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COHOMOLOGY FORMULA FOR OBSTRUCTIONS
TO ASYMPTOTIC CHOW SEMISTABILITY

Yura SUzZUKI

Abstract

Odaka [16] and Wang [19] proved the intersection formula for the Donaldson-
Futaki invariant. In this paper, we generalize this result for the higher Futaki
invariants, which are obstructions to asymptotic Chow semistability.

1. Introduction

Let M be a complex manifold of dimension n, and L be an ample line
bundle over M. The existence of constant scalar curvature Kéhler metrics (cscK
metrics for short) in ¢;(L) is an important problem in Kédhler geometry. The
conjecture of Yau, Tian and Donaldson asserts that the existence of cscK metrics
in ¢1(L) is equivalent to a certain GIT stability of the polarized variety (M, L).
In fact, Chen, Donaldson and Sun [2], Tian [18] gave the solution of this problem
when the polarization is the anti-canonical bundle of M. The relevant GIT
condition in this case is called K-stability. On the other hand, K-stability is not
the only stability notion related to the existence of cscK metrics, and asymptotic
Chow stability is one of stability notions. Donaldson [4] proved that if the
automorphism group Aut(M,L) is discrete, then the existence of cscK metrics
implies the asymptotic Chow semistability of (M, L). Mabuchi [14] extended the
result for the case Aut(M,L) is not discrete. More precisely, he proved that
there exists an obstruction to asymptotic Chow semistability and if the obstruc-
tion vanishes, the existence of cscK metrics in ¢;(L) implies the asymptotic Chow
polystability of (M,L). After that, the obstruction was reformulated by Futaki
[7] as an integral invariants of (M, L). They are called higher Futaki invariants.

Della Vedova and Zuddas [3] showed that the higher Futaki invariants
are closely related to the Chow weight. Let (Z,%) be a test configuration of
(M,L). Then the central fiber (2o, %|,,) is a polarized scheme endowed with
a C’-action. For an integer k, let y(%o,k%|,,) be the Euler-Poincaré char-
acteristic of (2o,kZ|,,) and w(Z2o,k%Z|,,) be the weight of the C*-action on the
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one-dimensional vector space (X);_,(/\"" H(M, L)), Then the Chow weight
Chow(%0,k%|y,) is defined by using y(Zo,kZ|,,) and w(Zo,kZL],,). We are
interested in the asymptotic behavior of Chow(Zy, k|, ) when k grows. Della
Vedova and Zuddas showed that if (2o, k%], ) is smooth, the higher Futaki in-
variants are equal to the coefficients of polynomial expansion of Chow(Zp, k|, )
with respect to k. The leading coefficient is called the Donaldson-Futaki
invariant.

On the other hand, Odaka [16] and Wang [19] showed that there exists
another formula of the Donaldson-Futaki invariant. A test configuration (%', &)
has a natural compactification (Z,.#). Then the Donaldson-Futaki invariant of
(Z, %) is expressed by intersection numbers of (M,L) and (Z,%). Theorem
1.1, which is our main result, is a generalization of this result.

THEOREM 1.1. Let (M,L) be a polarized variety of complex dimension n.
Let (X', %) be a test configuration of (M,L). If 4 is smooth, then the /-th Futaki
invariant F,(X, %) can be computed by the following formula for all ¢:

1

nl(n— ¢+ 1)(L")*

x [(n+ DL (cr(Z)" 1 Td/(T) = (er(L)"™ Td,oy (M)}
— (= + D)@ (e (L) Td,(M))],

F/ (%, %)=

where (2, %) is the natural compactification of (X', %).

The notation (Z"*!) means the intersection number .Z---.% in 4 and (L")
means L---L in M, and so on. This theorem allows us to compute F;(Z, #) in
terms of characteristic classes of (M,L) and (Z,%).

This paper is organized as follows. In section 2 we recall some definitions
and theorems we mentioned above. The proof of Theorem 1.1 is given in
section 3. Then we give the compactification of test configurations. In section
4, we give the localization formula of Theorem 1.1. This is given by Futaki [6].
The localization formula gives an alternative proof for Theorem 1.1 at least for
the product configurations.

