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NOTES ON THE VALUE DISTRIBUTION OF ff ðkÞ � b
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Abstract

Let f denote a transcendental meromorphic function with Nðr; f Þ ¼ Sðr; f Þ and k

be an integer. By using methods di¤erent from others, we have been able to derive

several new results and pose some new conjectures that relate to the yet to be resolved

conjecture concerning the quantitative estimates on the zeros of ff ðkÞ � b, for a non-

vanishing small function b.

1. Introduction and main results

Let f denote a transcendental meromorphic function. We assume the
reader is familiar with the fundamental results of Nevanlinna theory and its
standard notation such as mðr; f Þ, Nðr; f Þ, Tðr; f Þ, Sðr; f Þ and etc, see e.g.,
[7, 24]. Recall that a nonconstant meromorphic function a is to be called a
small function of f if Tðr; aÞ ¼ Sðr; f Þð¼ oð1ÞTðr; f ÞÞ as r ! y, possibly outside
a set of r values of finite linear measure. Moreover, a polynomial in f and its
derivatives with small functions of f being the coe‰cients is called a di¤erential
polynomial in f , and Pnð f Þ will be used to denote a di¤erential polynomial in
f with the total degree in f and its derivativesa n. In addition, we will use
the notation rð f Þ and lð f Þ to denote the order and exponent of convergence
of zeros of f , respectively.

Earlier in 1959, Hayman [8] obtained the following result which is a prototype
of the studies of the zeros of certain special types of di¤erential polynomials.

Theorem A. Let f be a transcendental meromorphic function, nðb 3Þ be an
integer. Then f nf 0 assumes all finite values, except possibly zero, infinitely many
times.

Later, Hayman [9] conjectured that Theorem A remains to be valid when
n ¼ 1 and 2. Then Mues [19] confirmed the case when n ¼ 2 and Bergweiler-
Eremenko [2] and Chen-Fang [3] confirmed the case when n ¼ 1, independently.
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It’s clear now that distributions of zeros of di¤erential polynomials Pð f Þ of
the forms: Pð f Þ ¼ f nf ðkÞ � b, with nb 1, k ¼ 1 and b a nonzero constant have
been dealt with. We shall proceed to study similar and unresolved problems
for such di¤erential polynomials when n ¼ 1 and kb 2, as well as for more
general di¤erential polynomials when nb 2.

Before proceeding further, first we recall the following results:

Theorem B ([1]). If f is a transcendental meromorphic function of finite
order and a is a non-vanishing polynomial, then ff 0 � a has infinitely many
zeros.

Conjecture 1.1 ([22]). Let f be a transcendental meromorphic function, k
an integerb 2 and b a nonzero complex number. Then ff ðkÞ � b has infinitely
many zeros.

Theorem C ([21]). Let f be a transcendental entire function of finite order.
Then there exists at most one integer kb 2, such that ff ðkÞ has a nonzero
exceptional value.

Now regarding the conjecture, by using methods di¤erent from others (see,
e.g., [6], [17], [20] and [25]), we are going to prove our first result, which resolves
Conjecture 1.1 partly and improves Theorem C.

Theorem 1.1. Let f be a transcendental meromorphic function such that
Nðr; f Þ ¼ Sðr; f Þ, p and q be non-vanishing small functions of f . Then pff ðkÞ � q
and pff ðlÞ � q at least one has infinitely many zeros for integers l and k with
l > kb 2.

The following corollary arises directly from an immediate consequence of
Theorem 1.1.

Corollary 1.1. Let a, b be entire functions, and p, q, R1, R2 be non-
vanishing rational functions. Then the system pff ðkÞ � q ¼ R1e

a, pff ðlÞ � q ¼
R2e

b has no transcendental meromorphic solutions for integers l and k with
l > kb 2.

For nb 2, and as supplementary result to that of Theorems B, C and some
other related results before (see, e.g., [5], [12], [16] and [18]), we shall be able to
prove the following result.

Theorem 1.2. If f is a transcendental meromorphic function with Nðr; f Þ ¼
Sðr; f Þ, nb 2 is an integer, then F ¼ an f

nf ðkÞ þ Pn�2ð f Þ has infinitely many zeros,
and lðFÞ ¼ rð f Þ, where Pn�2ð f Þ is a non-vanishing di¤erential polynomial in f
with small functions as its coe‰cients and deg Pn�2ð f Þa n� 2, an is a small
function of f with an 2 0.
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2. Some lemmas

The following two lemmas are crucial to the proofs of our main results.

