, in the following we shall study their moduli spaces for some families
of totally #n-umbilic real hypersurfaces, and investigate how circles of given
geodesic curvature are obtained as extrinsic shapes of trajectories on some real
hypersurfaces.

THEOREM 2. Every bounded circle of geodesic curvature \/|c|/2 <k < /||
on a complex hyperbolic space CH"(c) is the extrinsic shape of a trajectory for
some Sasakian magnetic field on some geodesic sphere G(r) of radius r > (log 3)/
\/H. The triplet of such a trajectory, a Sasakian magnetic field and a geodesic
sphere is uniquely determined.

THEOREM 3. Every circle of geodesic curvature 0 < k < \/H /2 and of com-
plex torsion T # +1 on a complex hyperbolic space CH"(c) is the extrinsic shape
of a trajectory for some Sasakian magnetic field on some tube T(r) around
CH"™'.  For such a circle with complex torsion |t| <1, the triplet of such a
trajectory, a Sasakian magnetic field and a tube is uniquely determined.

One can easily guess these results by the first and the last assertions of
Theorem 1, but in order to show clearly how trajectories correspond to circles we
here give their proofs.

Proof of Theorems 2 and 3. We take a circle ¢ on CH"(c) satisfying one of
the following:

i) ks <+/|c|/2 and 7, # +1,

ii) \/lel/2 < ks < /]| and |z,| < v(k,).
We denote by {d, Y,} its Frenet frame. In other words, this o satisfies Vi6 =
k,Y, and V;Y, = —k,6. By Lemma 2 and (4.2), we first solve the following
system of equations on A and p

24 12192 2.2 212
4 {m +8|clp?i® + ¢2p? = 16k272,

ple| = 2le|p? — 42%) = 4k, .

As we need to get a solution with |p| <1, the first equation of (4.4) shows
that 4 <k, <A1+ (|c|/(44)). Since k, < +/|c|, the second inequality k, < A +
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(le|/(42)) automatically holds. We hence study (4.4) under the condition that
)<k, <+/|c|]. By substituting p> = 164%(k2 — 1%)/(8|c|A* + ¢?) into the second,
we have

o (k* = 22) (40 — 3 + 326k§i2)2.

’ k2(8]c|A% + ¢2)?

We put the right hand side of the above equality as f; (4), and consider it a
function of 2. We then find that f;_(1) is monotone decreasing with respect to 4,
and that fi_ (k) =0, fi,(0) =1 and fi (v/[c]/2) = (@k2 + ¢)’/(27¢%2) = v(k,)*.

First we study the case that /|c|/2 < k, < \/|c| and |z,| < v(k,). When we
consider geodesic spheres, their principal curvatures for vectors orthogonal to
characteristic vectors are in the interval \/[c[/2 < Ay < \/|c| if and only if their
radii satisfy r > (log 3)/+/|c|. Thus for 7, with 0 < 7, < v(k,) we have unique A
satisfying fi (4) = t2. This determines p>. Hence (4.4) has a unique solution
(4,p) in this case. By using this solution, we set v = (4k,;1Y,(0) — ¢pJ6(0))/
(427 —2¢p?). As we have

10427 = 2¢p*)* = |4k, A Y5 (0) — epJ6(0)|®
= 16k22% + 8ckyt,dp + cp?
= 162% = 8¢cpi? + 2p* + 2cp* (—c + 2¢p* — 40%) + *p?
= (427 = 2¢p%),
we see v IS a unit tangent vector. We choose the geodesic o with initial vector v
and take a geodesic sphere G of radius = (2/+/|c|) coth™'(24//]c[) centered at

a(r). Since its inward unit normal /" satisfies .4,y = v and ¢(0) is orthogonal
to v, we find that ¢(0) is tangent to G and we have

—4kst A — cp
6(0), TN g = ——ote? 7P _
<a(0) 0)) PYERE P

Thus if we take the trajectory y for F. 4; on G satisfying 7(0) = ¢(0), its
structure torsion is p, and hence we find by Lemma 2 and (4.4) that its extrinsic
shape is a circle with

N N _ L (e o _
ky— 16}'2—7"‘}. —k0-7 Ty—k—y ﬂ—ﬂ—/l = T5.

Since the Frenet frame of the extrinsic shape of y at y(0) is {6(0), ¥,(0)} with

Y,(0) = ki {%15(0) + ( - %f)v}
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by (4.1), we find that the extrinsic shape of y coincides with . Thus we obtain
that every bounded circle of geodesic curvature /|c[/2 < k < +/[c| on CH"(c) is
the extrinsic shape of a trajectory for some Sasakian magnetic field on some
geodesic sphere of radius r > log(3/+/]c]).

We now show that the above triplet (G, F,,/4,),7) is unique. If we suppose
that the extrinsic shape of a trajectory ¢ for F, on a geodesic sphere G(R)
coincides with o, then Lemma 2 and (4.1) show that

* k= —=(lelp) /(446 (r));

* the pair (Ag(g),p.) satisfies (4.4),

* ko Yo = 1J¢ + (Aor) + (elp?)/(426(r))) N Gry With the inward unit normal
Since (4.4) has a unique solution for given k,, 7,, we see .Ag(g) coincides with v
at ¢(0). Therefore we find G(R) = G, and hence get F, = Fop/4ig0) and ¢ =7.
This completes the proof of Theorem 2.

