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THE ASYMPTOTIC BEHAVIOR OF HOLOMORPHIC 1-COCHAINS
DAISUKE YAMAKI

Abstract

In this paper, we focus on relations between holomorphic 1-forms and holomorphic
1-cochains on a closed Riemann surface. Holomorphic 1-cochains are defined by Wilson
in 2008 using a combinatorial Hodge theory. A holomorphic 1-form is characterized
by its periods. So is a holomorphic 1-cochain. We consider relations between a
holomorphic 1-form and a holomorphic 1-cochain which have the same periods and
show that holomorphic 1-cochains provide an approximation of holomorphic 1-forms.

1. Introduction

In this paper, we show that holomorphic 1-cochains provide an approxi-
mation to holomorphic 1-forms on closed Riemann surfaces with triangulations.

Holomorphic 1-cochains are defined by Wilson [10] as follows. Let M be a
closed Riemann surface of genus g and K a triangulation of M. Then the space
# C1O(K) of holomorphic 1-cochains is defined as the span of the eigenvectors
for non-positive imaginary eigenvalues of the combinatorial star operator % intro-
duced in [9]. Further, for a canonical homology basis X = {ai,...,ay,b1,...,b,}
of M, Wilson defined the combinatorial periods of a holomorphic 1-cochain ¢ by
the complex numbers ¢(a;) and a(b;), and showed that holomorphic 1-cochains
satisfy Riemann’s bi-linear relation. Also, the relation gives a unique basis
{o1,...,0,} of #C"°(K), which satisfies g;(ax) = dy and is called the canonical
basis. Using the canonical basis, Wilson defined the combinatorial period matrix
of holomorphic 1-cochains and showed that the combinatorial period matrix
converges to the (conformal) period matrix, as the mesh of the triangulation tends
to zero. However, this convergence result dose not imply that holomorphic
1-cochains converge to holomorphic 1-forms. As the main result of this paper,
we show that holomorphic 1-cochains also converge to holomorphic 1-forms in
Theorem 5.3.

Our work is based on the results of Dodziuk and Patodi [1, 2]. They showed
that by using the Whitney map from cochains into differential forms, cochains
provide a good approximation to smooth differential forms. Their results yields
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many convergence results. For instance, Dodziuk and Patodi proved that
Eckmann’s Hodge decompositions of cochains, given by the Whitney inner
product, converge to the Hodge decompositions of smooth differential forms
in [1, 2], Wilson showed that the combinatorial star operator * converges to
the smooth Hodge star operator in [9]. A convergence result of combinatorial
period matrices was also given in [10].

To induce Theorem 5.3, we show three theorems which are Theorem 5.4, 5.6
and 5.7. Then, by combining these theorems, we obtain Theorem 5.3.

In Theorem 5.4, for a fixed triangulation, we estimate the differences between
holomorphic 1-cochains and holomorphic 1-forms using a matrix equation, which
implies the difference of the period matrix and the combinatorial period matrix of
a fixed triangulation. Then we obtain a vector ®x = (¢;,...,9,) € (0,1]? such
that {ka;,0;)¢c = {—ip;0),0;) ¢, where {, )¢ is the Whitney inner product on the
cochains. Note that since the space #C!"*(K) is the span of the eigenvectors
for non-positive imaginary eigenvalues of %, the canonical basis {o1,...,0,} is
not eigenbasis of % in general. Using the vector ®x and the combinatorial
period matrix, we have the estimation of differences between holomorphic
1-cochains and holomorphic 1-forms for a fixed triangulation.

Finally we study the behavior of ®x. More precisely, we show that @k is
always equal to 1 for any triangulation of a complex torus in Theorem 5.6, and
in the case of g > 1, ®k converges to (1,...,1), as the mesh tend to zero in
Theorem 5.7.

2. Combinatorial Hodge theory

In this section, we recall the construction of a combinatorial Hodge theory.
Let M be a closed smooth Riemannian n-manifold, and let Q’/(M) be the space
of smooth j-forms on M with the exterior derivative d and the Hodge star
operator x. Then we introduce an inner product {, > on Q(M) which is given
by the Riemannian metric of M. Then we define d* := (=1)/U" 4 dx and
the space #Q/(M) of harmonic j-forms on M by

HQ (M) ={weQ (M)|do=d* v =0},
and have the Hodge decomposition
Q/(M) = dQ/~" (M) ® #Q/ (M) @ d* Q' (M).