Lemma 2.1 ([4, 23]). Let f be a transcendental meromorphic solution of

f nPðz; f Þ ¼ Qðz; f Þ;

where Pðz; f Þ and Qðz; f Þ are polynomials in f and its derivatives with mer-
omorphic coe‰cients fal j l A Ig such that mðr; alÞ ¼ Sðr; f Þ for all r A I . If the
total degree of Qðz; f Þ as a polynomial in f and its derivatives is less than or equal
to n, then mðr;Pðz; f ÞÞ ¼ Sðr; f Þ.

Lemma 2.2 ([13, 14]). Let f be a meromorphic solution of an algebraic
equation

Pðz; f ; f 0; . . . ; f ðnÞÞ ¼ 0;ð2:1Þ

where P is a polynomial in f ; f 0; . . . ; f ðnÞ with meromorphic coe‰cients small with
respect to f . If a complex constant c does not satisfy equation (2.1), then

m r;
1

f � c

� �
¼ Sðr; f Þ:

3. Proof of Theorem 1.1

We shall prove the theorem by contradiction. Suppose contrary to our
assertion that pff ðkÞ � q and pff ðlÞ � q both have finitely many zeros for integers
l and k with l > kb 2. Accordingly, there exist entire functions a, b and
meromorphic functions R1, R2 with Nðr;RiÞ þNðr; 1=RiÞ ¼ Sðr; f Þ ði ¼ 1; 2Þ such
that

pff ðkÞ � q ¼ R1e
að3:1Þ

and

pff ðlÞ � q ¼ R2e
b:ð3:2Þ

From (3.1) and the result of Milloux (see, e.g., [7]), we have

Tðr; eaÞa 2Tðr; f Þ þ Sðr; f Þ;

which shows that Tðr; aÞ þ Tðr; a 0Þ ¼ Sðr; f Þ.
We may assume without loss of generality by (3.1) or (3.2) that p1 1.

Thus, by di¤erentiating (3.1) and by eliminating ea,

t1 ff
ðkÞ þ f 0f ðkÞ þ ff ðkþ1Þ ¼ t2;ð3:3Þ

where t1 ¼ � R 0
1

R1
þ a 0

� �
, t2 ¼ q 0 � R 0

1

R1
þ a 0

� �
q.
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First of all, we show that ff ðkÞ � q can not be a small function of f .
Otherwise, from Nðr; f Þ ¼ Sðr; f Þ and Lemma 2.1, we have Tðr; f ðkÞÞ ¼ Sðr; f Þ.
A contradiction Tðr; f Þ ¼ Sðr; f Þ now follows by relying to the Theorem in [10]
and combining it with the proof of Proposition E in [11]. Now, we claim that
ti 2 0, i ¼ 1; 2. To show this, we assume contrary to our assertion that t1 1 0,
then there exists a nonzero constant A such that R1e

a 1A, which is excluded
by our hypothesis of Theorem 1.1 and (3.1), hence t1 2 0. Likewise, we can
prove t2 2 0.

In the same arguments as above, (3.2) gives

t3 ff
ðlÞ þ f 0f ðlÞ þ ff ðlþ1Þ ¼ t4;ð3:4Þ

where t3 ¼ � R 0
2

R2
þ b 0

� �
, t4 ¼ q 0 � R 0

2

R2
þ b 0

� �
q.

Obviously, t3 2 0, t4 2 0, and Tðr; tiÞ ¼ Sðr; f Þ, i ¼ 1; 2; 3; 4.
Again, from equation (3.3) or (3.4), the fact that a 0 and b 0 are small

functions of f , and Lemma 2.2 (where c ¼ 0 is used), we would be able to
conclude mðr; 1=f Þ ¼ Sðr; f Þ. By the Nevanlinna’s first fundamental theorem,
we get

Tðr; f Þ ¼ N r;
1

f

� �
þ Sðr; f Þ:ð3:5Þ

Clearly, from (3.3), we have

Nð2 r;
1

f

� �
aN r;

1

t2

� �
þ Sðr; f ÞaTðr; t2Þ þ Sðr; f Þ ¼ Sðr; f Þ;

where Nð2 r;
1

f

� �
, as usually, denotes the counting function of zeros of f whose

multiplicities are not less than 2, which implies that the zeros of f are mainly
simple zeros. Therefore, it follows by (3.5) that

