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ON THE ISOMETRIES FROM THE UNIT DISK TO INFINITE

DIMENSIONAL TEICHMÜLLER SPACES

Hiromi Ohtake

Abstract

We generalize Earle-Li’s polydisk theorem and embedding theorem, and study

isometries from the unit disk to infinite dimensional Teichmüller spaces. We also give a

simple proof that for any non-Strebel point t, there exist infinitely many real analytic

geodesic disks through t and the basepoint in infinitely dimensional Teichmüller spaces.

1. Introduction

Troughout this paper, D will be the open unit disk with the hyperbolic metric

ð1� jzj2Þ�1jdzj, and R will be a Riemann surface whose universal covering is the
unit disk.

For a non-empty set S, we denote by BðSÞ the Banach algebra of all
bounded functions on S, and by DðSÞ the open unit ball of BðSÞ. For a subset
S1 of S, we identify BðS1Þ with the subalgebra of all members f in BðSÞ such
that f jSnS1

¼ 0. We note that BðjÞ ¼ DðjÞ ¼ f0g. It is easily verified that, for
two elements f and g in DðSÞ, their Kobayashi distance is

dDðSÞð f ; gÞ ¼ supfdDð f ðpÞ; gðpÞÞ : p A Sg;

where dD is the hyperbolic distance on D, that is,

dDðz;wÞ :¼ tanh�1 z� w

1� wz

����
���� for z; w in D:

Let LyðRÞ be the Banach space of all Beltrami di¤erentials on R, and QðRÞ
be the Banach space of all integrable holomorphic quadratic di¤erentials on R.
For each m in LyðRÞ, the mapping

QðRÞ C f 7! hm; fi :¼
ð
R

mf
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is a bounded linear functional on QðRÞ. The correspondence LyðRÞ C m 7!
hm; �i A QðRÞ� induces an isometric linear isomorphism P from the tangent space
LyðRÞ=QðRÞ? of TðRÞ at the basepoint onto QðRÞ�.

The following two theorems are extensions of Earle-Li [3, Theorems 4.1,
6.1 and Lemma 7.1].

Theorem 1. Let R be a Riemann surface whose Teichmüller space TðRÞ is
infinite dimensional, and let C be a holomorphic mapping from DðSÞ to TðRÞ
which maps the origin 0 of DðSÞ to the basepoint ½0� of TðRÞ. Let S1 be a non-
empty subset of S, and S2 ¼ SnS1. Suppose that the restriction of the derivative
C 0ð0Þ to BðS1Þ is an isometry to the tangent space of TðRÞ at ½0�, and that

jPC 0ð0Þ f1ðfÞj þ jPC 0ð0Þ f2ðfÞja k f1 þ f2k kfk1
for all f1 in BðS1Þ, f2 in BðS2Þ and f in QðRÞ. Then we have

dTðRÞðCð f1 þ f2Þ;Cðg1 þ g2ÞÞ ¼ dDðS1Þð f1; g1Þ;

for all f1, g1 in DðS1Þ and all f2, g2 in DðS2Þ such that

dDðS1Þð f1; g1Þb dDðS2Þð f2; g2Þ:

In particular, if c is a distance non-increasing mapping from DðS1Þ to DðS2Þ, then
the mapping DðS1Þ C f 7! Cð f þ cð f ÞÞ A TðRÞ is isometric.

Let N be 1aNay. When N ¼ y, let DN be the open unit ball of the
complex Banach space ly of all bounded infinite sequences, and when N < y,
let DN be the N-ary Cartesian power of the unit disk D. In both cases, the
Kobayashi distance between two points z ¼ ðzjÞNj¼1 and w ¼ ðwjÞNj¼1 in DN is

dDN ðz;wÞ ¼ sup
1a jaN

dDðzj;wjÞ:

Theorem 2. Let R be a Riemann surface whose Teichmüller space is infinite
dimensional, N and N 0 be integers such that Nb 1, N 0 b 0 and N þN 0 b 2, and
ðmjÞ

N
j¼1 be a sequence of extremal Beltrami di¤erentials on R with norm one.

