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ON THE ISOMETRIES FROM THE UNIT DISK TO INFINITE
DIMENSIONAL TEICHMULLER SPACES

Hiromt OHTAKE

Abstract

We generalize Earle-Li’s polydisk theorem and embedding theorem, and study
isometries from the unit disk to infinite dimensional Teichmiiller spaces. We also give a
simple proof that for any non-Strebel point 7, there exist infinitely many real analytic
geodesic disks through 7 and the basepoint in infinitely dimensional Teichmiiller spaces.

1. Introduction

Troughout this paper, A will be the open unit disk with the hyperbolic metric
(1 —|z)*)""|dz|, and R will be a Riemann surface whose universal covering is the
unit disk.

For a non-empty set S, we denote by B(S) the Banach algebra of all
bounded functions on S, and by D(S) the open unit ball of B(S). For a subset
S1 of S, we identify B(S)) with the subalgebra of all members f in B(S) such
that f|g5, =0. We note that B(0) = D() = {0}. It is easily verified that, for
two elements f and g in D(S), their Kobayashi distance is

dps)(f+9) = sup{da(f(p),9(p)) : p € S},
where dj is the hyperbolic distance on A, that is,

Z—=Ww

o -1
da(z,w) := tanh s

for z, w in A.

Let L., (R) be the Banach space of all Beltrami differentials on R, and Q(R)
be the Banach space of all integrable holomorphic quadratic differentials on R.
For each x4 in L, (R), the mapping

O(R) 5§ (i = JRmﬁ
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is a bounded linear functional on Q(R). The correspondence L., (R) > u—
{u,-> € Q(R)" induces an isometric linear isomorphism P from the tangent space
L., (R)/O(R)" of T(R) at the basepoint onto Q(R)".

The following two theorems are extensions of Earle-Li [3, Theorems 4.1,
6.1 and Lemma 7.1].

THEOREM 1. Let R be a Riemann surface whose Teichmiiller space T(R) is
infinite dimensional, and let Y be a holomorphic mapping from D(S) to T(R)
which maps the origin 0 of D(S) to the basepoint [0] of T(R). Let S| be a non-
empty subset of S, and S, = S\S\. Suppose that the restriction of the derivative
W'(0) to B(Sy) is an isometry to the tangent space of T(R) at [0], and that

[PY'(0)£1(4)| + [PY'(0) £2(¢)] < i + L2l Il
for all fi in B(S)), f> in B(Sy) and ¢ in Q(R). Then we have

drp)(Y(f1 + 12), ¥(91 + 92)) = dp(s) (f1,91),
for all fi, g1 in D(S) and all f>, g» in D(S,) such that
dp(sy) (f1,91) = dps,) (f2,92).

In particular, if \ is a distance non-increasing mapping from D(S)) to D(S>), then
the mapping D(S\) > f — Y(f +¢¥(f)) e T(R) is isometric.

Let N be ] <N < oo. When N = oo, let AV be the open unit ball of the
complex Banach space /” of all bounded infinite sequences, and when N < oo,
let AV be the N-ary Cartesian power of the unit disk A. In both cases, the
Kobayashi distance between two points z = (zj);i , and w= (wj)/.[i ,in AN s

dyv(z,w) = sup da(zj, wy).
1<j<N

THEOREM 2. Let R be a Riemann surface whose Teichmiiller space is infinite
dimensional, N and N' be integers such that N > 1, N' >0 and N + N' > 2, and

(,uj)fil be a sequence of extremal Beltrami differentials on R with norm one.
When N' =0, if

N
> olyl<1,
j=1

then the mapping

N
A" s (= (Cj)jlil = [Z Cj/lj e T(R)
=1

is isometric.
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When N’ >0, let (vj)/]i | be a sequence of Beltrami differentials on R such
that '

N’

N
(1) Doyl <1,
J=1

J=1

and let (gj)fi/l be a sequence of distance non-increasing mappings form A" to A,
then the mapping

e T(R)

N N’
AVsi= ()Y - [chﬂj +> g0y,
j=1 j=1
is isometric.

Let 7 be a non-Strebel point other than the basepoint [0] in 7(R), and u
be its extremal representative of 7. Let E be a compact subset of R, and define
Beltrami differentials x;, v; and a mapping g from A to itself by g :=0 on
E. = u/|ull, on R\E, vi:=pu/|ul, on E, vi:=0 on R\E, and g(():=
Clleell o, /max{|C], llpll . }- Then we can see that g; is an extremal Beltrami
differental with norm one, and that g is distance non-increasing. Hence, by
the above theorem, we can give another proof that the mapping I':As{+—
[Cuy +9(Owi] € T(R) is isometric (Li [4]). By using these mappings for various
E, he has proved that, for any non-Strebel point 7 # [0], there exist infinitely
many geodesic disks containing [0] and z. See also Yao [9].

