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ON MILNOR FIBRATIONS OF MIXED FUNCTIONS,
ar-CONDITION AND BOUNDARY STABILITY

Mutsuo Oxka

Abstract

Convenient mixed functions with strongly non-degenerate Newton boundaries
have a Milnor fibration ([9]), as the isolatedness of the singularity follows from the
convenience. In this paper, we consider the Milnor fibration for non-convenient
mixed functions. We also study geometric properties such as Thom’s as-condition,
the transversality of the nearby fibers and stable boundary property of the Milnor
fibration and their relations.

1. Preliminary

Let f(z,Z) be a mixed function and write it as sum of real and imaginary
part: f=g+ih. Writing z=(zy,...,z,) and z; =x;+1iy; (j=1,...,n) with
xj,y; € R, the mixed hypersurface {f =0} can be understood as the real
analytic variety in R* defined by {g=h=0}. The real and imaginary part
g, h are also (real-valued) mixed functions and we also consider them as real
analytic functions of variables x = (xj,...,x,) and y = (y1,..., ). By abuse of
notations we use both notations ¢(z,z) and g(x,y) etc. We recall some nota-
tions. The real gradient vector for a real-valued mixed function k(x,y) is defined
as

(1) grad k = (grad, k, grad, k) e R”"
(2) grady k = (ky,, ..., ky,), grady k= (k... ky,).

Here k., k, are respective partial derivatives. C" and R?" are identified by
z < 2z = (X,y). Under this identification, the Euclidean inner product in R
(denoted as (x,*)g) and the hermitian inner product in C" (denoted as (x,x)) are
related as (zgr,zg)g = R(z,z'). For a mixed function k& (not necessarily real-
valued), we define also holomorphic and anti-holomorphic gradients as

2000 Mathematics Subject Classification. 14J70, 14J17, 32S25.
Key words and phrases. Mixed function, ay-condition, Milnor fibration.
Received September 26, 2014; revised January 20, 2015.

581



582 MUTSUO OKA

Ok Ok
gradak: <a—21,...,a>7

ok Ok
gradék: <a_z_1;,a)

For simplicity of notations, we use the following notations:
dk := grad k, dyk :=grad, k, dyk := grad, k,
Ok := grad, k, 0k := grad; k.
Note that if k is real-valued,
3) % = ak,

and real vector dk € R corresponds to the complex vector 20k € C”.

1.0.1. Tangent spaces. Let k(z,z) is a real valued mixed function. Then
the tangent space of a regular point a of ¥, :=k~!(5), neR is described as
follows. For a complex vector a € C", we denote the corresponding real vector
as ag € R

T,V,={vr € R* | (v, dk(agr))g =0}
= {ve C"|R(v,0k(a)) = 0}.

Consider the mixed hypersurface V,, = f~'(n), n # 0. We introduce two vectors
in C" which are more convenient to describe the Milnor fibration of the first type:

vi := 0 log f(z,%) + 0 log f(z,%),
v, :=i(0 log f(z,7) — 0 log f(z,%)).

These vectors describe the respective tangent spaces at a regular point a of the
real codimension 1 varieties

Vi:=A{z|lf(z,2)| = |/(a a)|},
V2= {z|arg f(z,z) = arg n}.
Namely, we have shown (Lemma 30, Observation 32, [9])
T,V == {v|R(v,vi(a)) =0}
TaVs :={v|R(v,v2(a)) = 0}.
Note that V,, = V1NV, Observe that the two subspaces of dimension two

<5g(avﬁ)a 5/1(3,§)>R, <V1 (a)aVZ(a)>R

are equal. In fact we have:
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o o _ 1 2z = 1 = p
== 0 ioh 0 oh)) = — (2gdg + 2hoh
n=t s T —— (f(dg — idh) + f (0g + idh)) |f|2(gg+ )
Ty : Lo
vz—l]F +f T — (f(0g — i0h) + f (0g + ioh)) = |f|2( 2hdg — 2g0h)

ProposiTiION 1 ([8]). Put f =g-—+hi as before. The next conditions are
equivalent.

