Q. LL Y. LI AND P. CHEN
KODAI MATH. J.
39 (2016), 276-289

EXISTENCE AND UNIQUENESS OF PERIODIC SOLUTIONS FOR
PARABOLIC EQUATION WITH NONLOCAL DELAY*

QIANG Lif, YONGXIANG L1 AND PENGYU CHEN

Abstract

This paper deals with the existence and uniqueness of time periodic solutions for the
general periodic parabolic equation boundary problem with nonlocal delay. We apply
operator semigroup theory and monotone iterative technique of lower and upper
solutions to obtain the existence and uniqueness of w-periodic mild solutions of
some abstract evolution equation under some quasimonotone conditions. In the
end, applying our abstract results to parabolic equation with nonlocal delay, we get
the existence and uniqueness of w-periodic solution, which generalize the recent
conclusions on this issue.

1. Introduction

Parabolic partial equations have been intensively developed during the last
decades because of their applications in chemistry, biology, etcetera. Especially,
periodic semi-linear parabolic partial equations are of particular interests since
they can take into account seasonal fluctuations occurring in the phenomena
appearing in the models, and have been extensively studied by many researchers
(see [2, 1, 6, 14, 22] and so on).

Since equations with delay are often more realistic to describe natural
phenomena than those without delay, the problems concerning periodic solutions
of partial differential equations with delays are an important area of investiga-
tion in recent years. Specially, the existence of periodic solutions of parabolic
equation with delays has attracted much attention and been considered by some
authors, see [26, 8, 5, 16, 19, 20, 28, 23, 27, 13] and references therein.
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Let Q < RY be a bounded domain with a sufficiently smooth boundary 0Q,
and

N N
(L.1) A(x,D)u=— Z a;j(x)D;Dju + Z a;(x)Dju + ap(x)u

i,j=1 Jj=1

be a uniformly elliptic differential operator in Q, whose coefficients @;(x), a;(x)

(i,j=1,...,N) and ap(x) are Holder-continuous on Q and ap(x) > 0. We let
B = B(x,D) be a boundary operator on 0Q of the form
(1.2) Bu := bo(X)u+52—Z)7

where either § =0 and by(x) =1 (Dirichlet boundary operator), or 6 =1 and
bo(x) = 0 (regular oblique derivative boundary operator, at this point, we further
assume that ao(x) # 0 or by(x) # 0), f§ is an outward pointing, nowhere tangent
vector field on 0Q. Let f:Q x R x R> = R be local Hélder-continuous func-
tion which is w-periodic in ¢.

The time w-periodic solution for delay parabolic boundary value problem

) O A(x.D)u=f(x.pulx.0)ulx,~ 7)), xeQ IR,

Bu=0, xedQ,

has been studied by some authors, where 7 is positive constant which denotes the
time delay. If 7 =0, it means that system (1.3) does not include the terms of
time lag. Theorems of the existence and uniqueness of periodic solution for
some special kinds of equation (1.3) are proved in [8, 20, 28, 23].

In fact, in many practical problems individuals usually move around. In
this case, it is not sufficient only to include a discrete delay or some finite delays,
since the individuals may be at the different locations in their history, for
example, in some population models. Therefore, in order to describe these
models better, Britton [3, 4] considered these two factors and introduced the
so called spatio-temporal delay or nonlocal delay. Afterwards, lots of works
have been done on reaction-diffusion equations with nonlocal delay, we refer to
[24, 17, 18, 15]. It is noteworthy that these research works focused on the
traveling wave solutions of parabolic equation with nonlocal delay. However, to
our knowledge, there are still very few papers to consider the periodic problem
of parabolic equation with nonlocal delay.