Let K be a C* triangulation of M. Now we identify |K| and M and fix an
ordering of the vertices of K. Then we denote the i-th vertex of K by p; and the
barycentric coordinate corresponding to p; by u;. Let C/(K) be the simplicial
j-cochains of K with values in R. Given the ordering of vertices, we have a
coboudary operator ¢ : C/(K) — C/*1(K). Since K is a finite complex, we can
identify chains and cochains and then for ¢ e C/(K), we may write

o= E C - T,
T
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where ¢; € R and the sum is taken over all j-simplices of K. We write 7 =
[po, 1, - -, pj] of K with the vertices in an increasing sequence with respect to the
ordering of vertices in K.

DErFINITION 2.1.  For a triangulation K, We define the mesh #(K) of K by

n(K) = sup r(p,q)

where r means the geodesic distance in M and the supremum is taken over all
pairs of vertices p, ¢ of a 1-simplex in K.
We define the fullness ®(K) of K by

vol(o)

BO(K) = ian,

where the inf is taken over all n-simplices o of K and vol(sg) is the Riemannian
volume of ¢, as a Riemannian submanifold of M.

Then we may consider only triangulations whose fullness are bounded below
by some positive real constant, see [2, 8, 9, 10] for details. Here we assume
that all triangulations satisfy this condition. This means that the shapes of all
simplices in K do not too thin.

Now we assume that the cochains C(K) are equipped with a non-degenerate
inner product {, - such that C/(K) L C¥(K) for j # k. Then we define the
adjoint operator of J:

DErFINITION 2.2.  The adjoint operator 6* : C/(K) — C/~!(K) of 6 is defined
by (6%01,02)¢ = {01,002)¢.

Then two operators J and 0" give rise to the harmonic cochains as follows.

DEFINITION 2.3.  We define the space # C/(K) of harmonic j-cochains of K
by

HC!/(K)={oe C/(K)|do=5"c=0}).

Eckmann showed that an inner product <, . provides the Hodge decom-
position of cochains.

THEOREM 2.4 ([4]). There is an orthogonal direct sum decomposition
C/(K) =0C/"Y(K) @ #C/(K) ® " C/T(K)
and #C/(K) =~ H/(K), the cohomology of (K,d) in degree |j.

In [1, 2, 9], the relations between the Hodge theory of smooth forms and
the combinatorial Hodge thery of cochains were studied. Now we recall some
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results related to these relations. To describe, we define two maps between
differential forms and cochains. First, we define a map W from C/(K) into
£2Q/(M) which is the completion of Q/(M) with respect to <, >q. The map
W is called the Whitney map.

DerINITION 2.5. For a j-simplex 7 = [py,...,p;] of K, we define Wt by
J . —~
We =Y (1) dpg A Ay A+ Ad,
i=0

where ~ over a symbol means deletion. W is defined on C(K) = P C/(K)

. . je{0,1,2}
by extending linearly.

Remark 2.6.  The barycentric coordinates y; are not even of class C ! but
they are of class C* on the interior of any simplex of K. This implies that
dy; is defined and Wt is well-defined. Therefore dW is also well-defined on

L2/ (M).
The Whitney map W has several properties.

ProposITION 2.7 ([8]). The following hold:
(1) Wz =0 on M\St(z),
(2) dw = W,

where St(t) is the closure of the open star St(7).

Next we define the de Rham map R from differential forms to cochains which
is given by integration:

DermviTiON 2.8.  For any differential form o and chain ¢, the de Rham map
R is defined by

Rw(c) = J .

The de Rham map is a chain map:

LemMa 2.9 ([3]). The following holds:
OR = Rd.

The Whitney map and the de Rham map satisfy the following relation, see
(1, 2, 8]

THEOREM 2.10. The following holds:
RW =1d.
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In general, WR # Id. However, Dodziuk and Patodi [2] showed the fol-
lowing approximation theorem.

THEOREM 2.11 ([1]). There exist a positive constant C and a positive integer
m, independent of K, such that

o — WRo||q < C-||(Id + A)"wllg - #(K)
for all C* differential forms w on M.
This implies that for a fine triangulation, cochains provide a good approx-
imation to differential forms. Also, Dodziuk and Patodi studied the Hodge

decomposition of cochains, given by the Whitney inner product. The Whitney
inner product {, ). is defined by

<Ua 77>C = <W67 WT>Q

for g,7€ C(K) and it is proven in [1] that the Whitney inner product is non-
degenerate. Then Dodziuk and Patodi [1, 2] showed that the Hodge decom-
position of cochains, given by the Whitney inner product, is an approximation of
the Hodge decomposition of (smooth) forms.

