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THE ASYMPTOTIC BEHAVIOR OF HOLOMORPHIC 1-COCHAINS

Daisuke Yamaki

Abstract

In this paper, we focus on relations between holomorphic 1-forms and holomorphic

1-cochains on a closed Riemann surface. Holomorphic 1-cochains are defined by Wilson

in 2008 using a combinatorial Hodge theory. A holomorphic 1-form is characterized

by its periods. So is a holomorphic 1-cochain. We consider relations between a

holomorphic 1-form and a holomorphic 1-cochain which have the same periods and

show that holomorphic 1-cochains provide an approximation of holomorphic 1-forms.

1. Introduction

In this paper, we show that holomorphic 1-cochains provide an approxi-
mation to holomorphic 1-forms on closed Riemann surfaces with triangulations.

Holomorphic 1-cochains are defined by Wilson [10] as follows. Let M be a
closed Riemann surface of genus g and K a triangulation of M. Then the space
HC1;0ðKÞ of holomorphic 1-cochains is defined as the span of the eigenvectors
for non-positive imaginary eigenvalues of the combinatorial star operator H intro-
duced in [9]. Further, for a canonical homology basis S ¼ fa1; . . . ; ag; b1; . . . ; bgg
of M, Wilson defined the combinatorial periods of a holomorphic 1-cochain s by
the complex numbers sðajÞ and sðbjÞ, and showed that holomorphic 1-cochains
satisfy Riemann’s bi-linear relation. Also, the relation gives a unique basis
fs1; . . . ; sgg of HC1;0ðKÞ, which satisfies sjðakÞ ¼ djk and is called the canonical
basis. Using the canonical basis, Wilson defined the combinatorial period matrix
of holomorphic 1-cochains and showed that the combinatorial period matrix
converges to the (conformal) period matrix, as the mesh of the triangulation tends
to zero. However, this convergence result dose not imply that holomorphic
1-cochains converge to holomorphic 1-forms. As the main result of this paper,
we show that holomorphic 1-cochains also converge to holomorphic 1-forms in
Theorem 5.3.

Our work is based on the results of Dodziuk and Patodi [1, 2]. They showed
that by using the Whitney map from cochains into di¤erential forms, cochains
provide a good approximation to smooth di¤erential forms. Their results yields
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many convergence results. For instance, Dodziuk and Patodi proved that
Eckmann’s Hodge decompositions of cochains, given by the Whitney inner
product, converge to the Hodge decompositions of smooth di¤erential forms
in [1, 2], Wilson showed that the combinatorial star operator H converges to
the smooth Hodge star operator in [9]. A convergence result of combinatorial
period matrices was also given in [10].

To induce Theorem 5.3, we show three theorems which are Theorem 5.4, 5.6
and 5.7. Then, by combining these theorems, we obtain Theorem 5.3.

In Theorem 5.4, for a fixed triangulation, we estimate the di¤erences between
holomorphic 1-cochains and holomorphic 1-forms using a matrix equation, which
implies the di¤erence of the period matrix and the combinatorial period matrix of
a fixed triangulation. Then we obtain a vector FK ¼ ðj1; . . . ; jgÞ A ð0; 1�g such
that hHsj ; sjiC ¼ h�ijjsj; sjiC , where h ; iC is the Whitney inner product on the

cochains. Note that since the space HC1;0ðKÞ is the span of the eigenvectors
for non-positive imaginary eigenvalues of H, the canonical basis fs1; . . . ; sgg is
not eigenbasis of H in general. Using the vector FK and the combinatorial
period matrix, we have the estimation of di¤erences between holomorphic
1-cochains and holomorphic 1-forms for a fixed triangulation.

Finally we study the behavior of FK . More precisely, we show that FK is
always equal to 1 for any triangulation of a complex torus in Theorem 5.6, and
in the case of g > 1, FK converges to ð1; . . . ; 1Þ, as the mesh tend to zero in
Theorem 5.7.

2. Combinatorial Hodge theory

In this section, we recall the construction of a combinatorial Hodge theory.
Let M be a closed smooth Riemannian n-manifold, and let W jðMÞ be the space
of smooth j-forms on M with the exterior derivative d and the Hodge star
operator ?. Then we introduce an inner product h ; iW on WðMÞ which is given

by the Riemannian metric of M. Then we define d � :¼ ð�1Þ jð jþ1�nÞ ? d? and
the space HW jðMÞ of harmonic j-forms on M by

HW jðMÞ ¼ fo A W jðMÞ j do ¼ d �o ¼ 0g;
and have the Hodge decomposition

W jðMÞ ¼ dW j�1ðMÞlHW jðMÞl d �W jþ1ðMÞ:
Let K be a Cy triangulation of M. Now we identify jK j and M and fix an

ordering of the vertices of K . Then we denote the i-th vertex of K by pi and the
barycentric coordinate corresponding to pi by mi. Let C jðKÞ be the simplicial
j-cochains of K with values in R. Given the ordering of vertices, we have a
coboudary operator d : C jðKÞ ! C jþ1ðKÞ. Since K is a finite complex, we can
identify chains and cochains and then for s A C jðKÞ, we may write

s ¼
X
t

ct � t;
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where ct A R and the sum is taken over all j-simplices of K . We write t ¼
½ p0; p1; . . . ; pj� of K with the vertices in an increasing sequence with respect to the
ordering of vertices in K .