It is well known that the method of lower and upper solutions is an effective
and flexible mechanism. It yields monotone sequences of lower and upper
approximate solutions that converge to the minimal and maximal solutions
between the lower and upper solutions. Recently, the method of lower and
upper solutions and the monotone iterative technique had been developed for
abstract evolution equations with classical initial condition and periodic condition
[10, 11, 25, 12].
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Motivated by the papers mentioned above, in this paper, by means of
operator semigroup theory and monotone iterative technique of lower and upper
solutions, we discuss the existence and uniqueness of time w-periodic solutions of
nonlocal delayed parabolic equation boundary value problem

(1.4) %—l—A(x,D)u:f(x,t,u(x,t),g*u(x,t)), xeQ, teR,
Bu=0, xeQ,

where f : Q x R x R? — R is local Hélder-continuous function, f(x, ¢, ¢&,#) is once
growth for & and 5, and w-periodic in ¢, the convolution g * u(x, t) is denoted by

t

(L.5) g*xu(x,t) = J JQ K(x, y,t —s)u(x,s) dyds

— 0

+o0
= J J K(x, y,s)u(x,t —s) dyds.
0o Ja

The convolution kernel K(x, y,¢) depends on both the spatial and the temporal
variables, which is a positive continuous function in its variables € R, x, y € Q.
We normalize the kernel so that

(1.6) J:oc JQ K(x,y,t) dyds = 1.

1
For example [7], we take Q = [0,7] < R, K(x, y,7) = G(x, y, 0)k(1), k(1) = =e7 /"

and T
1 2&K .
. X, y,t)=—+=> e "7 cosnxsin ny,
(1.7) Glx,y,0) =+ > i
n=1
which is a fundamental solution of the heat equation
G *G
E:W’ ye[07n]7t>07
1.8 0
(18) 6l _,
ay _\):O,n

G(x,y,O) 25(X—y)7

where J is the general Dirac function.

The paper is organized as follows. In Section 2, we collect some known
notions and results on the operator semigroup and provide preliminary results to
be used in theorems stated and proved in the paper. In Section 3, we present
our abstract results and apply the operator semigroup theory and monotone
iterative method of the lower and upper solutions to prove them. In the last
section, applying our abstract results to parabolic equation with nonlocal delay,
we get the existence and uniqueness of w-periodic solution.
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2. Preliminaries

In this section, we introduce some notions and definitions which are needed
to prove our main results.

Let n < p < o0 and denote E = L?(Q). Then E is a Banach space with the
LP-norm || -||,. Let the positive cone K = {ue€ E|u(x) >0,xeQ}, it is clear
that K is a normal regeneration cone, which induces a partial ordering “>" on
E defined by

u>v<su—vek.

Thus, E is an ordered Banach space with the partial order “>".

Let C,(R,E) denote the Banach space {ue C(R,E) |u(t+ w) = u(t),t € R}
endowed the maximum norm |[u|| = max,c(,q|[u(?)[,- Evidently, Cy,(R,E) is
also an order Banach space with the partial order “<” induced by the positive
cone Kc ={ue C,(R,E)|u(t) > 0,1 e R} and K¢ is also normal. For any «,f €
Co(R,E) with o < 8, we use [o, ff] to denote the order interval {u|o <u < f} in
C,(R,E) and [o(?),B(?)]; to denote the order interval {u(f)|o(?) < u(t) < p(1),
teR} in E.

Define a linear operator 4 : D(4) — E by

(2.1)  D(A) ={ue W*’(Q)|B(x,D)u=0,x€dQ}, Au= A(x,D)u.

If ap(x) >0, then —A generates an exponentially stable analytic semigroup
T(1)(¢t=0) in E (see [2]). Let 4; be the first eigenvalue of A(x,D) under the
boundary condition Bu =0, we know that A; > 0. Thus, there is a constant
My > 1 such that

(2.2) IT()|| < Moe ™™ < My, for any A€ (0,4), t > 0.

By the maximum principle of elliptic operators, we know that A/ + A has positive
bounded inverse operator (Al 4+ A)~' for A >0, hence T(f)(r>0) is a positive
semigroup (see [10]). Sine the operator 4 has compact resolvent in L”(Q), we
obtain that 7(¢)(¢ > 0) is also a compact semigroup (see [9]). For more details
of the properties of the operator semigroup, we refer to [9, 21].

