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TWO NORMALITY CRITERIA AND COUNTEREXAMPLES
TO THE CONVERSE OF BLOCH’S PRINCIPLE

KULDEEP SINGH CHARAK AND VIRENDER SINGH

Abstract

In this paper, we prove two normality criteria for a family of meromorphic
functions. The first criterion extends a result of Fang and Zaleman [Normal families
and shared values of meromorphic functions II, Comput. Methods Funct. Theory, 1
(2001), 289-299] to a bigger class of differential polynomials whereas the second one
leads to some counterexamples to the converse of the Bloch’s principle.

1. Introduction and main results

It is assumed that the reader is familiar with the standard notions used in the
Nevanlinna value distribution theory such as T'(r, f), m(r,f), N(r, f), S(r, f)
etc., one may refer to [5]. In this paper, we obtain a normality criterion for a
family of meromorphic functions which involves sharing of holomorphic func-
tions by certain differential polynomials generated by the members of the family.

In 2001, Fang and Zalcman [4, Theorem 2, p. 291] proved the following

THEOREM A. Let & be a family of meromorphic functions on a domain D, k
be a positive integer and a(# 0) and b be two finite values. If, for every f € 7, all
zeros of f have multiplicity at least k and f(z)f %) (z) = a < f%)(z) = b, then the
family F is normal on D.

In this paper, we extend this result as

THEOREM 1.1. Let F be a family of meromorphic functions on a domain D.
Let n>2, m>k>1 be the positive integers and let a(# 0) and b be two finite

values. If, for each f € F, f”(z)(fm)(k)(z) =as (f™W(2) = b, then the family
F is normal on D.
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Now it is natural to ask whether Theorem 1.1 still holds if ¢ and b are
holomorphic functions. In this direction, we prove the following

THEOREM 1.2. Let n>2, m >k > 1 be the positive integers. Let a(z)(% 0)
and b(z) be two holomorphic functions on a domain D such that multiplicity of

1 ,
each zero of a(z) is at most p, where p < VT—‘ — 1. Then, the family F of

meromorphic functions on a domain D, all of whose poles are of multiplicity

at least p—+1, such that f”(z)(f’”)<k> (z) =a(z) & (f’”)<k) (z) = b(z), for every
f e, is normal on D.

Remark 1.1. Consider the family # = {f; : | e N}, where f;(z) = e” on the
unit disk D. Then

(f]m)(k)(z) _ mklkemlz and fln(z)(flm)(k) (Z) _ mklke(ner)lz

Clearly, f"(z) (f,’”)(k)(z) =0& (f,’")(k)(z) =0. However, Z is not normal on D.
Thus the condition that a # 0 is essential in Theorem 1.1.

Remark 1.2. Consider the family & = {f; : / € N}, where f;(z) = 2/z on the
unit disk D. Then

f}”(Z)(fl'm)(k) (z) = (21)n+mm(m —D(m—=2)---(m— k)Zn+m—k
and
(f/”’)(k)(z) = (21)mm(m —(m—=2)---(m-— k)zm—k

Clealy, f(2)(/i")¥(2) = a(z) & (/)P (z) = b(z), where a(z) = 2"+
and b(z) =z"%. We can see that multiplicity of zeros of a(z) is at least n.
However, the family % is not normal on D. Thus, the restriction on the
multiplicities of the zeros of «(z) is essential in Theorem 1.2.

In 2004, Lahiri and Dewan [9, Theorem 1.4, p. 3] proved

THEOREM B. Let F be a family of meromorphic functions in a domain D and
a(#0), be C. Suppose that Ep ={ze D: f% —af = = b}, where k and n(> k)
are the positive integers. If for every f e F

(i) f has no zero of multiplicity less than k

(ii) there exists a positive number M such that for every feF, |f(z)| =M
whenever z € Er, then & is normal.

In 2006, Xu and Zhang [17, Theorem 1.3, p. 5] improved Theorem B as
THEOREM C. Let F be a family of meromorphic functions in a domain D and

a(#0), be C. Suppose that Ef ={ze D: f% —af~" = b}, where k and n are
the positive integers. If for every f e F
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(i) f has no zero of multiplicity at least k

(i) there exists a positive number M such that for every feF, |f(z)| =M
whenever z € Ey, then F is normal so long as

(A) n>2 or

(B) n=1 and Ny(r,1/f) = S(r, f).

In this paper, we prove the following

THEOREM 1.3. Let & be a family of meromorphic functions in a domain
D. Let ny, ny, m>k>1 be the non-negative integers such that ny +np, > 1.
Suppose Y(z) := f™ (Z)(f”’)(k> (z) —af ™(z) — b, where a(#0), beC. If there
exists a positive constant M such that for every f e F, either |f(z)| =M or
I(f™©(2)| < M whenever z is a zero of W(z), then F is normal in D.

