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ON p-BIHARMONIC SUBMANIFOLDS IN NONPOSITIVELY
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Abstract

Let u : ðM; gÞ ! ðN; hÞ be a map between Riemannian manifolds ðM; gÞ and

ðN; hÞ. The p-bienergy of u is tpðuÞ ¼
Ð
M
jtðuÞjp dng, where tðuÞ is the tension field

of u and p > 1. Critical points of tp are called p-biharmonic maps and isometric

p-biharmonic maps are called p-biharmonic submanifolds. When p ¼ 2, p-biharmonic

submanifolds are biharmonic submanifolds and in recent years many nonexistence

results are found for biharmonic submanifolds in nonpositively curved manifolds. In

this paper we will study the nonexistence result for general p-biharmonic submanifolds.

1. Introduction

In the past several decades harmonic map plays a central role in geometry
and analysis. Let u : ðMm; gÞ ! ðNn; hÞ be a map between Riemannian mani-
folds ðM; gÞ and ðN; hÞ. The energy of u is defined by

EðuÞ ¼
ð
M

jduj2

2
dng;

where dng is the volume element on ðM; gÞ.
The Euler-Lagrange equation of E is

tðuÞ ¼
Xm
i¼1

f~‘‘ei duðeiÞ � duð‘ei eiÞg ¼ 0;

where ~‘‘ is the Levi-Civita connection on the pullback bundle u�1TN and feig is
a local orthonormal frame field on M. In 1983, Eells and Lemaire [11] proposed
to consider the bienergy functional

E2ðuÞ ¼
ð
M

jtðuÞj2

2
dng;
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where tðuÞ is the tension field of u. Recall that u is harmonic if tðuÞ ¼ 0. The
Euler-Lagrange equation for E2 is

t2ðuÞ :¼ ~sstðuÞ �
Xm
i¼1

RNðtðuÞ; duðeiÞÞ duðeiÞ ¼ 0:

To further generalize the notion of harmonic maps, Hornung and Moser (see also
[14]) considered the p-bienergy ðp > 1Þ functional as follows:

EpðuÞ ¼
ð
M

jtðuÞjp dng:

The p-bitension field tpðuÞ is

tpðuÞ :¼ ~ssðjtðuÞjp�2
tðuÞÞ �

Xm
i¼1

ðRNðjtðuÞjp�2
tðuÞ; duðeiÞÞ duðeiÞÞ:ð1:1Þ

The Euler-Lagrange equation for Ep is tpðuÞ ¼ 0 and a map u satisfying tpðuÞ ¼ 0
is called p-biharmonic maps. If furthermore u : ðMm; gÞ ! ðNn; hÞ is an iso-
metry immersion, then we call u p-biharmonic submanifold and 2-biharmonic
submanifolds are called biharmonic submanifolds.

For biharmonic submanifolds, we have the well known Chen’s conjecture [6]:
Chen’s conjecture: Every biharmonic submanifold in En is minimal.
Chen’s conjecture inspires the research on the nonexistence of biharmonic

submanifolds in nonpositively curved manifolds ([1]–[10], [12] [17] [18], [20]–[28]
etc.). Motivated by Chen’s conjecture, Han [13] proposed the following con-
jecture:

Conjecture: Every complete p-biharmonic submanifolds in non-positively
curved Riemannian manifold is minimal.

In [13], using the method developed in [21], Han proved several results on
the nonexistence of p-biharmonic submanifolds.

Remark 1.1. In Han’s paper, he defined p-biharmonic submanifolds to be
isometric p-biharmonic maps where he required pb 2, but that is not necessary.
His nonexistence results also hold for p-biharmonic submanifolds ðp > 1Þ, without
any change in the proof.

In this paper, using the method in [21] again, we get:

Theorem 1.2. Suppose ðM; gÞ is a complete p-biharmonic submanifold in
ðN; hÞ with non-positive sectional curcvature (Ricci curvature if M is a hyper-
surface). If M is of at most polynomial volume growth, it is minimal.