THEOREM 2.12.  Let w € Q/(M) and Rw € C/(K) have Hodge decompositions
w=do;+w; +d* w;
Ro =day + ar + 0" as.
Then
|[dwr — Woay||lq < 2 - [|(1d + A)"ollg - n(K)
Iz = Warllg < 2 [[(1d + A)"wllq - n(K)
ld w3 — Woas|lq < 4+ [|(d + A)" o]l - n(K)

where A and m are independent of @ and K.

In [9], Wilson defined the combinatorial Hodge star oprator on cochains.
To define it, he used the following cup product on cochains, which is defined by
Whitney [8]:

DEerINITION 2.13. We define U: C/(K) ® CK(K) — C/**(K) by
oUt=R(WanWr),

for o€ C/(K) and 7 e C¥(K).



302 DAISUKE YAMAKI

Then Wilson defined the star operator as follows:

DErFINITION 2.14. Let {, ). be a positive definite inner product on C(K)
such that C/(K) L CK(K) for j#k. For ge C/(K), we define %o e C"7(K)
by

<*07 T>C = (O' U T) [M]v

where [M] denotes the fundamental class of M.
This star operator % has several properties:

Lemma 2.15 ([9]). The following hold:

(1) %6 = (=1)""'6*%, ie. * is a chain map. o

(2) For o€ C/(K) and T € C"I(K), {(ka,ty¢ = (—1)/" e, k), ie. * is
(graded) skew-adjoint.

(3) * induces isomorphisms # C/(K) — #C"7(K) on harmonic cochains.

Using Theorem 2.11, Wilson showed that % converges to the Hodge star
operator x on Q(M):

THEOREM 2.16 ([9]). There exist a positive constant C and a positive integer
m, independent of K, such that

x> — WkRwl|lq < C-||(ld + A)"||q - n(K),

for all C* differential forms w on M.

Under the assumption that the cochains C(K) are equipped with the Whitney
inner product, Wilson also showed that % respects the Hodge decomposition of
C(K) and Q(M):

TueoreM 2.17 ([9]). Let we Q/(M) and Rwe C/(K) have the Hodge
decompositions
w=dw +w;+d w;
Rw = day + ay + 0" as.

Then there exist a positive constant C and a positive integer m, independent of K,
such that

[xdwy = Wikoai|lq < C- (||(1d + A)"wllq + [|(Id + A)" don|lg) - n(K),
[kwy = Wkaz|lq < C- ([|(1d + A)"wllq + [|(Td + A) " w2]lq) - n(K),
d s — Wi asllg < C- (|(I1d + A)"wllg + [|(Id + A)" d”wsllg) - n(K).
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3. Holomorphic 1-forms on Riemann surfaces

In this section, we recall the definitions and properties of holomorphic
1-forms and period matrices. Let M be a closed Riemann surface of genus g > 0,
Q/(M) be the space of smooth j-forms on M with values in C and Q(M) =
(—Dje 0.1,2) Q/(M). Using the Hodge star operator %, the space of holomorphic

1-forms on M is defined by
HQYO (M) = {we #Q'(M)|*w = —iw}.

Now we define an inner product <, >y on Q(M) by

{or,w)q = JJ W1 A *003.
M

Next we take a homology basis X = {aj,...,a,,bi1,...,b,} for the first
homology, which satisfies the following properties: the intersection of any two
basis elements is non-zero only for a; and b;, in which case it is equal to one.
We say that such a basis is canonical. Then we define periods of a closed 1-form

w .] 2]
J @ J
aj by

for 1 < j,k <g. These periods satisfy the following relations, which are called
Riemann’s bi-linear relations: for two closed 1-forms w;, w,,

g
(rwp, g = Z (J

a)IJ @—J Q)]J w; |.
=1 j b bj 4

Especially, for any w;,w; € #Q40(M),

([ o] )0

j=1

This relation inplies that if all [ @ of a holomorphic 1-form w are zero, then
w=0. By the rank-nullity theorem for linear maps, we have the followmg

isomorphism:
%/QI’O(M)SwH<J co,...,J w)ng.
ay ay

Namely, holomorphic 1-forms are characterized by A-periods. Using this prop-
erty, we define a unique basis {0),...,0,} of #Q"°(M) which satisfies Ju 05 = O
for 1 < j,k<g. We call this basis the canonical basis of #Q"*(M) (deter-
mined by a canonical homology basis X). Then we define the period matrix
M= () <jr<y BY T = [y, 0;. It is known that period matrices lie in the
Siegel upper half space.
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4. Holomorphic 1-cochains and combinatorial period matrices