As an application of Theorem 1.3, we construct some counterexamples to the
converse of Bloch’s principle in the last section of this paper.

COROLLARY 1.4. Let & be a family of meromorphic functions in a domain D.
Let nym > k be the positive integers and a(# 0) be a finite complex number. If
there exists a positive constant M such that for every f e F, f"(z)(f ’")(k)(z) =
a= |(f’”)<k>(z)| < M, then F is normal in D.

2. Some lemmas

Lemma 2.1 [21] (Zalcman’s lemma). Let & be a family of meromorphic
Sfunctions in the unit disk D and o be a real number satisfying —1 < o < 1. Then,
if & is not normal at a point zy € D, there exist, for each o: —1 <a <1,

(i) a real number r:r <1,

(i) points z, : |z, <r,

(iii) positive numbers p, : p, — 0,

(iv) functions f, € F such that g,({) = p,*fu(zn + p,C) converges locally uni-
Sformly with respect to the spherical metric to g({), where g({) is a non constant
meromorphic function on C and g#({) < g#(0) = 1. Moreover, the order of g is
not greater than 2.

A
LemmA 2.2 [22, Lemma 2.6, p. 107]. Let R= 7 be a rational function and
B be non constant. Then (R®) < (R), —k, where (R), = deg(4)— deg(B).

[e¢]

LemMma 2.3. Let n>2, m>k >1 be the positive integers. Let a(z)(# 0)
be a polynomial of degree p such that p <n—2. Then there is no function
f rational on C which has only poles of multiplicity at least p+ 1 such that

MO # az) and (1) (z) # 0.
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Proof. First we consider the case of a polynomial Suppose on the
contrary that there is a polynomial f(z) with the given properties. Since
(f ’”) #0 and m >k, f has zeros of multiplicity exactly one. So, we
have

deg(f"(f™)") = n deg(f) = n > p = deg(a(2))

Therefore, /™(z)(f™)*(z) — a(z) has a solution, which is a contradiction.
Next, suppose that f has poles. Then, we set

! (z— o)
(2.1) JI5 PRE= N—
[1(z—=8)"

where A # 0, o; are the distinct zeros of f* with s > 0 and f3; are the distinct poles
of f with > 1.

Put
Z I/lj = N
J=1
Then
N>tp+1)
Now,
[1(z—o)"
(2 2) fm(Z) qM 11:1
I;[] (Z _ ﬂj)mn,
I (z—a)"™*
(2.3) = (/M¥e) = 9(2),

where ¢(z) is a polynomial.
By Lemma 2.2, we have

Now,
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ﬁ (Z _ Oﬁ,‘)<m+n)_k
(2.4) romB = an = 9(2).
H (Z o ﬂ')(m+n>n/+k
j=i ’
So,
ﬁ (Z B OCl_)(ern)fkfpfl
(2.5) (frrm©)rh = = pr— L
z— ﬁ m-n nj P
jl;[l (z=8)

where go(z) is a polynomial.
Again, by Lemma 2.2, we have

(LD < (r(rm®y—(p+1)
= deg(go) < (s+1—1)(p+k+1).

IA

Since f”(f”’)<k> # a(z), we set

(2.6) Mm% =a(z) +

(m~+n)n+k ’
z — ﬂ J
= ( )

where ¢ # 0 is a constant.
So,

(2.7) (fr(fmy @y ) 91(2)

1—’[ (z = )tk ’
J
j=1

where gi(z) is a polynomial of degree at most (p+ 1)(r—1).
On comparing (2.4) and (2.6), we have
s(m+n) — ks + deg(g) = N(m + n) + kt + pt
= Nm+n)<s(m+n)—k
=N <y,

forn>2 m>k>1.
Also, from (2.5) and (2.7), we have

deg(gn) = s(m+n) = s(k + p+1).

Now,
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(p+1)(t 1) = deg(g1(2)) = s(m +n) —s(k+ p+1)
= s(m+n) < (p+Dt—1)+sk+p+1)
=>sm+n) <(p+Dt+stk+p+1)

5 < p+lt+k+p+1s

=
m+n m+n
1 k
=5< N + +p+1s
m+n m+n

( 1 k+p+1)
=5 < + Ky
m+n m-+n

k 2
:,K(i)s

m-+n

k 2
:s<s('.'i £1>,

m-—+n

which is absurd.
Thus, if (f’”)(k> (z) # 0, then f”(z)(f’”)(k> (z) —a(z) has at least a solution.
Hence the Lemma follows. [ |

LemMmaA 2.4. Let n > 2, m >k > 1 be the positive integers. Then there is no
transcendental meromorphic function f on C such that f(z)(f ’”)<k> (z) #a(z) and
(fm)(k)(z) # 0, where a(z) #£0 is a small function of f.