(1) ae C" is a critical point of the mapping f :C" — C.

(2) dg(agr), dh(ar) are linearly dependent over R.

(3) dg(a,a), oh(a,a) are linearly dependent over R. o

(4) There exists a complex number o with |o| =1 such that 0Jf (a,a) =

«0f (a, a).

Under the above equivalent conditions, we say that a is a mixed singular
point of the mixed hypersurface f~!'(f(a)).

LemMmA 2 (cf [3]). Put V, = f~'(y) and take p e S,NV,. Assume that p is
a non-singular point of V, and let k(z,Z) be a real valued mzxed function. The
following conditions are equivalent.

(1) The restriction k|V, has a critical point at p e V.

(2) There exists a complex number «e C* such that ok(p) = o0f (p, p) +

aof (p, p)-
(3) There exist real numbers ¢, d such that

dk(p) = cdg(p, ) + ddh(p,p).
(4) There exist real numbers ¢', d' such that
0k (p) = ¢'Vi(p, P) +d'v2(p, D).

Proof. As pe V is assumed a non-singular point, (1) and (3) are equivalent.
We show the implication (3) = (2). Assume

ok(p) = cdg(p,p) + doh(p,p), 3Ic,d eR.
We use the equality:

9 (p,p) + o (p, )
2

)

4) og(p.p) =

(5) oh(p,p) =

to obtain the equality:

[\

) =S+ S )
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The implication (2) = (3) can be shown similarly, using the equality
(6) of = dg + idh, 0Of = dg+ idh. O

1.0.2.  Newton boundary and strong non-degeneracy condition. Let f(z,Z) =
> . Cuz'Z" be a mixed polynomial. The Newton polygon I';(f) is defined by
the convex hull of (v + x+R’) where the sum is taken for v, x4 with ¢,, # 0.
Newton boundary I'(f) is the union of compact faces of I'.(f) as usual. f is
called convenient if for any i =1,...,n, ['(f) intersects with z;-axis.

For any non-negative weight vector P, it defines a linear function /p on
r+(f) by /P(é) :Plfl +”'+pl1én where P = r(p17'~'apl’l)7 é: (éla"'vén) €
I',(f) and the minimal value is denoted as d(P) and the face where this mini-
mal value is taken is denoted by A(P). In other word, A(P):={leTl (f)]
>y pii=d(P)}. The face function associated by P is defined as fp := fap).
For any coordinate subspace C’, we denote the restriction f|C’ as f! as usual.
Note that if P is strictly positive (i.e., p; > 0, for any i =1,...,n), A(P) is a face
of T(f).

To treat the case of non-convenient functions, we define the modified Newton
boundary T,.(f) by adding essential non-compact faces Z. Here E is called
an essential non-compact face if there exists a semi-positive weight vector P =
“(p1,.-.,pn) such that

(1) A(P) = Z with Z being a non-compact face and f/() =0 where I(P) =

{i| pi =0} and
(2) for any ieI(P) and any point v e E, the half line starting from v,
v+ R, E; is contained in Z. Here E; is the unit vector in the direction
of i-th coordinate axis.
The weight vector P may not unique but /(P) does not depend on P. Thus

—

we denote it as I(E) and it is called the non-compact direction of Z. See

FIGURE 1. Non-compact face
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Figure 1 which shows the modified Newton boundary of f =z} +z3 + 2223 in
Example 3.

[ is called strongly non-degenerate if (1) for any compact face A = I',.(f),
the face function fx:=3}, ,.acyz'Z" has no critical point as a function
fa:C" = C and (2) for a non-comact face A e T,.(f), fa, : C*" — C has no
critical point where Ag = ANT(f).

Example 3. Consider a holomorphic function f =z} +z3 + 2,22 of three
variables. Note that T',.(f) has three vertices 4 = (3,0,0), B=(0,3,0), C =
(0,1,2) and the face A :={AC + R, E3} = T,.(f) where AC is the edge with
endpoints 4, C. The non-compact faces with edge AB and BC are not essential.
They are not vanishing coordinates i.e., f does not vanish on {z; =z3 =0} or
{zp =23 =0}. See Figure .