When N 0 ¼ 0, if

XN
j¼1

jmjja 1;

then the mapping

DN C z ¼ ðzjÞNj¼1 7!
XN
j¼1

zjmj

" #
A TðRÞ

is isometric.
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When N 0 > 0, let ðnjÞN
0

j¼1 be a sequence of Beltrami di¤erentials on R such
that

XN
j¼1

jmjj þ
XN 0

j¼1

jnj ja 1;ð1Þ

and let ðgjÞN
0

j¼1 be a sequence of distance non-increasing mappings form DN to D,
then the mapping

DN C z ¼ ðzjÞNj¼1 7!
XN
j¼1

zjmj þ
XN 0

j¼1

gjðzÞnj

" #
A TðRÞ

is isometric.

Let t be a non-Strebel point other than the basepoint ½0� in TðRÞ, and m
be its extremal representative of t. Let E be a compact subset of R, and define
Beltrami di¤erentials m1, n1 and a mapping g from D to itself by m1 :¼ 0 on
E, m1 :¼ m=kmky on RnE, n1 :¼ m=kmky on E, n1 :¼ 0 on RnE, and gðzÞ :¼
zkmky=maxfjzj; kmkyg. Then we can see that m1 is an extremal Beltrami
di¤erental with norm one, and that g is distance non-increasing. Hence, by
the above theorem, we can give another proof that the mapping G : D C z 7!
½zm1 þ gðzÞn1� A TðRÞ is isometric (Li [4]). By using these mappings for various
E, he has proved that, for any non-Strebel point t0 ½0�, there exist infinitely
many geodesic disks containing ½0� and t. See also Yao [9].

We can show the following.

Theorem 3. If t is a non-Strebel point other than the basepoint, then there
exist infinitely many real analytic geodesic disks containing the basepoint and t.

Let ðmjÞ
N
j¼1 be as in Theorem 2, and ðhjÞNj¼1 be a sequence of distance non-

increasing mappings from D to itself. Obviously, if at least one hj is isometric,
then so is C : D C z 7! ½

P
hjðzÞmj� A TðRÞ. Does the converse hold for Nb 2?

The next theorem provides an answer to this question.

Theorem 4. (i) If N ¼ 2, then the converse holds, that is, C is isometric if
and only if so is h1 or h2.

(ii) If Nb 3, then there exists ðhjÞ such that no hj is isometric but so is C.

2. Definitions and priliminaries

In this section, we introduce some definitions and known facts briefly which
are necessary in the next section. For details on the theory of Teichmüller
spaces, see Gardiner-Lakic [6], Earle-Gardiner [2].

We denote by MðRÞ the open unit ball in LyðRÞ. Elements in MðRÞ are
called Beltrami coe‰cients.
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Every quasiconformal mapping from a Riemann surface R onto R 0 extends
to a homeomorphism from the bordered Riemann surface R [ qR onto R 0 [ qR 0.
Two quasiconformal mappings f and g with domain R are said to be equivalent
if there exists a conformal mapping h from f ðRÞ onto gðRÞ such that the
extension of g�1 � h � f to R [ qR is homotopic to the identity by a homotopy
which fixes qR pointwise.

For any Beltrami coe‰cient m on R, there exists a quiasiconformal mapping
f m with domain R and Beltrami coe‰cient m, which is uniquely determined up to
conformal mappings. Two Beltrami coe‰cients m and n are said to be equivalent
if two quasiconformal mappings f m and f n are equivalent. The equivalence
class of m is denoted by ½m�.

The Teichmüller space TðRÞ of R is defined as the set of equivalence classes
in MðRÞ. It has a complex manifold structure such that the canonical projec-
tion F : MðRÞ ! TðRÞ is holomorphic. The Teichmüller distance between two
points ½m0� and ½n0� in TðRÞ is defined by

dTðRÞð½m0�; ½n0�Þ :¼ inf tanh�1 m� n

1� nm

����
����
y

: m A ½m0�; n A ½n0�
� �

:

It is known that this is equal to the Kobayashi distance of TðRÞ. (Royden [8],
Gardiner [5])

A point t in TðRÞ is called a Strebel point if there exist m in t and a compact
subset E of R such that kmjRnEky < k0ðtÞ, where k0ðtÞ :¼ inffknky : n A tg.