Definition 2.1. For a triangulation K , We define the mesh hðKÞ of K by

hðKÞ ¼ sup rðp; qÞ

where r means the geodesic distance in M and the supremum is taken over all
pairs of vertices p, q of a 1-simplex in K .

We define the fullness YðKÞ of K by

YðKÞ ¼ inf
volðsÞ
hðKÞn ;

where the inf is taken over all n-simplices s of K and volðsÞ is the Riemannian
volume of s, as a Riemannian submanifold of M.

Then we may consider only triangulations whose fullness are bounded below
by some positive real constant, see [2, 8, 9, 10] for details. Here we assume
that all triangulations satisfy this condition. This means that the shapes of all
simplices in K do not too thin.

Now we assume that the cochains CðKÞ are equipped with a non-degenerate
inner product h ; iC such that C jðKÞ ? CkðKÞ for j0 k. Then we define the
adjoint operator of d:

Definition 2.2. The adjoint operator d� : C jðKÞ ! C j�1ðKÞ of d is defined
by hd�s1; s2iC ¼ hs1; ds2iC .

Then two operators d and d� give rise to the harmonic cochains as follows.

Definition 2.3. We define the space HC jðKÞ of harmonic j-cochains of K
by

HC jðKÞ ¼ fs A C jðKÞ j ds ¼ d�s ¼ 0g:

Eckmann showed that an inner product h ; iC provides the Hodge decom-
position of cochains.

Theorem 2.4 ([4]). There is an orthogonal direct sum decomposition

C jðKÞ ¼ dC j�1ðKÞlHC jðKÞl d�C jþ1ðKÞ

and HC jðKÞGH jðKÞ, the cohomology of ðK ; dÞ in degree j.

In [1, 2, 9], the relations between the Hodge theory of smooth forms and
the combinatorial Hodge thery of cochains were studied. Now we recall some
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results related to these relations. To describe, we define two maps between
di¤erential forms and cochains. First, we define a map W from C jðKÞ into
L2W jðMÞ which is the completion of W jðMÞ with respect to h ; iW. The map
W is called the Whitney map.

Definition 2.5. For a j-simplex t ¼ ½ p0; . . . ; pj� of K , we define Wt by

Wt ¼ j!
Xj

i¼0

ð�1Þ imi dm05� � �5cdmidmi5� � �5dmj ;

where b over a symbol means deletion. W is defined on CðKÞ ¼ 0
j A f0;1;2gC

jðKÞ
by extending linearly.

Remark 2.6. The barycentric coordinates mj are not even of class C1, but
they are of class Cy on the interior of any simplex of K . This implies that
dmj is defined and Wt is well-defined. Therefore dW is also well-defined on

L2W jðMÞ.

The Whitney map W has several properties.

Proposition 2.7 ([8]). The following hold:

(1) Wt ¼ 0 on MnStðtÞ,
(2) dW ¼ Wd,

where StðtÞ is the closure of the open star StðtÞ.

Next we define the de Rham map R from di¤erential forms to cochains which
is given by integration:

Definition 2.8. For any di¤erential form o and chain c, the de Rham map
R is defined by

RoðcÞ ¼
ð
c

o:

The de Rham map is a chain map:

Lemma 2.9 ([3]). The following holds:

dR ¼ Rd:

The Whitney map and the de Rham map satisfy the following relation, see
[1, 2, 8]:

Theorem 2.10. The following holds:

RW ¼ Id:
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In general, WR0 Id. However, Dodziuk and Patodi [2] showed the fol-
lowing approximation theorem.

Theorem 2.11 ([1]). There exist a positive constant C and a positive integer
m, independent of K , such that

ko�WRokW aC � kðId þ DÞmokW � hðKÞ

for all Cy di¤erential forms o on M.

This implies that for a fine triangulation, cochains provide a good approx-
imation to di¤erential forms. Also, Dodziuk and Patodi studied the Hodge
decomposition of cochains, given by the Whitney inner product. The Whitney
inner product h ; iC is defined by

hs; tiC ¼ hWs;WtiW

for s; t A CðKÞ and it is proven in [1] that the Whitney inner product is non-
degenerate. Then Dodziuk and Patodi [1, 2] showed that the Hodge decom-
position of cochains, given by the Whitney inner product, is an approximation of
the Hodge decomposition of (smooth) forms.

Theorem 2.12. Let o A W jðMÞ and Ro A C jðKÞ have Hodge decompositions

o ¼ do1 þ o2 þ d �o3

Ro ¼ da1 þ a2 þ d�a3:

Then

kdo1 �Wda1kW a l � kðId þ DÞmokW � hðKÞ
ko2 �Wa2kW a l � kðId þ DÞmokW � hðKÞ

kd �o3 �Wd�a3kW a l � kðId þ DÞmokW � hðKÞ

where l and m are independent of o and K.