Now, from the assumptions of f, we can define F: R x E x E — E by

(2.3) F(tu,0) = (- t,u(),v(-),

and F : R x E x E — E is continuous and w-periodic for z. For any u € C,(R,
u(t)e E=L?(Q), denote u(t)(x) =u(x,t), we can easily prove gx*u(x,t)=
g*xu(x,t+w) for xeQ, hence we can define an operator S: C,(R,E) —
Cy(R, E) as follow

(2.4) Su = J;O JQ K(x, y,s)u(x, t —s) dyds.

It is clear that S : C,(R, E) — C, (R, E) is a positive linear bounded operator with
IIS|| < 1. Hence, the w-periodic problem of equation (1.4) can be reformulated
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as the w-periodic problem of abstract evolution equation
(2.5) u' (1) + Au(t) = F(t,u(t), Su(t)), teR.

Now, we recall some basic facts on abstract linear evolution equation corre-
sponding to Eq. (2.5). Let J denote the infinite interval [0,4+o0) and A :J — E,
consider the initial value problem of the linear evolution equation

{u'(t) + Au(t) = h(t), t>0,

(26) u(0) = xo.

It is well known [21], when xo € E; and he C'(J,E), the initial value problem
(2.6) has a unique classical solution ue C'(J,E)NC(J,E;) expressed by

t
(2.7) u(t) = T(H)xo + J T(t— s)h(s) ds,

0
where E; = D(A) is Banach space with the graph norm | - |, = | + [|[4]-
Generally, for xo and he C(J,E), the function u given by (2.6) belongs to
C(J,E) and it is called a mild solution of the linear evolution equation (2.6).

Given h € C,(R, E), we consider the existence of w-periodic mild solution of

linear evolution equation

(2.8) u'(t) + Au(t) = h(z), teR.

In order to establish the results of this section, from [12] we include the
following lemma.

LemmA 2.1. Assume that A is defined by (2.1), thus —A generates an
exponentially stable analytic semigroup T(t)(t = 0) in E. Then for he C,(R, E),
the linear evolution equation (2.8) has a unique w-periodic mild solution ue
Cy(R,E), which can be expressed by

(2.9) u(t) = (I — T(w))™" J’ T(t — )h(s) ds := Ph(?),

t—w
and the solution operator P: C,(R,E) — C,(R,E) is a bounded positive linear

1 , :
operator with the spectral radius r(P) < n (A1 is the first eigenvalue of A).
8|

Similarly to definition of w-periodic mild solution for the linear evolution
equation (2.8), we can define the w-periodic mild solution for the nonlinear
evolution equation (2.5) (or Eq. (1.4)).

DermNiTION 2.1, A function u € Cy(R, E) is said to be a mild solution of
Eq. (2.5) if it satisfies

(2.10) u(t) = (I — T(w))™" J T(t — 5)F (s, u(s), Su(s)) ds.
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Next, we define the w-periodic lower and upper solutions of Eq. (2.5).

DEerFINITION 2.2, If a function o e C} (R, E) N C,(R, Ey) satisfies
(2.11) o' (1) + Au(t) < F(t,a(1), So(s)), t€R,

we call it an w-periodic lower solution of Eq. (2.5). 1If the inequality in (2.11) is
inverse, we call it an w-periodic upper solution of Eq. (2.5).

3. Abstract results

Now, we are in the position to state and prove our main results. We will
apply monotone iterative method of the lower and upper w-periodic solutions to
obtain the existence of w-periodic mild solution for Eq. (2.5).

