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Abstract

This paper deals with the existence and uniqueness of time periodic solutions for the

general periodic parabolic equation boundary problem with nonlocal delay. We apply

operator semigroup theory and monotone iterative technique of lower and upper

solutions to obtain the existence and uniqueness of o-periodic mild solutions of

some abstract evolution equation under some quasimonotone conditions. In the

end, applying our abstract results to parabolic equation with nonlocal delay, we get

the existence and uniqueness of o-periodic solution, which generalize the recent

conclusions on this issue.

1. Introduction

Parabolic partial equations have been intensively developed during the last
decades because of their applications in chemistry, biology, etcetera. Especially,
periodic semi-linear parabolic partial equations are of particular interests since
they can take into account seasonal fluctuations occurring in the phenomena
appearing in the models, and have been extensively studied by many researchers
(see [2, 1, 6, 14, 22] and so on).

Since equations with delay are often more realistic to describe natural
phenomena than those without delay, the problems concerning periodic solutions
of partial di¤erential equations with delays are an important area of investiga-
tion in recent years. Specially, the existence of periodic solutions of parabolic
equation with delays has attracted much attention and been considered by some
authors, see [26, 8, 5, 16, 19, 20, 28, 23, 27, 13] and references therein.
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Let WHRN be a bounded domain with a su‰ciently smooth boundary qW,
and

Aðx;DÞu ¼ �
XN
i; j¼1

aijðxÞDiDjuþ
XN
j¼1

ajðxÞDjuþ a0ðxÞuð1:1Þ

be a uniformly elliptic di¤erential operator in W, whose coe‰cients aijðxÞ, ajðxÞ
ði; j ¼ 1; . . . ;NÞ and a0ðxÞ are Hölder-continuous on W and a0ðxÞb 0. We let
B ¼ Bðx;DÞ be a boundary operator on qW of the form

Bu :¼ b0ðxÞuþ d
qu

qb
;ð1:2Þ

where either d ¼ 0 and b0ðxÞ1 1 (Dirichlet boundary operator), or d ¼ 1 and
b0ðxÞb 0 (regular oblique derivative boundary operator, at this point, we further
assume that a0ðxÞ2 0 or b0ðxÞ2 0), b is an outward pointing, nowhere tangent
vector field on qW. Let f : W� R� R2 ! R be local Hölder-continuous func-
tion which is o-periodic in t.

The time o-periodic solution for delay parabolic boundary value problem

qu

qt
þ Aðx;DÞu ¼ f ðx; t; uðx; tÞ; uðx; t� tÞÞÞ; x A W; t A R;

Bu ¼ 0; x A qW;

8<
:ð1:3Þ

has been studied by some authors, where t is positive constant which denotes the
time delay. If t ¼ 0, it means that system (1.3) does not include the terms of
time lag. Theorems of the existence and uniqueness of periodic solution for
some special kinds of equation (1.3) are proved in [8, 20, 28, 23].

In fact, in many practical problems individuals usually move around. In
this case, it is not su‰cient only to include a discrete delay or some finite delays,
since the individuals may be at the di¤erent locations in their history, for
example, in some population models. Therefore, in order to describe these
models better, Britton [3, 4] considered these two factors and introduced the
so called spatio-temporal delay or nonlocal delay. Afterwards, lots of works
have been done on reaction-di¤usion equations with nonlocal delay, we refer to
[24, 17, 18, 15]. It is noteworthy that these research works focused on the
traveling wave solutions of parabolic equation with nonlocal delay. However, to
our knowledge, there are still very few papers to consider the periodic problem
of parabolic equation with nonlocal delay.

