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COHOMOLOGY FORMULA FOR OBSTRUCTIONS

TO ASYMPTOTIC CHOW SEMISTABILITY

Yuta Suzuki

Abstract

Odaka [16] and Wang [19] proved the intersection formula for the Donaldson-

Futaki invariant. In this paper, we generalize this result for the higher Futaki

invariants, which are obstructions to asymptotic Chow semistability.

1. Introduction

Let M be a complex manifold of dimension n, and L be an ample line
bundle over M. The existence of constant scalar curvature Kähler metrics (cscK
metrics for short) in c1ðLÞ is an important problem in Kähler geometry. The
conjecture of Yau, Tian and Donaldson asserts that the existence of cscK metrics
in c1ðLÞ is equivalent to a certain GIT stability of the polarized variety ðM;LÞ.
In fact, Chen, Donaldson and Sun [2], Tian [18] gave the solution of this problem
when the polarization is the anti-canonical bundle of M. The relevant GIT
condition in this case is called K-stability. On the other hand, K-stability is not
the only stability notion related to the existence of cscK metrics, and asymptotic
Chow stability is one of stability notions. Donaldson [4] proved that if the
automorphism group AutðM;LÞ is discrete, then the existence of cscK metrics
implies the asymptotic Chow semistability of ðM;LÞ. Mabuchi [14] extended the
result for the case AutðM;LÞ is not discrete. More precisely, he proved that
there exists an obstruction to asymptotic Chow semistability and if the obstruc-
tion vanishes, the existence of cscK metrics in c1ðLÞ implies the asymptotic Chow
polystability of ðM;LÞ. After that, the obstruction was reformulated by Futaki
[7] as an integral invariants of ðM;LÞ. They are called higher Futaki invariants.

Della Vedova and Zuddas [3] showed that the higher Futaki invariants
are closely related to the Chow weight. Let ðX;LÞ be a test configuration of
ðM;LÞ. Then the central fiber ðX0;LjX0

Þ is a polarized scheme endowed with

a C�-action. For an integer k, let wðX0; kLjX0
Þ be the Euler-Poincaré char-

acteristic of ðX0; kLjX0
Þ and wðX0; kLjX0

Þ be the weight of the C�-action on the
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one-dimensional vector space 1n

i¼0ð5
max

HiðM;LÞð�1Þ iÞ. Then the Chow weight
ChowðX0; kLjX0

Þ is defined by using wðX0; kLjX0
Þ and wðX0; kLjX0

Þ. We are
interested in the asymptotic behavior of ChowðX0; kLjX0

Þ when k grows. Della
Vedova and Zuddas showed that if ðX0; kLjX0

Þ is smooth, the higher Futaki in-
variants are equal to the coe‰cients of polynomial expansion of ChowðX0; kLjX0

Þ
with respect to k. The leading coe‰cient is called the Donaldson-Futaki
invariant.

On the other hand, Odaka [16] and Wang [19] showed that there exists
another formula of the Donaldson-Futaki invariant. A test configuration ðX;LÞ
has a natural compactification ðX;LÞ. Then the Donaldson-Futaki invariant of
ðX;LÞ is expressed by intersection numbers of ðM;LÞ and ðX;LÞ. Theorem
1.1, which is our main result, is a generalization of this result.

Theorem 1.1. Let ðM;LÞ be a polarized variety of complex dimension n.
Let ðX;LÞ be a test configuration of ðM;LÞ. If X is smooth, then the l-th Futaki
invariant FlðX;LÞ can be computed by the following formula for all l:

FlðX;LÞ ¼ 1

n!ðn� lþ 1Þ!ðLnÞ2

� ½ðnþ 1ÞðLnÞfðc1ðLÞnþ1�l TdlðXÞÞ � ðc1ðLÞnþ1�l Tdl�1ðMÞÞg

� ðn� lþ 1ÞðLnþ1Þðc1ðLÞn�l TdlðMÞÞ�;

where ðX;LÞ is the natural compactification of ðX;LÞ.