THEOREM 3.1. Let F:R X EX E — E is continuous function which is
w-periodic in t, S: C,(R,E) — C,(R,E) is a positive linear bounded operator.
Suppose that Eq. (2.5) has lower and upper w-periodic solutions o,y € CL(R, E)N
Co(R, Ey) with oy < fy. If the following assumptions

(A1) there are two constants Cy >0 and Cy > 0 such that

F(t,wy,v2) — F(t,w1,v1) = Ci(wy —wi) + Ca(v2 — v1),
Jor all teR, ag(t) < wi < wy < By(1), Soo(t) <vr < va < SPy(2),

C
(A2) there is a constant 0 < C3 < El such that
2

Swy — Swy = —C3(wy — wy),
Sfor all wy,wy € [ag, fy] and wy > w,
hold, then Eq. (2.5) has minimal and maximal w-periodic mild solution u, @

between ay and f,, which can be obtained by monotone iterative sequences starting
from oy and p,.

Proof. By the definition of lower and upper w-periodic solutions, we obtain
that [0, fy] = Co(R,E). It is easy to see that ao(f) < fy(¢) for every zeR.
Now, let us define & : C,(R,E) — C,(R,E) by

F (u)(t) = F(t,u(t), Su(t)),
where F is defined by (2.4). We define the mapping Q : [0, f)] — Cu(R, E) by

(3.1) Qu = (PoZF)(u).
It is clear that
(3.2) (Qu)(1) = (I — T(w))”" j T(t — 5)F(s, u(s), Su(s)) ds.

We can easily see that Q : [«g, fy)] — C,(R, E) is continuous. By Definition 2.1, the
w-periodic mild solution of Eq. (2.5) is equivalent to the fixed point of operator Q.
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Firstly, we show that the following properties of Q.

(i) Q is a monotone operator.

(i) % < Quo and OB, < fy.

In fact, if u,uz € (00, fy] and u; < up, then op(7) < uy(2) < up(r) < () and
Sog(2) < Sup(t) < Sus() < SPy(¢) for every t e R, from (A1) and (A2), we obtain
that

F(t,us(t), Sus()) — F(t,u(¢), Suy (1))

> Ci(up(t) — ui(2)) + Ca(Sup(t) — Sui (1))
> Ci(ua(1) —ui (1)) — CrCa(ua(1) — ui (1))
= (C1 — QG)(ua(t) — (1)) = 0.

Thus F(z,u(t), Gu(r)) is nondecreasing on u € [ag, ;] Namely,
(3.3) F(t,ui (1), Sui (1)) < F(t,ux(t), Sur(1)),

for all 7e R and u;,us € [0, fy] with u; < up. Thus, by means of positivity of
the operator semigroup 7'(¢)(¢ = 0), one has

t

(= T()™ J T(t — $)F (s, m(s), S (s)) ds

—w
t

<(I- T(w))f‘J T(t — s)F(s,uz(s), Suz(s)) ds.
t—w
Hence, by (3.2), we see that Qu; < Qup, which means that Q is a monotone
operator.
Let h(t) = ay(t) + Aog(t) € C(R, E), by the definition of lower solution, we
know that h(t) < F(t,a0(¢), Sop(t)) for t e R.  Thus, form Lemma 2.1 and Defini-
tion 2.1, we have

t

(1) = (I — T(w)) ™" J T(t — 5)h(s) ds

—w
t

<(- T(w))71J T(t— 5)F(s,a0(s), Sog(s)) ds

= (Q“O)(t)v teR,

namely, oy < Qop. Similarly, it can be shown that Qf, < f,. Therefore,
0 : oo, fy] — [00, o] 1s a continuously increasing operator.

Now, we define two sequences {o,} and {f,} in [0, f,] by the iterative
scheme

(34) On = QO(,,,I, ﬁn = Qﬁnfb n= 1727""
Then from the monotonicity of the operator Q, it follows that

(3.5) <o <o << << f <<y < By < B,
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Secondly, we prove that {a,} and {f,} are convergent in C,(R,E).
Since u € [0, fy] implies that og(7) < u(f) < fy(¢) for any ¢ e R, thus, from
(3.3) we have

(3.6)  F(t,20(1), S (1)) < F(t,u(t), Su(1)) < F(1, (1), SPo(1)), 1€R.
By the normality of the cones, there exist a constant M; > 0 such that
(3.7) |F (2, u(r),Su(t)|| < M1, teR, ue o, fy