We can show the following.

THEOREM 3. If 7 is a non-Strebel point other than the basepoint, then there
exist infinitely many real analytic geodesic disks containing the basepoint and .

Let (,uj)/.]i , be as in Theorem 2, and (hj)/?i , be a sequence of distance non-
increasing mappings from A to itself. Obviously, if at least one 4; is isometric,
then so is W :As{— [D (0w e T(R). Does the converse hold for N >2?
The next theorem provides an answer to this question.

THEOREM 4. (i) If N =2, then the converse holds, that is, ¥ is isometric if
and only if so is hy or h.
(ii) If N = 3, then there exists (h;) such that no h; is isometric but so is P.

2. Definitions and priliminaries

In this section, we introduce some definitions and known facts briefly which
are necessary in the next section. For details on the theory of Teichmiiller
spaces, see Gardiner-Lakic [6], Earle-Gardiner [2].

We denote by M(R) the open unit ball in L, (R). Elements in M(R) are
called Beltrami coefficients.
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Every quasiconformal mapping from a Riemann surface R onto R’ extends
to a homeomorphism from the bordered Riemann surface RU R onto R’ UJR'.
Two quasiconformal mappings f and g with domain R are said to be equivalent
if there exists a conformal mapping # from f(R) onto g(R) such that the
extension of g~ oho f to RUAR is homotopic to the identity by a homotopy
which fixes dR pointwise.

For any Beltrami coefficient # on R, there exists a quiasiconformal mapping
f* with domain R and Beltrami coefficient x4, which is uniquely determined up to
conformal mappings. Two Beltrami coefficients 4 and v are said to be equivalent
if two quasiconformal mappings f# and f’ are equivalent. The equivalence
class of u is denoted by [4].

The Teichmiiller space T'(R) of R is defined as the set of equivalence classes
in M(R). It has a complex manifold structure such that the canonical projec-
tion ® : M(R) — T(R) is holomorphic. The Teichmiiller distance between two
points [gy] and [v] in T(R) is defined by

drr)([1o); [vo]) = inf{tanh_l llu——v,u
It is known that this is equal to the Kobayashi distance of T(R). (Royden [8],
Gardiner [5])

A point 7 in T(R) is called a Strebel point if there exist u in 7 and a compact
subset £ of R such that [|u|g gll,, < ko(z), where ko(t) := inf{[|v[|,, : v € t}.

A Beltrami coefficient is said to be extremal if it has the smallest norm in its
equivalence class. A sufficent and necessary condition for a Beltrami coefficient
to be extremal is known.

el velnl .

0

THEOREM A (Hamilton, Krushkal, Reich-Strebel). A Beltrami coefficient u
on a Riemann surface R is extremal if and only if

o) il = supd || o] < om0, 100, =1}

A Beltrami differential x¢ which satisfies (2) is also said to be extremal. We
call a sequence (¢,),—, with norm one in Q(R) a Hamilton sequence for an
extremal Beltrami differential u if

J 1y
R

A Hamilton sequence (¢,) is said to be degenerate if lim [, |¢,| =0 for any
compact subset K of R.

Jim = [leellc

3. Proofs of results

Proof of Theorem 1. We can prove this theorem by using an argument
almost the same as in [3, Theorem 6.1].
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Step 1 is to verify that

drry (¥ (N + /2),¥(0)) = da(ll 1 + 2], 0)

for all f; in D(S;) and f; in D(S;) such that |fi|]| = | /2||. Consider the
holomorphic mapping F : As{— Y({(fi + £2)/Il/i + f2]]) € T(R). It suffices to
show that |[F'(0)|| = 1, that is, || ¥'(0)(fi + f2)|| = |l/i + f2|l. For ¢ € Q(R) with
gl =1,

11 + A2ll = [PY(0)(fi + £2)(9)]
> |PY(0)/i(4)] — [PF'(0)12(4)|
= 2|PY(0)/i(¢)] — L/ + L2l

Since supy|[P¥'(0) /()| = ¥/ (0)fill = il = I/ + £all, - I¥"(0) (A + 1)l =
supy | PP (0)(f1 + /2) ()] = [lfi + 12l
Step 2 to verify that, for pe S, f e D(S) such that f(p) =0 and for

(L eA,
dT(R)(\P(f + i){p)? \P(f + C/Xp)) = dA(Ca €/)7

where y, is the characteristic function of the singleton {p}, and the last step
to prove the assertion are the same with [3]. O

To prove Theorem 2, we use the following lemma.