The notation ðLnþ1Þ means the intersection number L � � �L in X and ðLnÞ
means L � � �L in M, and so on. This theorem allows us to compute FlðX;LÞ in
terms of characteristic classes of ðM;LÞ and ðX;LÞ.

This paper is organized as follows. In section 2 we recall some definitions
and theorems we mentioned above. The proof of Theorem 1.1 is given in
section 3. Then we give the compactification of test configurations. In section
4, we give the localization formula of Theorem 1.1. This is given by Futaki [6].
The localization formula gives an alternative proof for Theorem 1.1 at least for
the product configurations.

Acknowledgment. I am very greatful to my supervisor Akito Futaki for his
valuable comments and constant support.

2. Background

2.1. Asymptotic Chow stability. First, we recall the definition of asymp-
totic Chow stability. Let X HPðVÞ be an n-dimensional subvariety of degree d.
The set of nþ 1 hyperplanes that have a common intersection with X

fðH1; . . . ;Hnþ1Þ A PðV �Þ � PðV �Þ � � � � � PðV �Þ jH1 V � � �VHnþ1 VX 0jg
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is an irreducible hypersurface in ðPðV �ÞÞnþ1. The defining polynomial PX is

homogeneous of multi-degree d ¼ degðXÞ. The polynomial PX A SymdðVÞnnþ1

is called the Chow form.
Let ðM;LÞ be a polarized variety of dimension n. Let Mk HPðH 0ðM;LkÞ�Þ

¼ PðVkÞ be the image of the Kodaira embedding of M. For Mk we obtain the
Chow form PMk

A Symdk ðVkÞnnþ1. Consider the SLðVkÞ-action on Symdk ðVkÞnnþ1.

Definition 2.1 (Chow stability). (1) The variety M is Chow polystable
with respect to Lk if the SLðVkÞ-orbit of PMk

in Symdk ðVkÞnnþ1 is closed.
(2) The variety M is Chow stable with respect to Lk if M is polystable and

the stabilizer at PMk
is finite.

(3) The variety M is Chow semistable with respect to Lk if the closure of
the SLðVkÞ-orbit of PMk

in Symdk ðVÞnnþ1 does not contain the origin
o A Symdk ðVÞnnþ1.

Definition 2.2 (asymptotic Chow stability). The variety M is asymptoti-
cally Chow polystable (respectively stable or semistable) with respect to L if there
is a k0 > 0 such that for any k > k0, M is Chow polystable (respectively stable or
semistable) with respect to Lk.

2.2. The relationship to cscK metrics. There is a relation between GIT
stabilities and canonical metrics, called the Kobayashi-Hitchin correspondence.
The well-known conjecture of Yau, Tian and Donaldson asserts that the
polarized manifold ðM;LÞ is ‘‘K-polystable’’ if and only if constant scalar
curvature Kähler metrics (cscK metrics for short) exist in c1ðLÞ. K-stability
is a little di¤erent notion from Chow stability, but asymptotic Chow semistability
implies K-semistability. Chow stability also has a relationship to cscK metric,
as explained below.

We denote by AutðMÞ the group of automorphisms of M and by AutðLÞ
the group of bundle automorphisms of L. Let AutðM;LÞ be the subgroup
of automorphism group AutðLÞ of L consisting of all automorphisms of L
commuting with the C�-action on the fiber. Such automorphisms of L descend
to automorphisms of M. So we can consider AutðM;LÞ as a subgroup of
AutðMÞ. Donaldson proved the following theorem.

Theorem 2.1 (Donaldson [4]). Let ðM;LÞ be a polarized manifold. Assume
that AutðM;LÞ is discrete. If M admits cscK metrics in c1ðLÞ, then ðM;LÞ is
asymptotically Chow stable.