It is well known that the method of lower and upper solutions is an e¤ective
and flexible mechanism. It yields monotone sequences of lower and upper
approximate solutions that converge to the minimal and maximal solutions
between the lower and upper solutions. Recently, the method of lower and
upper solutions and the monotone iterative technique had been developed for
abstract evolution equations with classical initial condition and periodic condition
[10, 11, 25, 12].
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Motivated by the papers mentioned above, in this paper, by means of
operator semigroup theory and monotone iterative technique of lower and upper
solutions, we discuss the existence and uniqueness of time o-periodic solutions of
nonlocal delayed parabolic equation boundary value problem

qu

qt
þ Aðx;DÞu ¼ f ðx; t; uðx; tÞ; g � uðx; tÞÞ; x A W; t A R;

Bu ¼ 0; x A W;

8<
:ð1:4Þ

where f : W� R� R2 ! R is local Hölder-continuous function, f ðx; t; x; hÞ is once
growth for x and h, and o-periodic in t, the convolution g � uðx; tÞ is denoted by

g � uðx; tÞ ¼
ð t

�y

ð
W

Kðx; y; t� sÞuðx; sÞ dydsð1:5Þ

¼
ðþy

0

ð
W

Kðx; y; sÞuðx; t� sÞ dyds:

The convolution kernel Kðx; y; tÞ depends on both the spatial and the temporal
variables, which is a positive continuous function in its variables t A R, x; y A W.
We normalize the kernel so thatðþy

0

ð
W

Kðx; y; tÞ dyds ¼ 1:ð1:6Þ

For example [7], we take W ¼ ½0; p�HR, Kðx; y; tÞ ¼ Gðx; y; tÞkðtÞ, kðtÞ ¼ 1

t
e�t=t

and

Gðx; y; tÞ ¼ 1

p
þ 2

p

Xy
n¼1

e�n2t cos nx sin ny;ð1:7Þ

which is a fundamental solution of the heat equation

qG

qt
¼ q2G

qy2
; y A ½0; p�; t > 0;

qG

qy

����
y¼0;p

¼ 0;

Gðx; y; 0Þ ¼ dðx� yÞ;

8>>>>>><
>>>>>>:

ð1:8Þ

where d is the general Dirac function.
The paper is organized as follows. In Section 2, we collect some known

notions and results on the operator semigroup and provide preliminary results to
be used in theorems stated and proved in the paper. In Section 3, we present
our abstract results and apply the operator semigroup theory and monotone
iterative method of the lower and upper solutions to prove them. In the last
section, applying our abstract results to parabolic equation with nonlocal delay,
we get the existence and uniqueness of o-periodic solution.
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2. Preliminaries

In this section, we introduce some notions and definitions which are needed
to prove our main results.

Let n < p < y and denote E ¼ LpðWÞ. Then E is a Banach space with the
Lp-norm k � kp. Let the positive cone K ¼ fu A E j uðxÞb 0; x A Wg, it is clear
that K is a normal regeneration cone, which induces a partial ordering ‘‘b’’ on
E defined by

ub v , u� v A K :

Thus, E is an ordered Banach space with the partial order ‘‘b’’.
Let CoðR;EÞ denote the Banach space fu A CðR;EÞ j uðtþ oÞ ¼ uðtÞ; t A Rg

endowed the maximum norm kukC ¼ maxt A ½0;o�kuðtÞkp. Evidently, CoðR;EÞ is

also an order Banach space with the partial order ‘‘a’’ induced by the positive
cone KC ¼ fu A CoðR;EÞ j uðtÞb y; t A Rg and KC is also normal. For any a; b A
CoðR;EÞ with aa b, we use ½a; b� to denote the order interval fu j aa ua bg in
CoðR;EÞ and ½aðtÞ; bðtÞ�E to denote the order interval fuðtÞ j aðtÞa uðtÞa bðtÞ;
t A Rg in E.

Define a linear operator A : DðAÞ ! E by

DðAÞ ¼ fu A W 2;pðWÞ jBðx;DÞu ¼ 0; x A qWg; Au ¼ Aðx;DÞu:ð2:1Þ

If a0ðxÞb 0, then �A generates an exponentially stable analytic semigroup
TðtÞðtb 0Þ in E (see [2]). Let l1 be the first eigenvalue of Aðx;DÞ under the
boundary condition Bu ¼ 0, we know that l1 > 0. Thus, there is a constant
M0 b 1 such that

kTðtÞkaM0e
�lt

aM0; for any l A ð0; l1Þ; tb 0:ð2:2Þ

By the maximum principle of elliptic operators, we know that lI þ A has positive
bounded inverse operator ðlI þ AÞ�1 for l > 0, hence TðtÞðtb 0Þ is a positive
semigroup (see [10]). Sine the operator A has compact resolvent in LpðWÞ, we
obtain that TðtÞðtb 0Þ is also a compact semigroup (see [9]). For more details
of the properties of the operator semigroup, we refer to [9, 21].