Wilson applied the combinatorial Hodge theory to Riemann surfaces in [10].
To define holomorphic 1-cochains, we need to extend some of the definitions
of the combinatorial Hodge theory to the complex setting. Let M be a closed
Riemann surface with a triangulation K, and let C/(K) be the simplicial cochains
with values in C. Here suppose that the cochains C(K) are equipped with a
non-degenerate inner product such that C(K) and C/(K) are orthogonal for
i # j. Then the star operator % on cochains C(K) is defined by

(Ko, e = (UUf)[M]v

where U is extended over C linearly. Also, for complex cochains, we have a
Hodge decomposition

C'(K)=0C"K)® #C'(K) ® 5" C*(K).

By Lemma 2.15, we regard % as an isomorphism from #C!(K) into
#CY(K) which is skew-adjoint. Then we define holomorphic l-cochains as
follows:

DerINITION 4.1. Let <, - be a hermitian inner product on the complex
valued simpicial 1-cochains which is R-valued on R-cochains. We define the
space #C'°(K) of holomorphic 1-cochains to be the span of the eigenvectors
for non-positive imaginary eigenvalues of % and the space #C%!(K) of anti-
holomorphic 1-cochains to be the span of the eigenvectors for non-negative
imaginary eigenvalues of .

Now we assume that the cochains C(K) are equipped with the Whitney inner
product. Note that the Whitney inner product is R-valued on R-cochains.
Then we have the following properties of #C"°(K) and #C%!(K), due to
[7, 10].

LemMmA 4.2. Let M be a closed Riemann surface of genus g with a canonical
homology basis ¥ and a triangulation K. Then, the following hold:

(1) #CY(K)=#C"(K)@® #C"(K).

(2) dime¢ #C'°(K) = dim¢ #C*1(K) = g.

(3) Complex conjugation maps #C"°(K) to #C%'(K) and vice versa.

Next we define combinatorial periods.
DerFmiITION 4.3. Let M be a closed Riemann surface of genus g with a
canonical homology basis X and a triangulation K. We define the combinatorial

periods of ¢ e #C'(K) by the following complex numbers:

a(a;),a(bj) for 1<j<g.
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Especially, combinatorial periods of holomorphic 1-cochains also satisfy
Riemann’s bi-linear relations.

THEOREM 4.4 ([10]). For o,7e€ #C"(K), we have

(o(aj)t(b;) — a(bj)t(a;)) = 0.

g
=1

J

To define combinatorial period matrices, Wilson [10] showed the following
relation. For g,7e #C"(K),

(Ko, 0yc =) (o(a)2(by) — a(b)1(a))).

J=1

This yields the following.

COROLLARY 4.5 ([10])). Let o be a holomorphic 1-cochain.

(1) If all A-periods a(a;), 1 < j<g or all B-periods a(b;), 1< j<g are
vanish, then o = 0.

(2) If all A-periods o(a;), 1 < j<g and all B-periods a(b;), 1 < j<g are
real, then o = 0.

For any basis {t1,...,7,} for #C1%(K), we consider the following equation
of ()

1<ij<g*
[
E Cl'jTi(Clk> = 5jk'
i=1

By Corollary 4.5 (1), the matrix (c;)
(M,%,K). Then we put g; =37,
canonical basis of #C"0(K).

Using the canonical basis, we define combinatorial period matrices as
follows.

1<i,j<g 18 uniquely determined by a triple
c;7i. This basis {ai,...,04} is called the

DEerFINITION 4.6. Let M be a closed Riemann surface of genus g with a
canonical homology basis £ and a triangulation K. Let {oy,...,0,} be the
canonical basis of #C"°(K). Then the combinatorial period matrix Ilgx =
(%) <jk<y Of M is defined by nf = g;(by).

THEOREM 4.7 ([10]). Combinatorial period matrices are symmetric and their
imaginary parts are positive definite.