The assumption for AutðM;LÞ means the finiteness of the stabilizer. This
theorem gives us a di¤erential geometric criterion of asymptotic Chow stability.
Note that we can not omit the assumption. The following example is known.

Theorem 2.2 (Ono-Sano-Yotsutani [17], Nill-Pa¤enholtz [15]). There is a
toric Fano 7-manifold which admits Kähler-Einstein metrics (so cscK metrics) but
not asymptotically Chow semistable.
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We will explain the example of Ono-Sano-Yotsutani in Section 4.
In the case when AutðM;LÞ is not discrete, Mabuchi extended the theorem

of Donaldson.

Theorem 2.3 (Mabuchi [13], [14]). If AutðM;LÞ is not discrete, there exists
an obstruction to asymptotic Chow semistability. If the obstruction vanishes, then
the existence of cscK metrics in c1ðLÞ implies the asymptotic Chow polystability of
ðM;LÞ.

This obstruction was reformulated by Futaki [7]. We will explain that in
the next section.

2.3. Higher Futaki invariants. Here we recall the definition of the Futaki
invariant. First let hðMÞ be the complex Lie algebra of AutðMÞ which consists
of holomorphic vector fields over M. When we consider AutðM;LÞ as the Lie
subgroup of AutðMÞ, its Lie algebra h0ðMÞ is a Lie subalgebra of hðMÞ. Second
we fix a Kähler form o representing c1ðLÞ. Then for any X A h0 there exists a
complex valued function uX such that

iðX Þo ¼ �quX ;ð1Þ ð
M

uXo
n ¼ 0:ð2Þ

The function uX is called the Hamiltonian function of X . The existence of such
uX is well known, see [11]. Let ‘ be the Chern connection of the Kähler metric
associated to o, and Y be the curvature of ‘. Put LðX Þ ¼ ‘X �LX ¼ ‘X
where LX is the Lie derivative. The operator LðXÞ defines a smooth section of
EndðT 1;0MÞ. Let f be a GLðn;CÞ-invariant polynomial of degree l on glðn;CÞ.
We define Ff : h0ðMÞ ! C by

FfðX Þ ¼ ðn� lþ 1Þ
ð
M

fðYÞ5uXo
n�l þ

ð
M

fðLðX Þ þYÞ5on�lþ1:

Then Ff does not depend on the choice of o and depends only on the Kähler
class c1ðLÞ (see [7]). Let Tdl be the l-th Todd polynomial, which is GLðn;CÞ-
invariant polynomial of degree l on glðn;CÞ. Then FTdl is an obstruction to the
asymptotically Chow semistability.

Theorem 2.4 (Futaki [7]). If ðM;LÞ is asymptotically Chow semistable, then

FTdlðX Þ ¼ 0

holds for any 1a la n and X in a maximal reductive subalgebra hr of h0ðMÞ.
The vanishing of all invariants FTdl is equivalent to the vanishing of Mabuchi’s
obstruction.
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The invariant FTdl is called the l-th Futaki invariant. In paticular first
Futaki invariant FTd1 is the same as classical one up to a constant factor.

2.4. Chow weight. There is another interpretation of FTdl by Della
Vedova and Zuddas [3]. Given a one-parameter subgroup r : C� ! AutðM;LÞ
with a lifting action on L, let X A h0ðMÞ ¼ LieðAutðM;LÞÞ be the generator
of r. We denote by wðM;LÞ the weight of the C�-action induced on

1n

i¼0ð5
max

HiðM;LÞð�1Þ iÞ, and by wðM;LÞ the Euler-Poincaré characteristicPn
i¼0ð�1Þ i dim HiðM;LÞ. For su‰ciently large k, we may assume HiðM;LkÞ

