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ON COMBINATORIAL CRITERIA FOR NON-DEGENERATE
SINGULARITIES

SZYMON BRZOSTOWSKI AND GRZEGORZ OLEKSIK

Abstract

In this article we give a sufficient and necessary condition for a Kouchnirenko non-
degenerate holomorphic function to have an isolated singularity at 0 in terms of its
support. As a corollary we give some useful sufficient conditions for singularity to be
isolated.

1. Introduction

Let f:(C",0) — (C,0) be the germ of a holomorphic function. One of
the problems in the theory of singularities is to check effectively that f has an
isolated singularity at 0. Many authors deal with this problem in various
context. For instance, by the local Nullstellensatz, f has an isolated singularity
at 0 if and only if the Milnor number u(f) is finite. Similarly, the Lojasiewicz
exponent £y(f) is finite if and only if f has an isolated singularity at 0 (for
definitions see Preliminaries).

Kouchnirenko in [9] gave for a set M < N" a necessary and sufficient
condition that f with supp f = M, has an isolated singularity at 0 (see Theorem
2.8). Other authors: Wall [22], Orlik and Randell [16], Shcherbak [21] obtained
similar results. One can find more historical comments on this topic in [15]
and [7].

The quasihomogeneous case was considered by the authors mentioned
above as well as by Saito ([19], [20]), Kreuzer and Skarke [10], Hertling and
Kurbel [7].

In this paper we examine the problem in the class of non-degenerate holo-
morphic functions. As the main result we prove that a non-degenerate function
(see Preliminaries for the definition) with the support satisfying a combinatorial
condition has an isolated singularity at 0 (Theorem 3.1). As a corollary we give
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some useful sufficient conditions for a holomorphic function to have an isolated
singularity at 0 (Corollary 3.16). We also prove that Kouchnirenko condition
for M is equivalent to the finiteness of the Newton number of 1, (Corollary
3.12). It was announced already by Kouchnirenko [8, Remarque 1.13 (ii)] but
without a proof. C. T. C. Wall considered different type of non-degeneracy from
the Kouchnirenko one. He got similar results for his non-degeneracy to the ones
obtained in this paper (see Lemma 1.2 and Theorem 1.6 in [23]).

We also explain some details concerning non-convenient singularities.
Kouchnirenko in his celebrated paper gave the formula for the Milnor number
only in the convenient case [8, Théoréme I (ii)]. Consequently, many authors
cited this formula only in this case. For example Damon and Gaffney wrote
“Note that Kouchnirenko only carries out his analysis for fit germs™ [4, Section
2] and Wall wrote “Although Kouchnirenko gives rather general definition of
non-degeneracy, his main results are proved only for function satisfying an
additional condition called (in French) ‘commode’” [23]. However, Kouchnir-
enko did prove his formula also for non-convenient functions (see [8, Section
3]). Therefore, we explicitly give the formula for the Milnor number (Corollary
3.10) without the assumption that function is convenient. Kouchnirenko proved
this formula for non-convenient functions using [8, Théoréeme 3.7]. We will use
Lemma 3.8 instead.

In Appendix we give the effective bound for the constant C of Lemma 3.6.
This bound is expressed in terms of the f.ojasiewicz exponent. This invariant
may be effectively computed using e.g. Grébner basis techniques (see [18]) or may
be estimated (see [5]).

2. Preliminaries

Let f:(C",0) — (C,0) be a non-zero holomorphic function in an open
neighborhood of 0e C". We say that f has a singularity at 0 if f(0) =0,
Vf(0) =0, where Vf = (f.,,..., f-,). It is equivalent to the condition ord f > 2,
where ord f means the order of f at 0. We say that f has an isolated
singularity at 0 if f has an isolated critical point at the origin i.e., additionally
Vf(z) #0 for z#0 near 0. We denote N=1{0,1,2,...} and Ry ={xeR:
x>0} Let >, noavz’ be the Taylor expansion of f at 0. We define the
set supp f by supp f ={veN":qa, #0} and call it the support of f. Let
Wi,...,W,,d be positive rational numbers. A polynomial f e Clzy,...,z,] is
called quasihomogeneous of type (wy,...,wy;d) if

Z viw; =d for any vesupp f.
i1

The numbers wy,...,w, are called weights of f and the number d is called
weighted degree of f. We define

[ (f)=conv{v+R :vesupp f} = R"
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and call it the Newton diagram of f. Let ueRI\{0}. Put

l(u, T (f)) =inf{u,vy :ve T (f)},
A, T (1) ={ve (f): Cu,vp =1(u, T (f))}.