This theorem implies that combinatorial period matrices lie in the Siegel
upper half space. Now we recall some relations between period matrices and
combinatorial period matrices.
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THEOREM 4.8 ([10]). Let M be a closed Riemann surface with a canonical
homology basis X, and let T1 be the period matrix. Let {K,},.n be a sequence of
triangulations of M with mesh converging to zero. Then the combinatorial period
matrices Ik, satisfy

lim HK” =II.

n—oo

To prove this theorem, Wilson showed the following lemmas, which are also
used for the proof of Theorem 5.7.

Lemma 4.9 ([10]). Let M be a closed Riemann surface with a triangulation
K. For any we %QI’O(M) which has the following decomposition

Rw =089 + hy + hy + 67k,

where hy € # C"°(K) and hy € #C"'(K), there exists positive constant C, depen-
dent on w but independent of K, such that

|Wh) — |l < C-y(K).

Also, the original proof of the above lemma in [10] provides the following
lemma:

Lemma 4.10. Let M be a closed Riemann surface with a triangulation K.
For any we #Q"°(M) which has the following decomposition

Rw =089 + hy + hy + 67k,

where hy € #CYO(K) and hy € # C%'(K), there exists positive constant C, depen-
dent on w but independent of K, such that

|WHkh —*o|g < C-y(K).
Proof. By Theorem 2.12 and 2.17, there is a constant C, indepedent of K,
such that
C-n(K) = |[WHk(h + h2) = *ollq + [lo = Wk + h)llg

= [[Wk(hi + hy) = xwllg + [[xo +iW(h + h)llq

> ||Wahy + Wkhy +iW(hy + ha)||o

= || %hy + H*hy +i(h + o)l
Let ¢y,...,¢, be an orthogonal eigenbasis of # CHO(K) for %, with eigenvalues

—ily,...,—ilg (3; > 0), and let @y, . .. ,ggg be an orthogonal eigenbasis of # C%!(K)

for %, with eigenvalues iy, ...,id, (J; >0). Then we may write s = oty

and hy =327, &;. Since #C1O(K) and #C%!(K) are orthogonal, we have



THE ASYMPTOTIC BEHAVIOR OF HOLOMORPHIC 1-COCHAINS 307
g ~ ~

+HD o+ 2)ed,
= c

9
—Z (1= 4] H¢||C+Z (1+2)*151% 141l
j=1 =1

2

MQ

—4) c]¢j

j=1

> 3 RElIg)
=1
= [ %)
Hence we conclude
[Whhy —xollg < |Wk(h + ) —*ollg + |[*h|c < 2C - n(K). O

In the proof of Theorem 4.8 (Theorem 7.2 in [10]), for a sequence {K,} of
triangulations with the mesh converging to zero and the holomorphic part A/ of
R"0; € C'(K,), Wilson stated that Lemma 4.9 (Lemma 7.1 in [10]) provides

(4.1) }g%()—L@=%.

However, in [11], Wilson remarked that (4.1) dose not follows from the lemma
since the convergence in the lemma is with respect to #2?-norm, and the
integration is not a bounded operator on smooth forms with respect to the
norm. Also, Wilson stated that using the following lemma, (4.1) holds since
we are considering smooth differential forms that are closed.

LemMma 4.11 ([11]). Let wy, be a sequence of smooth closed differential forms
on a closed Riemannian manifold which converge in L* to a smooth form w. Then
for any cycle, the sequence fc wy converges to fcw

n [12], for a fixed triangulation, we can find the difference of the period
matrix and the combinatorial period matrix of a closed Riemann surface with a
canonical homology basis.

THEOREM 4.12 ([12]). Let M be a closed Riemann surface of genus g with
a canonical homology basis ¥ and a triangulation K, and let T1 be the period
matrix and I the combinatorial period matrix. Let {0:,...,0,} be the canonical
basis of #Q"(M) and {a1,...,0,} the canonical basis of #C"*(K). Then the
following equation holds:

H - H7K - A—K7
where Ax = ({Waj, x0k)0) 1 < k<
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ProposITION 4.13 ([12]). For a closed Riemann surface M of genus g with a
canonical homology basis ¥ and a triangulation K, Ak lies in the Siegel upper half
space.

5. Main results

In this section, we study the relations between holomorphic 1-forms and
holomorphic 1-cochains. More precisely, we prove that holomorphic 1-cochains
provide an approximation of holomorphic I-forms. First of all, we introduce
a correspondence between holomorphic 1-forms and holomorphic 1-cochains as
follows.