Here we say ðM; gÞ is of at most polynomial volume growth, if for a fixed
point x0 A M and geodesic ball Brðx0Þ, VolðBrðx0ÞÞaCð1þ rÞs for some positive
integer s and C independent of r.
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For p-biharmonic hypersurfaces in a Euclidean space, we have

Theorem 1.3. Every weakly convex p-biharmonic hypersurface in a Eucli-
dean space is minimal.

We say a hypersurface M in N is weakly convex, if its principle curvatures
are nonnegative. When p ¼ 2, this result was proved in [20]. Furthermore we
have

Theorem 1.4. Every weakly convex p-biharmonic hypersurface in a non-
positive curvature space form is minimal.

Remark 1.5. After our paper is completed, the second named author was
informed by Yingbo Han that theorem 1.4 was also proved in [15].

We also have

Theorem 1.6. Every p-biharmonic submanifold properly immersed in a
Euclidean space is minimal.

We say a map is proper if the preimage of any compact subset is compact.
When p ¼ 2, this theorem was proved in [1].

The rest of this paper is organized as follows: In section 2 we will briefly
recall the theory of p-biharmonic submanifolds and submanifold theory. Our
main theorems are proved in section 3.

2. Preliminaries

In this section we give more details on the definitions of harmonic maps,
biharmonic maps, p-biharmonic maps and p-biharmonic submanifolds.

Let u : ðMm; gÞ ! ðNn; hÞ be a map from an m-dimensional Riemannian
manifold ðM; gÞ to an n-dimensional Riemannian manifold ðN; hÞ. The energy
of u is defined by

EðuÞ ¼
ð
M

jduj2

2
dng:

The Euler-Lagrange equation of E is

tðuÞ :¼
Xm
i¼1

f~‘‘ei duðeiÞ � duð‘ei eiÞg ¼ 0;

where we denote ‘ the Levi-Civita connection on ðM; gÞ, and ~‘‘ the induced Levi-
Civita connection of the pullback bundle u�1TN. A map u : ðMm; gÞ ! ðNn; hÞ
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is called a harmonic map if tðuÞ ¼ 0. To generalize the notion of harmonic
maps, Eells and Lemaire [11] proposed to consider the bienergy functional

E2ðuÞ ¼
ð
M

jtðuÞj2

2
dng:

The Euler-Lagrange equation for E2 is (see [19])

t2ðuÞ :¼ ~sstðuÞ �
Xm
i¼1

RNðtðuÞ; duðeiÞÞ duðeiÞ ¼ 0:

To further generalize the notion of harmoic maps, Han and Feng [14] (see also
[16]) introduced the F -bienergy functional

EF ðuÞ ¼
ð
M

F
jtðuÞj2

2

 !
dng;

where F : ½0;þyÞ and F 0ðxÞ > 0 if x > 0.
The critical points of the F -bienergy functional with FðxÞ ¼ ð2xÞp=2ðp > 1Þ

are called p-biharmonic maps and isometric p-biharmonic maps are called
p-biharmonic submanifolds.

The p-bitension field tpðuÞ is

tpðuÞ :¼ ~ssðjtðuÞjp�2tðuÞÞ �
Xm
i¼1

ðRNðjtðuÞjp�2tðuÞ; duðeiÞÞ duðeiÞÞ:ð2:1Þ

A p-biharmonic map satisfies tpðuÞ ¼ 0.
Now we briefly recall the submanifold theory. Let u : ðM; gÞ ! ðN; hÞ be

an isometric immersion from an m-dimensional Riemannian manifold into an
mþ t ðtb 1Þ-dimensional Riemannian manifold. The second fundamental form
B : TM � TM ! T?ðMÞ is defined by:

‘XY ¼ ‘XY þ BðX ;Y Þ; X ;Y A GðTMÞ;ð2:2Þ

where ‘ is the Levi-Civita connection on N and ‘ is the Levi-Civita connection
on M. The Weingarten formula is given by