Tðr; f Þ ¼ N r;
1

f

� �
þ Sðr; f Þ ¼ N1Þ r;

1

f

� �
þ Sðr; f Þ;ð3:6Þ

where in N1Þðr; 1=f Þ only the simple zeros of f are to be considered.
Let z0 be a simple zero of f with tiðz0Þ0 0;y ði ¼ 1; 2; 3; 4Þ. From (3.3)

and (3.4), we have

ð f 0f ðkÞ � t2Þðz0Þ ¼ 0ð3:7Þ
and

ð f 0f ðlÞ � t4Þðz0Þ ¼ 0:ð3:8Þ

Thus, it follows by f 0ðz0Þ0 0, (3.7) and (3.8) that

ðt2 f ðlÞ � t4 f
ðkÞÞðz0Þ ¼ 0:ð3:9Þ
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Two cases will now be considered, depending on whether or not t2 f
ðlÞ �

t4 f
ðkÞ vanishes identically.

Case 1. t2 f
ðlÞ � t4 f

ðkÞ 2 0. Set

h ¼ t2 f
ðlÞ � t4 f

ðkÞ

f
:ð3:10Þ

Clearly, it follows by the lemma of the logarithmic derivative and (3.6), (3.9) that
Tðr; hÞ ¼ Sðr; f Þ. On the other hand, (3.10) can be represented in the form

f ðlÞ ¼ h

t2
f þ t4

t2
f ðkÞ:ð3:11Þ

By di¤erentiating both sides of (3.11), we have

f ðlþ1Þ ¼ h

t2

� �0
f þ h

t2
f 0 þ t4

t2

� �0
f ðkÞ þ t4

t2
f ðkþ1Þ:ð3:12Þ

Substituting (3.11) and (3.12) into (3.4) will yield

t3h

t2
þ h

t2

� �0� �
f 2 þ 2h

t2
ff 0 þ t3t4

t2
þ t4

t2

� �0� �
ff ðkÞð3:13Þ

þ t4

t2
f 0f ðkÞ þ t4

t2
ff ðkþ1Þ ¼ t4:

Again, it follows from (3.3) and (3.13) that

t3h

t2
þ h

t2

� �0� �
f þ 2h

t2
f 0 þ t3t4

t2
þ t4

t2

� �0
� t1t4

t2

� �
f ðkÞ ¼ 0:ð3:14Þ

In order to complete our proof of the Theorem we have to show that

t3h

t2
þ h

t2

� �0
2 0 and

t3t4

t2
þ t4

t2

� �0
� t1t4

t2
2 0:ð3:15Þ

Now, suppose contrary to our assertion that
t3h

t2
þ h

t2

� �0
1 0. Then, by the

definition of t3 and on integration, we get
h

t2
¼ BR2e

b, where B is a nonzero

constant. This implies R2e
b is a small function of f . Note that our previous

analysis shows that ff ðkÞ � q can not be a small function of f . Thus, it follows

by (3.2) that
t3h

t2
þ h

t2

� �0
2 0. Next, we shall prove

t3t4

t2
þ t4

t2

� �0
� t1t4

t2
2 0.

Since otherwise, we have t3 � t1 1
t 02
t2
� t 04
t4
. Consequently, the expressions of

t1, t3 suggest
R1

R2
ea�b ¼ C

t2

t4
:¼ g, where C is a constant. Evidently, g is a small

function of f . Furthermore, (3.1) and (3.2) give

f ½ f ðkÞ � g f ðlÞ� ¼ ð1� gÞq:ð3:16Þ
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If g2 1, we may apply Lemma 2.1 to (3.16), and so we find mðr; f ðkÞ � g f ðlÞÞ ¼
Sðr; f Þ. Now since Nðr; f Þ ¼ Sðr; f Þ, we see that Nðr; f ðkÞ � g f ðlÞÞ ¼ Sðr; f Þ.
Hence Tðr; f ðkÞ � g f ðlÞÞ ¼ Sðr; f Þ. That is to say that f ðkÞ � g f ðlÞ is a small
function of f . It is easy to verify by (3.16) that Tðr; f Þ ¼ Sðr; f Þ, a contradic-
tion. If g1 1, (3.16) leads f ðkÞ 1 f ðlÞ. The associated characteristic equation
of f ðkÞ ¼ f ðlÞ is given by

lk ¼ l l :ð3:17Þ

Then the general solution of f ðkÞ ¼ f ðlÞ is given by

f ðzÞ ¼ c0 þ c1zþ � � � þ ck�1z
k�1 þ d1e

l1z þ � � � þ dl�ke
ll�kz;ð3:18Þ

where c0; c1; . . . ; ck�1; d1; . . . ; dl�k are constants and l1; . . . ; ll�k are nonzero char-
acteristic roots of (3.17) such that l l�k