In [9], Wilson defined the combinatorial Hodge star oprator on cochains.
To define it, he used the following cup product on cochains, which is defined by
Whitney [8]:

Definition 2.13. We define U : C jðKÞnCkðKÞ ! C jþkðKÞ by

sU t ¼ RðWs5WtÞ;

for s A C jðKÞ and t A CkðKÞ.
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Then Wilson defined the star operator as follows:

Definition 2.14. Let h ; iC be a positive definite inner product on CðKÞ
such that C jðKÞ ? CkðKÞ for j0 k. For s A C jðKÞ, we define Hs A Cn�jðKÞ
by

hHs; tiC ¼ ðsU tÞ½M�;

where ½M� denotes the fundamental class of M.

This star operator H has several properties:

Lemma 2.15 ([9]). The following hold:

(1) Hd ¼ ð�1Þ jþ1d�H, i.e. H is a chain map.
(2) For s A C jðKÞ and t A Cn�jðKÞ, hHs; tiC ¼ ð�1Þ jðn� jÞhs;HtiC , i.e. H is

(graded) skew-adjoint.
(3) H induces isomorphisms HC jðKÞ ! HCn�jðKÞ on harmonic cochains.

Using Theorem 2.11, Wilson showed that H converges to the Hodge star
operator ? on WðMÞ:

Theorem 2.16 ([9]). There exist a positive constant C and a positive integer
m, independent of K , such that

k?o�WHRokW aC � kðId þ DÞmokW � hðKÞ;

for all Cy di¤erential forms o on M.

Under the assumption that the cochains CðKÞ are equipped with the Whitney
inner product, Wilson also showed that H respects the Hodge decomposition of
CðKÞ and WðMÞ:

Theorem 2.17 ([9]). Let o A W jðMÞ and Ro A C jðKÞ have the Hodge
decompositions

o ¼ do1 þ o2 þ d �o3

Ro ¼ da1 þ a2 þ d�a3:

Then there exist a positive constant C and a positive integer m, independent of K ,
such that

k?do1 �WHda1kW aC � ðkðId þ DÞmokW þ kðId þ DÞm do1kWÞ � hðKÞ;
k?o2 �WHa2kW aC � ðkðId þ DÞmokW þ kðId þ DÞmo2kWÞ � hðKÞ;

k?d �o3 �WHd�a3kW aC � ðkðId þ DÞmokW þ kðId þ DÞm d �o3kWÞ � hðKÞ:
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3. Holomorphic 1-forms on Riemann surfaces

In this section, we recall the definitions and properties of holomorphic
1-forms and period matrices. Let M be a closed Riemann surface of genus g > 0,
W jðMÞ be the space of smooth j-forms on M with values in C and WðMÞ ¼
0

j A f0;1;2g W
jðMÞ. Using the Hodge star operator ?, the space of holomorphic

1-forms on M is defined by

HW1;0ðMÞ ¼ fo A HW1ðMÞ j ?o ¼ �iog:

Now we define an inner product h ; iW on WðMÞ by

ho1;o2iW ¼
ð ð

M

o15?o2:

Next we take a homology basis S ¼ fa1; . . . ; ag; b1; . . . ; bgg for the first
homology, which satisfies the following properties: the intersection of any two
basis elements is non-zero only for aj and bj, in which case it is equal to one.
We say that such a basis is canonical. Then we define periods of a closed 1-form
o with respect to S by ð

aj

o;

ð
bk

o;

for 1a j; ka g. These periods satisfy the following relations, which are called
Riemann’s bi-linear relations: for two closed 1-forms o1, o2,

h?o1;o2iW ¼
Xg
j¼1

ð
aj

o1

ð
bj

o2 �
ð
bj

o1

ð
aj

o2

 !
:

Especially, for any o1;o2 A HW1;0ðMÞ,

Xg
j¼1

ð
aj

o1

ð
bj

o2 �
ð
bj

o1

ð
aj

o2

 !
¼ 0:

This relation inplies that if all
Ð
aj
o of a holomorphic 1-form o are zero, then

o ¼ 0. By the rank-nullity theorem for linear maps, we have the following
isomorphism:

HW1;0ðMÞ C o 7!
ð
a1

o; . . . ;

ð
ag

o

 !
A Cg:

Namely, holomorphic 1-forms are characterized by A-periods. Using this prop-

erty, we define a unique basis fy1; . . . ; ygg of HW1;0ðMÞ which satisfies
Ð
ak
yj ¼ djk

for 1a j; ka g. We call this basis the canonical basis of HW1;0ðMÞ (deter-
mined by a canonical homology basis S). Then we define the period matrix
P ¼ ðpjkÞ1aj;kag by pjk ¼

Ð
bk
yj. It is known that period matrices lie in the

Siegel upper half space.
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4. Holomorphic 1-cochains and combinatorial period matrices

Wilson applied the combinatorial Hodge theory to Riemann surfaces in [10].
To define holomorphic 1-cochains, we need to extend some of the definitions
of the combinatorial Hodge theory to the complex setting. Let M be a closed
Riemann surface with a triangulation K , and let C jðKÞ be the simplicial cochains
with values in C. Here suppose that the cochains CðKÞ are equipped with a
non-degenerate inner product such that CiðKÞ and C jðKÞ are orthogonal for
i0 j. Then the star operator H on cochains CðKÞ is defined by

hHs; tiC ¼ ðsU tÞ½M�;

where U is extended over C linearly. Also, for complex cochains, we have a
Hodge decomposition

C 1ðKÞ ¼ dC0ðKÞlHC1ðKÞl d�C2ðKÞ:

By Lemma 2.15, we regard H as an isomorphism from HC1ðKÞ into
HC1ðKÞ which is skew-adjoint. Then we define holomorphic 1-cochains as
follows:

Definition 4.1. Let h ; iC be a hermitian inner product on the complex
valued simpicial 1-cochains which is R-valued on R-cochains. We define the

space HC1;0ðKÞ of holomorphic 1-cochains to be the span of the eigenvectors
for non-positive imaginary eigenvalues of H and the space HC0;1ðKÞ of anti-
holomorphic 1-cochains to be the span of the eigenvectors for non-negative
imaginary eigenvalues of H.