LeEMMA 1. Let u and v be Beltrami differentials on R such that
(3) £ V] < [lell -

If u is extremal and (¢,) is a Hamilton sequence for u, then
lim | [v]14,/ = .
n— o0 R

llee + vl = llull, and (¢,) is a Hamilton sequence for u+v. In particular, u+v
is extremal.

Proof. From (3), we see that ||u+v|,, <|ull.,, and

L 14, < jR<Hu||w — g

<l |[ | =
PERTIRS UR<u+v>¢n
zH = [ bl 0
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Proof of Theorem 2. We prove only the case where N = N' = oo. Proofs
of the other cases are almost the same.
Let A4 be the bounded linear mapping

17X 0 3 (E), ) = D&y + D myy € Lu(R).
j=1 j=1

and ¥ =®o4:A” x A” — T(R), where @ is the canonical projection from
M(R) onto T(R). Let ¢= (&) and = (y;) be arbitrary points in /. To
prove Theorem 2, by Theorem 1, it suffices to show that

) I1PA(E, 0)l gry = [I<]]e
(5) [PA(E,0)(4) + [PA0,n)(9)] < (€l 14l for all ¢ e Q(R).

In an arbitrary neibourhood of ¢, there exists a point &' = (éj’) such that
|& | =&, for some index m. To show (4), we may assume that ¢ itself is
such a point. Write u:= &1, and v:= A(¢,0) —u= 3", &y Then pis an
extremal Beltrami defferential with norm |&,|, and

vl < D1l < 1€l D il < 1€l = 1éml = el

Therefore, by Lemma 1, we see that A(¢,0) is extremal, and [|PA(E,0) gy =
lledl, = II€ll,- Inequality (5) easily follows from Triangle inequality. O

Proof of Theorem 3. Let u be an extremal representative of z. By strong
Strebel frame mapping criterion [3, Theorem 5.4], u has a degenarate Hamilton
sequence. Thus, by [3, Theorem 6.2], there exists an infinite sequence (y;) of
extremal Beltrami differentials with norm one such that u/||ull,, = > p; and g
have disjoint supports.

For each real number ¢ in the interval (0,1/2], let .¢;&e3--- be its binary
digit (infinite) expansion. Note that & = 0. Define the sequence (/;) of self-

isometries of A by
C if & = 0,
hi(l,t):=< 2 . -
j(C ) {C if & = 1.
Then, for each ¢, the mapping H, : A {+— [> I({,t)w;] € T(R) is a real analytic
isometry, and H,(0) = [0], H,(||x|.,) = 7. Suppose that H,({) = H,({') for dis-

tinct 7 and . Then h;((, 1) = hy(¢', ¢') for all j by Theorem 2. Thus { ={ = (.
Therefore H,(A) N Hy(A) = Hy2(ANR). O

To prove Theorem 4, we use the following lemma.

LemMMmA 2. Let h be a distance non-increasing mapping from A to itself, and
let r be 0 <r<1. Put
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E :={z€0A(r) : da(h(z),h(—2)) = da(z, —2)},
F :={ze€ 0A(r) : da(h(z),h(0)) = da(z,0)},

where A(r) :={zeC:|z| <r}. Then
(i) ECF, and
(i) if E contains more than two points, then h is isometric on the convex hull
of F.

Proof. 1t is easily seen that, if z; and z, be points in A such that
da(h(z1),h(z2)) = da(z1,22), then & is isometric on the geodesic segment whose
endpoints are z; and z;. Therefore £ C F.

Obviously, if z € E, then —z € E. Note that, for z in dA(r), da(z, —z) is the
diameter of the closed disk A(r). Suppose that E contains more than two points.
By preceding and following 4 by self-isometries of A, we may assume that
h(0) =0, re E and h(r) =r. Then we see that h(—z) = —h(z) whenever z is in
E, and that A(F) C 0A(r).

Take and fix an arbitrary point {, from E\{+r}. Then A({y) ={, or
h(lo) = Lo, since da(h(Co), +r) = da(h(Lo), h(£r)) < da(Co, £r) and |h({y)| = 7.
When h({y) = {y, by replacing i with its complex conjugate /s, we may assume
that A(Co) = L.