Proof. Suppose on the contrary that there is a transcendental meromorphic
function f on C satisfying the given conditions. Since (f ’”)(k) #0and m>k, f
has zeros of multiplicity exactly one. Now, by second fundamental theorem of
Nevanlinna for three small functions [5, Theorem 2.5, p. 47], we have

2.8 T, " (f" (k) _]Vr, n( pmy (k) N r,—1 >
(2.8) (r, ")) < N(r, (™)) + <fn(fm)(k)
+N<r ! )
' © = a(z)
_ /1
:N(r,f)+N<r7>+S(r,f)
Also,
ngrm 1 n
29) T M) = NG N ( f,,(fm)<k>ﬂ
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Thus, from (2.8) and (2.9), we get

NG ) < NG, )+ 50, )

= N(r, f) = S(r, f).

(2.10)

1 1
V,fn(fm)(k)> + N(V,W> + 0(1)

T(r, f" my(k)y _ N r, ! )
(r () ( T
+N( me)—&-S( ).

Now, substituting (2.8) and (2.10) in (2.11), we get

(m+n)T(r, f) < N(r,}) —N<r,fn(flm)<k ) —|—N< f’”*") +S(r, f)

(1)) o) 50

= (m+ I)N(r, ) +Sr, f)

1
f
<(m+1)T(r, f)+S(r,[)
= (n=1T(r,f) <S(r, /),

IA
=

which is a contradiction, for n > 2.
However, if f has no zeros, then f”(f ”’) has no zeros.
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That is,

1 1
N(r?) =S8(r,f) and N(r,W> =S(r, f).

Thus, by the same argument used above, we get a contradiction. ]
LemMa 2.5 [2].  Let f be a transcendental meromorphic function and n,m > k
be the positive integers. Let F :f”(f’”)(k). Then
k — 1
—— H|T(r,F) <N S(r, F
|:2(2k _|_ 2) + 0( ):| (V, ) - (r’F _ 0)) + (V7 )

Sor any small function w(#0,0) of f.

LemMA 2.6 [2]. Let f be a rational function and n,m >k be the positive
integers. Then, for a(#0)eC, f"(f ’”)(k> —a has at least two distinct zeros.

LeMMA 2.7 [3]. Let f be an entire function. If the spherical derivative [# is
bounded in C, then the order of f is at most one.

3. Proof of Theorems

Proof of Theorem 1.1. Suppose that Z is not normal at some point z, € D.
We assume D =D. Then by Lemma 2.1, we can find a sequence {f;} in .7, a
sequence {z;} of complex numbers with z; — z, and a sequence {p;} of positive
real numbers with p; — 0 such that

() = p; "z + pid)

converges locally uniformly with respect to the spherical metric to a non-constant
meromorphic function ¢g({) on C having bounded spherical derivative.

CLaM.

(1) g"(g") " #a

2) (gM®© =0 .

Suppose that ¢"((,)(g"™)*(¢,) =a. Then ¢({) # c in some small neigh-

borhood of {,. Further, g”(g’”)(k> #a. Suppose g"(g’”)(k) =a. Since g is a
non-constant entire function without zeros, by Lemma 2.7, we have g({) = ecttd,
where ¢ # 0 and d are constants. Thus

mkcke(m+n)cf+(m+n)d =a

which is impossible unless (m + n)c = 0. Hence by Hurwitz theorem, there exist
points {; — {, such that, for sufficiently large j, we have

a=g" )M G) = £+ p) MG + pi)-
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By given condition, we have

(MY + piy) = b,

and hence,
(97 (G =M O+ pig) =
= (9")"(&,) = Jim (g7)"(&) =0
which contradicts that ¢"((,)(g™)*(¢,) =a # 0. This proves claim (1).

Now, suppose (g”’)(k>(C0) =0 for some {, € C, then g({) # oo in some small
neighborhood of {,. Further, (g’”)(k> # 0, otherwise, g reduces to a constant
since m > k. Again, by Hurwitz theorem, there exist points {; — {, such that,
for sufficiently large j, we have

(g/m)(k) (Cj) . p;’k/(’11+’1>b -0

. k/(m+1
= AT O ) — I = 0

m k
= (MG +pg) =b.
Thus, by the given condition, we get

5+ pE) M G+ pG) = a = g7 ()M &)
= a=1lim ¢/(5)(9/)" () = 9"(E) (6" () =0

which is a contradiction. This proves claim (2).
Claims (1) and (2) as established contradict Lemma 2.3 and Lemma 2.4.
Hence & is normal. |

Proof of Theorem 1.2. Suppose that & is not normal at some point z, € D.
We assume D =D. We distinguish the following two cases:

Case I a(z,) #0
Following the proof of Theorem 1.1, we arrive at a contradiction and hence
Z is normal in this case.