We say that S = R" is a face of T, (f) if S = A(u,T'(f)) for some u e R}\{0}.
The vector u is called a vector supporting S. It is easy to see that S is a closed
and convex set and S < Fr(I',.(f)), where Fr(4) denotes the boundary of A.
One can check that a face S < I'y(f) is compact if and only if there exists a
vector supporting S which has all coordinates positive. We call the family of all
compact faces of I'(f) the Newton boundary of f and denote it by I'(f). We
denote by T'* (f) the set of all compact k-dimensional faces of T',(f), k=0,...,
n—1. For each compact face S € I'(f) we define quasihomogeneous polynomial
Ss=> ,csaz’. We say that f is non-degenerate on the face S eI'(f) if the
system of equations

s . _Us _

oz T 0z, 0

has no solution in (C*)", where C* = C\{0}. We say that f is non-degenerate in
the sense of Kouchnirenko (shortly non-degenerate) if it is non-degenerate on each
face of I'(f). We say that f is convenient if I';(f) has non-empty intersection
with each coordinate axis. We say that f is nearly convenient if the distance of
I, (f) to each coordinate axis does not exceed 1. Denote by ¢, the local ring of
germs of holomorphic functions in n-variables at 0 € C". Let us recall that the
Milnor Number u(f) is defined as u(f) =dimc O"/(f,...,f]). Moreover, the

Newton number v(f) for convenient f is defined as
v(if)=nV,—(n—DW, 1+ -+ (=1)"V,

where V; denotes the sum of i-dimensional volumes of the intersection of the
cone (with apex at 0) spanned by I'(f) with the coordinate subspaces of dimen-
sion i. We may also define the Newton number for non-convenient holomor-
phic function (see [8, Définition 1.9]). Namely, let f be non-convenient and
I ={1,2,...,n} be a non-empty set such that T',(f)NOX;=0 for iel and
L (f)NOX; #0 for i¢ 1. We define

v(f) = sup v<f+ZZ;">.

meN icl

Now, we recall some known results concerning support of holomorphic
function having an isolated singularity at 0. Kouchnirenko in [9, Theorem 1]
gave for a set M = N”" a necessary and sufficient condition for existence of f,
supp f = M, having an isolated singularity at 0. In addition, one can deduce
from his reasoning that if M satisfies this condition, every holomorphic function
f, supp f = M, ord f > 2, with generic coefficients has an isolated singularity
at 0. Before giving his result we state definitions.
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Let M = N". Define the sets M; = {veN":v+e¢ € M}, where e,..., ey,
is the standard basis in R”. Notice that if we take Ay (z) =), ., 2" then
M; = supp 0y /0z; for every i=1,2,...,n.

Let I = {l,...,n} be a non-empty set. Set

OX;={xeR":x;,=0 for i ¢ I}.

We may notice that OXj is the hyperplane spanned by the axes OX;, iel. We
say that M satisfies the Kouchnirenko condition for I if there exist at least |I| non-
empty sets among the sets M; N OX;, M, N OXy,...,M,NOX;. We say that M
satisfies the Kouchnirenko condition if M satisfies the Kouchnirenko condition for
every I < {1,2,...,n}.

Remark 2.1. 1If M satisfies the Kouchnirenko condition, it may happen
that 1y, does not have an isolated singularity at 0. For example let A(z) =
(z1 + z22)(z1 + z3). It is easy to check that A, does not have an isolated
singularity at 0 and that is degenerate on the face S = conv{supp(4)}.

Example 2.2. a) Let f(z1,z3) =z} +z1z2. We shall show that supp f
satisfies the Kouchnirenko condition. Put M =supp f. Then M; = {(0,1),
(L,o)}, M, ={(1,0)}. If I={1,2} we easily check that M satisfies the
Kouchnirenko condition for I. If I = {1} or I = {2}, then M, NOX; # .

b) Let f(z1,22,2z3) = z1(z1 + z2 + z3). We shall show that supp f does not
satisfy the Kouchnirenko condition. Indeed, take I = {2,3} then |I| =2 but
M]ﬂOX] ?50 and MQQOX]:Mg,ﬂOX] :Q).