1 ¼ 1; . . . ; l l�k
l�k ¼ 1:

Obviously, l1; . . . ; ll�k are distinct complex numbers. Thus, one may show
easily by (3.18) that f is of order 1. Now by the arguments used in proving
Theorem 1 in [21], we will be able to arrive at a contradiction. With the above
discussion and (3.14) we have

f ðkÞ ¼ mf þ nf 0;ð3:19Þ
where

m ¼ � t3h

t2
þ h

t2

� �0� ��
t3t4

t2
þ t4

t2

� �0
� t1t4

t2

� �
; n ¼ � 2h

t2

�
t3t4

t2
þ t4

t2

� �0
� t1t4

t2

� �
:

On the other hand, (3.19) gives

f ðkþ1Þ ¼ m 0f þ ðmþ n 0Þ f 0 þ nf 00:ð3:20Þ

Substituting (3.19) and (3.20) into (3.3), one may find

ðmt1 þm 0Þ f 2 þ ð2mþ nt1 þ n 0Þ ff 0 þ nð f 0Þ2 þ nff 00 ¼ t2:ð3:21Þ

Again, (3.11) and (3.19) imply

f ðlÞ ¼ mt4 þ h

t2
f þ nt4

t2
f 0:ð3:22Þ

By di¤erentiating both sides of (3.22), we obtain

f ðlþ1Þ ¼ mt4 þ h

t2

� �0
f þ mt4 þ h

t2
þ nt4

t2

� �0� �
f 0 þ nt4

t2
f 00:ð3:23Þ

Now substituting (3.22) and (3.23) into (3.4), we deduce

t3ðmt4 þ hÞ
t2

þ mt4 þ h

t2

� �0� �
f 2 þ nt3t4

t2
þ 2ðmt4 þ hÞ

t2
þ nt4

t2

� �0� �
ff 0ð3:24Þ

þ nt4

t2
ð f 0Þ2 þ nt4

t2
ff 00 ¼ t4:
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On the other hand, (3.21) and (3.24) give

t3ðmt4 þ hÞ
t2

þ mt4 þ h

t2

� �0
� t4ðmt1 þm 0Þ

t2

� �
fð3:25Þ

þ nt3t4

t2
þ 2ðmt4 þ hÞ

t2
þ nt4

t2

� �0
� t4ð2mþ nt1 þ n 0Þ

t2

� �
f 0 ¼ 0:

Let g :¼ nt3t4

t2
þ 2ðmt4 þ hÞ

t2
þ nt4

t2

� �0
� t4ð2mþ nt1 þ n 0Þ

t2
. If g2 0, it is easy to

see g is a small function of f . In this case, we then by (3.6) and (3.25) have
gðz0Þ ¼ 0. Thus Tðr; f Þ ¼ N1Þðr; 1=f Þ þ Sðr; f ÞaNðr; 1=gÞ þ Sðr; f Þ ¼ Sðr; f Þ, a
contradiction. Consequently g1 0. Furthermore, by (3.25) again, we have

t3ðmt4 þ hÞ
t2

þ mt4 þ h

t2

� �0
� t4ðmt1 þm 0Þ

t2
1 0ð3:26Þ

and

nt3t4

t2
þ 2ðmt4 þ hÞ

t2
þ nt4

t2

� �0
� t4ð2mþ nt1 þ n 0Þ

t2
1 0:ð3:27Þ

Also, using (3.26) and (3.27), then (3.24) can be rewritten as

ðmt1 þm 0Þ f 2 þ ðnt1 þ n 0Þ ff 0 þ nð f 0Þ2 þ nff 00 ¼ t2;

which, and (3.21) leads m1 0, and hence
t3h

t2
þ h

t2

� �0
1 0. This contradicts

(3.15).