¼ 0 for i > 0 by the Kodaira vanishing theorem. We have polynomial expan-
sions with respect to k:

wðM;LkÞ ¼ a0ðM;LÞkn þ a1ðM;LÞkn�1 þ � � � þ anðM;LÞ;ð3Þ

wðM;LkÞ ¼ b0ðM;LÞknþ1 þ b1ðM;LÞkn þ � � � þ bnþ1ðM;LÞ:ð4Þ

Definition 2.3. The Chow weight of this action is defined by

ChowðM;LkÞ ¼ wðM;LkÞ
kwðM;LkÞ �

b0ðM;LÞ
a0ðM;LÞ :

We can show

ChowðM;LkÞ ¼ bnþ1ðM;LÞ
wðM;LkÞ

þ a0ðM;LÞ
kwðM;LkÞ

Xn
l¼1

a0ðM;LÞblðM;LÞ � b0ðM;LÞalðM;LÞ
a0ðM;LÞ2

kn�lþ1:

The first term is known to vanish in the smooth case. Therefore we define
FlðM;LÞ by

FlðM;LÞ ¼ a0ðM;LÞblðM;LÞ � b0ðM;LÞalðM;LÞ
a0ðM;LÞ2

:ð5Þ

Theorem 2.5 (Della Vedova-Zuddas [3]).

FlðM;LÞ ¼ 1

VolðM;LÞFTdlðXÞ:ð6Þ

Paul and Tian showed that the first Futaki invariant F1 can be considered as
the Mumford weight of the CM-line lChow on the Hilbert scheme. Della Vedova
and Zuddas showed that the l-th Futaki invariant is also the weight of some line
lChow;l, see [3] and [8] for detail.
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2.5. Intersection formula of Donaldson-Futaki invariant. So far we have
considered product configurations. Now we consider general test configurations.
First we recall the definition. Note that Tian originally assumed that a central
fiber of a test configuration X0 is normal but Donaldson defined a test config-
uration as a general scheme. After that Li and Xu proved we can assume its
normality by using the minimal model program (see [12]).

Definition 2.4 (test configuration). Let ðM;LÞ be a polarized variety. A
test configuration of ðM;LÞ consists of the following data:

(1) a scheme X with C�-action;
(2) a C�-equivariant relatively ample line bundle L ! X;
(3) a flat C�-equivariant morphism p : ðX;LÞ ! C such that we have

ðX1;LjX1
Þ ¼ ðM;LÞ where X1 ¼ p�1ð1Þ.

When ðM;LÞ has a C�-action, we can make a test configuration X ¼ M � C
with a diagonal C�-action, called a product configuration. Clearly the central
fiber ðX0;LjX0

Þ is a polarized scheme endowed with a C�-action.

Definition 2.5 (Donaldson-Futaki invariant). Let ðX;LÞ be a test con-
figuration of ðM;LÞ. Then the Donaldson-Futaki invariant DFðX;LÞ is defined
by F1ðX0;LjX0

Þ.

The intersection formula for the Donaldson-Futaki invariant DFðX;LÞ was
proved by Odaka and Wang.

Theorem 2.6 (Odaka [16], Wang [19]). If ðX;LÞ is normal and Q-Gorenstein,
it follows that

DFðX;LÞ ¼ 1

2ðnþ 1ÞðLnÞ2
ððnþ 1ÞðKX=P1 :LnÞðLnÞ � nðLnþ1ÞðKM :Ln�1ÞÞ;

where ðX;LÞ is the natural compactification of ðX;LÞ, explained in the proof
of our Theorem 1.1.

Theorem 1.1 is a generalization of this result.

3. Proof of main result

First we recall the compactification of ðX;LÞ in [19]. Let ½z0 : z1� be the
homogeneous coordinates of CP1. Let 0 ¼ ½1 : 0�, y ¼ ½0 : 1�, D0, Dy be the
coordinate neighborhood of 0, y respectively and m ¼ z1=z0 be the local coor-
dinate in D0. The transition function g : D0n0 ! Dyn0 is given by gðmÞ ¼ 1=m.