Acknowledgment. 1 am very greatful to my supervisor Akito Futaki for his
valuable comments and constant support.

2. Background

2.1. Asymptotic Chow stability. First, we recall the definition of asymp-
totic Chow stability. Let X = P(V) be an n-dimensional subvariety of degree d.
The set of n+ 1 hyperplanes that have a common intersection with X

{(Hy,...,Hy) eP(V)x P(V*) x - x P(V*) | Hy NN Hyy N X # 0}
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is an irreducible hypersurface in (P(V*))"H. The defining polynomial Py is
homogeneous of multi-degree d = deg(X). The polynomial Py € Symd(V)®”+l
is called the Chow form.

Let (M, L) be a polarized variety of dimension n. Let My < P(H(M, LF)")
= P(V%) be the image of the Kodaira embedding of M. For M) we obtain the
Chow form Py, € Sym% (V;)®"™! . Consider the SL(¥})-action on Sym® (¥;)®"*!.

DeriNITION 2.1 (Chow stability). (1) The variety M is Chow polystable
with respect to L* if the SL(¥;)-orbit of Py, in Sym® (13)®" ™! is closed.

(2) The variety M is Chow stable with respect to L* if M is polystable and
the stabilizer at P, is finite.

(3) The variety M is Chow semistable with respect to L* if the closure of
the SL(Vj)-orbit of Py, in Sym®(¥)®"™! does not contain the origin
oc Symd"(V)®”H,

DEerINITION 2.2 (asymptotic Chow stability). The variety M is asymptoti-
cally Chow polystable (respectively stable or semistable) with respect to L if there
is a ko > 0 such that for any k > ko, M is Chow polystable (respectively stable or
semistable) with respect to LK.

2.2. The relationship to cscK metrics. There is a relation between GIT
stabilities and canonical metrics, called the Kobayashi-Hitchin correspondence.
The well-known conjecture of Yau, Tian and Donaldson asserts that the
polarized manifold (M,L) is “K-polystable” if and only if constant scalar
curvature Kéhler metrics (cscK metrics for short) exist in ¢;(L). K-stability
is a little different notion from Chow stability, but asymptotic Chow semistability
implies K-semistability. Chow stability also has a relationship to cscK metric,
as explained below.

We denote by Aut(M) the group of automorphisms of M and by Aut(L)
the group of bundle automorphisms of L. Let Aut(M,L) be the subgroup
of automorphism group Aut(L) of L consisting of all automorphisms of L
commuting with the C*-action on the fiber. Such automorphisms of L descend
to automorphisms of M. So we can consider Aut(M,L) as a subgroup of
Aut(M). Donaldson proved the following theorem.

THEOREM 2.1 (Donaldson [4]). Let (M, L) be a polarized manifold.  Assume
that Aut(M, L) is discrete. If M admits cscK metrics in ¢(L), then (M,L) is
asymptotically Chow stable.

The assumption for Aut(M, L) means the finiteness of the stabilizer. This
theorem gives us a differential geometric criterion of asymptotic Chow stability.
Note that we can not omit the assumption. The following example is known.

THEOREM 2.2 (Ono-Sano-Yotsutani [17], Nill-Paffenholtz [15]). There is a
toric Fano T-manifold which admits Kdhler-Einstein metrics (so cscK metrics) but
not asymptotically Chow semistable.
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We will explain the example of Ono-Sano-Yotsutani in Section 4.
In the case when Aut(M, L) is not discrete, Mabuchi extended the theorem
of Donaldson.

THEOREM 2.3 (Mabuchi [13], [14]). If Aut(M, L) is not discrete, there exists
an obstruction to asymptotic Chow semistability. If the obstruction vanishes, then

the existence of cscK metrics in ¢ (L) implies the asymptotic Chow polystability of
(M, L).

This obstruction was reformulated by Futaki [7]. We will explain that in
the next section.