Now, from the assumptions of f , we can define F : R� E � E ! E by

Fðt; u; vÞ ¼ f ð�; t; uð�Þ; vð�ÞÞ;ð2:3Þ

and F : R�E�E ! E is continuous and o-periodic for t. For any u ACoðR;EÞ,
uðtÞ A E ¼ LpðWÞ, denote uðtÞðxÞ ¼ uðx; tÞ, we can easily prove g � uðx; tÞ ¼
g � uðx; tþ oÞ for x A W, hence we can define an operator S : CoðR;EÞ !
CoðR;EÞ as follow

Su ¼
ðy
0

ð
W

Kðx; y; sÞuðx; t� sÞ dyds:ð2:4Þ

It is clear that S : CoðR;EÞ ! CoðR;EÞ is a positive linear bounded operator with
kSka 1. Hence, the o-periodic problem of equation (1.4) can be reformulated
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as the o-periodic problem of abstract evolution equation

u 0ðtÞ þ AuðtÞ ¼ Fðt; uðtÞ;SuðtÞÞ; t A R:ð2:5Þ

Now, we recall some basic facts on abstract linear evolution equation corre-
sponding to Eq. (2.5). Let J denote the infinite interval ½0;þyÞ and h : J ! E,
consider the initial value problem of the linear evolution equation

u 0ðtÞ þ AuðtÞ ¼ hðtÞ; t > 0;

uð0Þ ¼ x0:

�
ð2:6Þ

It is well known [21], when x0 A E1 and h A C1ðJ;EÞ, the initial value problem
(2.6) has a unique classical solution u A C1ðJ;EÞVCðJ;E1Þ expressed by

uðtÞ ¼ TðtÞx0 þ
ð t

0

Tðt� sÞhðsÞ ds;ð2:7Þ

where E1 ¼ DðAÞ is Banach space with the graph norm k � k1 ¼ k � k þ kA�k.
Generally, for x0 and h A CðJ;EÞ, the function u given by (2.6) belongs to
CðJ;EÞ and it is called a mild solution of the linear evolution equation (2.6).

Given h A CoðR;EÞ, we consider the existence of o-periodic mild solution of
linear evolution equation

u 0ðtÞ þ AuðtÞ ¼ hðtÞ; t A R:ð2:8Þ
In order to establish the results of this section, from [12] we include the

following lemma.

Lemma 2.1. Assume that A is defined by ð2:1Þ, thus �A generates an
exponentially stable analytic semigroup TðtÞðtb 0Þ in E. Then for h A CoðR;EÞ,
the linear evolution equation ð2:8Þ has a unique o-periodic mild solution u A
CoðR;EÞ, which can be expressed by

uðtÞ ¼ ðI � TðoÞÞ�1

ð t

t�o

Tðt� sÞhðsÞ ds :¼ PhðtÞ;ð2:9Þ

and the solution operator P : CoðR;EÞ ! CoðR;EÞ is a bounded positive linear

operator with the spectral radius rðPÞa 1

l1
(l1 is the first eigenvalue of A).

Similarly to definition of o-periodic mild solution for the linear evolution
equation (2.8), we can define the o-periodic mild solution for the nonlinear
evolution equation (2.5) (or Eq. (1.4)).

Definition 2.1. A function u A CoðR;EÞ is said to be a mild solution of
Eq. ð2:5Þ if it satisfies

uðtÞ ¼ ðI � TðoÞÞ�1

ð t

t�o

Tðt� sÞFðs; uðsÞ;SuðsÞÞ ds:ð2:10Þ
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Next, we define the o-periodic lower and upper solutions of Eq. (2.5).

Definition 2.2. If a function a A C 1
oðR;EÞVCoðR;E1Þ satisfies

a 0ðtÞ þ AaðtÞaFðt; aðtÞ;SaðsÞÞ; t A R;ð2:11Þ
we call it an o-periodic lower solution of Eq. ð2:5Þ. If the inequality in ð2:11Þ is
inverse, we call it an o-periodic upper solution of Eq. ð2:5Þ.