We define a C�-action on CP1 �M by

t � ð½z0 : z1�; pÞ ¼ ð½z0 : tz1�; pÞð7Þ
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for t A C�. In D0 �M, this action is given by t:ðm; pÞ ¼ ðtm; pÞ. Let x A XnX0

and pðxÞ ¼ m. Then

f : XnX0 ! D0nf0g �M

x 7! ðm; rðmÞ�1
xÞ

is isomorphic where r : C� ! AutðX;LÞ is the C�-action and we use rðmÞ�1
x A

X1 ¼ M. Moreover this map is C�-equivariant, that is, the following diagram
commutes.

XnX0 D0nf0g �M

x �������!f ðm; rðmÞ�1
xÞ������! �t

������! �t

rðtÞx �������!f ðtm; rðmÞ�1
xÞ

So we can define

X ¼ X0 U ðXnX0Þ 6
ðg�idM Þ� f

Dy �M

with the C�-action. By LjXnX0
¼ D0n0� L, we also have the C�-equivariant line

bundle L ! X. Finally we get the C�-equivariant morphism p : ðX;LÞ ! CP1.
Note that the C�-action on Xy ¼ p�1ðfygÞ and LjXy

is trivial.

We can take an integer N such that LþNp�ðOCP1ð1ÞÞ ! X is ample since
L ! X is relatively ample. Put

N ¼ LþNp�OCP1ð1Þ:ð8Þ

Let s0 and sy be the sections of OCP1ð1Þ corresponding to the divisors ½0� and
½y�, respectively. Since the action on CP1 lifts to OCP1ð�1Þ, the weight of s0
and sy are �1; 0, respectively. The short exact sequence

0 ���! kNð�½X0�Þ ���!�p �s0
kN ���! kNjX0 ���! 0

induces the following exact sequence

0 ���! H 0ðX; kNð�½X0�ÞÞ ���!�p �s0
H 0ðX; kNÞ ���! H 0ðX0; kNjX0

Þ ���! 0

by the Kodaira vanishing theorem. Put V1 ¼ H 0ðX; kNð�½X0�ÞÞ, V2 ¼
H 0ðX; kNÞ and V3 ¼ H 0ðX0; kNjX0

Þ. We denote by di the dimension of Vi

and by wi the total weights of the C�-action on Vi. We have

d3 ¼ d2 � d1;ð9Þ
w3 ¼ w2 � ðw1 � d1Þ;ð10Þ
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since the weight of p�s0 is �1. By definition, the C�-action on p�OCP1ð1ÞjX0
is

trivial, and hence w3 ¼ wðX0; kLjX0
Þ. For sy, we have

0 ���! H 0ðX; kNð�½Xy�ÞÞ ���!�p �sy
H 0ðX; kNÞ ���! H 0ðXy; kNjXy

Þ ���! 0:

Put V4 ¼ H 0ðXy; kNjXy
Þ. Similarly, we have

d4 ¼ d2 � d1;ð11Þ
w4 ¼ w2 � w1:ð12Þ

Note that kNjXy
¼ kLjXy

þ kNp�OP1ð½y�Þ by (8). Since the action on LjXy
is

trivial, we have w4 ¼ �kNd4. It follows that

wðX0; kLjX0
Þ ¼ w3 ¼ w2 � ðw1 � d1Þð13Þ

¼ d1 þ ðw2 � w1Þ
¼ d1 þ w4

¼ d2 � ðkN þ 1Þd3
¼ dim H 0ðX; kNÞ � ðkN þ 1Þ dim H 0ðX0; kLjX0

Þ

from (9) to (12).
Now, we calculate the weight wðX0; kLjX0

Þ by the Riemann-Roch-Hirzebruch

theorem. Note that dim H 0ðX0; kLjX0
Þ ¼ dim H 0ðX1; kLjX1

Þ ¼ dim H 0ðM; kLÞ
for su‰ciently large k by the flatness of X ! CP1. We have

dim H 0ðM; kLÞ ¼
ð
M

chðkLÞ TdðMÞð14Þ

¼
Xn
l¼0

1

ðn� lÞ!