Now, we explain the Kouchnirenko condition for / in the extreme cases
7] =1 and |I| =n. It is easy to check the following property.

PrOPERTY 2.3. Let f: (C",0) — (C,0) be a holomorphic function which has
a singularity at 0. The following holds:
(i) supp f satisfies the Kouchnirenko condition for every I ={i}, i=1,
2,...,n if and only if [ is nearly convenient,
(i) supp f satisfies the Kouchnirenko condition for I ={1,2,... n} if and
only if f! #0, i=1,2,...,n.

The next simple property shows that the Kouchnirenko condition for supp f
implies that the Newton diagram of holomorphic function f which defines
an isolated singularity at 0, has non-empty intersection with every (n—1)-
dimensional coordinate hyperplane in R", n > 3.

PrROPERTY 2.4. Let f:(C",0) — (C,0), n>3, be a holomorphic function
which has a singularity at 0. If supp [ satisfies the Kouchnirenko condition then
T (f)NOX; #0 for every set I = {1,2,...,n}, I|=n—1.
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The following two propositions, which are easy consequences of the defi-
nition, give conditions equivalent to the Kouchnirenko condition for supp f in
terms of the Newton diagram of f in two and three variables.

PROPOSITION 2.5. Let f:(C? 0) — (C,0) be a holomorphic function which
has a singularity at 0. Then the following conditions are equivalent:

(i) f is nearly convenient,

(i) supp f satisfies the Kouchnirenko condition.

PROPOSITION 2.6. Let f:(C*,0) — (C,0) be a holomorphic function which
has a singularity at 0. Then the following conditions are equivalent:
(i) f is nearly convenient and T .(f)NOXy; 5 # 0 for every i,je{1,2,3},
L% ],
(i) supp f satisfies the Kouchnirenko condition.

There are some combinatorial conditions equivalent to the Kouchnirenko
condition. Hertling and Kurbel collected such conditions for a quasihomoge-
neous polynomial in [7, Lemma 2.1] but their lemma is also true without the
assumption of quasihomogeneity.

LemMa 2.7. Let M = N” and ord iy > 2. Set S; = {k: M, N OX; # 0},

I<{l1,2,...,n}. Then the following conditions are equivalent:
(K) #I < #Sy for VI (the Kouchnirenko condition for M)
(K') #I < #S; for VI with 1 <#I < %
(Cl) [MNOX; =0= #I <#(S/\I)] for VI o
(Cl") [MNOX; =0 = #I <#(S/\I)] for VI with 1 <#I < 5
(C2) If #J < #I, then S)\J # 0.

Proof. The proof is the same as the proof of Lemma 2.1 in [7]. |
Now, we recall Theorem 1 in [9].

THEOREM 2.8 ([9, Theorem 1]). Let M < N" and ord Ay > 2. Then the
following conditions are equivalent:
(ISe) there exists an isolated singularity f :(C",0) — (C,0) such that

supp f = M,
(K) M satisfies the Kouchnirenko condition.

As a direct consequence of Theorem 2.8 we get the following corollary.

COROLLARY 2.9. If f has an isolated singularity at 0, then the support of [
satisfies the Kouchnirenko condition.
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Remark 2.10. It seems that Saito [19, Lemma 1.5] was the first to state the
corollary above, since he proved that a support of holomorphic function having
an isolated singularity at 0, satisfies condition (C1), which by Lemma 2.7 is

equivalent to the Kouchnirenko condition. It can also be extracted from
[21, Remark 3].

As a direct consequence of the corollary above and Property 2.3(i) we give
the following property.

ProperTY 2.11. If f has an isolated singularity at 0, then f is nearly
convenient.

3. Main result

We begin with the main result.

THEOREM 3.1. Let f:(C",0) — (C,0), n > 2 be a non-degenerate holomor-
phic function which has a singularity at 0. If supp [ satisfies the Kouchnirenko
condition, then f has an isolated singularity at 0.

We deduce the main theorem follows from the one below.

THEOREM 3.2. Let f:(C",0) — (C,0), n > 2 be a non-degenerate holomor-
phic function which has a singularity at 0. If v(f) is finite, then f has an isolated
singularity at 0.