3. Abstract results

Now, we are in the position to state and prove our main results. We will
apply monotone iterative method of the lower and upper o-periodic solutions to
obtain the existence of o-periodic mild solution for Eq. (2.5).

Theorem 3.1. Let F : R� E � E ! E is continuous function which is
o-periodic in t, S : CoðR;EÞ ! CoðR;EÞ is a positive linear bounded operator.
Suppose that Eq. ð2:5Þ has lower and upper o-periodic solutions a0; b0 A C1

oðR;EÞV
CoðR;E1Þ with a0 a b0. If the following assumptions

ðA1Þ there are two constants C1 b 0 and C2 > 0 such that

F ðt;w2; v2Þ � F ðt;w1; v1ÞbC1ðw2 � w1Þ þ C2ðv2 � v1Þ;
for all t A R, a0ðtÞaw1 aw2 a b0ðtÞ, Sa0ðtÞa v1 a v2 aSb0ðtÞ,

ðA2Þ there is a constant 0aC3 a
C1

C2
such that

Sw2 � Sw1 b�C3ðw2 � w1Þ;
for all w1;w2 A ½a0; b0� and w2 bw1,
hold, then Eq. ð2:5Þ has minimal and maximal o-periodic mild solution u, u
between a0 and b0, which can be obtained by monotone iterative sequences starting
from a0 and b0.

Proof. By the definition of lower and upper o-periodic solutions, we obtain
that ½a0; b0�HCoðR;EÞ. It is easy to see that a0ðtÞa b0ðtÞ for every t A R.
Now, let us define F : CoðR;EÞ ! CoðR;EÞ by

FðuÞðtÞ ¼ Fðt; uðtÞ;SuðtÞÞ;
where F is defined by (2.4). We define the mapping Q : ½a0; b0� ! CoðR;EÞ by

Qu ¼ ðP �FÞðuÞ:ð3:1Þ
It is clear that

ðQuÞðtÞ ¼ ðI � TðoÞÞ�1

ð t

t�o

Tðt� sÞFðs; uðsÞ;SuðsÞÞ ds:ð3:2Þ

We can easily see that Q : ½a0; b0�!CoðR;EÞ is continuous. By Definition 2.1, the
o-periodic mild solution of Eq. (2.5) is equivalent to the fixed point of operator Q.

281periodic solutions for parabolic equation with nonlocal delay



Firstly, we show that the following properties of Q.
(i) Q is a monotone operator.
(ii) a0 aQa0 and Qb0 a b0.
In fact, if u1; u2 A ½a0; b0� and u1 a u2, then a0ðtÞa u1ðtÞa u2ðtÞa b0ðtÞ and

Sa0ðtÞaSu1ðtÞaSu2ðtÞaSb0ðtÞ for every t A R, from ðA1Þ and ðA2Þ, we obtain
that

Fðt; u2ðtÞ;Su2ðtÞÞ � Fðt; u1ðtÞ;Su1ðtÞÞ
bC1ðu2ðtÞ � u1ðtÞÞ þ C2ðSu2ðtÞ � Su1ðtÞÞ
bC1ðu2ðtÞ � u1ðtÞÞ � C2C3ðu2ðtÞ � u1ðtÞÞ
¼ ðC1 � C2C3Þðu2ðtÞ � u1ðtÞÞb 0:

Thus Fðt; uðtÞ;GuðtÞÞ is nondecreasing on u A ½a0; b0�. Namely,

F ðt; u1ðtÞ;Su1ðtÞÞaF ðt; u2ðtÞ;Su2ðtÞÞ;ð3:3Þ

for all t A R and u1; u2 A ½a0; b0� with u1 a u2. Thus, by means of positivity of
the operator semigroup TðtÞðtb 0Þ, one has

ðI � TðoÞÞ�1

ð t

t�o

Tðt� sÞF ðs; u1ðsÞ;Su1ðsÞÞ ds

a ðI � TðoÞÞ�1

ð t

t�o

Tðt� sÞF ðs; u2ðsÞ;Su2ðsÞÞ ds:

Hence, by (3.2), we see that Qu1 aQu2, which means that Q is a monotone
operator.