Next we study the case that 0 <k, </[c|[/2 and |t,| < 1. For tubes
around totally geodesic CH"!, principal curvatures of vectors orthogonal to
characteristic vectors are in the interval 0 < Ay < \/[¢c[/2. As we have unique
J satisfying f, (1) = 72, it determines p>. Hence (4.4) has a unique solution
(4,p) also in this case. Along the same lines as for the case of geodesic spheres,
we get the assertion of Theorem 3. O

We can do the similar argument for the case k, > y/|c[. In this case the
inequalities A < k, < A+ (|¢[/(44)) leads us to (k, + k2 +¢)/2 <)<k, We
therefore obtain that every bounded circle on CH"(c) is the extrinsic shape
of a trajectory for some Sasakian magnetic field on some geodesic sphere, and
that for such a circle with complex torsion |7| <1 the triplet of a trajectory,
a Sasakian magnetic field and a geodesic sphere is uniquely determined ([5]).
As we have 5+/[c|/4 = 6u(= Au + (l¢|/(420))) if and only if the radius of M
satisfies r > (log 3)/+/[c|, we obtain

PROPOSITION 4. Every circle of geodesic curvature k > 5+/|c|/4 on CH"(c)
is the extrinsic shape of a trajectory for some Sasakian magnetic field on some
geodesic sphere G(r) of positive curvature.

We should note that bounded circles are also extrinsic shapes of trajectories
for some Sasakian magnetic fields on tubes around totally geodesic CH” .

THEOREM ([5]). Every circle on CH"(c) except circles of geodesic curvature
0<k< \/m and of complex torsion T = +1 is the extrinsic shape of a trajectory
for some Sasakian magnetic field on some tube T(r). When a circle is unbounded,
such a triplet of a trajectory, a Sasakian magnetic field, and a tube is uniquely
determined. When a circle is bounded, exactly two triplets correspond to it.

We have a result corresponding to Theorem 2.
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PROPOSITION 5. Every bounded circle of geodesic curvature \/m /2<k<

lc| on a complex hyperbolic space CH"(c) is the extrinsic shape of a trajec-

tory for some Sasakian magnetic field on some tube T(r). The triplet of

such a trajectory, a Sasakian magnetic field and a geodesic sphere is uniquely
determined.

If we consider the condition dys < 54/|c|/4 for tubes around totally geodesic
complex hypersurfaces, we get the following.

PROPOSITION 6.  Every circle of geodesic curvature k > 5+/|c|/4 on a complex
hyperbolic space CH"(c) is the extrinsic shape of a trajectory for some Sasakian

magnetic field on some tube T(r) of radius r < (log 3)/+/|c|.

5. A characterization of tubes around complex hypersurfaces

Since Kajiwara-Maeda’s result shows a characterization of geodesic spheres
of small radius, we here consider to give a characterization of tubes around
totally geodesic complex hypersurfaces.

We here consider the following condition on the characteristic vector &, at
peEM:

(ET) The extrinsic shape of the trajectory y, for some Sasakian magnetic

field F,, with j,(0) = ¢, is a circle of geodesic curvature k # |i|.

THEOREM 4. A connected real hypersurface M in CH"(c) is locally congruent
to a tube T(r) around totally geodesic complex hypersurface CH"™ if and only if
it satisfies the following conditions at each point p € M:

1) The condition (ET) holds at p;

ii) There exist constants p, p, with k, # 0, |p,| < 1 and linearly independent

unit tangent vectors vy, ... v, € UM with {v;, &, =p, which satisfy
that the extrinsic shapes of trajectories y; (i=1,...,2n—2) for F
with 7,(0) = v; are circles of geodesic curvature k; with k; < \/|c|/2 and
k,' # |K1,|.

Proof. By Lemma 2, we are enough to show the “if” part. For a
trajectory y for F, on M we have

(5.1) Vg = Vi Aud DA = k) + ((Aup 7D — kp) N,

S . . . . d .
(52)  V;Vyp = =% — (<Amd, 7> — 1p) (Amy + KE) + o (KAwy, 75 — wp) N
Since y is parameterized by its arclength, the extrinsic shape of y is a circle

of geodesic curvature k, if and only if it satisfies %%)’/ = —kyzjz. By the first
condition, we have from (5.1) and (5.2) that

kyo = ‘<AMépa ép>| and k;zofp = (<AMép7£p> - KO)AMép + K0<AM£p; ép>ép-
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As k,, # |ro|, we find that ¢, is a principal curvature vector. We denote by 6,

the principal curvature associated with £,. By Lemma 1 it is locally constant

with respect to p. As M is connected we find it is constant, hence we can denote
By the second condition we have from (5.2) that

(5.3) (ki = 1e5)p = (KAwm (v = pp&y)s vi = PpCp>
+ 5Mpp = 15pPp) (P,0p + Kp),
(54) (k,2 - K )( ppép) (<AM(U, - ppgp)7 Ui — prp>