A Beltrami coe‰cient is said to be extremal if it has the smallest norm in its
equivalence class. A su‰cent and necessary condition for a Beltrami coe‰cient
to be extremal is known.

Theorem A (Hamilton, Krushkal, Reich-Strebel). A Beltrami coe‰cient m
on a Riemann surface R is extremal if and only if

kmky ¼ sup

ð
R

mf

����
���� : f A QðRÞ; kfk1 ¼ 1

� �
:ð2Þ

A Beltrami di¤erential m which satisfies (2) is also said to be extremal. We
call a sequence ðfnÞ

y
n¼1 with norm one in QðRÞ a Hamilton sequence for an

extremal Beltrami di¤erential m if

lim
n!y

ð
R

mfn

����
����¼ kmky:

A Hamilton sequence ðfnÞ is said to be degenerate if lim
Ð
K
jfnj ¼ 0 for any

compact subset K of R.

3. Proofs of results

Proof of Theorem 1. We can prove this theorem by using an argument
almost the same as in [3, Theorem 6.1].
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Step 1 is to verify that

dTðRÞðCð f1 þ f2Þ;Cð0ÞÞ ¼ dDðk f1 þ f2k; 0Þ
for all f1 in DðS1Þ and f2 in DðS2Þ such that k f1kb k f2k. Consider the
holomorphic mapping F : D C z 7! Cðzð f1 þ f2Þ=k f1 þ f2kÞ A TðRÞ. It su‰ces to
show that kF 0ð0Þk ¼ 1, that is, kC 0ð0Þð f1 þ f2Þk ¼ k f1 þ f2k. For f A QðRÞ with
kfk1 ¼ 1,

k f1 þ f2kb jPC 0ð0Þð f1 þ f2ÞðfÞj
b jPC 0ð0Þ f1ðfÞj � jPC 0ð0Þ f2ðfÞj
b 2jPC 0ð0Þ f1ðfÞj � k f1 þ f2k:

Since supfjPC 0ð0Þ f1ðfÞj ¼ kC 0ð0Þ f1k ¼ k f1k ¼ k f1 þ f2k, kC 0ð0Þð f1 þ f2Þk ¼
supfjPC 0ð0Þð f1 þ f2ÞðfÞj ¼ k f1 þ f2k.

Step 2 to verify that, for p A S1, f A DðSÞ such that f ðpÞ ¼ 0 and for
z; z 0 A D,

dTðRÞðCð f þ zwpÞ;Cð f þ z 0wpÞÞ ¼ dDðz; z 0Þ;
where wp is the characteristic function of the singleton fpg, and the last step
to prove the assertion are the same with [3]. r

To prove Theorem 2, we use the following lemma.

Lemma 1. Let m and n be Beltrami di¤erentials on R such that

jmj þ jnja kmky:ð3Þ
If m is extremal and ðfnÞ is a Hamilton sequence for m, then

lim
n!y

ð
R

jnj jfnj ¼ 0;

kmþ nky ¼ kmky and ðfnÞ is a Hamilton sequence for mþ n. In particular, mþ n
is extremal.

Proof. From (3), we see that kmþ nky a kmky, andð
R

jnj jfnja
ð
R

ðkmky � jmjÞjfnj

a kmky �
ð
R

mfn

����
���� ��!n!y

0;

kmþ nky b

ð
R

ðmþ nÞfn
����

����
b

ð
R

mfn

����
�����

ð
R

jnj jfnj ��!n!y kmky: r
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Proof of Theorem 2. We prove only the case where N ¼ N 0 ¼ y. Proofs
of the other cases are almost the same.