2.3. Higher Futaki invariants. Here we recall the definition of the Futaki
invariant. First let (M) be the complex Lie algebra of Aut(M) which consists
of holomorphic vector fields over M. When we consider Aut(M, L) as the Lie
subgroup of Aut(M), its Lie algebra b,(M) is a Lie subalgebra of h(M). Second
we fix a Kdhler form w representing ¢;(L). Then for any X €, there exists a
complex valued function uy such that

(1) i(X)w = —duy,

(2) JM uyw" = 0.

The function uy is called the Hamiltonian function of X. The existence of such
uy is well known, see [11]. Let V be the Chern connection of the Kéhler metric
associated to w, and ® be the curvature of V. Put L(X)= Vy — %y =VX
where Py is the Lie derivative. The operator L(X) defines a smooth section of
End(T'°M). Let ¢ be a GL(n, C)-invariant polynomial of degree # on gl(n, C).
We define 7 : h(M) — C by

‘%(X):(n—/—‘rl)J ¢(®)AuXwn—/+J ¢(L<X)—|—®)/\(U"_/+1.

M M

Then %, does not depend on the choice of w and depends only on the Kéhler
class ¢;(L) (see [7]). Let Td, be the /-th Todd polynomial, which is GL(n,C)-
invariant polynomial of degree Z on gl(n,C). Then Zt4, is an obstruction to the
asymptotically Chow semistability.

THEOREM 2.4 (Futaki [7]). If (M, L) is asymptotically Chow semistable, then
F14,(X) =0
holds for any 1 </ <n and X in a maximal reductive subalgebra by, of by(M).

The vanishing of all invariants Fr1a, is equivalent to the vanishing of Mabuchi’s
obstruction.
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The invariant %714, is called the /-th Futaki invariant. In paticular first
Futaki invariant %14, is the same as classical one up to a constant factor.

2.4. Chow weight. There is another interpretation of 4, by Della
Vedova and Zuddas [3]. Given a one-parameter subgroup p: C* — Aut(M, L)
with a lifting action on L, let X € (M) = Lie(Aut(M,L)) be the generator
of p. We denote by w(M,L) the weight of the C*-action induced on
Qo (A HI(M, L)Y, and by y(M,L) the Euler-Poincaré characteristic
Sro(=1) dim H'(M,L). For sufficiently large k, we may assume H'(M,LF)
=0 for i > 0 by the Kodaira vanishing theorem. We have polynomial expan-
sions with respect to &:

(3) 2(M, L) = ag(M, L)K" + ay (M, L)K"™" + - + ay(M, L),
4) w(M, L*) = bo(M, L)k + by (M, L)K" + - - + by (M, L).
DeriNITION 2.3, The Chow weight of this action is defined by

w(M, LX) by(M,L)

how(M, L¥) = — :
Chow(M. L) = 2 (M, I7) ~ ao(M, L)
We can show
bpi1(M, L)
how (M, LX) = 1220 ]
Chow(M. L7) == 037, 15)
ag(M, L) ~ao(M,L)b,(M,L) — by(M,L)a,(M, L) nt i1
+ e 5 k .
kX(M7L )/:1 aO(MvL)

The first term is known to vanish in the smooth case. Therefore we define
F/(MvL) by

M, L)b,(M, L) — by(M,L)a,(M,L)
ap(M,L)?

5) F.n) =

THEOREM 2.5 (Della Vedova-Zuddas [3]).

(© FAM. L) = Gogeir gy 71 ()

Paul and Tian showed that the first Futaki invariant F; can be considered as
the Mumford weight of the CM-line Acpow on the Hilbert scheme. Della Vedova
and Zuddas showed that the /-th Futaki invariant is also the weight of some line
Achow, s, see [3] and [8] for detail.
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2.5. Intersection formula of Donaldson-Futaki invariant. So far we have
considered product configurations. Now we consider general test configurations.
First we recall the definition. Note that Tian originally assumed that a central
fiber of a test configuration % is normal but Donaldson defined a test config-
uration as a general scheme. After that Li and Xu proved we can assume its
normality by using the minimal model program (see [12]).