Now, we demonstrate that {o,} and {f,} are equicontinuous.
For every o,, by the periodicity, we only consider it on [0,w]. Set 0 < <
th < w, we get that

on(t2) = on(t1) = (Qotn—1)(12) — (Qotu—1)(11)

== T@)™ [ T 9P o1 0) S0 (5) s
=T [ 0= (1 (0 52 (0)

== TN [ (705~ T = 953019 55019
=T [T - 9P 5515

4]

+ (I - T(w))f1 J T(ty — $)F (s, 0n-1(5), Soy—1(5)) ds

151

=L+ 5L+ L.
It is clear that

(3:8) 1(Qu)(12) = (Qu) ()| < |4 + 2] + | 55]]-

Hence, we only need to check |I;]] tend to O independently of «, when
fh—t —0, i=1,2,3. From [12], we know that (I — T(w))™" is a bounded
operator, denote ||(I — T(w))~'|| = M>. Therefore, by (2.2) and (3.7), we can
easily obtain

n
Il < sz (T (22 = 5) = T(t1 = $))F (s, 01 (5), Son—1(s)) | ds
h—m
Hh+ow—1t
< MlMZJ IT(tr — 1y +5) — T(s)|| ds
0

—0, astn—1 —0,
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h—m
1]l < MzJ 1T (tr = 5)F (s, 0n-1(5), Sotn—1(s))]| ds
Hh—w
h—o
<[ T o)
Hh—w
—0, astnh—t —0,

t

5] < M, J T (22 = $)F (5,00 -1(5), Sot-1 ()] s
n
1)

ngsz’nT(rz—s)n ds

1

—0, asth—1t —0.

As a result, ||(Qou—1)(f2) — (Qou—1)(t1)|| tends to O independently of o, as
t, — t; — 0, which means that {a,} is equicontinuous. Similarly, we can prove
that {f,} is equicontinuous.

Next, we prove that {a,(¢)} and {f,(f)} are relatively compact in E for
all reR. For convenience, let B; = {a,}, B, = {f,} and B) = BiU{%}, B) =
ByU{B,}, it follows that By(7) = (QB))(¢) and By(7) = (QOBY)(z) for every 1 eR.

We define a set by

(3.9) (Q:B)) (1) := {(Qu00) (1) | 0t € BY,0 < & < 0,1 € R},
where
0,0(t) = (I — T(w)) ™" Jts T(t— $)F(s,0n-1(s), So_1(s)) ds
=T()(I - T(w))™" Jts T(t—s5—&)F(s,0-1(5),So,_1(5)) ds.

Then the set (Q,BY)(¢) is relatively compact in E since the operator T(e) is
compact in E. For any «, € BY and 7€ R, from the follow inequality

(3.10) | Qo () — Qe (2) |

S =T@) | 7= 9F(s.301(9.53,-1(5) ds
U= T@) [ T F(5301(0). 201 ) |

< 02 [ 7= )0 30-1(5), S0 ()] s

< MiM> J

—

IT( = s)|| ds < Mo M, Mae,
&
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one can obtain that the set (QBY)(7) is relatively compact in E for all 7eR.
Thus {o,(#)} = Bi(t) = (OB))(¢) is relatively compact in E for all ze R. Sim-
ilarly, we can prove that {f,(¢)} is relatively compact in E for all 7€ R.

Therefore, the Arzela-Ascoli theorem guarantees that {o,} and {f,} are
relatively compact in C,(R, E), so there are convergent subsequences in {a,}
and {f,}, respectively. Combining this with the monotonicity (3.5) and the
normality of the cone K, we can easily prove that {o,} and {f,} themselves
are convergent, i.e., there are w,iie C,(R,E) such that lim,., o, =u and
lim,_ ., f, =u. Taking limit in (3.4), we have

(3.11) u=Qu, u= Q.
Therefore u, e C,(R, E) are fixed points of Q.