Casg II. a(z,) =0

Without loss of generality, we assume that z, = 0. Further, we assume
a(z) = zPa)(z), where p is a positive integer and «;(0) #0. We may take
a1(0) =1. Now, by Lemma 2.1, we can find a sequence {f;} in %, a sequence
{zj} of complex numbers with z; — 0 and a sequence {p;} of positive real
numbers with p; — 0 such that

g (C) _ p]f(erk)/(ner)f]»_ (Zj + p/g)
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converges locally uniformly with respect to the spherical metric to a non-constant
meromorphic function g({) on C having bounded spherical derivative.

SuBcase I.  Suppose there exist a subsequence of & -, we may take 1tse1f
; P;
Z; J J
such that ~ — o0 as j — oo.
Let 7

Gj(C) _ Z]f(PJrk)/(ner)fj(Zj + ZjC).

Then, by the given condition f”(z)(f m)(k> (z)=alz) & (f ’”)(k> (z) =b(z), we
have

GIOGM P = 1+ 0z +210) & (G = 2!z + 20),
where

[:_M+k>0
n—+m

Thus, by Case I, {G;} is normal on D and G; — G (say) on D. Hence, by
Marty’s theorem, there exist a compact subset E of D and a constant M >0
such that

Gj#(é) <M for (eE.
Cramm. G#(0) =0. Suppose G#(0) #0. Then for { e C, we have
¢7(0) = lim g7 ()

Jj—oo

— lim pjf(ﬂ‘kk)/(ﬂ‘km)f] (Z] + p/C)

J—o©
- (p+k)/(n+m) ”
= lim <—f> G/ (—/ c)
I=o\Pj T\F
=

which is a contradiction to the fact that g has bounded spherical derivative.
Now, G#(0) =0= G'(0) =0. For any { e C, we have

k)/(n+m
gi(Q) = p; PRI £ g p )

— k)/(n+m)+1
:(P_j> (p+k)/ (ntm)+ G.’(&C> 0
Zj T\z

k L . o
Pt < 1. Thus ¢'({) =0 implies that g is constant and this is a

n+m
contradiction.

on C as
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. z; z;
Suscase II.  Suppose there exist a subsequence of =, we may take ~ itself,
z; . . i J
such that 2 — ¢ as j — oo, where ¢ is a finite number.

J
Then, we have

Hi(0) = p; " (p0) = g5 (c - p—) Log(C—c) == H().
J

Thus, by the given condition, we have

H!OHM P Q) = Car(pd) < HNO Q) = plb(p),
where

[:_M+k>0
n—+m

CLAIM.

(1) H"(Q)(H™) () # " on € — {0}

@) (H")™(©) #0 on C—{0}
Suppose that H"((,)(H™)((,) = (2, {, #0. Then, H(() # o on some small
neighborhood of {,. Further, H"(Q)(H™ () 2. 1t H'(O)H™)Y ()
= (” then {=0 is the only possible zero of H. If H is a transcendental
function, then, clearly H"(H ’”)<k> is also a transcendental function, which is
not true. If H is a rational function and { =0 is a zero of H, then H is a
polynomial. Thus, deg(H”(H'")(k)) > ndeg(H) > n, which is a contradiction

to the fact that H”((:)(H”’)(k)(é) = (" p<n-—2. By Hurwitz’s theorem, there
exist points ; — {, such that, for sufficiently large j, we have

HGHN(G) = Tar(pl) =0
= (H") (&) = pjb(pg) = 0.
Thus,
(H™)O(C) = lim (H) ()
= lim Pib(p,g))
=0

which contradicts that H"((,)(H™ "™ (¢,) = {? #0. This proves claim (1).