DEFINITION 5.1, For w € #Q"°(M), we define 1, € # C"-°(K) which satisfies
1,(a;) = J w,
aj
for 1<j<y.

LEMMA 5.2. The map 1: #Q (M) — #CYO(K) defined by w v 1, is an
isomorphism.

Proof. 1t is clear from the following diagram

c 4 ¢

| o |

HQ(M) —— HC(K)

where the isomorphisms from #Q"%(M) to C¢ and from #C"(K) to CY are as

follows:
AN (M) s w— (J w,...,J w) e CY,
a a

g

and
HCY(K)3 0w (alar),...,o(a,)) e CY. O

For this map w — 1,, we show the following theorem which is the main
result of this paper.

THEOREM 5.3. Let M be a closed Riemann surface of genus g with a
canonical homology basis X, w an arbitrary holomorphic 1-form on M. In the
case of g =1, for any triangulation K of M, we have

W~ wllg = 0.
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In the case of g > 1, for any sequence {K,},.n of triangulations of M with the
mesh converging to zero, we have

i (172~ g =0,
where 1" € #CYO(K,).

To prove this theorem, we need to study some relations between holomor-
phic 1-cochains and holomorphic 1-forms. In the following theorem, we give
an estimation of #2-distance between holomorphic I-forms and holomorphic
I-cochains for a fixed triangulation.

THEOREM 5.4. Let M be a closed Riemann surface of genus g with a
canonical homology basis T and a triangulation K, and let {0,,...,0,} be the
canonical basis of #Q"(M), {a1,...,a,} the canonical basis of #C"“°(K) and
Mg = (njllf)l <j.k<g the combinatorial period matrix. Then there exists a vector
Og = (¢1,---,0,) € (0,1]7 such that

(kaj, )0 = {—i9;05,0; )¢
In addition, we have

1
[Waj—0llq = Zlmﬂl‘i‘((a— 1>,

J
Jw-
aj

1
2Imzf(——1],
?j
Proof. By Theorem 4.12, we have
ImIT = —ImIlg +Im Ag

and

9
Wiy —wlg< Y
J=1

for all e #Q (M),

and
(5.1) Im 7; = —Im 7§ + Im{Waj, %0, g,
for 1 < j<g. Using Riemann’s bi-linear relation, we compute
05, 0:>q = i{—i0;,0;>q
= ix0;,0;>q

=200 7-1.007)

= i(my — my)
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Similary, we obtain i{*gj,0;)c =2 Im K. Also we compute

nt
2 ImWaj, %05 = i({Waj, %0,>q — {Waj, x0,>)
= i({x0;, Wajyq — {Waj,x0;>q)
= {0, Wada + {Wa, 0.
By (5.1),
0j, 010 — <0;, Wajyq — {Waj,0;5q = —i(kaj, 0.
Then we have

(52)  [[Wa;— 014 = <Waj — 0;, Waj — 0;>q = {aj,0;>¢ — i{kaj,0:>c.

Wa; — 0; 2
A (LLELIN

llojllc

Here we define ¢; by

By this definition,
oj,01)¢ — i<Kkaj,0;>c = (1 — 9;)<0j,0; )¢,
and therefore
(kaj, 050 = {—ip;05,0;)c.

Since Ilx is an element of the Siegel upper half space, the diagonal elements
Imzf (1 <j<g) of ImTlg are all positive. Thus, by (5.2),

2 2.
lojllc = 1Waj — 0jllq = i<kaj,0;>c =2 Im 7T_/§< >0,
and so
2
- 1Wa; —bllo
2
loillc

This implies that 0 <@, <1 (1 <j<g) and therefore ®x e (0,1]°. By the
definition of ¢,

[Wa; = Olla = /1 — o;llajll -

Since
K
J]

o2 = XXene2e 2107
’ ?j ?j

and ||gj||o > 0, we have

ZImnﬁ( of 1
IWa; —6llg = /1 gllollc = /19| —L = |2Im=zf [ 1).
?j ?j
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For we #Q"(M) and 1, € #C"°(K), we may write

and

Hence we conclude

Wi = wllq =

2[m7z1§(<l—l>. O
?j

Next we study the behavior of ®g. In the case of genus 1, we show that
®x =¢p, =1. This implies that for any triangulation K of a complex torus,
A C1O(K) is the eigenspace of * for the eigenvalue —i, i.e.,

#CY(K)={oe #C"(K)| %o = —ic}.