Finally, we prove the minimal and maximal properties of u, #. Assume that
u is a fixed point of Q with @ € [0, fiy], then for every r € R, ay(r) < u(z) < f,o(2),

(3.12) (1) = (Quo) (1) < (Qu)(1) = u(t) < (OPy)(1) = fi(1), 1eR.
Similarly, o (7) < a(¢) < B,(¢) for re R. In general
(3.13) o, <u<p, n=12,....

Taking limit in (3.13) as n — oo, we get u < # < u. Therefore u, # are minimal
and maximal w-periodic mild solutions of Eq. (2.5) and u, @ can be obtained by
the iterative sequences defined in (3.4) starting from oy and ;. This completes
the proof of Theorem 3.1. O

Now we discuss the uniqueness of time w-periodic solution of the problem
(1.4).

THEOREM 3.2. Let F:R X Ex E — E is continuous function which is
w-periodic in t, S: C,(R,E) — C,(R,E) is a positive linear bounded operator.
Suppose that Eq. (2.5) has lower and upper w-periodic solutions o, f, € CL(R, E) N
Co(R,E)) with oy < fy. Assume that conditions (Al), (A2) and following
conditions

(A3) there are positive constants Ly, L, such that

F(t,wy,00) — F(t,w1,01) < Li(wy —wy) + La(va — v1)

Sor all teR, oy(t) < wy < wy < By(1), Sog(f) <vp < vy < SPy(1),
(A4) there is positive constant Ls such that
Swy — Swy < Ly(wy — wy),

Sor all wy,wy € [0, By and wy > wy,
hold, then Eq. (2.5) has a unique w-periodic mild solution u* between oy and f,
provided that Ly + L,Ly < Ay (A1 is the first eigenvalue of A).

Proof. By Theorem 3.1, we know that the abstract evolution equation (2.5)
has minimal and maximal w-periodic mild solutions u,# € C,(R, E), which can
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be obtained by the iterative sequences defined in (3.4) starting from oy and f,.
Therefore, we only show that u(f) = a(z) for 1 eR.

To this end, we arbitrarily choose u;,u; € [a,f] with u; < up, thus u(f) <
u>(¢) and Su;(f) < Suy(¢) for ¢ € R, by assumptions (43) and (44), we can obtain

F(t,uy(t), Sup(t)) — F(t,u1(2), Sui (1))
< Li(ua(t) — ui (1)) + La(Sux (1)) — Sui (1))
< Li(up(t) — ur(2)) + LoLs(un(2) — ui (1))
= (L1 + LoL3)(ua(t) — u1(2)).
Hence, for u, i € [, fy), which implies that u(z),(¢) € [ao(2), fo(2)]z, We have
(3.15)  F(t,u(r),Gu(t)) — F(t,u(?),Gu(t)) < (L1 + LoLs)(a(t) — u(t)), teR.

Since #, u are the fixed points of the operator Q, then by (3.1) and (3.15), we
obtain

By the normality of the cone K¢, we can see
(3.16) it = ulle < (Li + LaLs)"[[P"]| - [l — ull -

. 1
From the spectral radius of Gelfand formula lim,_, ., /|| P"|| = r(P) = 7 and the
1

condition L; + LpL3 < A, we get that (Ly + L,L3)"||P"|| <1 when n is large
enough, which implies that ||# —u|o =0, it follows that #=u. Thus, the
abstract evolution equation (2.5) has only one w-periodic mild solution u* =
@ = u, which can be obtained by a monotone iterative procedure starting from
op or fB,. This completes the proof of Theorem 3.2. O

4. Main results

In this section, we apply our abstract results to show the existence and
uniqueness of periodic solutions for nonlocal delayed parabolic equation (1.4).
To end this, we need the following definitions.