Now we assume that the cochains CðKÞ are equipped with the Whitney inner
product. Note that the Whitney inner product is R-valued on R-cochains.
Then we have the following properties of HC1;0ðKÞ and HC0;1ðKÞ, due to
[7, 10].

Lemma 4.2. Let M be a closed Riemann surface of genus g with a canonical
homology basis S and a triangulation K. Then, the following hold:

(1) HC1ðKÞ ¼ HC1;0ðKÞlHC 0;1ðKÞ.
(2) dimC HC1;0ðKÞ ¼ dimC HC0;1ðKÞ ¼ g.

(3) Complex conjugation maps HC 1;0ðKÞ to HC0;1ðKÞ and vice versa.

Next we define combinatorial periods.

Definition 4.3. Let M be a closed Riemann surface of genus g with a
canonical homology basis S and a triangulation K . We define the combinatorial
periods of s A HC1ðKÞ by the following complex numbers:

sðajÞ; sðbjÞ for 1a ja g:
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Especially, combinatorial periods of holomorphic 1-cochains also satisfy
Riemann’s bi-linear relations.

Theorem 4.4 ([10]). For s; t A HC1;0ðKÞ, we haveXg
j¼1

ðsðajÞtðbjÞ � sðbjÞtðajÞÞ ¼ 0:

To define combinatorial period matrices, Wilson [10] showed the following
relation. For s; t A HC1;0ðKÞ,

hHs; tiC ¼
Xg
j¼1

ðsðajÞtðbjÞ � sðbjÞtðajÞÞ:

This yields the following.

Corollary 4.5 ([10]). Let s be a holomorphic 1-cochain.
(1) If all A-periods sðajÞ, 1a ja g or all B-periods sðbjÞ, 1a ja g are

vanish, then s ¼ 0.
(2) If all A-periods sðajÞ, 1a ja g and all B-periods sðbjÞ, 1a ja g are

real, then s ¼ 0.

For any basis ft1; . . . ; tgg for HC1;0ðKÞ, we consider the following equation
of ðcijÞ1ai; jag: Xg

i¼1

cijtiðakÞ ¼ djk:

By Corollary 4.5 ð1Þ, the matrix ðcijÞ1ai; jag is uniquely determined by a triple

ðM;S;KÞ. Then we put sj ¼
Pg

j¼1 cijti. This basis fs1; . . . ; sgg is called the

canonical basis of HC1;0ðKÞ.
Using the canonical basis, we define combinatorial period matrices as

follows.

Definition 4.6. Let M be a closed Riemann surface of genus g with a
canonical homology basis S and a triangulation K . Let fs1; . . . ; sgg be the
canonical basis of HC1;0ðKÞ. Then the combinatorial period matrix PK ¼
ðpK

jk Þ1aj;kag of M is defined by pK
jk ¼ sjðbkÞ.

Theorem 4.7 ([10]). Combinatorial period matrices are symmetric and their
imaginary parts are positive definite.

This theorem implies that combinatorial period matrices lie in the Siegel
upper half space. Now we recall some relations between period matrices and
combinatorial period matrices.
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Theorem 4.8 ([10]). Let M be a closed Riemann surface with a canonical
homology basis S, and let P be the period matrix. Let fKngn AN be a sequence of
triangulations of M with mesh converging to zero. Then the combinatorial period
matrices PKn

satisfy

lim
n!y

PKn
¼ P:

To prove this theorem, Wilson showed the following lemmas, which are also
used for the proof of Theorem 5.7.

Lemma 4.9 ([10]). Let M be a closed Riemann surface with a triangulation
K. For any o A HW1;0ðMÞ which has the following decomposition

Ro ¼ dgþ h1 þ h2 þ d�k;

where h1 A HC1;0ðKÞ and h2 A HC0;1ðKÞ, there exists positive constant C, depen-
dent on o but independent of K , such that

kWh1 � okW aC � hðKÞ:

Also, the original proof of the above lemma in [10] provides the following
lemma:

Lemma 4.10. Let M be a closed Riemann surface with a triangulation K.
For any o A HW1;0ðMÞ which has the following decomposition

Ro ¼ dgþ h1 þ h2 þ d�k;

where h1 A HC1;0ðKÞ and h2 A HC0;1ðKÞ, there exists positive constant C, depen-
dent on o but independent of K , such that

kWHh1 � ?okW aC � hðKÞ:

Proof. By Theorem 2.12 and 2.17, there is a constant C, indepedent of K ,
such that