DErINITION 2.4 (test configuration). Let (M,L) be a polarized variety. A
test configuration of (M,L) consists of the following data:
(1) a scheme 2 with C*-action;
(2) a C*-equivariant relatively ample line bundle ¥ — &;
(3) a flat C*-equivariant morphism 7:(%,%)— C such that we have
(4, ZL|y) = (M, L) where Z; =7n'(1).

When (M, L) has a C*-action, we can make a test configuration ' = M x C
with a diagonal C*-action, called a product configuration. Clearly the central
fiber (20, %|y,) is a polarized scheme endowed with a C*-action.

DerNITION 2.5 (Donaldson-Futaki invariant). Let (2,.%) be a test con-
figuration of (M, L). Then the Donaldson-Futaki invariant DF (%', #) is defined
by F1 (%0, ‘,f|%).

The intersection formula for the Donaldson-Futaki invariant DF (%, %) was
proved by Odaka and Wang.

THEOREM 2.6 (Odaka [16], Wang [19]). If (4, %) is normal and Q-Gorenstein,
it follows that
1 _ _
DF(Z, %) =————((n+ (K p1. 2" (L") — n( LYKy L"),
() = s (o DK P (27 (K 1)
where (X, %) is the natural compactification of (X,%), explained in the proof
of our Theorem 1.1.

Theorem 1.1 is a generalization of this result.

3. Proof of main result

First we recall the compactification of (Z,%) in [19]. Let [z : z1] be the
homogeneous coordinates of CP'. Let 0=1[1:0], co =[0:1], Ay, A,, be the
coordinate neighborhood of 0, co respectively and u = z;/zp be the local coor-
dinate in Ag. The transition function g: Ag\0 — A, \0 is given by g(u) = 1/u.

We define a C*-action on CP! x M by

(7) t-([z0: 21], ) = ([20 = t21], p)
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for e C*. In Ay x M, this action is given by z.(u, p) = (tu, p). Let x e Z\%
and 7n(x) = u. Then

0\ — A0} x M

1

x e (up(p) x)

is isomorphic where p : C* — Aut(Z, %) is the C*-action and we use p(u) 'x e
2, = M. Moreover this map is C*-equivariant, that is, the following diagram
commutes.

3{\3{0 Ao\{O} x M
¥ () ')

A -
p(t)x ———— (i, p(p) %)
So we can define
@ = gg() U (3{\3{0) U A;O x M
(gxidp)of
with the C*-action. By Z|,\,, = Ao\0 x L, we also have the C”-equivariant line
bundle ¥ — 2. Finally we get the C*-equivariant morphism = : (2, %) — CP!.
Note that the C*-action on %, =7 '({c0}) and Z|, is trivial.

_ We can take an integer N such that & + Nn*(CO¢pi(1)) — Z is ample since
¥ — X is relatively ample. Put

(8) N =P+ N*Ogpi(1).

Let oy and o, be the sections of (¢pi(1) corresponding to the divisors [0] and
[00], respectively. Since the action on CP' lifts to Ocpi(—1), the weight of ap
and o, are —1,0, respectively. The short exact sequence

0 —— kA (—[20)) T2 ke —— kN ] yg —— O
induces the following exact sequence
0 —— HT, kA (—[20)) =8 HOT kN) —— HO(Zo, kN ] ,) — 0

by the Kodaira vanishing theorem. Put Vy=H"Z kAN (—[Z0]), Vo=
H(Z,kAN) and V3= H(Zy,kAN],,). We denote by d; the dimension of ¥
and by w; the total weights of the C*-action on V;. We have

) dy=d> —d,
(10) w3 =wy — (w) — dy),
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since the weight of n*gg is —1. By definition, the C*-action on 7*Ocp:i(1)],, is
trivial, and hence w3 = w(%o,k%|;,). For g, we have

0 —— HZ kN (—[Z,)) =5 HNZ kN) —— H(Z kN |7 ) — 0.

Put V4 = HY (X, kN

7,). Similarly, we have
(11) dy = dr — dy,
(12) Wa = Wy — wy.