In fact, in Corollary 3.12 below we will show that Kouchnirenko condition
for supp f is equivalent to the finiteness of v(f). This together with Theorem
3.2 gives Theorem 3.1.

Remark 3.3. Theorem 3.1 was given by Lenarcik [11, Property 3.2] in the
case n =2 and by the second author in [15, Theorem 5.4] in the case n < 3. It
also confirms Conjecture 5.5 stated in [15].

Remark 3.4. By Theorem 3.1 and Corollary 2.9 we see that in the class of
non-degenerate function having a singularity at 0 the Kouchnirenko condition for
supp f is equivalent that f defines an isolated singularity at O.

Now, we give some lemmas and propositions needed in the proof
of Theorem 3.2. The following proposition was discovered independently
by many authors, see for example [8, Théoreme I (ii)], [13, Remark 2.7],
[3, Proposition 4.4], [15, Corollary 5.8].

ProposITION 3.5. If f is convenient and non-degenerate, then f has an
isolated singularity at 0.
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The lemma below says that the Newton number of a non-convenient
holomorphic function is independent of the way we make it convenient. More
precisely, we have the following lemma.

Lemma 3.6. Let f:(C",0)— (C,0), n>2 be a holomorphic function.
Assume that v(f) is finite. Let I ={ij,... i} ={1,2,...,n} be a non-empty
set such that Ty (f)NOX; =0 for iel and T (f)NOX; #0 for i¢ 1. Then
there exists C > 2 such that

V(f+ Zzi””) —(f) for every mi>C,iel

iel

Proof. Without loss of generality we may assume that I ={1,2,... ,k}.
Put f,=/f+ Zlkzl z/", m=>=2. By assumption v(f)=sup,n v(fm) < 0.
Since ' (fin+1) = T+(fim), by monotonicity of the Newton number (see for
example [6]) we have v(f,) < v(fus1). Therefore the sequence v(f,) is con-
vergent. Since v(f,) € N, we get that there exists C such that

(1) v(f) = v(f) for m> C.

Take my,...,mp = C. Set M,y := max{my,...,mi}, My := min{my,...,ny}.
From the inclusion

k k k
r+<f+zzz{nmx> = F+<f+zzzmi> = 1"+<f+Zzl’,”min>’
=1 i1 sy

and monotonicity of the Newton number and (1) we infer

k
v(f+Zz,-’”"> = (/). u

The next lemma allows us to make f both convenient and non-degenerate.

Lemma 3.7. Let f:(C",0) — (C,0), n > 2, be a non-degenerate holomorphic
Sfunction which has a singularity at 0. Assume that T, (f)NOX; =0 for some
ie{l,2,...,n}. Then there exists C =2 such that f; = f +z" is non-degenerate
for every m > C.

Proof. Let SeT'(f). Since S is compact we can choose ug € (0, 00)" such
that S = A(ug, [ (f)) (see Preliminaries). Put

W= U {veR": us,v> < l(us, T (f))}.
Sel'(f)

It is easy to check that W is compact and intersects every coordinate axis.
Hence we may choose C >2 so large that the points in R’ determined by
the monomials z/”, m> C, do not lie in W. Let m>C. We show that
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fi=f+=z" is a non-degenerate. Let PeR" be the point determined by the
monomial z”. From the choice of C, we observe that P is a vertex of I'(f;).
By nearly-convenience of I',(f) there exists a point Q, which is at distance 1
from the axis OX;. Hence the segment PQ is a face of I'(f;) and Fl(f) # 0.
Therefore we get I'(f;) =T (f)UA, where A is the family of the faces in I'(f;)
containing P as a vertex. Since f is non-degenerate, f; is non-degenerate
on each face of I'(f). Now take 6 e ANTX(f;), k> 1. From the choice of
C we get that 0 is the convex hull of P and some face oeI'(f) such that
dim ¢ < dim¢. Therefore (f;)s=z"+ f,, where f; is a quasihomogeneous
polynomial. Since dim ¢ < n — 1, the weights of f; are not uniquely determined.
Let (fi)s be of type (wi,... s Wie 1, 1/mywipr,...,wy; 1), Take m’ > m and con-
sider the polynom1a1 fg—&-z Let P'e R’ be the point determined by the

monomial z/”. Since ¢ is compact and oeT(f), the set conv(s,P’) is also
compact and there exist positive weights (wi,...,w/_,1/m", wi ,...,w; ;1) of
f,+(z)™. Thus f, is simultaneously of the types