Let hðtÞ ¼ a 0
0ðtÞ þ Aa0ðtÞ A CoðR;EÞ, by the definition of lower solution, we

know that hðtÞaFðt; a0ðtÞ;Sa0ðtÞÞ for t A R. Thus, form Lemma 2.1 and Defini-
tion 2.1, we have

a0ðtÞ ¼ ðI � TðoÞÞ�1

ð t

t�o

Tðt� sÞhðsÞ ds

a ðI � TðoÞÞ�1

ð t

t�o

Tðt� sÞFðs; a0ðsÞ;Sa0ðsÞÞ ds

¼ ðQa0ÞðtÞ; t A R;

namely, a0 aQa0. Similarly, it can be shown that Qb0 a b0. Therefore,
Q : ½a0; b0� ! ½a0; b0� is a continuously increasing operator.

Now, we define two sequences fang and fbng in ½a0; b0� by the iterative
scheme

an ¼ Qan�1; bn ¼ Qbn�1; n ¼ 1; 2; . . . :ð3:4Þ

Then from the monotonicity of the operator Q, it follows that

a0 a a1 a a2 a � � �a an a � � �a bn a � � �a b2 a b1 a b0:ð3:5Þ
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Secondly, we prove that fang and fbng are convergent in CoðR;EÞ.
Since u A ½a0; b0� implies that a0ðtÞa uðtÞa b0ðtÞ for any t A R, thus, from

(3.3) we have

F ðt; a0ðtÞ;Sa0ðtÞÞaFðt; uðtÞ;SuðtÞÞaFðt; b0ðtÞ;Sb0ðtÞÞ; t A R:ð3:6Þ

By the normality of the cones, there exist a constant M1 > 0 such that

kFðt; uðtÞ;SuðtÞÞkaM1; t A R; u A ½a0; b0�:ð3:7Þ

Now, we demonstrate that fang and fbng are equicontinuous.
For every an, by the periodicity, we only consider it on ½0;o�. Set 0a t1 <

t2 ao, we get that

anðt2Þ � anðt1Þ ¼ ðQan�1Þðt2Þ � ðQan�1Þðt1Þ

¼ ðI � TðoÞÞ�1

ð t2

t2�o

Tðt2 � sÞFðs; an�1ðsÞ;San�1ðsÞÞ ds

� ðI � TðoÞÞ�1

ð t1

t1�o

Tðt1 � sÞFðs; an�1ðsÞ;San�1ðsÞÞ ds

¼ ðI � TðoÞÞ�1

ð t1

t2�o

ðTðt2 � sÞ�Tðt1 � sÞÞF ðs; an�1ðsÞ;San�1ðsÞÞ ds

� ðI � TðoÞÞ�1

ð t2�o

t1�o

Tðt1 � sÞFðs; an�1ðsÞ;San�1ðsÞÞ ds

þ ðI � TðoÞÞ�1

ð t2

t1

Tðt2 � sÞF ðs; an�1ðsÞ;San�1ðsÞÞ ds

:¼ I1 þ I2 þ I3:

It is clear that

kðQuÞðt2Þ � ðQuÞðt1Þka kI1k þ kI2k þ kI3k:ð3:8Þ

Hence, we only need to check kIik tend to 0 independently of an when

t2 � t1 ! 0, i ¼ 1; 2; 3. From [12], we know that ðI � TðoÞÞ�1 is a bounded

operator, denote kðI � TðoÞÞ�1k ¼ M2. Therefore, by (2.2) and (3.7), we can
easily obtain

kI1kaM2

ð t1

t2�o

kðTðt2 � sÞ � Tðt1 � sÞÞFðs; an�1ðsÞ;San�1ðsÞÞk ds

aM1M2

ð t1þo�t2

0

kTðt2 � t1 þ sÞ � TðsÞk ds

! 0; as t2 � t1 ! 0;
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kI2kaM2

ð t2�o

t1�o

kTðt1 � sÞFðs; an�1ðsÞ;San�1ðsÞÞk ds

aM1M2

ð t2�o

t1�o

kTðt1 � sÞk ds

! 0; as t2 � t1 ! 0;

kI3kaM2

ð t2

t1

kTðt2 � sÞF ðs; an�1ðsÞ;San�1ðsÞÞk ds

aM1M2

ð t2

t1

kTðt2 � sÞk ds

! 0; as t2 � t1 ! 0:

As a result, kðQan�1Þðt2Þ � ðQan�1Þðt1Þk tends to 0 independently of an as
t2 � t1 ! 0, which means that fang is equicontinuous. Similarly, we can prove
that fbng is equicontinuous.