+0umpy = 15ppp) Ant (Vi — ppéy).-

Since k; # [x,|, by (5.4) we find that v; — p,&, is principal. We denote by «; the
principal curvature of v; —p,¢,. Then (5.3) and (5.4) turn to

(5.5) (k7 = 1)y = (a1 = pp) + oy — 1P, ) (2,0 + 1),

(5.6) I =1y = ((1 = pp) + ppdy — 15ppy )04

Hence we have either p,o; = p,0, + 1, or o;(1 — pﬁ) +pp25,, —1pp, = 0 holds. If
p, =0, we have of = k7 —r; and ax, = 0 by (5.5) and (5.6). Since k; # |x| we

see x, = 0, which is a contradiction. Thus we have p, # 0. Again as k; # |r,|,
we find (1 —pp) +pp5 kpp, #0 and obtain o; =3, + (x,/p,). Thus, we

have o) =+ = op,_2(= 0,), hence M is totally z-umbilic.
We have by (5.1) that
k=12 (1 = p2) + Ay, 3,57 = k2(1 = p2) + {ap + (9, — 0)p2} .

For a totally #-umbilic real hypersurface M in CH" we see

Vel/2, when M = HS,
Ou — Am = (V/]c]/2) tanh(y/[c[r/2), when M = G(r),
(\/lel/2) coth(n/]|c|r/2), when M = T(r).
Thus we have dy; — Ay > 0, hence find that k; > A3,. As geodesic curvatures of

extrinsic shape of trajectories are less than /|c|/2, we see M is congruent to a
tubes around totally geodesic complex hypersurface. O

Next we study a condition concerning the strength of a Sasakian magnetic
field and the geodesic curvature of extrinsic shapes.

THEOREM 5. A connected real hypersurface M in CH"(c) is locally congruent
to a tube T(r) around totally geodesic complex hypersurface CH"™' if and only if
it satisfies the following conditions with some constants k, k satisfying k # |k| and

0<k<+/|c|/2:
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1) The condition (ET) holds at each point p € M;
ii) There exist linearly independent tangent vectors vi,...,vy—> € U,M sat-
isfying that
(@) v # %, for i=1,...,2n -2,
(b) the extrinsic shapes of trajectories yp; (i=1,...,2n—2) for ¥, with
7;(0) = v; are circles of common geodesic curvature k.

Proof. We are enough to show the “if” part. Along the same lines as
in the proof of Theorem 4, we see M is a Hopf hypersurface. We denote by
oy the principal curvature associated with . We put p; = <v;,&,>.  As k # ||,
we find by the proof of Theorem 4 that each v; — p;{, is principal and that
wip; = Omp; + K, where o; is the principal curvature of v; —p;&,.

When p; =0, we have k =0. As

(5.7) I =12 (1 = p?) + {0 + (Onr — ou)p?}’,

this shows that o; = +k. When p; # 0, substituting o; = Jdps + (k/p;) into (5.7),
we find that p; satisfies the following equation

—260mp} 4+ Opr — k2 — K2 p? + 2K0mp; + 17 = 0.

Thus p; is one of the three solutions of this cubic equation. Therefore, by
perturbation theory ([11]) we find that each «; is locally constant. This means
that M is a Hopf real hypersurface all of whose principal curvatures are
constant.

We check that whether homogeneous Hopf hypersurfaces satisfy the con-
dition. When M is one of HS, G(r), T,(r) we find by their principal curvatures
Oy, Ju and by (5.7) that k > Ay > \/|c|/2. Hence these do not satisfy the
condition. We study the case M = R(r). In this case we have

Ar = V1ev/2, ar = Vel /(2), O =2+/Iel/(v+v7")

with v = cosh(\/ﬂrﬂ). We have dys # iy, When v =+/3, we have dy; = Ay
Hence k =0 and k =Jy. Thus, for i with o; = u;, we have p; = 0. Therefore
we get k* =3, (#13,), which is a contradiction. When v # /3, we have
Om # Ay. Therefore we have p; = k/(dy — o;) hence get

2 2 2 2.
k2:K2 1_K42 + al+}€— :K2+alz+ 21(7051 ]
(Om — o) Om — % Om — %

As k < \/|c|/2, we need 6y — Ay <0, hence we have v >+/3. Moreover, we
have

lev? 22 (vE+1) ﬂ+ 2k2(v2 4+ 1)
4 3—v2) 42 (32-1)

=k —«?,
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which leads us to x? = |c|(v> — 3)(3 —v72)/32. Here, as k + (6y — 2;)p; = 0 and
|p;l < 1, we have |r| < min{|0y — Aum|, [0ar — 1t34]}. Therefore we obtain

B-v )+ <8 -3),
(2 =3)(v+v )2 <83 —v2),

which are equivalent to

{ (52 +1)(v* =32 +1) >0,
(V+50* =32 +1) <0.

This is also a contradiction. Hence R(r) does not satisfy the condition. Thus
we get the conclusion. O
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