C � hðKÞb kWHðh1 þ h2Þ � ?okW þ ko�Wðh1 þ h2ÞkW
¼ kWHðh1 þ h2Þ � ?okW þ k?oþ iW ðh1 þ h2ÞkW
b kWHh1 þWHh2 þ iW ðh1 þ h2ÞkW
¼ kHh1 þHh2 þ iðh1 þ h2ÞkC :

Let f1; . . . ; fg be an orthogonal eigenbasis of HC1;0ðKÞ for H, with eigenvalues

�il1; . . . ;�ilg ðlj > 0Þ, and let ~ff1; . . . ;
~ffg be an orthogonal eigenbasis of HC0;1ðKÞ

for H, with eigenvalues i~ll1; . . . ; i~llg ð~llj > 0Þ. Then we may write h1 ¼
Pg

j¼1 cjfj
and h2 ¼

Pg
j¼1 ~ccj

~ffj. Since HC1;0ðKÞ and HC 0;1ðKÞ are orthogonal, we have
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C2 � hðKÞ2 b
Xg
j¼1

ð1� ljÞcjfj

�����
�����
2

C

þ
Xg
j¼1

ð1þ eljljÞ~ccj ~ffj
�����

�����
2

C

¼
Xg
j¼1

ð1� ljÞ2jcjj2kfjk
2
C þ

Xg
j¼1

ð1þ ~lljÞ2j~ccjj2k ~ffjk
2
C

b
Xg
j¼1

~ll2j j~ccjj
2k ~ffjk

2
C

¼ kHh2k2C :

Hence we conclude

kWHh1 � ?okW a kWHðh1 þ h2Þ � ?okW þ kHh2kC a 2C � hðKÞ: r

In the proof of Theorem 4.8 (Theorem 7.2 in [10]), for a sequence fKng of
triangulations with the mesh converging to zero and the holomorphic part hn

j of
Rnyj A C1ðKnÞ, Wilson stated that Lemma 4.9 (Lemma 7.1 in [10]) provides

lim
n!y

hn
j ðakÞ ¼

ð
ak

yj ¼ djk:ð4:1Þ

However, in [11], Wilson remarked that (4.1) dose not follows from the lemma
since the convergence in the lemma is with respect to L2-norm, and the
integration is not a bounded operator on smooth forms with respect to the
norm. Also, Wilson stated that using the following lemma, (4.1) holds since
we are considering smooth di¤erential forms that are closed.

Lemma 4.11 ([11]). Let on be a sequence of smooth closed di¤erential forms
on a closed Riemannian manifold which converge in L2 to a smooth form o. Then
for any cycle, the sequence

Ð
C
on converges to

Ð
C
o.

In [12], for a fixed triangulation, we can find the di¤erence of the period
matrix and the combinatorial period matrix of a closed Riemann surface with a
canonical homology basis.

Theorem 4.12 ([12]). Let M be a closed Riemann surface of genus g with
a canonical homology basis S and a triangulation K , and let P be the period
matrix and PK the combinatorial period matrix. Let fy1; . . . ; ygg be the canonical

basis of HW1;0ðMÞ and fs1; . . . ; sgg the canonical basis of HC1;0ðKÞ. Then the
following equation holds:

P ¼ PK �LK ;

where LK ¼ ðhWsj; ?ykiWÞ1aj;kag.
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Proposition 4.13 ([12]). For a closed Riemann surface M of genus g with a
canonical homology basis S and a triangulation K , LK lies in the Siegel upper half
space.

5. Main results

In this section, we study the relations between holomorphic 1-forms and
holomorphic 1-cochains. More precisely, we prove that holomorphic 1-cochains
provide an approximation of holomorphic 1-forms. First of all, we introduce
a correspondence between holomorphic 1-forms and holomorphic 1-cochains as
follows.

Definition 5.1. For o A HW1;0ðMÞ, we define io A HC1;0ðKÞ which satisfies

ioðajÞ ¼
ð
aj

o;

for 1a ja g.

Lemma 5.2. The map i : HW1;0ðMÞ ! HC1;0ðKÞ defined by o 7! io is an
isomorphism.

Proof. It is clear from the following diagram

Cg ���!Id
Cgx??? l

x???
HW1;0ðMÞ ���!

i
HC 1;0ðKÞ

where the isomorphisms from HW1;0ðMÞ to Cg and from HC 1;0ðKÞ to Cg are as
follows:

HW1;0ðMÞ C o 7!
ð
a1

o; . . . ;

ð
ag

o

 !
A Cg;

and

HC1;0ðKÞ C s 7! ðsða1Þ; . . . ; sðagÞÞ A Cg: r

For this map o 7! io, we show the following theorem which is the main
result of this paper.

Theorem 5.3. Let M be a closed Riemann surface of genus g with a
canonical homology basis S, o an arbitrary holomorphic 1-form on M. In the
case of g ¼ 1, for any triangulation K of M, we have

kW io � okW ¼ 0:
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In the case of g > 1, for any sequence fKngn AN of triangulations of M with the
mesh converging to zero, we have

lim
n!y

kW ino � okW ¼ 0;

where ino A HC1;0ðKnÞ.

To prove this theorem, we need to study some relations between holomor-
phic 1-cochains and holomorphic 1-forms. In the following theorem, we give
an estimation of L2-distance between holomorphic 1-forms and holomorphic
1-cochains for a fixed triangulation.