Let A be the bounded linear mapping

ly � ly C ððxjÞ; ðhjÞÞ 7!
Xy
j¼1

xjmj þ
Xy
j¼1

hjnj A LyðRÞ:

and C ¼ F � A : Dy � Dy ! TðRÞ, where F is the canonical projection from
MðRÞ onto TðRÞ. Let x ¼ ðxjÞ and h ¼ ðhjÞ be arbitrary points in ly. To
prove Theorem 2, by Theorem 1, it su‰ces to show that

kPAðx; 0ÞkQðRÞ� ¼ kxky;ð4Þ
jPAðx; 0ÞðfÞj þ jPAð0; hÞðfÞja kðx; hÞkykfk1 for all f A QðRÞ:ð5Þ

In an arbitrary neibourhood of x, there exists a point x 0 ¼ ðx 0
j Þ such that

jx 0
mj ¼ kx 0ky for some index m. To show (4), we may assume that x itself is

such a point. Write m :¼ xmmm and n :¼ Aðx; 0Þ � m ¼
P

j0m xjmj. Then m is an
extremal Beltrami de¤erential with norm jxmj, and

jmj þ jnja
X

jxj j jmjja kxky
X

jmj ja kxky ¼ jxmj ¼ kmky:

Therefore, by Lemma 1, we see that Aðx; 0Þ is extremal, and kPAðx; 0ÞkQðRÞ� ¼
kmky ¼ kxky. Inequality (5) easily follows from Triangle inequality. r

Proof of Theorem 3. Let m be an extremal representative of t. By strong
Strebel frame mapping criterion [3, Theorem 5.4], m has a degenarate Hamilton
sequence. Thus, by [3, Theorem 6.2], there exists an infinite sequence ðmjÞ of
extremal Beltrami di¤erentials with norm one such that m=kmky ¼

P
mj and mj

have disjoint supports.
For each real number t in the interval ð0; 1=2�, let :e1e2e3 � � � be its binary

digit (infinite) expansion. Note that e1 ¼ 0. Define the sequence ðhjÞ of self-
isometries of D by

hjðz; tÞ :¼
z if ej ¼ 0;

z if ej ¼ 1:

(

Then, for each t, the mapping Ht : D C z 7! ½
P

hjðz; tÞmj � A TðRÞ is a real analytic
isometry, and Htð0Þ ¼ ½0�, HtðkmkyÞ ¼ t. Suppose that HtðzÞ ¼ Ht 0 ðz 0Þ for dis-

tinct t and t 0. Then hjðz; tÞ ¼ hjðz 0; t 0Þ for all j by Theorem 2. Thus z ¼ z 0 ¼ z.

Therefore HtðDÞ \Ht 0 ðDÞ ¼ H1=2ðD \ RÞ. r

To prove Theorem 4, we use the following lemma.

Lemma 2. Let h be a distance non-increasing mapping from D to itself, and
let r be 0 < r < 1. Put
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E :¼ fz A qDðrÞ : dDðhðzÞ; hð�zÞÞ ¼ dDðz;�zÞg;
F :¼ fz A qDðrÞ : dDðhðzÞ; hð0ÞÞ ¼ dDðz; 0Þg;

where DðrÞ :¼ fz A C : jzj < rg. Then
(i) E � F , and
(ii) if E contains more than two points, then h is isometric on the convex hull

of F .

Proof. It is easily seen that, if z1 and z2 be points in D such that
dDðhðz1Þ; hðz2ÞÞ ¼ dDðz1; z2Þ, then h is isometric on the geodesic segment whose
endpoints are z1 and z2. Therefore E � F .

Obviously, if z A E, then �z A E. Note that, for z in qDðrÞ, dDðz;�zÞ is the
diameter of the closed disk DðrÞ. Suppose that E contains more than two points.
By preceding and following h by self-isometries of D, we may assume that
hð0Þ ¼ 0, r A E and hðrÞ ¼ r. Then we see that hð�zÞ ¼ �hðzÞ whenever z is in
E, and that hðFÞ � qDðrÞ.