Note that kA"|; =kZ|; +kNn*Opi([0]) by (8). Since the action on Z|; is
trivial, we have wy = —kNd,. It follows that

(13)  w(Z, k&

7,) = W3 =wy — (w1 —dy)
=d) + (wy —wy)
=d| + ws
=d, — (kN + 1)d3
= dim H(Z,kAN") — (kN + 1) dim H"(Zo, k<L |,,)
from (9) to (12).
Now, we calculate the weight w(Zp, kZ|;,) by the Riemann-Roch-Hirzebruch

theorem. Note that dim H°(%,k<|,,) = dim H*(2,k<|,,) = dim H°(M kL)
for sufficiently large k by the flatness of & — CP!. We have

(14) dim H°(M, kL) :J ch(kL) Td(M)
S|

/=0 (

(15)  dim HY(Z, k") :J ch(k ") Td(Z)

2

n+1 1 ) _ o
— (n_/+1)'Jicl<JV>’1 Td/(%‘)kn—/+

/=0 HJa

- 1 7y n—/+1 7 I

/=0 e

LN _ o,
+ NZ—J | (@) Td Tk

Here we use A" = % + Nn*Ocpi([o0]). Substituting (14) and (15) into (13), we
get
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n UZ Td, () - | Tdn(Mﬂ .

Note that this polynomial does not depend on N. Finally, we obtain

(16) b= (_;H), (€1(2)" T (T) — en (L) Tdyy (M)

for 1 </ <mn. This implies Theorem 1.1.

4. Localization and example

In this section, we will see that Theorem 1.1 is localized to the formula in [6]
by the original Bott residue formula. This gives the alternative proof of the
result of Della Vedova and Zuddas [3]. Finally we give the example of [15]
calculated in [17].

For the convenience of reader, recall the Bott residue formula [1]. Let M
be a compact complex manifold and ¢ be a GL(n, C)-invariant polynomial of
degree n on gl(n,C). Let X be a holomorphic vector field. Assume that the
zero set of X consists of manifolds {Z;}. Then L(X)=Vy — %y induces a
endomorphism L"(X) of the normal bundle v(Z,). Suppose that L'(X) is non-
degenerate. Then it holds

P(L(X) +O)l,
(? (LX) + K))

(17) p(M) = (©) =

ieAdZi det

)

where © and K is the curvature of tangent bundle 7M and normal bundle v(Z;)
respectively. Note that Bott proved this for arbitrary equivariant vector bundle,
not only for tangent bundle 7M.

We consider the localization of Theorem 1.1 by the Bott residue formula.
Let M be a Fano manifold and X a holomorphic vector field on M. Assume
that zero set of X consists of isolated points and X is non-degenerate. Take
the canonical lift of X to —Kj. Let (2,%) be the product configuration
of the C*-action generated by X and (%, %) be the compactification of (4, %).
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The set of fixed points of the C*-action on % is the union of the whole fiber

2., and points on the central fiber Zy. Thus, we have

7)) Td/(L(X) + ©)

det \/2—_:1(?’()() + K)

o /+1
|y )
q:fixed point det 2; (Z(X)q)

Cl(g

a8 [ a@y T =

where L(X) is the endomorphism of tangent bundle 7%, L'(X) is the induced
endomorphism of the normal bundle v(Z.,), ® is curvature of 7% and K is the
curvature of v(%..,). Here we use the fact that 2| - 7, is the anticanonical bundle
and the C*-action on 2| > 7, 1s trivial.  We consider the first term of (18). we omit
the determinant since the codimension of 5&} 1s one. From the construction of
X, v(Z,) is trivial. 73
Then we have

(19) LX)+ 0= o,

where @), is the curvature of M. Since the Todd polynomial is multiplicative,
it follows that

(20) Td/(L(X) + ©) = Td, (M) + Tdi(—1) Td,_(®y)
= Td/(M) + %Cl(—l) Td/,l(@)M)

=Td/(M) — % Td/—1(Ou).