To prove this, we show the following lemma which is a characterization of
Ox =(1,...,1).

LemMmaA 5.5. Let M be a closed Riemann surface with a canonical homology
basis T and a triangulation K, and let {01,...,0,} be the canonical basis of
HQVYO(M).  Let ®k be the vector as in Theorem 5.4. Then the following three
conditions are equivalent:

(@) @ = (1,...,1).
(b) #C'O(K) = {oce #C'(K)|*o = —ic}.
(c) WRO; =0; ae. on M for all j.
Proof. (a) = (c): By Theorem 5.4, we obtain
1Waj = jllq =0,
and so Wg; =0, a.e. on M. By Theorem 2.10; RW = Id, we have
WRH/ = WRWO']' = WO'j = Hj

a.e. on M.
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(c) = (b): For any o e C'(K), we compute

<*R@a%:4T WRO, A\ o
M

:JJ 0, A o
M

= (x0;, Wa)g
= —i0;, Wa)q
= —i{WR0;, Wa)q
= —i{RO;,0)q
= (—iR0;,0)q.
This implies that %R0, = —iRf;. By Lemma 2.9, we have
O0RO; = Rd0; =0,
and by Lemma 2.15 (1),
0" RO; = i0"*RO; = i*xoR0; = 0.

Thus all RY; (1 < j <g) are harmonic 1-cochains which have eigenvalues —i of
*, and therefore they are holomorphic 1-cochains. Since {0;,...,0,} is a basis
of #Q"(M) and WR=1Id, {R0,...,R0,} is a basis of #C"*(K). Since
every eigenvalue of RO; is —i

HCY(K)={oe #C'(K)|*o = —ic}.
Finally, it is clear that (b) induces (a). O

THEOREM 5.6. Let M be a closed Riemann surface of genus 1 (complex
torus) with a canonical homology basis X, K a triangulation of M, and ¢, € (0, 1]
which satisfies (kay,01yc = {—ip,61,01 )¢, where {a1} is the canonical basis of
AHCHOK). Then ¢ = 1.

Proof. Since the canonical basis of #Q"(M) is {c dz} where z is a local
coordinate and ¢ is some complex number, by Lemma 5.5, it is enough to show
that WRdz =dz a.e. on M.

First of all, we express WR dz by

WR dz = W(ZR dz(7) - r) = ZR dz(t) - Wr,

where the sum is taken over all l-simplices T of K. Let [po, p1, p2] be any
2-simplex of K with the barycentric coordinates y, ¢; and x,. Since Wt =0 on
M\St(t), on the interior of [po, p1, p2], we compute
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WR dz = R dz([po, p1]) - W[po, p1] + R dz([p1, p2]) - W|p1, p2)
+ R dz([p2, pol) - W[p2, po]

= (J dZ) - W(po, p1] + (J d2> - Wip1, pa
[P0, p1] [p1 2]
+ <J dZ) - W(p2, po]
[p2,po]

= (p1 — po) - Wlpo, p1i] + (p2 — p1) - Wp1, p2] + (po — p2) - W|p2, po]
= (p1—po) - (o dpy — w1 dg) + (p2 — p1) - (w1 dpty — py dpy)

+ (Po — p2) - (g dptg — po diiz)
= po(iy dpg — po dpty — po duy + 1y dptg)

+ 1o dpy — py dpg — py dpy + 1 dpy)

+ P2y dpy — py dpy — py dptg + 1o dpts)

On the interior of [po, p1, p2](3 z), the barycentric coordinates satisfy

Ho(2) + 1 (2) + pa(z) = 1
and

dpg + dpy + dpy = 0.

Since z = ij:o pjt;(z), we have

2 2
WR dz = ij “dp(z)=d <Z p,,uj(z)> =dz.

J=0

On the other hand, the union of the sets of all vertices (0-simplices) and
I-simplices of K is a finite set and therefore it is a null set. Hence WR dz = d=
a.e. on M. By Lemma 5.5, we conclude that ¢, = 1. O

Finally we consider the behavior of ®g for higher genus. The following
theorem implies that eigenvalues of * on # C°(K) converge to —i, as the mesh
tends to zero.