Theorem 5.4. Let M be a closed Riemann surface of genus g with a
canonical homology basis S and a triangulation K , and let fy1; . . . ; ygg be the

canonical basis of HW1;0ðMÞ, fs1; . . . ; sgg the canonical basis of HC1;0ðKÞ and
PK ¼ ðpK

jk Þ1aj;kag the combinatorial period matrix. Then there exists a vector

FK ¼ ðj1; . . . ; jgÞ A ð0; 1�g such that

hHsj; sjiC ¼ h�ijjsj; sjiC :

In addition, we have

kWsj � yjkW ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 Im pK

jj

1

jj
� 1

 !vuut ;

and

kW io � okW a
Xg
j¼1

ð
aj

o

�����
����� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 Im pK

jj

1

jj
� 1

 !vuut ;

for all o A HW1;0ðMÞ.

Proof. By Theorem 4.12, we have

Im P ¼ �Im PK þ Im LK

and

Im pjj ¼ �Im pK
jj þ ImhWsj ; ?yjiW;ð5:1Þ

for 1a ja g. Using Riemann’s bi-linear relation, we compute

hyj ; yjiW ¼ ih�iyj; yjiW

¼ ih?yj; yjiW

¼ i
Xg
k¼1

ð
ak

yj

ð
bk

yj �
ð
bk

yj

ð
ak

yj

� �
¼ iðpjj � pjjÞ
¼ 2 Im pjj :
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Similary, we obtain ihHsj; sjiC ¼ 2 Im pK
jj . Also we compute

2 ImhWsj ; ?yjiW ¼ iðhWsj; ?yjiW � hWsj; ?yjiWÞ
¼ iðh?yj ;WsjiW � hWsj; ?yjiWÞ
¼ hyj;WsjiW þ hWsj; yjiW:

By (5.1),

hyj; yjiW � hyj;WsjiW � hWsj ; yjiW ¼ �ihHsj; sjiC :

Then we have

kWsj � yjk2W ¼ hWsj � yj ;Wsj � yjiW ¼ hsj; sjiC � ihHsj; sjiC :ð5:2Þ

Here we define jj by

jj ¼ 1� kWsj � yjkW
ksjkC

� �2
:

By this definition,

hsj; sjiC � ihHsj ; sjiC ¼ ð1� jjÞhsj; sjiC ;
and therefore

hHsj; sjiC ¼ h�ijjsj; sjiC :

Since PK is an element of the Siegel upper half space, the diagonal elements
Im pK

jj ð1a ja gÞ of Im PK are all positive. Thus, by (5.2),

ksjk2C � kWsj � yjk2W ¼ ihHsj; sjiC ¼ 2 Im pK
jj > 0;

and so

0a
kWsj � yjk2W

ksjk2C
< 1:

This implies that 0 < jj a 1 ð1a ja gÞ and therefore FK A ð0; 1�g. By the
definition of jj,

kWsj � yjkW ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� jj

q
ksjkC :

Since

ksjk2C ¼ ihHsj; sjiC
jj

¼
2 Im pK

jj

jj

and ksjkC > 0, we have

kWsj � yjkW ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� jj

q
ksjkC ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� jj

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 Im pK

jj

jj

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 Im pK

jj

1

jj
� 1

 !vuut :
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For o A HW1;0ðMÞ and io A HC1;0ðKÞ, we may write

o ¼
Xg
j¼1

ð
aj

o

 !
� yj

and

io ¼
Xg
j¼1

ð
aj

o

 !
� sj:

Hence we conclude

kW io � okW ¼
Xg
j¼1

ð
aj

o

 !
ðWsj � yjÞ

�����
�����
W

a
Xg
j¼1

ð
aj

o

�����
����� � kWsj � yjkW

¼
Xg
j¼1

ð
aj

o

�����
����� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 Im pK

jj

1

jj
� 1

 !vuut : r

Next we study the behavior of FK . In the case of genus 1, we show that
FK ¼ j1 ¼ 1. This implies that for any triangulation K of a complex torus,
HC1;0ðKÞ is the eigenspace of H for the eigenvalue �i, i.e.,

HC1;0ðKÞ ¼ fs A HC1ðKÞ jHs ¼ �isg:
To prove this, we show the following lemma which is a characterization of
FK ¼ ð1; . . . ; 1Þ.

Lemma 5.5. Let M be a closed Riemann surface with a canonical homology
basis S and a triangulation K , and let fy1; . . . ; ygg be the canonical basis of
HW1;0ðMÞ. Let FK be the vector as in Theorem 5.4. Then the following three
conditions are equivalent:

(a) FK ¼ ð1; . . . ; 1Þ.
(b) HC 1;0ðKÞ ¼ fs A HC1ðKÞ jHs ¼ �isg.
(c) WRyj ¼ yj a.e. on M for all j.