Case 2. If t2 f
ðlÞ � t4 f

ðkÞ 1 0; by using the same arguments as in the proof
of (3.13), we can conclude

t3t4

t2
þ t4

t2

� �0
� t1t4

t2
1 0;

which gives

t3 � t1 1
t 02
t2
� t 04
t4
:ð3:28Þ

Consequently, it follows from the expressions of t1, t3 and (3.28) that
R1

R2
ea�b ¼

C
t2

t4
, where C is a constant. Thus, by (3.1) and (3.2), we get Ct2 1 t4 and

f ðkÞ 1 f ðlÞ. Now by the same arguments used in Case 1, we will be able to
arrive at a contradiction. This shows that pff ðkÞ � q and pff ðlÞ � q at least one
has infinitely many zeros for integers l and k with l > kb 2.

This completes the proof of Theorem 1.1.
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4. Proof of Theorem 1.2

First of all, we show that F ¼ an f
nf ðkÞ þ Pn�2ð f Þ can not be a small

function of f . Otherwise, from Nðr; f Þ ¼ Sðr; f Þ and Lemma 2.1, we get
mðr; f ðkÞÞ ¼ Sðr; f Þ and then Tðr; f ðkÞÞ ¼ Sðr; f Þ. A contradiction Tðr; f Þ ¼
Sðr; f Þ now follows by relying to the Theorem in [10] and combining it with
the proof of Proposition E in [11]. Thus, for any transcendental meromorphic
function f under the condition: Nðr; f Þ ¼ Sðr; f Þ, we obtain

Tðr; an f nf ðkÞ þ Pn�2ð f ÞÞ0Sðr; f Þ:

Accordingly, it shows that F cannot be a small function of f , and

F 0

F
¼ a 0

n f
nf ðkÞ þ nan f

n�1f 0f ðkÞ þ an f
nf ðkþ1Þ þ P 0

n�2ð f Þ
an f nf ðkÞ þ Pn�2ð f Þ

:ð4:1Þ

Let j :¼ a 0
n �

F 0

F
an

� �
ff ðkÞ þ nan f

0f ðkÞ þ an f
0f ðkþ1Þ. Then (4.1) gives

f n�1j ¼ F 0

F
Pn�2ð f Þ � P 0

n�2ð f Þ:ð4:2Þ

By (4.2) and Lemma 2.1, we have

mðr; jÞ ¼ Sðr; f Þ:ð4:3Þ
On the other hand, it is easy to see

Nðr; jÞaN r;
1

F

� �
þ Sðr; f Þ:ð4:4Þ

It follows from (4.3) and (4.4) that

Tðr; jÞaN r;
1

F

� �
þ Sðr; f Þ:ð4:5Þ

Again, by (4.2), we have ðn� 1ÞTðr; f Þa ðn� 2ÞTðr; f Þ þ Tðr; jÞ þ Sðr; f Þ, which,

and (4.5) results in Tðr; f ÞaN r;
1

F

� �
þ Sðr; f Þ. Thus F ¼ an f

nf ðkÞ þ Pn�2ð f Þ

has infinitely many zeros, and lðFÞb rð f Þ.
Clearly, Tðr;FÞa ðnþ 1ÞTðr; f Þ þ Sðr; f Þ. Consequently, lðFÞa rð f Þ.

Theorem 1.2 follows.

5. Some conjectures

In 2003, Langley [15] proved the following result.

Theorem D. Let f be meromorphic in the plane of positive order Lay,
and assume that Nðr; f Þ has order less than L. Let b be a nonzero complex
number. Then the zero sequence of ff 00 � b has exponent of convergence L.
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Accordingly, we have the following strong assertion:

Conjecture 5.1. Let f be a transcendental meromorphic function with
Nðr; f Þ ¼ Sðr; f Þ. Then for an integer kb 2, lð ff ðkÞ � bÞ ¼ rð f Þ, where
b ð2 0;yÞ is a small function of f .

Finally, we would like to pose the following conjectures, for further studies.

Conjecture 5.2. Let f be a transcendental meromorphic function with the
condition Nðr; f Þ ¼ Sðr; f Þ, nb 2 be an integer and let F ¼ f nf ðkÞ þ Pn�1ð f Þ,
where Pn�1ð f Þ ð2 0Þ is a di¤erential polynomial in f with small functions as its
coe‰cients and deg Pn�1ð f Þa n� 1. Then

N r;
1

F

� �
0Sðr; f Þ and lðF Þ ¼ rð f Þ:
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