‘Xx ¼ �AxX þ ‘?
Xx; X A GðTMÞ;ð2:3Þ

where Ax is called the Weingarten map w.r.t. x A T?M, and ‘? denotes the
normal connection on the normal bundle of M in N. For any x A M, the mean
curvature vector field H of M at x is

~HH ¼ 1

m

Xm
i¼1

Bðei; eiÞ:
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If u is an isometric immersion, we see that fduðeiÞg is a local orthonormal frame
of M. In addition, for any X ;Y A GðTMÞ,

‘ duðX ;YÞ ¼ ~‘‘X ðduðYÞÞ � duð‘Y
X Þ ¼ BðX ;YÞ;ð2:4Þ

where ~‘‘ is the connection on the pull back bundle u�1TN, whose fiber at a point
x A M is TuðxÞN ¼ T?MlTM. Therefore if u is an isometric immersion,

tðuÞ ¼ tr ‘ du ¼ tr B ¼ m~HH;

and a p-biharmonic submanifold satisfies the following equatuion:

tpðuÞ ¼ ~ssðj~HHjp�2~HHÞ �
Xm
i¼1

ðRNðj~HHjp�2~HH; eiÞeiÞ ¼ 0;ð2:5Þ

where ~ss¼
Pm

i¼1ð~‘‘ei
~‘‘ei � ~‘‘‘eiei

Þ, ~‘‘ is the connection on the pullback bundle, and
RN is the Riemanian curvature tensor on N.

From (2.3), we get for any vector field x A GðT?MÞ:

~‘‘ei
~‘‘eix ¼ ~‘‘eið‘?

ei
x� AxeiÞ

¼ ‘?
ei
‘?
ei
x� ~‘‘eiAxei � A‘?

ei
xei

¼ ‘?
ei
‘?
ei
x� ‘eiAxei � Bðei;AxeiÞ � A‘?

ei
xðeiÞ;

and

~‘‘‘ei
eix ¼ ‘?

‘ei
ei
x� Axð‘ei eiÞ:

Combining the above two identities, we get

~ssx ¼ ‘?
ei
‘?
ei
x� ‘eiAxei � Bðei;AxeiÞ � A‘?

ei
xðeiÞ � ‘?

‘ei
ei
xþ Axð‘ei eiÞ

¼s?x� ð‘eiAxÞei þ Axð‘ei eiÞ � Bðei;AxeiÞ � A‘?
ei
xðeiÞ:

Therefore by decomposing the p-biharmonic submanifold equation into its
normal and tangential parts respectively we get ([13]):

D?ðj~HHjp�2~HHÞ �
Xm
i¼1

BðAj~HHj p�2 ~HHei; eiÞ þ
Xm
i¼1

ðRNðj~HHjp�2~HH; eiÞeiÞ? ¼ 0;ð2:6Þ

Trgð‘Aj~HHjp�2 ~HHÞ þ Trg½A‘?j~HHj p�2 ~HHð�Þ� �
Xm
1

ðRNðj~HHjp�2~HH; eiÞeiÞ> ¼ 0:ð2:7Þ
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3. Proof of theorems

3.1. Proof of Theorem 1.2

Proof. From equation (2.6), we see that

Dj~HHj2p�2 ¼ 2j‘ðj~HHjp�2~HHÞj2 þ 2hsðj~HHjp�2~HHÞ; j~HHjp�2~HHÞið3:1Þ

¼ 2j‘ðj~HHjp�2~HHÞj2 þ 2
Xm
i¼1

BðAj~HHjp�2 ~HHei; eiÞ; j~HHjp�2~HH

* +

� 2hRNðei; j~HHjp�2~HHÞei; j~HHjp�2~HHi

b 2j‘ðj~HHjp�2~HHÞj2 þ 2
Xm
i¼1

BðAj~HHj p�2 ~HHei; eiÞ; j~HHjp�2Þ~HH
* +

;

where we used (2.6) and the fact that the sectional curvature of N is nonpositive.
Therefore by the following inequality ([13])