Let { be an arbitrary point in F, then da(h({), +r) < da({, £r), da(h(), 1)
< da(l, L) and |h({)| =r. Thus h({) =, consequently A|p =idp. Therefore
h is the identity mapping on the convex hull of F, in particular, it is isometric.

O

Remark 1. On the above lemma, the condition that E contains more than
two points is necessary. For example, if we define the mapping / by

[z, Im(z) >0
hz) = { z, Im(z) <0,

then E = {+r} and F = 0A(r), but & is not an isometry of the closed disk A(r),
the convex hull of F.

Proof of Theorem 4 (i). Sufficency is trivial. Suppose that W is isometric.
Then, by Theorem 2, h = (h,hy) : A — A’ is isometric. Since A’ > (z1,z2) —
(91(21),92(z2)) € A? is isometric for gi,g, € Isom(A), we may assume that /(0) =
(0,0).

We assume that neither /; nor /4, is isometric, and seek a contradiction.
Then there exist four points zjj, zi2, z21, z22 in A suth that

da(hi(z11), hi(212)) < da(z11,212),  da(h2(221), h2(222)) < da(221,222)-

Choose r < 1 such that A(r) contains these four points. Let E; and F; (j =1, 2)
be E and F, respectively, in Lemma 2 for each /;. Then Fi{UF, D EyUE, =
0A(r), since h is isometric.
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Neither 0A(r)\E; nor 0A(r)\E is empty, since neither /;; nor A, is isometric
on A(r). The set E; is closed in 0A(r), and E, D 0A(r)\Ei, thus #E, = 0.
The same is true for E;. By Lemma 2, neither 0A(r)\F; nor 0A(r)\F> is empty.

Take and fix two points {;, {, in dA(r) such that {; is not contained in F},
respectively. Either h; or h, preserves the distance between {; and {,. We
may assume that /; does. Let o and S be the endpoints of the connected
component of 0A(r)\F; to which {; belongs. Since o and f are in F) N F,, four
points o, 5, {; and {, are all distinct. Since four points o, 5, {, and 0 are in the
convex hull of F; on which A; is an isometry, and we can follow 4; by an
isometry which fixes 0, we may assume that /; fixes the three points «, f5, {,. Let
[ be the geodesic segment connecting {; and {5, and let /' be the geodesic segment
connecting o and . Then / and /” have an intersection point, say (3, in A(r).
Since {3 is on I’, hy also fixes (5. Thus

dp(L1,G3) = da(hi(8),11(53)) = da(mi(61), 11(82)) = da(m (83), (&)
=dp(81,8) — da(G3,8) = da(8y, G3).

Hence three points /;((;), hi1({;) and h;({3) are on one geodesic line, and
h1({1) = {1 € dA(r), which contradicts (; ¢ F). O

Put X :={ze A:Im(z) <0}. For any point { in A, there exists the unique
point in X nearest from {. This coresspondance defines a mapping 4y from A to
itself. Note that if { is in X, then /y({) = {, and that if { is not in X, then /A ({)
is real and the geodesic line through { and /4 ({) is orthogonal to the real axis.

LemMMA 3. The mapping hy is distance non-increasing.

Proof. Let { and {’ be any two points in A. Suppose that { is not in X
and ¢’ is in X. By conjugating a Mdbius transformation from A onto itself, we
may assume that { is on the imaginary axis. Then, by drawing the (hyperbolic)
perpendicular bisector between /p({) =0 and {, we see that

(6) da(ho(£), ho(L)) < da(L,C).

Suppose that ¢ and (" are not in X. We may assume again that { is on the
imaginary axis. By drawing the curve through /¢({’) and equidistant from the
imaginary axis, we have (6). Proof of the other case is trivial. O

Proof of Theorem 4 (ii). By puting #; =0 for j > 3, it is enough to prove
the case N = 3.
Let y be the Mobius transformation from A onto itself such that y(1) = @,
y(i) =1, and y(—1) = w, where w = exp(ni/3). Put
ho=yohyoy™', hy:=rohior™', hy:=r"'ohor,
where () := w?(. Then the mapping & := (hy,hy,h3) from A to A® is what we
are seeking. In fact, put X; := p(X), X> :=r(X1), X3 :=r~1(X1), then each /; is
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distance non-increasing and fixes any point in X;. Since U;:l X;x X;=AxA,
any pair of two points in A is in some X; x X;. Thus 4 is isometric, hence so is
Y by Theorem 2. ]
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