DerINITION 4.1, If a function o e C*>!(Q x R), which is w-periodic in ¢,
satisfies

%

4.1 ot

Bau=0, xeQ,

+ A(x, D)o < f(x,t,0(x,1),g*a(x,1), xeQ,teR,
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we call it an w-periodic lower solution of Eq. (1.4). If the inequality of (4.1) is
inverse, we call it an w-periodic upper solution of Eq. (1.4).

Now, we are in the position to state and prove our main results.

THEOREM 4.1. Let f:Q xR x R* = R is local Hélder-continuous function
which is w-periodic in t, the convolution g *u(x,t) is defined by (1.5). Suppose
that Eq. (1.4) has lower and upper w-periodic solutions o, f, € C*'(Q x R) with
op < fo.  If the following assumptions

(Bl) there are two constants C; >0 and Cy > 0 such that

f(x,t,wa,00) — f(x,8,wr,01) = Ci(wa —wy) + Co(v2 — 1),
for all te R, ap(x,t) < w; <wy < Bo(x, 1), and g+ ap(x,t) <v; < vy < g*fy(x, 1),

C
(B2) there is a constant 0 < C3 < Fl such that
2

wp(x,t+5) —u(x,t+5) = —Cs(ua(x, 1) — uy (x, 1)),

for all se (—00,0], teR, uy,uy € [0, fo] with up > uy,

hold, then Eq. (1.4) has minimal and maximal ew-periodic solution u,ii € C*'(Q x R)
between ay and f,, which can be obtained by monotone iterative sequences starting
from oy and f.

Proof. From Section 2, we know that the w-periodic problem of equation
(1.4) can be reformulated as the w-periodic problem of abstract evolution
equation (2.5). Thus, the lower and upper w-periodic solutions of Eq. (1.4)
are the lower and upper w-periodic solutions of abstract evolution equation
(2.5). By the conditions (Bl), (B2) and (2.4), we can easily prove that the
conditions (A1) and (A42) hold. Therefore, from Theorem 3.1, we know that
abstract evolution equation (2.5) has minimal and maximal w-periodic mild
solutions u, @& and u, # can be obtained by the iterative sequences defined in (3.4)
starting from oy and f,. By the analyticity of semigroup T(¢)(¢ > 0) and the
regularization method used in [2], we can see u,ite C>!'(Q x R) are classical
time w-periodic solutions of the problem (1.4). This completes the proof of
Theorem. O

THEOREM 4.2. Let f:Q xR x R* = R is local Hélder-continuous function
which is w-periodic in t, the convolution g *u(x,t) is defined by (1.5). Suppose
that Eq. (1.4) has lower and upper w-periodic solutions o, f, € C*'(Q x R) with
og < fo.  Assume that conditions (Bl), (B2) and following conditions

(B3) there are positive constants Ly, L, such that

S, t,wa,00) — f(x, t,wr,01) < Li(wy —wy) + La(va — 1),

Jorall te R, ap(x, 1) <wyp < wy < fo(x,1), and g * ap(x, 1) < v; < vy < g* Py(x, 1),
(B4) there is positive constant Ls such that

w(x,t+s) —ui(x,t+s) < Ly(ua(x, 1) — uy(x, 1)),
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Sor all se (—0,0], teR, uj,us € [, ] with uy > uy, B

hold, then Eq. (1.4) has a unique w-periodic solution u* € C>'(Q x R) between o
and By provided that Ly + LyLsy < 11 (41 is the first eigenvalue of A(x, D) under the
boundary condition Bu = 0).

Proof. By Theorem 4.1, we know that we know that the w-periodic
problem of equation (1.4) has minimal and maximal -periodic solutions
u,iie C>'(Q x R), which can be obtained by the iterative sequences defined
in (3.4) starting from oy and f,. On the other hand, we also can obtain that
the conditions (43) and (A44) hold from (B3) and (B4). Hence, by Theorem 3.2,
we can get that Eq. (1.5) has only one w-periodic mild solution u* =i = u,
which implies that u* € C*!(Q x R) is a unique classical time w-periodic solution
of the problem (1.4). This completes the proof of Theorem. O
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