Wi, oooowimn, Umywigr, ooo,w 1) and (wi, oo wi U/ml owiy, oo w1,

Using Euler’s formula for these weights we get

o pe (e

J#i

Now we show that f; is non-degenerate on ¢. Suppose to the contrary that
there exists z% € (C*)", such that V(f;);(z°) =0. Hence (f;). (2 9 =0 for j#1i.
By (2) we get also z{(f;)! (z°) = 0. Summing up, Vf,(z°) = 0, which contradicts
non-degeneracy of f on the face o. ]

Now, using induction we extend the previous lemma as follows.

Lemma 3.8. Let f:(C",0) — (C,0), n =2, be a non-degenerate holomor-
phic function. Let I ={ij,...,ix} ={1,2,...,n} be a non-empty subset such that
T ()NOX;=0 for iel and T (f)NOX; # O for i¢ 1. Then for every C =2
there exist my,...,my = C such that fi.=f +Z/ 1z l”’f is non-degenerate and
convenient.

Proof. Without loss of generality we may assume that I = {1,2,... k}.
For every j=0,1,...,k denote by (4;) the assertion “For every C > 2 there
exist my,...,m; > C such that fi = f+ >/, z" is non-degenerate.” We show
1nduct1vely (with respect to j) that (4;) holds for every j=0,1,...,k. The
assertion is true for j =0 by the assumptlon Let je{0,1,...,k}. Suppose
that (4;) is true. We show that (4;;) is also true. Let C >2. Since (4;) is
true there exist m,...,m; > C such that fj=f+ >/ lm‘ is non-degenerate.
By Lemma 3.7 there exists m;y; > C such that fi| = f; + ) “ is non-degenerate.
By induction (4;) is true for every j=0,1,...,k. In partlcular, (4y) is true.
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Remark 3.9. We may notice that this way we are able to prove a stronger
version of the lemma above, namely it is also true for fi = f + Z]{‘:l og/zg’ 7 with
arbitrary o; # 0 (compare [8, Théoreme 3.7]).

Proof of Theorem 3.2. If f is convenient, the assertion follows from
Proposition 3.5. Suppose that f is not convenient. Let I={i,... ik} <
{1,2,...,n} be a set such that T (f)NOX;=0 for iel and T, (f)NOX; #
0 for i¢I. Without loss of generality we may assume that I = {1,2,...,k}.
By Lemma 3.6 there exists C > 2 such that

k
(3) v(f—i—Zz{”"):v(f) for every m; > C,i=1,... k.
P

By Lemma 3.8 there exist my,...,m; = max{C,v(f)+ 1} such that f; =
f+ Zf‘zl z!™ is non-degenerate and convenient. By Proposition 3.5 we get that

Ji has an isolated singularity at 0. Hence by (3) and Théoréme I (ii) in [8],
we get

@ ord(fi— f)=minm = () + 1= v() 1= alfo) + 1.

From (4) and since f; is u(fi)+ 1 right determined (see for example [2,
Section 6.3]) we get that f and f; are right (biholomorphically) equivalent. This
implies f has an isolated singularity at 0 and

(5) u(f) = ulfi)- u

From the proof above we easily get Théoréme I (ii) in [8] without the
assumption that f is convenient. More precisely, we get the following corollary.

CoOROLLARY 3.10. Let f: (C",0) — (C,0), n > 1, be a non-degenerate holo-
morphic function which defines an isolated singularity at 0. Then u(f) =v(f).

Proof. 1If f is a convenient singularity, the assertion follows from Théoréme
I (ii) in [8]. In the opposite case, repeating the proof of Theorem 3.1 with the
same notations and by (5), Théoreme I (ii) in [8] and (3) we get

u(f) = u(f) = v(fi) = (). u
As a direct consequence of Theorem 3.2 and Corollary 3.10, we get the following.

CorROLLARY 3.11. Let f: (C",0) — (C,0), n > 1, be a non-degenerate holo-
morphic function which has a singularity at 0. Then u(f) < o < v(f) < 0.

The next corollary says that Kouchnirenko condition for M is equivalent to the
finiteness of the Newton number of 1,,. It was announced already by Kouch-
nirenko [8, Remarque 1.13 (ii)] but without proof.
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COROLLARY 3.12. Let M =N" and ord Ayy >2. A set M satisfies the
Kouchnirenko condition if and only if v(ly) is finite.