2. Milnor fibration

Asume that f(z,z) =},  ¢,z"Z" is a strongly non-degenerate mixed poly-
nomial and let ¥ = f~1(0). In this section, we study the Milnor fibration of
f. If f(z,Z) has a convenient Newton boundary, the singularity is isolated
and there exists a spherical Milnor fibration (= a Milnor fibration of the first
type):

f/If]:8, —K—S' K=vns,

and also a tubular Milnor fibration (= a Milnor fibration of the second type):
S 0E(r,6)" — S} where 0E(r,0)" = {z e B,||f(z,Z)| =6} for sufficiently small
r, 0 such that 0 <6 «r. They are C*-equivalent (Theorems 19, 33, 37, [9]).

For non-convenient mixed function, the singularity need not be isolated.
We have proved the same assertion under an extra condition “super strongly non-
degenerate” (Theorem 52, [9]). In this paper, we prove the existence of Milnor
fibrations for any strongly non-degenerate functions with a weaker assumption
than the assumption “super”. We will study also some geometric properties
behind the argument.

2.1. Smoothness of the nearby fibers. First we recall the following:

LemMaA 4 (Lemma 28, [9]). Assume that f(z,Z) is a strongly non-degenerate
mixed function. Then there exists a positive number ry and 6 such that the fiber
V,=f ~Y(y) has no mixed singularity in the ball Brzo” for any non-zero n with
In| < 0.

Proof. Though the proof is the same as that in [9], we repeat it for the
beginner’s convenience. We show a contradiction, assuming that the assertion
does not hold. Then using the Curve Selection Lemma ([6, 4]), we can find
an analytic path z(7), 0 < ¢ < 1 such that z(0) = O and f(z(¢),Z(¢)) # 0 and z(¢)
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is a critical point of the function f : C" — C for any ¢t # 0. Using Proposition 1,
we can find a real analytic family A(¢) in S' = C such that

() of (2(1),2(1)) = 2(1)0f (2(1), 2(1)).
Put 7 = {j|z(¢) #0}. We may assume for simplicity that / = {I,...,m} and
we consider the restriction ! = f|C’. As f(z(1),Z(t)) = f'(z(t),Z(t)) # 0, we
see that f/ # 0. Consider the Taylor expansions of z(f) and A(z):
z;(t) = b;it“ + (higher terms), b; #0,a;>0,i=1,...,m
A(t) = 2o + (higher terms), JoeS' < C.
Consider the weight vector A = (ay,...,a,) and a point in the torus b=

(b1,...,by) € C*! and we consider the face function f} of f/(z,Z). Then we
have for jel

% (z(1),Z(1)) = ‘;LZAI (b,b)z?~% + (higher terms),
7 7

of oy W e i e

FE (z(1),%(1)) = 6_2- (b,b)t?~% 4 (higher terms)

where d = d(A; f). The equality (7) says that

LN L N
a—zj(l(l),l(f)) = 7»(’)6—2/(1(f)7z(l))a j=1....m
which implies the next equality:
TZ I D
Ordt a—Zj(Z(t)7Z(t)) - Ordt 8—2’] (Z(t)a Z(Z))a J= 17 cees M
Thus we get the equality:
ofI(b,b) = 23! (b,b), beC™.

This implies that b is a critical point of f/ : C* — C, which is a contradiction to
the strong non-degeneracy of f/(z,z). O