Next, we prove that fanðtÞg and fbnðtÞg are relatively compact in E for
all t A R. For convenience, let B1 ¼ fang, B2 ¼ fbng and B0

1 ¼ B1 U fa0g, B0
2 ¼

B2 U fb0g, it follows that B1ðtÞ ¼ ðQB0
1ÞðtÞ and B2ðtÞ ¼ ðQB0

2ÞðtÞ for every t A R.
We define a set by

ðQeB
0
1ÞðtÞ :¼ fðQeanÞðtÞ j an A B0

n ; 0 < e < o; t A Rg;ð3:9Þ
where

QeanðtÞ ¼ ðI � TðoÞÞ�1

ð t�e

t�o

Tðt� sÞF ðs; an�1ðsÞ;San�1ðsÞÞ ds

¼ TðeÞðI � TðoÞÞ�1

ð t�e

t�o

Tðt� s� eÞFðs; an�1ðsÞ;San�1ðsÞÞ ds:

Then the set ðQeB
0
1ÞðtÞ is relatively compact in E since the operator TðeÞ is

compact in E. For any an A B0
1 and t A R, from the follow inequality

kQanðtÞ �QeanðtÞkð3:10Þ

a kðI � TðoÞÞ�1

ð t

t�o

Tðt� sÞFðs; an�1ðsÞ;San�1ðsÞÞ ds

� ðI � TðoÞÞ�1

ð t�e

t�o

Tðt� sÞFðs; an�1ðsÞ;San�1ðsÞÞ dsk

aM2

ð t

t�e

kTðt� sÞF ðs; an�1ðsÞ;San�1ðsÞÞk ds

aM1M2

ð t

t�e

kTðt� sÞk dsaM0M1M2e;
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one can obtain that the set ðQB0
1ÞðtÞ is relatively compact in E for all t A R.

Thus fanðtÞg ¼ B1ðtÞ ¼ ðQB0
1ÞðtÞ is relatively compact in E for all t A R. Sim-

ilarly, we can prove that fbnðtÞg is relatively compact in E for all t A R.
Therefore, the Arzela-Ascoli theorem guarantees that fang and fbng are

relatively compact in CoðR;EÞ, so there are convergent subsequences in fang
and fbng, respectively. Combining this with the monotonicity (3.5) and the
normality of the cone K , we can easily prove that fang and fbng themselves
are convergent, i.e., there are u; u A CoðR;EÞ such that limn!y an ¼ u and
limn!y bn ¼ u. Taking limit in (3.4), we have

u ¼ Qu; u ¼ Qu:ð3:11Þ
Therefore u; u A CoðR;EÞ are fixed points of Q.

Finally, we prove the minimal and maximal properties of u, u. Assume that
~uu is a fixed point of Q with ~uu A ½a0; b0�, then for every t A R, a0ðtÞa ~uuðtÞa b0ðtÞ,

a1ðtÞ ¼ ðQa0ÞðtÞa ðQ~uuÞðtÞ ¼ ~uuðtÞa ðQb0ÞðtÞ ¼ b1ðtÞ; t A R:ð3:12Þ
Similarly, a1ðtÞa ~uuðtÞa b1ðtÞ for t A R. In general

an a ~uua bn; n ¼ 1; 2; . . . :ð3:13Þ
Taking limit in (3.13) as n ! y, we get ua ~uua u. Therefore u, u are minimal
and maximal o-periodic mild solutions of Eq. (2.5) and u, u can be obtained by
the iterative sequences defined in (3.4) starting from a0 and b0. This completes
the proof of Theorem 3.1. r

Now we discuss the uniqueness of time o-periodic solution of the problem
(1.4).