Proof. (a) ) (c): By Theorem 5.4, we obtain

kWsj � yjkW ¼ 0;

and so Wsj ¼ yj a.e. on M. By Theorem 2.10; RW ¼ Id, we have

WRyj ¼ WRWsj ¼ Wsj ¼ yj

a.e. on M.
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(c) ) (b): For any s A C1ðKÞ, we compute

hHRyj; siC ¼
ð ð

M

WRyj5Ws

¼
ð ð

M

yj5Ws

¼ h?yj;WsiW

¼ �ihyj;WsiW

¼ �ihWRyj;WsiW

¼ �ihRyj; siW

¼ h�iRyj; siW:

This implies that HRyj ¼ �iRyj. By Lemma 2.9, we have

dRyj ¼ R dyj ¼ 0;

and by Lemma 2.15 ð1Þ,

d�Ryj ¼ id�HRyj ¼ iHdRyj ¼ 0:

Thus all Ryj ð1a ja gÞ are harmonic 1-cochains which have eigenvalues �i of
H, and therefore they are holomorphic 1-cochains. Since fy1; . . . ; ygg is a basis

of HW1;0ðMÞ and WR ¼ Id, fRy1; . . . ;Rygg is a basis of HC 1;0ðKÞ. Since
every eigenvalue of Ryj is �i,

HC1;0ðKÞ ¼ fs A HC1ðKÞ jHs ¼ �isg:

Finally, it is clear that (b) induces (a). r

Theorem 5.6. Let M be a closed Riemann surface of genus 1 (complex
torus) with a canonical homology basis S, K a triangulation of M, and j1 A ð0; 1�
which satisfies hHs1; s1iC ¼ h�ij1s1; s1iC , where fs1g is the canonical basis of
HC1;0ðKÞ. Then j1 ¼ 1.

Proof. Since the canonical basis of HW1;0ðMÞ is fc dzg where z is a local
coordinate and c is some complex number, by Lemma 5.5, it is enough to show
that WR dz ¼ dz a.e. on M.

First of all, we express WR dz by

WR dz ¼ W
X
t

R dzðtÞ � t
 !

¼
X
t

R dzðtÞ �Wt;

where the sum is taken over all 1-simplices t of K . Let ½ p0; p1; p2� be any
2-simplex of K with the barycentric coordinates m0, m1 and m2. Since Wt ¼ 0 on

MnStðtÞ, on the interior of ½ p0; p1; p2�, we compute
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WR dz ¼ R dzð½ p0; p1�Þ �W ½ p0; p1� þ R dzð½ p1; p2�Þ �W ½ p1; p2�
þ R dzð½ p2; p0�Þ �W ½ p2; p0�

¼
ð
½ p0;p1�

dz

 !
�W ½ p0; p1� þ

ð
½ p1;p2�

dz

 !
�W ½ p1; p2�

þ
ð
½ p2;p0�

dz

 !
�W ½ p2; p0�

¼ ðp1 � p0Þ �W ½ p0; p1� þ ðp2 � p1Þ �W ½ p1; p2� þ ðp0 � p2Þ �W ½ p2; p0�
¼ ðp1 � p0Þ � ðm0 dm1 � m1 dm0Þ þ ðp2 � p1Þ � ðm1 dm2 � m2 dm1Þ

þ ðp0 � p2Þ � ðm2 dm0 � m0 dm2Þ
¼ p0ðm2 dm0 � m0 dm2 � m0 dm1 þ m1 dm0Þ

þ p1ðm0 dm1 � m1 dm0 � m1 dm2 þ m2 dm1Þ
þ p2ðm1 dm2 � m2 dm1 � m2 dm0 þ m0 dm2Þ

On the interior of ½ p0; p1; p2�ðC zÞ, the barycentric coordinates satisfy

m0ðzÞ þ m1ðzÞ þ m2ðzÞ ¼ 1

and

dm0 þ dm1 þ dm2 ¼ 0:

Since z ¼
P2

j¼0 pjmjðzÞ, we have

WR dz ¼
X2
j¼0

pj � dmjðzÞ ¼ d
X2
j¼0

pjmjðzÞ
 !

¼ dz:

On the other hand, the union of the sets of all vertices (0-simplices) and
1-simplices of K is a finite set and therefore it is a null set. Hence WR dz ¼ dz
a.e. on M. By Lemma 5.5, we conclude that j1 ¼ 1. r

Finally we consider the behavior of FK for higher genus. The following
theorem implies that eigenvalues of H on HC1;0ðKÞ converge to �i, as the mesh
tends to zero.

Theorem 5.7. Let M be a closed Riemann surface of genus g > 1 with a
canonical homology basis S and fKngn AN be a sequence of triangulations of M with
the mesh converging to zero. Let FKn

¼ ðjn
1 ; . . . ; j

n
g Þ be the vector in ð0; 1�g such

that

hHsn
j ; s

n
j iC ¼ h�ijn

j s
n
j ; s

n
j iC ;
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where each fsn
1 ; . . . ; s

n
gg be the canonical basis of HC 1;0ðKnÞ. Then we have

lim
n!y

FKn
¼ ð1; . . . ; 1Þ:

Proof. Let fo1; . . . ;ogg be an orthogonal basis of HW1;0ðMÞ and Rn the de
Rham map from WðMÞ to CðKnÞ. By the Hodge decomposition and HC1ðKnÞ ¼
HC1;0ðKnÞlHC 0;1ðKnÞ, we obtain