ð
M

c1ðLÞn�l TdlðMÞkn�l;

dim H 0ðX; kNÞ ¼
ð
X

chðkNÞ TdðXÞð15Þ

¼
Xnþ1

l¼0

1

ðn� lþ 1Þ!

ð
X

c1ðNÞn�lþ1 TdlðXÞkn�lþ1

¼
Xnþ1

l¼0

1

ðn� lþ 1Þ!

ð
X

c1ðLÞn�lþ1 TdlðXÞkn�lþ1

þN
Xn
l¼0

1

ðn� lÞ!

ð
Xy

c1ðLÞn�l TdlðXÞkn�lþ1:

Here we use N ¼ LþNp�OCP1ð½y�Þ. Substituting (14) and (15) into (13), we
get
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wðX0; kLjX0
Þ ¼ w3

¼ 1

ðnþ 1Þ! c1ðLÞnþ1 þN
1

n!

ð
Xy

c1ðLÞn �
ð
M

c1ðLÞn
� �� �

knþ1

þ
Xn
l¼1

�
1

ðn� lþ 1Þ! fc1ðLÞn�lþ1 TdlðXÞ � c1ðLÞn�lþ1 Tdl�1ðMÞg

þN
1

ðn� lÞ!

ð
Xy

c1ðLÞn�l TdlðXÞ �
ð
M

c1ðLÞn�l TdlðMÞ
� ��

kn�lþ1

þ
ð
X

Tdnþ1ðXÞ �
ð
M

TdnðMÞ
� �

:

Note that this polynomial does not depend on N. Finally, we obtain

bl ¼
1

ðn� lþ 1Þ! ½c1ðLÞn�lþ1 TdlðXÞ � c1ðLÞn�lþ1 Tdl�1ðMÞ�ð16Þ

for 1a la n. This implies Theorem 1.1.

4. Localization and example

In this section, we will see that Theorem 1.1 is localized to the formula in [6]
by the original Bott residue formula. This gives the alternative proof of the
result of Della Vedova and Zuddas [3]. Finally we give the example of [15]
calculated in [17].

For the convenience of reader, recall the Bott residue formula [1]. Let M
be a compact complex manifold and j be a GLðn;CÞ-invariant polynomial of
degree n on glðn;CÞ. Let X be a holomorphic vector field. Assume that the
zero set of X consists of manifolds fZlg. Then LðXÞ ¼ ‘X �LX induces a
endomorphism LnðX Þ of the normal bundle nðZlÞ. Suppose that LnðXÞ is non-
degenerate. Then it holds

jðMÞ ¼ jðYÞ ¼
X
l AL

ð
Zl

jðLðXÞ þYÞjZl

det

ffiffiffiffiffiffiffi
�1

p

2p
ðLnðXÞ þ KÞ

 ! ;ð17Þ

where Y and K is the curvature of tangent bundle TM and normal bundle nðZlÞ
respectively. Note that Bott proved this for arbitrary equivariant vector bundle,
not only for tangent bundle TM.

We consider the localization of Theorem 1.1 by the Bott residue formula.
Let M be a Fano manifold and X a holomorphic vector field on M. Assume
that zero set of X consists of isolated points and X is non-degenerate. Take
the canonical lift of X to �KM . Let ðX;LÞ be the product configuration
of the C�-action generated by X and ðX;LÞ be the compactification of ðX;LÞ.
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The set of fixed points of the C�-action on X is the union of the whole fiber
Xy and points on the central fiber X0. Thus, we haveð