Proof. “=" Suppose that M satisfies the Kouchnirenko condition, then by
Theorem 2.8 there exists f : (C",0) — (C,0), supp f = M, which has an isolated
singularity at 0. Hence I'.(f) = I' (1)) and by monotonicity of the Newton
number (see for example [6]) we have v(4y) < v(f). On the other hand, since
f has an isolated singularity at 0, we have v(f) < u(f) < oo by [8, Théoréme
1(1)]. Summing up v(Zy) is finite.

“<” Now, suppose that v(dy) < co. Then by [8, Théoreme 6.1] we
may choose non-degenerate f with supp f = M. Then v(f)=v(iy) < o0.
Therefore by Theorem 3.2 we get that f/ has an isolated singularity at 0. Hence,
by Corollary 2.9 we get the assertion. |

Remark 3.13. Gwozdziewicz proved monotonicity of the Newton number
for convenient function using [8, Théoré¢me I (ii)] and semi-continuity of the
Milnor number. It it is easy to generalize his result to the non-convenient case
using only definition of the Newton number and simple properties of Newton
diagram.

The following lemma has already been announced by Kouchnirenko
[8, Subsection 6.5] (without proof).

Lemma 3.14. Let S = R" be a d-dimensional simplex, d <n—1, and let
vert(S) be the set of the vertices of S. Assume that 0 ¢ aff S, the affine hull of S.
Then every f € Clzy,...,z,] satisfying supp(f) = vert(S) is non-degenerate.

Proof.  First we consider the case d =n — 1. Let f =}, s @z’ Where
a, #0. The system of equations {Vf = 0} is equivalent to the system

z g::z af:o
1621 "oz,

. . 0 .
in (C*)". Since Z"a_g: 2 vever(s) @vviz', we see that this last system can be
1

viewed as linear in unknowns {z'}. This means that it has a non-zero solution

in C" if and only if D := det[a,vi|yever(s) 1S zero. We have
I1<i<n

D= Hav - det[v;].

The assumption 0 ¢ aff S implies dim(span S) = n so that the set vert(S) consists
of n linearly independent vectors. Hence, det[v;] # 0 and also D # 0 as the a,
are non-zero. This means that the system {V/ = 0} has no solutions in (C*)".
Moreover, every choice of a face o of the simplex S corresponds to deletion of
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some columns in the matrix [ayvi, cyer(s),1<i<p- Such truncated matrix still has
maximal possible rank which implies that f is non-degenerate on . Hence, f is
non-degenerate.

In the general case, one can extend the ¢ dimensional simplex S to an
(n — 1)-dimensional one and similarly add some missing terms to the function f
and in this way return to the first case. |

Example 3.15. The assumption that supp f = vert(S) cannot be omitted
in the above lemma. Indeed, take f(zi,z2) =z%+2zlzz+z§. Observe that
2 .
supp f # vert(S) and f = (z; + z3)” is degenerate.
Also the assumption that S is a simplex cannot be omitted. Indeed, take

f(z1,22,23,24) = Z]2 — Z% +le32 +zzz§.
We may observe that S spanned by supp f is not a simplex and supp f =
vert(S). Take ¢(t) = (—*/2,t2/2,t). Then (Vf)o¢ =0, so f is degenerate.

From Lemma 3.14 and Theorem 3.1 we immediately get the following.

CoROLLARY 3.16. Let f:(C",0) — (C,0) be a holomorphic function which
has a singularity at 0. Assume that all the faces SeT(f) are simplices and
supp fs = vert(a), the set of vertices of S. If supp f satisfies the Kouchnirenko
condition, then f has an isolated singularity at 0.

Example 3.17. Let f(z1,22,23) = 2823 + 25 + 2322 + 2123 + 202§, Tt is easy
to check that all the faces SeI'(f) are simplices and supp fs = vert(S).
Moreover, it is easy to verify that supp f satisfies the Kouchnirenko condition.
Hence by the corollary above we infer that f has an isolated singularity at O.
Observe that f is not convenient.

4. Appendix

Now, we find the constant C in Lemma 3.6. Namely, we prove that C <
£0(f) + 2 (Proposition 4.2). First we give some definitions and theorems.