Take and fix an arbitrary point z0 from EnfGrg. Then hðz0Þ ¼ z0 or
hðz0Þ ¼ z0, since dDðhðz0Þ;GrÞ ¼ dDðhðz0Þ; hðGrÞÞa dDðz0;GrÞ and jhðz0Þj ¼ r.
When hðz0Þ ¼ z0, by replacing h with its complex conjugate h, we may assume
that hðz0Þ ¼ z0.

Let z be an arbitrary point in F , then dDðhðzÞ;GrÞa dDðz;GrÞ, dDðhðzÞ;Gz0Þ
a dDðz;Gz0Þ and jhðzÞj ¼ r. Thus hðzÞ ¼ z, consequently hjF ¼ idF . Therefore
h is the identity mapping on the convex hull of F , in particular, it is isometric.

r

Remark 1. On the above lemma, the condition that E contains more than
two points is necessary. For example, if we define the mapping h by

hðzÞ :¼ z; ImðzÞb 0

z; ImðzÞ < 0;

�
then E ¼ fGrg and F ¼ qDðrÞ, but h is not an isometry of the closed disk DðrÞ,
the convex hull of F .

Proof of Theorem 4 (i). Su‰cency is trivial. Suppose that C is isometric.
Then, by Theorem 2, h ¼ ðh1; h2Þ : D ! D2 is isometric. Since D2 C ðz1; z2Þ 7!
ðg1ðz1Þ; g2ðz2ÞÞ A D2 is isometric for g1; g2 A IsomðDÞ, we may assume that hð0Þ ¼
ð0; 0Þ.

We assume that neither h1 nor h2 is isometric, and seek a contradiction.
Then there exist four points z11, z12, z21, z22 in D suth that

dDðh1ðz11Þ; h1ðz12ÞÞ < dDðz11; z12Þ; dDðh2ðz21Þ; h2ðz22ÞÞ < dDðz21; z22Þ:

Choose r < 1 such that DðrÞ contains these four points. Let Ej and Fj ( j ¼ 1, 2)
be E and F , respectively, in Lemma 2 for each hj. Then F1 [ F2 � E1 [ E2 ¼
qDðrÞ, since h is isometric.
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Neither qDðrÞnE1 nor qDðrÞnE2 is empty, since neither h1 nor h2 is isometric
on DðrÞ. The set E1 is closed in qDðrÞ, and E2 � qDðrÞnE1, thus aE2 ¼ y.
The same is true for E1. By Lemma 2, neither qDðrÞnF1 nor qDðrÞnF2 is empty.

Take and fix two points z1, z2 in qDðrÞ such that zj is not contained in Fj,
respectively. Either h1 or h2 preserves the distance between z1 and z2. We
may assume that h1 does. Let a and b be the endpoints of the connected
component of qDðrÞnF1 to which z1 belongs. Since a and b are in F1 \ F2, four
points a, b, z1 and z2 are all distinct. Since four points a, b, z2 and 0 are in the
convex hull of F1 on which h1 is an isometry, and we can follow h1 by an
isometry which fixes 0, we may assume that h1 fixes the three points a, b, z2. Let
l be the geodesic segment connecting z1 and z2, and let l 0 be the geodesic segment
connecting a and b. Then l and l 0 have an intersection point, say z3, in DðrÞ.
Since z3 is on l 0, h1 also fixes z3. Thus

dDðz1; z3Þb dDðh1ðz1Þ; h1ðz3ÞÞb dDðh1ðz1Þ; h1ðz2ÞÞ � dDðh1ðz3Þ; h1ðz2ÞÞ
¼ dDðz1; z2Þ � dDðz3; z2Þ ¼ dDðz1; z3Þ:

Hence three points h1ðz1Þ, h1ðz2Þ and h1ðz3Þ are on one geodesic line, and
h1ðz1Þ ¼ z1 A qDðrÞ, which contradicts z1 B F1. r

Put X :¼ fz A D : ImðzÞa 0g. For any point z in D, there exists the unique
point in X nearest from z. This coresspondance defines a mapping h0 from D to
itself. Note that if z is in X , then h0ðzÞ ¼ z, and that if z is not in X , then h0ðzÞ
is real and the geodesic line through z and h0ðzÞ is orthogonal to the real axis.