THEOREM 5.7. Let M be a closed Riemann surface of genus g > 1 with a
canonical homology basis X and {K,}, N be a sequence of triangulations of M with
the mesh converging to zero. Let ®k, = (¢pf,...,9,) be the vector in (0, 119 such
that '

<*OT/"!70-;1>C = <_ifﬂjl'1(7]"ly O-‘n>C>
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where each {af,...,a}} be the canonical basis of #'C"*(K,). Then we have
lim ®g, = (1,...,1).
n— oo

Proof. Let {wi,...,m,} be an orthogonal basis of #Q"°(M) and R” the de
Rham map from Q(M) to C(K,). By the Hodge decomposition and # C!(K,) =
AHCHOK,) @ #C%(K,), we obtain

R'w; =0k + h!' + h' + 39"
for any neN, where i e #'C"°(K,) and h” e #CU(K,).

First, we show that the number of K,, such that {h{,... h;} is not a basis

of #C 0( 1), 18 finite. Now we assume that the number is 1nﬁn1te Then there

exist j€{l,...,g} and a subsequence {K,,} of {K,} such that each A" is gen-
erated by the other elements, i.e.,

mipm
Z ]PhP ’
pP#J

for all m e N, where ¢;j € C.  Since A" — Zp +jCphy" 1s the holomorphic part of

R™(w; =3, ,;¢pop), by Lemma 49 we have

(5.3) ”lgrgo w; — Zc;[’,’wp
P#J Q
Also, since {wi,...,wy} is an orthogonal basis,
2 2
(5:4) =2 cpop| = lloilla + Yl Pl
P#J P#J

and therefore

0 < e Plleoplly < [0 — ZCZ}Q)})

P#J

Q
By (5.3), we obtain lim,,—. |c¢jj| = 0 and (5.4) implies that |||l =0. This is a
contradiction since {w;,.. a)g} is a basis.

Here we assume that {hl,... #} is a basis of #C"0(K,) for all neN.

Then, for any n € N, we may write

for 1 < j <g, where ¢j, e C. Next we consider lim,—., ¢j,. Let (c?/’j) be

1</,j<g
the inverse matrix of (¢jy) This matrix pr0V1des

1<j,/<g*
g ~

n __ n n

h/fzdw

J=1
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and

9 9

B (ar) Z = djj o = d,

j=1 j=1

for 1 </,k <g. By Lemma 4.9 and 4.11, we have

(5.5) lim d} = hrn hy(ak) = hm RWh} (ar) = J Wy,
Ak

n—oo
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for 1 </,k <g. Note that each Wh} is neither smooth nor closed, but it can be
approximated by a sequence of closed smooth forms and therefore we may apply

Lemma 4.11 to Wh}. Thus (5.5) implies that the matrix (d/j)l</]<g

converges

to (faj w/)lg/ﬁjsg, and therefore (E}})lgﬂgl = (dZ)l<M<y also converges to a

matrix (sj/);<; ,<,» Where each s, is determined by fal w1, ... qu W, ...

a 9 ’ Jay g
Using the Cauchy-Schwarz inequality, we compute

0 < (1—gP)loflle =<} 0/ >c — i{~ig}'a] o/ >c
= {9}, 0/)c — iK*d},0/)c
= <aj’7 — i*aj’?, an>c
<o} —i*xa}llc-llo}llc
and then
(5.6) 0<(I=9)llofllc <o} —ika/|

Since o = >"9_, ¢*h?, we have
j /=1 Sl

M&

~
Il

C

Syl - | Why — iw k|

IA
« IMQ

| V| Why — wr + ik, — iWkh) ||

™~
o |

Z |- (IIWh) — wrllg + [[xwr = Wkhj|lg).
/=1

Note that any holomorphic 1-form w satisfies w — ixw = 0.

)

By Lemma 4.9 and 4.10, there exist positive constants C,, independent of

{K,}, such that
IWhi — wrllg + [[Wkhy —xayllg < Cr - n(K).
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Thus we have

and

g
o —ikalllc < > |&]- Cr - n(Kn),
/=1

i " kg . =
Jim [l —i%kaf[c = 0.

Namely, by (5.6), we have

lim (1 — ¢7)[|a}'[| ¢ = 0.

n—oo

By Riemann’s bi-linear relations and 0 < ¢/ <1,

n 2 i n _n 211’1’17‘[]41?" K,
o712 = = <Hoof>e =1 > 2 lm
J J

and therefore lim,, ., Ha]”Hé > 2 Im 7; > 0 by Theorem 4.8. Hence we conclude
lim,—., ¢ =1 for all ;. O

Combine Theorem 5.4, 5.6 and 5.7, we can easily show Theorem 5.3.
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