Let F = (f1,...,/n) : (C",0) — (C",0) be a holomorphic mapping having an
isolated zero at the origin. We define the number

(6) Io(F) == inf{x e R, :3C > 03r > 0V|z|| < r ||F(z)|| = C||z||"}

Let f:(C",0) — (C,0) be a holomorphic function which has an isolated
singularity at 0. We define the number £¢(f) =/, (Vf) and we call it the
Lojasiewicz exponent f.

First we recall the following.

LemMa 4.1 ([17, Lemma 1.4]). Let F,G: (C",0) — (C",0) be holomorphic
mappings in some neighbourhood of 0 € C". Suppose that F has an isolated zero.
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If ord(G — F) > [h(F), then G has an isolated zero and

l(G) = l(F), i(G)=iy(F),
where iy(F) denotes the multiplicity F at 0 e C".

Now, we give a constructive version of Lemma 3.6.

ProposITION 4.2. Let f: (C",0) — (C,0), n>2 be a holomorphic function
which has an isolated singularity at 0. Let I < {1,2,...,n} be a non-empty set
such that T (f)NOX;=0 for iel and T (f)NOX; #0 for i¢I. Let m; >
[£0(f)]+2, iel. Then

() v<f+Zz{”"):v(f)

iel

(8) u<f+Zz:"") = u(f)
iel

9) £o<f+zzim")=£0(f)
iel

Proof. Let m; > [£o(f)]+2, iel and fi=f+Y,;.,z". We begin with
the proof of (8) and (9). We get

ord(Vfi = Vf) = [£o(f)] + 1> £(f).

Hence by Lemma 4.1 we have £,(f;) = £o(f) and u(fx) = u(f).

Now we pass to the proof of (7). Since the Kouchnirenko non-degeneracy
is a Zariski open condition (see for example [13, Appendix]), we may choose non-
degenerate f with supp f =supp f. Since f has an isolated singularity at 0, by
Corollary 2.9 we get that supp f satisfies the Kouchnirenko condition. Hence
supp f also satisfies the Kouchnirenko condition. Therefore by Theorem 3.1 we
get that f has an isolated singularity at 0. Since the Kouchnirenko non-
degeneracy is a Zariski open condition we choose generic «; # 0 such that f; =
S+ oz is non-degenerate. We have

ord(Vfy = Vf) = [fo(/)] + 1 > £0(f).

Hence by Lemma 4.1 we have u( ﬂ) = u( 7 ). Summing up by Corollary
3.10, we get

V<f+ zz;"f) R = ) = ) = () = (). .

iel

Example 4.3. The following example shows that in some cases the bound
[£0(f)]+2 for m; of Proposition 4.2 is the least possible. Indeed, take
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flz1,22) = zg + 21323’ + 21622. One may check that f is non-degenerate and f has
an isolated singularity at 0. Using the main result of [11] we calculate
£o(f) =65 and by Corollary 3.10 we get u(f)=v(f)=28. Hence
[£0(f)] +2 =8. Now take f = f+z]. Using the same techniques one may

calculate £o(f) =6, u(f) =v(f) =27.

Example 4.4. The following example shows that in some cases the bound
[£0(f)] +2 for m; of Proposition 4.2 is not the least possible. Indeed, take
f(z1,22) = 28 + 2323 + z;z3.  One may check that f is non-degenerate and / has
an isolated singularity at 0. Using the main result of [11] we calculate £y(f) =7
and by Corollary 3.10 we get u(f) =v(f) =13. Hence [£o(f)]+2=9. Now
take fy = f+z¥, N>5. Using the same techniques one may calculate
£0(fv) =17, u(fy) =v(fn) =13 for every N > 5.

Remark 4.5. For non-degenerate functions Fukui [5] gave the inequality

£o(f) <mo(f) -1,

where my(f) is a combinatorial number calculated from T'.(f). Also Abder-
rahmane [1] gave a similar estimation in terms of v(f). In the case n = 2,3 there
are more exact formula for the Lojasiewicz exponent of non-degenerate holomor-
phic functions (see [11] and [14]).

Remark 4.6. One may also give an estimation of the constant C in Lemmas
3.7 and 3.8 in terms of my(f). Kouchnirenko [8, Théoréeme 3.7] also gave an
estimation of the constant C in generic version of Lemma 3.8, but his estimation
is in general too large.
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