Theorem 3.2. Let F : R� E � E ! E is continuous function which is
o-periodic in t, S : CoðR;EÞ ! CoðR;EÞ is a positive linear bounded operator.
Suppose that Eq. ð2:5Þ has lower and upper o-periodic solutions a0; b0 A C1

oðR;EÞV
CoðR;E1Þ with a0 a b0. Assume that conditions ðA1Þ, ðA2Þ and following
conditions

ðA3Þ there are positive constants L1, L2 such that

F ðt;w2; v2Þ � F ðt;w1; v1ÞaL1ðw2 � w1Þ þ L2ðv2 � v1Þ
for all t A R, a0ðtÞaw1 aw2 a b0ðtÞ, Sa0ðtÞa v1 a v2 aSb0ðtÞ,

ðA4Þ there is positive constant L3 such that

Sw2 � Sw1 aL3ðw2 � w1Þ;
for all w1;w2 A ½a0; b0� and w2 bw1,
hold, then Eq. ð2:5Þ has a unique o-periodic mild solution u� between a0 and b0
provided that L1 þ L2L3 < l1 (l1 is the first eigenvalue of A).

Proof. By Theorem 3.1, we know that the abstract evolution equation (2.5)
has minimal and maximal o-periodic mild solutions u; u A CoðR;EÞ, which can
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be obtained by the iterative sequences defined in (3.4) starting from a0 and b0.
Therefore, we only show that uðtÞ1 uðtÞ for t A R.

To this end, we arbitrarily choose u1; u2 A ½a; b� with u1 a u2, thus u1ðtÞa
u2ðtÞ and Su1ðtÞaSu2ðtÞ for t A R, by assumptions ðA3Þ and ðA4Þ, we can obtain

Fðt; u2ðtÞ;Su2ðtÞÞ � F ðt; u1ðtÞ;Su1ðtÞÞ
aL1ðu2ðtÞ � u1ðtÞÞ þ L2ðSu2ðtÞÞ � Su1ðtÞÞ
aL1ðu2ðtÞ � u1ðtÞÞ þ L2L3ðu2ðtÞ � u1ðtÞÞ
¼ ðL1 þ L2L3Þðu2ðtÞ � u1ðtÞÞ:

Hence, for u; u A ½a0; b0�, which implies that uðtÞ; uðtÞ A ½a0ðtÞ; b0ðtÞ�E , we have

Fðt; uðtÞ;GuðtÞÞ � Fðt; uðtÞ;GuðtÞÞa ðL1 þ L2L3ÞðuðtÞ � uðtÞÞ; t A R:ð3:15Þ

Since u, u are the fixed points of the operator Q, then by (3.1) and (3.15), we
obtain

ya uðtÞ � uðtÞ ¼ ðQuÞðtÞ � ðQuÞðtÞ
¼ PðF ðt; uðtÞ;SuðtÞÞ � Fðt; uðtÞ;SuðtÞÞÞ
a ðL1 þ L2L3ÞPðuðtÞ � uðtÞÞa � � �a ðL1 þ L2L3ÞnPnðuðtÞ � uðtÞÞ:

By the normality of the cone KC , we can see

ku� ukC a ðL1 þ L2L3ÞnkPnk � ku� ukC :ð3:16Þ

From the spectral radius of Gelfand formula limn!y

ffiffiffiffiffiffiffiffiffiffiffi
kPnkn

p
¼ rðPÞ ¼ 1

l1
, and the

condition L1 þ L2L3 < l1, we get that ðL1 þ L2L3ÞnkPnk < 1 when n is large
enough, which implies that ku� ukC ¼ 0, it follows that u1 u. Thus, the
abstract evolution equation (2.5) has only one o-periodic mild solution u� ¼
u ¼ u, which can be obtained by a monotone iterative procedure starting from
a0 or b0. This completes the proof of Theorem 3.2. r

4. Main results

In this section, we apply our abstract results to show the existence and
uniqueness of periodic solutions for nonlocal delayed parabolic equation (1.4).
To end this, we need the following definitions.

Definition 4.1. If a function a A C2;1ðW� RÞ, which is o-periodic in t,
satisfies

qa

qt
þ Aðx;DÞaa f ðx; t; aðx; tÞ; g � aðx; tÞÞ; x A W; t A R;

Ba ¼ 0; x A W;

8<
:ð4:1Þ
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we call it an o-periodic lower solution of Eq. ð1:4Þ. If the inequality of ð4:1Þ is
inverse, we call it an o-periodic upper solution of Eq. ð1:4Þ.

Now, we are in the position to state and prove our main results.