Xm
i¼1

hBðAj~HHjp�2 ~HHei; eiÞ; j~HHjp�2~HHibmj~HHj2p;ð3:2Þ

we obtain

Dj~HHj2p�2
b 2j~HHj2p�4j‘~HHj2 þ 2mj~HHj2p:ð3:3Þ

For a fixed point x0 A M, and every r > 0, let us consider the following cut o¤
function lðxÞ on M:

0a lðxÞa 1 x A M

lðxÞ ¼ 1 x A Brðx0Þ
lðxÞ ¼ 0 x A MnB2rðx0Þ

j‘lðxÞja C

r
x A M

8>>>>><
>>>>>:

ð3:4Þ

where C is independent of r, and Brðx0Þ is a geodesic ball of M.
Let ab 2, and b be positive constants to be determined later. From (3.3),

we have

�
ð
M

‘ðlbj~HHjaÞ � ‘ðj~HHj2p�2Þ ¼
ð
M

lbj~HHjasðj~HHj2p�2Þð3:5Þ

b

ð
M

2lbj~HHjaðj~HHj2p�4j‘~HHj2 þmj~HHj2pÞ

b

ð
M

2lbj~HHjaþ2p�4j‘~HHj2 þ 2m

ð
M

lbj~HHjaþ2p;
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where ‘f � ‘g :¼ gij qf

qxi

qg

qxj
in local coordinates, for f ; g A C1ðMÞ, and for

simplicity we omit the symbol � in the subsequent.
On the other hand, we have

�
ð
M

‘ðlbj~HHjaÞ‘j~HHj2p�2 ¼ �
ð
M

ðblb�1‘lj~HHja þ lbaj~HHja�2h~HH;‘~HHiÞð3:6Þ

� ðð2p� 2Þj~HHj2p�4h~HH;‘~HHiÞ

¼ �
ð
M

ð2p� 2Þblb�1‘lj~HHjaþ2p�4h~HH;‘~HHi

� ð2p� 2Þa
ð
M

lbj~HHjaþ2p�6h~HH;‘~HHi2

a�
ð
M

ð2p� 2Þblb�1‘lj~HHjaþ2p�4h~HH;‘~HHi:

Let b ¼ aþ 2p, we have

2

ð
M

laþ2pj~HHjaþ2p�4j‘~HHj2 þ 2m

ð
M

laþ2pj~HHjaþ2pð3:7Þ

a�ð2p� 2Þðaþ 2pÞ
ð
M

laþ2p�1‘lj~HHjaþ2p�4h~HH;‘~HHi

a

ð
M

laþ2pj~HHjaþ2p�4j‘~HHj2 þ
ð
M

laþ2pj~HHjaþ2p þ Cða; pÞ
ð
M

j‘ljaþ2p;

where in the last inequality we used the following young’s inequality twice:

aba ep
ap

p
þ 1

eq
bq

q
;ð3:8Þ

where � > 0 and p, q are positive constants satisfying
1

p
þ 1

q
¼ 1.

From (3.7), we see that if M is of at most polynomial volume growth then

ð2m� 1Þ
ð
Brðx0Þ

j~HHjaþ2p
dng aCða; pÞ 1

raþ2p
ð1þ 2rÞs:

We finish the proof by letting a be big enough and r ! þy. r

3.2. Proof of Theorem 1.3 and Theorem 1.4

3.2.1. Proof of Theorem 1.3

Proof. From (2.6) and (2.7) we have:

D?ðj~HHjp�2~HHÞ �
Xm
i¼1

BðAj~HHjp�2 ~HHei; eiÞ ¼ 0;ð3:9Þ

Trgð‘Aj~HHjp�2 ~HHÞ þ Trg½A‘?j~HHj p�2 ~HHð�Þ� ¼ 0:ð3:10Þ
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Note that for any X ;Y A TM and x A T?M we have

hAxX ;Yi ¼ hBðX ;Y Þ; xi:

Assume that ~HH ¼ Hn, where n is the unit normal vector field on M. Note that
by the assumption that M is weakly convex, we have Hb 0. Define

B ¼ fp A M : HðpÞ > 0g:

We will prove that B is an empty set by a contradiction argument, and so M is
minimal and we are done. If B is not empty, we see that B is an open subset
of M. We assume that B1 is a nonempty connect component of B. We will
prove that H ¼ 0 in B1, thus a contradiction. We prove it in two steps.