Lemma 3. The mapping h0 is distance non-increasing.

Proof. Let z and z 0 be any two points in D. Suppose that z is not in X
and z 0 is in X . By conjugating a Möbius transformation from D onto itself, we
may assume that z is on the imaginary axis. Then, by drawing the (hyperbolic)
perpendicular bisector between h0ðzÞ ¼ 0 and z, we see that

dDðh0ðzÞ; h0ðz 0ÞÞa dDðz; z 0Þ:ð6Þ

Suppose that z and z 0 are not in X . We may assume again that z is on the
imaginary axis. By drawing the curve through h0ðz 0Þ and equidistant from the
imaginary axis, we have (6). Proof of the other case is trivial. r

Proof of Theorem 4 (ii). By puting hj ¼ 0 for j > 3, it is enough to prove
the case N ¼ 3.

Let g be the Möbius transformation from D onto itself such that gð1Þ ¼ o,
gðiÞ ¼ 1, and gð�1Þ ¼ o, where o ¼ expðpi=3Þ. Put

h1 :¼ g � h0 � g�1; h2 :¼ r � h1 � r�1; h3 :¼ r�1 � h1 � r;

where rðzÞ :¼ o2z. Then the mapping h :¼ ðh1; h2; h3Þ from D to D3 is what we
are seeking. In fact, put X1 :¼ gðX Þ, X2 :¼ rðX1Þ, X3 :¼ r�1ðX1Þ, then each hj is
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distance non-increasing and fixes any point in Xj. Since
S3

j¼1 Xj � Xj ¼ D� D,
any pair of two points in D is in some Xj � Xj . Thus h is isometric, hence so is
C by Theorem 2. r

Acknowledgement. The author would like to thank the referee for his/her
valuable comments.

References

[ 1 ] C. J. Earle, I. Kra and S. L. Krushkal, Holomorphic motions and Teichmüller spaces,

Trans. Amer. Math. Soc. 343 (1994), 927–948.

[ 2 ] C. J. Earle and F. P. Gardiner, Geometric isomorphisms between infinite dimensional

Teichmüller spaces, Trans. Amer. Math. Soc. 348 (1996), 1163–1190.

[ 3 ] C. J. Earle and Z. Li, Isometrically embedded polydisks in infinite dimensional Teichmüller

spaces, J. Geom. Anal. 9 (1999), 51–71.

[ 4 ] Z. Li, Geodesics discs in Teichmüller space, Sci. China, Ser. A. 48 (2005), 1075–1082.

[ 5 ] F. P. Gardiner, Approximation of infinite dimensional Teichmüller spaces, Trans. Amer.

Math. Soc. 282 (1984), 367–383.

[ 6 ] F. P. Gardiner and N. Lakic, Quasiconformal Teichmüller theory, Math. Surveys Monogr.,

vol. 76, Amer. Math. Soc., Providence, RI, 2000.

[ 7 ] S. Krushkal, Complex geomerty of the universal Teichmüller space. II, Georgian Math. J.

14 (2007), 483–498.

[ 8 ] H. Royden, Automorphisms and isometries of Teichmüller space, Advances in the theory

of Riemann surfaces (L. V. Ahlfors et al., eds.), Ann. math. stud. 66, Princeton University

Press, 1971, 369–384.

[ 9 ] G. Yao, On nonuniqueness of geodesic disks in infinite-dimensional Teichmüller spaces,

Monatsh. Math., DOI 10.1007/s00605-015-0834-4 (2015).

Hiromi Ohtake

Kyoto University of Education

1 Fukakusa-Fujinomori-cho, Fushimi-ku

Kyoto 612-8522

Japan

E-mail: ohtake@kyokyo-u.ac.jp

529isometries to infinite dimensional teichmüller spaces