X

c1ðLÞn�lþ1 TdlðXÞ ¼
ð
Xy

c1ðLjXy
Þn�lþ1 TdlðLðX Þ þYÞ

det

ffiffiffiffiffiffiffi
�1

p

2p
ðLnðXÞ þ KÞ

ð18Þ

þ
X

q:fixed point

ðcn�lþ1
1 TdlÞðLðXÞqÞ

det

ffiffiffiffiffiffiffi
�1

p

2p
ðLðXÞqÞ

;

where LðXÞ is the endomorphism of tangent bundle TX, LnðXÞ is the induced
endomorphism of the normal bundle nðXyÞ, Y is curvature of TX and K is the
curvature of nðXyÞ. Here we use the fact that LjXy

is the anticanonical bundle

and the C�-action on LjXy
is trivial. We consider the first term of (18). we omit

the determinant since the codimension of Xy is one. From the construction of
X, nðXyÞ is trivial. Thus, K ¼ 0 and TXjXy

is decomposed to TP1jfyg lTXy.
Then we have

LðXÞ þY ¼

�1 0 � � � 0

0

..

.
YM

0

0
BBBB@

1
CCCCA;ð19Þ

where YM is the curvature of M. Since the Todd polynomial is multiplicative,
it follows that

TdlðLðXÞ þYÞ ¼ TdlðMÞ þ Td1ð�1Þ Tdl�1ðYMÞð20Þ

¼ TdlðMÞ þ 1

2
c1ð�1Þ Tdl�1ðYMÞ

¼ TdlðMÞ �
ffiffiffiffiffiffiffi
�1

p

4p
Tdl�1ðYMÞ:

Substituting (19) and (20) to (18), we getð
X

c1ðLÞn�lþ1 TdlðXÞð21Þ

¼ 1

2

ð
Xy

c1ðLjXy
Þn�lþ1 Tdl�1ðYMÞ þ

X
q:fixed point

ðcn�lþ1
1 TdlÞðLðX ÞÞ

det

ffiffiffiffiffiffiffi
�1

p

2p
ðLðX ÞÞ

¼ 1

2

ð
M

c1ðLÞn�lþ1 Tdl�1ðMÞ þ
X

q:fixed point

ðcn�lþ1
1 TdlÞðLðX ÞÞ

det

ffiffiffiffiffiffiffi
�1

p

2p
ðLðX ÞÞ

:
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Similarly we can calculate the second term of (21). On the central fiber X0, we
have

LðXÞ ¼

1 0 � � � 0

0

..

.
LðXÞ

0

0
BBBB@

1
CCCCAð22Þ

and

TdlðLðXÞÞ ¼ TdlðLðX ÞÞ þ
ffiffiffiffiffiffiffi
�1

p

4p
Tdl�1ðLðXÞÞ:ð23Þ

Substituting (22) and (23) to (21), we obtainð
X

c1ðLÞn�lþ1 TdlðXÞð24Þ

¼
ð
Xy

c1ðLjXy
Þn�lþ1 Tdl�1ðYÞ þ

X
q:fixed point

ðcn�lþ1
1 TdlÞðLðX ÞqÞ

det

ffiffiffiffiffiffiffi
�1

p

2p
ðLðXÞqÞ

:

From (16), it follows that

bl ¼
1

ðn� lþ 1Þ!
X

q:fixed point

ðcn�lþ1
1 TdlÞðLðX ÞqÞ

det

ffiffiffiffiffiffiffi
�1

p

2p
ðLðX ÞqÞ

:ð25Þ

This is the localization formula in [17].
Similarly we obtain the localization formula of b0 and al:

b0 ¼
ðLnþ1Þ
ðnþ 1Þ!ð26Þ

¼ 1

ðnþ 1Þ!
X

q:fixed point

c1ðLðX ÞqÞ
nþ1

det

ffiffiffiffiffiffiffi
�1

p

2p
ðLðXÞqÞ

;

al ¼
1

ðn� lÞ!
X

q:fixed point

c1ðLðX ÞqÞ
n�l TdlðLðX ÞqÞ

det

ffiffiffiffiffiffiffi
�1

p

2p
ðLðX ÞqÞ

:

Next, see the example in [15]. We consider the Fano polytope in R7 whose
vertices are given by the following matrix:
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1 0 0 0 0 �1 0 0 0 0 0 0

0 1 0 0 �1 0 0 0 0 0 0 0

0 0 1 �1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 �1 0 0

0 0 0 0 0 0 0 1 0 �1 0 0

0 0 0 0 0 0 0 0 1 �1 0 0

0 0 0 �1 �1 �1 0 0 0 2 1 �1

0
BBBBBBBBBB@

1
CCCCCCCCCCA
:ð27Þ

Let M be the 7-dimensional toric Fano manifold associated with the polytope.
Then M is a P1-fibration on ðP1Þ3 � P3 and admits Kähler-Einstein metrics
(see [15]).

Note that b0 in (26) coincides with the original Futaki invariant when we
consider the canonical lift of X to �KM (see [9]). Now it is zero since M is
Kähler-Einstein. So we just have to calculate bl and a0.

Next, define a C�-action on M. Here we consider the following one-
parameter subgroup. Let vi be the i-th vertex in (27). Let SpecðC½X1;X2;X3;
Y1;Y2;Y3;Z�Þ be the a‰ne toric variety which corresponds to the 7-dimensional
cone generated by fv1; v2; v3; v7; v8; v9; v11g. Here X1;X2;X3 are a‰ne coordinates

of ðP1Þ3, Y1;Y2;Y3 are a‰ne coordinates of P3 and Z is an a‰ne coordinate of
the fiber. Then the one-parameter subgroup st is defined by

st � ðX1;X2;X3;Y1;Y2;Y3;ZÞ

¼ ðea1tX1; e
a2tX2; e

a3tX3; e
b1tY1; e

b2tY2; e
b3tY3; e

gtZÞ:

This one-parameter subgroup is defined over the whole M. For a generic
fai; bj; gg1ai; ja3, the set of fixed points of st consists of the isolated 64 points

(see [17]). Let X be the holomorphic vector field generated by st. Take the
lift of X to �KM as section 2.3. Then higher Futaki invariants are calculated
in [17] using the localization formula (25). We have

b2 ¼
68

45

X3
�¼1

ai �
X3
�¼1

bi � 2g

 !
;

b3 ¼
68

15

X3
�¼1

ai �
X3
�¼1

bi � 2g

 !
;

b4 ¼
49

9

X3
�¼1

ai �
X3
�¼1

bi � 2g

 !
;

b5 ¼
10

3

X3
�¼1

ai �
X3
�¼1

bi � 2g

 !
;
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b6 ¼
214

315

X3
�¼1

ai �
X3
�¼1

bi � 2g

 !
;

b7 ¼
2

15

X3
�¼1

ai �
X3
�¼1

bi � 2g

 !
:

The similar calculation gives

ð�KMÞ7 ¼ 13047715:ð28Þ
Finally, we obtain

F2ðX;LÞ ¼ a0b2 � b0a2

a20

¼ 7616

13047715

X3
�¼1

ai �
X3
�¼1

bi � 2g

 !
;

F3ðX;LÞ ¼ 22848

13047715

X3
�¼1

ai �
X3
�¼1

bi � 2g

 !
;

F4ðX;LÞ ¼ 5488

2609543

X3
�¼1

ai �
X3
�¼1

bi � 2g

 !
;

F5ðX;LÞ ¼ 3360

2609543

X3
�¼1

ai �
X3
�¼1

bi � 2g

 !
;

F6ðX;LÞ ¼ 3424

13047715

X3
�¼1

ai �
X3
�¼1

bi � 2g

 !
;

F7ðX;LÞ ¼ 672

13047715

X3
�¼1

ai �
X3
�¼1

bi � 2g

 !
:
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