Step 1. H is a constant in B1.
Let q A B1 be a point. Around q we choose a local orthonormal frame

fek; k ¼ 1; . . . ;mg such that ‘ei ejðqÞ ¼ 0 and hh; ni is a diagonal matrix at q,
where n is the unit normal vector field of M. For any 1a kam, we have
at q

Xm
i¼1

A‘?
ei
j~HHj p�2 ~HHei; ek

* +
¼
Xm
i¼1

hBðei; ekÞ;‘?
ei
j~HHjp�2~HHið3:11Þ

¼ hBðek; ekÞ;‘?
ek
j~HHjp�2~HHi

From (3.10) and (3.11), we have at q

0 ¼
Xm
i¼1

hð‘eiAj~HHjp�2 ~HHÞei; ekiþ
Xm
i¼1

A‘?
ei
j~HHj p�2 ~HHei; ek

* +
ð3:12Þ

¼
Xm
i¼1

eihAj~HHj p�2 ~HHei; ekiþ
Xm
i¼1

A‘?
ei
j~HHj p�2 ~HHei; ek

* +

¼
Xm
i¼1

eihBðei; ekÞ; j~HHjp�2~HHiþ
Xm
i¼1

A‘?
ei
j~HHj p�2 ~HHei; ek

* +

¼
Xm
i¼1

hj~HHjp�2~HH;‘?
ei
Bðei; ekÞiþ 2

Xm
i¼1

A‘?
ei
j~HHj p�2 ~HHei; ek

* +

¼
Xm
i¼1

hj~HHjp�2~HH;‘?
ek
Bðei; eiÞiþ 2

Xm
i¼1

A‘?
ei
j~HHj p�2 ~HHei; ek

* +

¼ mj~HHjp�1‘ekH þ 2hBðek; ekÞ;‘?
ek
j~HHjp�2~HHi

¼ mj~HHjp�1‘ekH þ 2lkhn;‘
?
ek
j~HHjp�2~HHi
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¼ mj~HHjp�1‘ekH þ 2lkhn; ðp� 2Þj~HHjp�2‘ek
~HH þ j~HHjp�2‘ek

~HHi

¼ mj~HHjp�1‘ekH þ 2lkðp� 1Þj~HHjp�2hn;‘ek
~HHi

¼ ðmj~HHjp�1 þ 2lkðp� 1Þj~HHjp�2Þ‘ekH;

where in the fifth equality we used the Codazzi equation.
Because lk b 0, p > 1, we have ðmj~HHjp�1 þ 2lkðp� 1Þj~HHjp�2Þ > 0 and so

‘ekHðqÞ ¼ 0;ð3:13Þ

for any k ¼ 1; . . . ;m; which implies that

‘HðqÞ ¼ 0:ð3:14Þ

Because q is an arbitrary point in B1, we see that in B1

‘H ¼ 0:ð3:15Þ

Therefore we get that H is a constant in B1 and sj~HHj2p�2 ¼ 0.

Step 2. H is zero in B1.
Let q A B1, by step 1, we see that sj~HHj2p�2 ¼ 0. On the other hand, by

equation (3.9), we have

sj~HHj2p�2 ¼ 2j‘ðj~HHjp�2Þ~HHj2 þ 2hj~HHjp�2~HH;sðj~HHjp�2~HHÞið3:16Þ

b 2hBðAj~HHjp�2 ~HH ; eiÞ; j~HHjp�2~HHi

¼ 2hAj~HHj p�2 ~HHei;Aj~HHj p�2 ~HHeii

¼ 2j~HHj2p�2hAnei;Aneii

b 2mj~HHj2p:

Therefore H ¼ 0 in B1, a contradiction. This completes the proof of Theorem
1.3. r