Next, suppose (H™)*®(¢,) =0 for some ¢, e C — {0}. Then H() # o on
some small neighborhood of {,. Further, (H '")<k) # 0, otherwise, H reduces to a
constant since m > k. Thus, by Hurwitz theorem, there exist points {; — {, such
that, for sufficiently large j, we have
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H""MG) = plblpil) = 0
= HG)(H") O (G) - Fai(pg) =0
and so

H"(&)(H™M(E,) = lim H'G)HMY (@)

J= 0

= lim {Ja(p,5)

Jj—o0

which is a contradiction. This proves claim (2).
Claims (1) and (2) as established contradict Lemma 2.3 and Lemma 2.4.
Hence & is normal. n

Proof of Theorem 1.3. Suppose that Z is not normal at some point zy € D.
Then by Lemma 2.1, we can find a sequence {fj} in Z a sequence {z;} of
complex numbers with z; — z, and a sequence {p;} of positive real numbers with
p; — 0 such that

—k/(n+ny+m
gi(0) = p; 1Lz 4 i)

converges locally uniformly with respect to the spherical metric to a non-constant
meromorphic function g({) on C having bounded spherical derivative. Now, by

Lemma 2.5 and Lemma 2.6, g"(C)(g’”)<k)(C) — a has at least one zero for n > 1,

m >k >1. Suppose that g"(CO)(g’”)(k) (o) —a=0 for some {, € C. Clearly,
g({) # 0,00 in some neighborhood of {,. Thus, we have

9" (o) (g™ (&) — ag™™ (&) = 0,

where n=ny; +n, > 1.
Now, in some neighborhood of {,, we have

gjfll (CO)(g;11><k)(CO) _ Clg;nz (CO) . pj/lcnz/(ner)b

= A" 5 p ) M e+ ko) = af "z + pide) 0}

By Hurwitz’s theorem, there exists a sequence (; — {, such that for all large
values of j,

J G+ o) MY &+ i) — a4 ) — b =0

Thus, by the assumption, if |fj(z; +p,{;)| = M, then we have

—k/(n+m

—k/(n+m
19;(G)I = p; Wfilz+ )| = p ™ g,
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Since g;({) converges uniformly to g({) in some neighborhood of {,, for all large
values of j and for every ¢ > 0, we have

l9;(0) —g(0)] <& for all { in that neighborhood of {,.

Thus, in a neighborhood of {,, for all large values of j, we have

9G] = 9G] — 19(&) — g/&)] > o b —

which is a contradiction to the fact that {, is not a pole of g({).
Again, by the assumption, if |( fj’”)<k) (z+p;i{j)| < M, then we have

k k—mi/(n1+ny+m k k—mik [(ny+ny+m
|(g/m)( >(C])| /)/ e )|(f/m)( )(Zj p]g])| =< P, e )M
so that

(") (,) = lim (7)) =0

which contradicts g”(CO)(g’”)(k)(Co) =a#0. Hence # is normal. [ ]

4. Counterexamples to the converse of the Bloch’s principle

The Bloch’s principle as noted by Robinson [14] is one of the twelve math-
ematical problems requiring further consideration; it is a heuristic principle in
function theory. The Bloch’s principle states that a family of holomorphic
(meromorphic) functions satisfying a property 2 in a domain D is likely to be
a normal family if the property 2 reduces every holomorphic (meromorphic)
function on C to a constant. The Bloch’s principle is not universally true, for
example one can see [15].

The converse of the Bloch’s Principle states that if a family of meromorphic
functions satisfying a property 2 on an arbitrary domain D is necessarily a
normal family, then every meromorphic function on C with property Z reduces
to a constant. Like Bloch’s principle, its converse is not true. For counter-
examples one can see [1], [8], [10], [16], [18], [20]. In order to construct counter-
examples to the converse, one needs to prove a suitable normality criterion.
Here Theorem 1.3 is such a criterion. Infact, following is a direct consequence
of Theorem 1.3:

THEOREM 4.1. Let F be a family of meromorphic functions in a domain D.
Let ny, np, m >k > 1 be the non-negative integers such that ny +ny > 1. Suppose
Y(z) = fm(2)(f"(2)Y —af () — b, where a(#0), be C, has no zeros in D.
Then & is normal in D.

Now by Theorem 4.1, we have the following four counterexamples to the
converse of the Bloch’s principle:

Consider f(z) =e®. Then for ny =1, =0, m=2, k=1, a=—1, and
b=1, y(z) = f(2)(f?)(z) + 1 — 1 = 2¢¥ has no zeros in C. Thus there is a
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non constant entire function with property # : y/(z) has no zeros in C. Hence
in view of Theorem 4.1, this is a counterexample to the converse of Bloch’s
principle.
Similarly, for the same values of the constants n;, ny, m, k, a, and b, the
meromorphic functions
1

b

ﬁ, tanzii,
z e-

provide three more counterexamples to the converse of the Bloch’s principle.

Acknowledgment. The authors are grateful to the anonymous referee for
his/her valuable comments which have definitely improved the quality of the

paper.
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