Rnoj ¼ d�kn
j þ hn

j þ ~hhn
j þ dgn

j

for any n A N, where hn
j A HC1;0ðKnÞ and ~hhn

j A HC0;1ðKnÞ.
First, we show that the number of Kn, such that fhn

1 ; . . . ; h
n
gg is not a basis

of HC1;0ðKnÞ, is finite. Now we assume that the number is infinite. Then there
exist j A f1; . . . ; gg and a subsequence fKmg of fKng such that each hm

j is gen-
erated by the other elements, i.e.,

hm
j ¼

X
p0 j

cmjp h
m
p ;

for all m A N, where cmjp A C. Since hm
j �

P
p0 j c

m
jp h

m
p is the holomorphic part of

Rmðoj �
P

p0 j c
m
jpopÞ, by Lemma 4.9, we have

lim
m!y

oj �
X
p0 j

cmjpop

�����
�����
W

¼ 0:ð5:3Þ

Also, since fo1; . . . ;ogg is an orthogonal basis,

oj �
X
p0 j

cmjpop

�����
�����
2

W

¼ kojk2W þ
X
p0 j

jcmjp j
2kopk2W;ð5:4Þ

and therefore

0a jcmjp j
2kopk2W a oj �

X
p0 j

cmjpop

�����
�����
2

W

:

By (5.3), we obtain limm!y jcmjp j ¼ 0 and (5.4) implies that kojkW ¼ 0. This is a
contradiction since fo1; . . . ;ogg is a basis.

Here we assume that fhn
1 ; . . . ; h

n
gg is a basis of HC1;0ðKnÞ for all n A N.

Then, for any n A N, we may write

sn
j ¼

Xg
l¼1

~ccnjlh
n
l ;

for 1a ja g, where ~ccnjl A C. Next we consider limn!y ~ccnjl. Let ð~dd n
ljÞ1al; jag be

the inverse matrix of ð~ccnjlÞ1aj;lag. This matrix provides

hn
l ¼

Xg
j¼1

~dd n
ljs

n
j ;
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and

hn
l ðakÞ ¼

Xg
j¼1

~dd n
ljs

n
j ðakÞ ¼

Xg
j¼1

~dd n
lj � djk ¼ ~dd n

lk;

for 1a l; ka g. By Lemma 4.9 and 4.11, we have

lim
n!y

~dd n
lk ¼ lim

n!y
hn
l ðakÞ ¼ lim

n!y
RWhn

l ðakÞ ¼
ð
ak

ol;ð5:5Þ

for 1a l; ka g. Note that each Whn
l is neither smooth nor closed, but it can be

approximated by a sequence of closed smooth forms and therefore we may apply
Lemma 4.11 to Whn

l . Thus (5.5) implies that the matrix ð~dd n
ljÞ1al; jag converges

to ð
Ð
aj
olÞ1al; jag, and therefore ð~ccnjlÞ1aj;lag ¼ ð~dd n

ljÞ
�1
1al; jag also converges to a

matrix ðsjlÞ1aj;pag, where each sjl is determined by
Ð
a1
o1; . . . ;

Ð
ag
o1; . . . ;Ð

a1
og; . . . ;

Ð
ag
og.

Using the Cauchy-Schwarz inequality, we compute

0a ð1� jn
j Þksn

j k
2
C ¼ hsn

j ; s
n
j iC � ih�ijn

j s
n
j ; s

n
j iC

¼ hsn
j ; s

n
j iC � ihHsn

j ; s
n
j iC

¼ hsn
j � iHsn

j ; s
n
j iC

a ksn
j � iHsn

j kC � ksn
j kC ;

and then

0a ð1� jn
j Þksn

j kC a ksn
j � iHsn

j kC :ð5:6Þ
Since sn

j ¼
Pg

l¼1 ~cc
n
ljh

n
l , we have

ksn
j � iHsn

j kC ¼
Xg
l¼1

~ccnjlðhn
l � iHhn

l Þ
�����

�����
C

a
Xg
l¼1

j~ccnjlj � kWhn
l � iWHhn

lkW

¼
Xg
l¼1

j~ccnjlj � kWhn
l � ol þ i?ol � iWHhn

lkW

a
Xg
l¼1

j~ccnjlj � ðkWhn
l � olkW þ k?ol �WHhn

lkWÞ:

Note that any holomorphic 1-form o satisfies o� i?o ¼ 0.
By Lemma 4.9 and 4.10, there exist positive constants Cl, independent of

fKng, such that

kWhn
l � olkW þ kWHhn

l � ?olkW aCl � hðKnÞ:
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Thus we have

ksn
j � iHsn

j kC a
Xg
l¼1

j~ccnjlj � Cl � hðKnÞ;

and

lim
n!y

ksn
j � iHsn

j kC ¼ 0:

Namely, by (5.6), we have

lim
n!y

ð1� jn
j Þksn

j kC ¼ 0:

By Riemann’s bi-linear relations and 0 < jn
j a 1,

ksn
j k

2
C ¼ i

jn
j

hHsn
j ; s

n
j iC ¼

2 Im pKn

jj

jn
j

b 2 Im pKn

jj ;

and therefore limn!y ksn
j k

2
C b 2 Im pjj > 0 by Theorem 4.8. Hence we conclude

limn!y jn
j ¼ 1 for all j. r

Combine Theorem 5.4, 5.6 and 5:7, we can easily show Theorem 5.3.
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