Theorem 4.1. Let f : W� R� R2 ! R is local Hölder-continuous function
which is o-periodic in t, the convolution g � uðx; tÞ is defined by ð1:5Þ. Suppose

that Eq. ð1:4Þ has lower and upper o-periodic solutions a0; b0 A C2;1ðW� RÞ with
a0 a b0. If the following assumptions

ðB1Þ there are two constants C1 b 0 and C2 > 0 such that

f ðx; t;w2; v2Þ � f ðx; t;w1; v1ÞbC1ðw2 � w1Þ þ C2ðv2 � v1Þ;
for all t A R, a0ðx; tÞaw1 aw2 a b0ðx; tÞ, and g � a0ðx; tÞa v1 a v2 a g � b0ðx; tÞ,

ðB2Þ there is a constant 0aC3 a
C1

C2
such that

u2ðx; tþ sÞ � u1ðx; tþ sÞb�C3ðu2ðx; tÞ � u1ðx; tÞÞ;
for all s A ð�y; 0�, t A R, u1; u2 A ½a0; b0� with u2 b u1,
hold, then Eq. ð1:4Þ has minimal and maximal o-periodic solution u; u A C 2;1ðW� RÞ
between a0 and b0, which can be obtained by monotone iterative sequences starting
from a0 and b0.

Proof. From Section 2, we know that the o-periodic problem of equation
(1.4) can be reformulated as the o-periodic problem of abstract evolution
equation (2.5). Thus, the lower and upper o-periodic solutions of Eq. (1.4)
are the lower and upper o-periodic solutions of abstract evolution equation
(2.5). By the conditions ðB1Þ, ðB2Þ and (2.4), we can easily prove that the
conditions ðA1Þ and ðA2Þ hold. Therefore, from Theorem 3.1, we know that
abstract evolution equation (2.5) has minimal and maximal o-periodic mild
solutions u, u and u, u can be obtained by the iterative sequences defined in (3.4)
starting from a0 and b0. By the analyticity of semigroup TðtÞðtb 0Þ and the

regularization method used in [2], we can see u; u A C 2;1ðW� RÞ are classical
time o-periodic solutions of the problem (1.4). This completes the proof of
Theorem. r

Theorem 4.2. Let f : W� R� R2 ! R is local Hölder-continuous function
which is o-periodic in t, the convolution g � uðx; tÞ is defined by ð1:5Þ. Suppose

that Eq. ð1:4Þ has lower and upper o-periodic solutions a0; b0 A C2;1ðW� RÞ with
a0 a b0. Assume that conditions ðB1Þ, ðB2Þ and following conditions

ðB3Þ there are positive constants L1, L2 such that

f ðx; t;w2; v2Þ � f ðx; t;w1; v1ÞaL1ðw2 � w1Þ þ L2ðv2 � v1Þ;
for all t A R, a0ðx; tÞaw1 aw2 a b0ðx; tÞ, and g � a0ðx; tÞa v1 a v2 a g � b0ðx; tÞ,

ðB4Þ there is positive constant L3 such that

u2ðx; tþ sÞ � u1ðx; tþ sÞaL3ðu2ðx; tÞ � u1ðx; tÞÞ;
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for all s A ð�y; 0�, t A R, u1; u2 A ½a0; b0� with u2 b u1,
hold, then Eq. (1.4) has a unique o-periodic solution u� A C2;1ðW� RÞ between a0
and b0 provided that L1 þ L2L3 < l1 (l1 is the first eigenvalue of Aðx;DÞ under the
boundary condition Bu ¼ 0).

Proof. By Theorem 4.1, we know that we know that the o-periodic
problem of equation (1.4) has minimal and maximal o-periodic solutions
u; u A C2;1ðW� RÞ, which can be obtained by the iterative sequences defined
in (3.4) starting from a0 and b0. On the other hand, we also can obtain that
the conditions ðA3Þ and ðA4Þ hold from ðB3Þ and ðB4Þ. Hence, by Theorem 3.2,
we can get that Eq. (1.5) has only one o-periodic mild solution u� ¼ u ¼ u,
which implies that u� A C2;1ðW� RÞ is a unique classical time o-periodic solution
of the problem (1.4). This completes the proof of Theorem. r
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