3.2.2. Proof of Theorem 1.4

Proof. The proof of Theorem 1.4 is similar with the proof of Theorem 1.3.
If M is a p-biharmonic submanifold in the space form NðcÞ ðca 0Þ, then it
satisfies the following two equations:

D?ðj~HHjp�2~HHÞ �
Xm
i¼1

BðAj~HHj p�2 ~HHei; eiÞ þ cj~HHjp�2~HH ¼ 0;ð3:17Þ

Trgð‘Aj~HHjp�2 ~HHÞ þ Trg½A‘?j~HHj p�2 ~HHð�Þ� ¼ 0:ð3:18Þ
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From equation (3.18) we will get that if H is not identically zero in a nonempty
component, then it must be a constant and by equation (3.17) we can deduce that
it is zero, a contradiction. r

3.3. Proof of Theorem 1.6

Proof. We will prove the theorem by a contradiction argument. Suppose
that ~HHðx0Þ0 0 for some x0 A M.

Set uðxÞ ¼ j~HHðxÞj2p�2 for x A M. For each r > 0 let

FðxÞ ¼ FrðxÞ ¼ ðr2 � jXðxÞj2Þ2p�2
uðxÞ;

for x A M \ X �1ðBrÞ, where X : M ! Rn is the isometric immersion and Br is
the standard ball in Rn with radius r.

Assume that x0 A X �1ðBr0Þ. For each rb r0, F ¼ Fr is a nonnegative

function which is not identically zero on M \ X �1ðBrÞ. Assume that q A M \
X �1ðBrÞ is the maximum point of F . Then ‘FðqÞ ¼ 0 and hence we get at q

‘u

u
¼ ð2p� 2Þ‘jXðxÞj2

r2 � jXðxÞj2
:ð3:19Þ

By DF ðqÞa 0 we get at q

Du

u
a

ð2p� 2Þð2p� 1Þj‘jX ðqÞj2j2

ðr2 � jXðqÞj2Þ2
þ ð2p� 2ÞDjXðqÞj2

r2 � jXðqÞj2
:ð3:20Þ

By DX ¼ m~HH we see that

j‘jXðxÞj2j2g a 4mjXðxÞj2;
and

DjXðxÞj2 ¼ 2
Xm
i¼1

j‘eiXðxÞj2 þ 2hXðxÞ;DXðxÞia 2mþ 2mjXðxÞj j~HHðxÞj;

where m ¼ dim M. Recall that Dj~HHj2p�2
b 2mj~HHj2p, i.e. Dub u2p=ð2p�2Þ; thus we

obtain

uðqÞ1=ðp�1Þ
a

2ð2p� 2Þð2p� 1ÞjXðqÞj2

ðr2 � jXðqÞj2Þ2
þ ð2p� 2Þð1þ jXðqÞju1=ð2p�2ÞÞ

r2 � jXðqÞj2
:

From the last inequality one gets

uðqÞaCðpÞ
"

jXðqÞj2p�2

ðr2 � jXðqÞj2Þ2p�2
þ 1

ðr2 � jXðqÞj2Þp�1
ð3:21Þ

þ
ffiffiffiffiffiffiffiffiffi
uðqÞ

p
jX ðqÞjp�1 1

ðr2 � jX ðqÞj2Þp�1

#
;
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where CðpÞ is a constant depends only on p. Therefore

F ðqÞaCðpÞ½jX ðqÞj2p�2 þ ðr2 � jXðqÞj2Þp�1 þ
ffiffiffiffiffiffiffiffiffiffi
FðqÞ

p
jX ðqÞjp�1�;

which implies that

FðqÞaCðpÞr2p�2:

Since q is the maximum of F , for any x A M \ Br we have

FðxÞaFðqÞaCðpÞr2p�2:

Therefore

j~HHðxÞj2p�2
a

CðpÞr2p�2

ðr2 � jXðxÞj2Þ2p�2
;

for any x A M \ Br and rb r0. Letting r ! þy in the last inequality and
x ¼ x0 we get j~HHðx0Þj ¼ 0, a contradiction. Therefore M is minimal. r
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