Substituting (19) and (20) to (18), we get
(21 J_cl(s?)"-’“ Td,(7)

(= Td) (X))
/1

1 _ .
=5 @iz e+ >

Z,

q:fixed point det 5 (E(X))
! n—rt+1 (cf ! Td/)(L(X))
=—| a) Td, (M) + ) .
2 JM q:fixed point  Jat V-1 (Z(X))

2n
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Similarly we can calculate the second term of (21). On the central fiber %, we
have

1] o 0
22 LX) = 0
(22) (X) = : L)
0
and
(23) Ta/(L(0) = T (L00) + Y0 T (L))

Substituting (22) and (23) to (21), we obtain
@ | (@ Tam
x

(e~ TANLX),)

Ca(Zp) T T @)+ Y

g : ; V-1
o :fixed poin

4 pomt - det o (L(X)y)
From (16), it follows that

1 (ef " Td/)(L(X),)
(25) b= T Ve S—

q:fixed point det 2_ (L(X)q)
T

This is the localization formula in [17].
Similarly we obtain the localization formula of by and ay:

B (§n+l)
(26) o= g
R el (L(X))""!
(n+ 1), ﬁx;lwm‘d t \/:T(L(X)q)’
n—{ Td
a/:(n_l/)v 2 A \}— v
“)* q:fixed point det s (L(X)q)

Next, see the example in [15]. We consider the Fano polytope in R7 whose
vertices are given by the following matrix:
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1 o0 0 0 -1 00O OO0 O
610 0 -1 0 00O O O O
601 -1 0 0 0O0OO0OTO0OO0O O
(27) o000 0 o0 O 10O0-10 0
000 0 O O O0OT1O0-10 0
000 0 O O O0OO0OT1-10 0
06000 -1 -1 -1 000 2 1 -1

Let M be the 7-dimensional toric Fano manifold associated with the polytope.
Then M is a P'-fibration on (P')® x P® and admits Kihler-Einstein metrics
(see [15]).

Note that by in (26) coincides with the original Futaki invariant when we
consider the canonical lift of X to —Kj, (see [9]). Now it is zero since M is
Kaéhler-Einstein. So we just have to calculate b, and ay.

Next, define a C*-action on M. Here we consider the following one-
parameter subgroup. Let v; be the i-th vertex in (27). Let Spec(C[X}, X2, X,
Y1, Y», Y3, Z]) be the affine toric variety which corresponds to the 7-dimensional
cone generated by {v;, vz, v3,v7,08,v9,v11}. Here X1, X», X5 are affine coordinates
of (Pl)3, Y, Y», Y3 are affine coordinates of P and Z is an affine coordinate of
the fiber. Then the one-parameter subgroup o, is defined by

o (X1,X2, X3, Y1, Y2, Y3,Z)
= (eM' X}, e Xy, %' X3, Y|, P2 Y5, P Y3, 07 7).

This one-parameter subgroup is defined over the whole M. For a generic
{ois B vhi <i j<3» the set of fixed points of g, consists of the isolated 64 points
(see [17]). Let X be the holomorphic vector field generated by o,. Take the
lift of X to —K), as section 2.3. Then higher Futaki invariants are calculated
in [17] using the localization formula (25). We have

68 3 3

b3 —E (;al _;ﬂi_2y>7
3 3

b4 :%<Zal _Zﬁi_2y>v
1=1 1=1
10 3 3

bs —?<Zaz—2ﬁi_23’>’
1=1 1=1
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o= Tie (S Son-),
2 3 3
by :E<;ai_;ﬁi_2y>'

The similar calculation gives

(28) (—Ky)" = 13047715.

Finally, we obtain

i, ~ =
3 3
13?)2;315 (Z Z: 2y>’
P, @) = 22848 23: 23: -,
13047715 ( s y)’
P, ) = 5488 23: 23: ,
2609543 ( s V)’
Py, ) = 3360 23: 23: ,
2609543 ( s V)
ol ) = 3424 23: 23: ,
13047715 ( s y)’
3 3
B@,2) = 13047715 (Z Z: 2y>'
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