2.2. Vanishing coordinate subspaces and essentially non-compact face func-
tions. We assume that f is a mixed polynomial (not only mixed analytic
function). We denote by .%,,(f) the set of subset 7 < {1,2,...,n} such that
fT#0 (we denoted this set as A"#°(f) in [9]). We denote by .%(f) the set
of subset I = {1,2,...,n} such that f/ =0, and for I € .%,(f) and we consider
also the set of non-compact faces A € I',,.(f) such that there exists (possibly not
unique) a non-negative weight P such that A(P) = A and I(P) = 1. Here I(P) =
{i| pi=0}. C'is called a vanishing coordinate subspace. Note that C' = V.
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DEFINITION 5. Let 7;: C" — C! be the projection and put z; = 7;(z).
Take an essential non-compact face A e I',.(f). Take a weight function P such
that fp = fa and I(P) =1I(A). We consider the function p,(z) := ||z;a ||
Zje 1A |z]|2 An essential non-compact face function fa is locally tame if there
ex1sts a posmve number rp > 0 such that for any ﬁxed ZyA) = Ay(p) € C*A) with
pa(z) < rA, Ja has no critical points in a;,) x C” 1)’ as a mixed polynomial
function of n — |I(A)|-variables {zx |k ¢ I(A )} We say that f is locally tame on
the vanishing coordinate subspace C' if any face function f) with I(A) =1 is
locally tame. We say that f is locally tame along vanishing coordinate subspaces
if f is locally tame on every vanishing coordinate subspaces C’, VI € .%,. This
is slightly weaker condition than “super strongly non-degenerate” in [9].

Put r; = min{rp | [(A) = I} for I € 4,(f) and r,. = min{r; |l € 4,(f)}. If f
is convenient, r,. = +0.

Remark 6. We say that f is “super strongly non-degenrate” if we can take
ra = oo in the above definition ([9]).

2.3. Smoothness on the non-vanishing coordinate subspaces. Take I <
{l,...,n} and C! is called a non-vanishing coordinate subspace if f/ # 0.
Put V# Ule . VﬂC*I Then there exists a rp >0 so that V# and

v =pncH are non -singular in the ball B,, and for any 0 < r < ro, the sphere
S, and V* intersect transversely. The existence of such ry is shown in Theorem

16, [9).

2.4. Hamm-Lé type theorem. The following is a mixed function version
of Lemma (2.1.4) (Hamm-L¢, [5]). This enables us to prove the existence of
Milnor fibration with locally tame behavior assumption.

LemMA 7. Assume that f(z,Z) is a strongly non-degenerate mixed polynomial
which behaves locally tamely along vanishing coordinate subspaces. Put p, =
min{r,., ro} where r,. and ry are described above. For any fixed positive number
r1 < py, there exists positive numbers 6(r) (depending on r1) such that for any non-
zero .| < (),

(1) the nearby fiber V, := f~'(3) has no mixed singularity in the ball Bf,” and,

(2) for any r,ry <r <p,, the sphere S, and the nearby fiber V, = f~'(n)

intersect transversely

Proof. We have already proved the assertion (1) (Lemma 4). So we will
prove the assertion (2). Assume that the assertion is false. By the Curve Selec-
tion Lemma, we can find a real analytic curve z(¢) and a complex valued function
a(f), 0<t <1

®) Zj(f)—oc() (())+fx()azj(()) Vi

0z;
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where z(f), o(f) are expanded as

zj(t) = byt + (higher terms), b; #0 if z;(¢) #0,
o(t) = opt™ + (higher terms), o # 0.

and f(z(z)) #0 for t # 0. Obviously a(f) # 0.

Put K = {i|z(t) # 0} and we consider the equality in C*. Put b = (b;) and
P=(p), I={jeK|pj=0},  =K—1 and A=A(P). In the following, we
assume K = {1,...,n} as the argument is the same.

Cask 1. Assume that I € .%,(f). Then f7 #0 and be V'*. We assumed
that V’# and S| intersect transversely for any b, ||b|| < p, and thus Sy, is also
transverse to Vy)) at z(t) for a small ¢« 1, which is a contradiction.

Cast 2. Assume that I €.%(f) and so f/ =0. In this case, A e ,.(f).
The above equality (8) says:

0
(9) b;t” + (higher terms) = (10%(1,)1’"%(1’)?; + (higher terms))
. B

0

+ (&0 % (b)e"+4P)=p; 4 (higher terms)), jek.
Zj

We compare the order in ¢ (= the lowest degree) of the both side. The left

side has order 0 and the order of the right side is at least d(P) +m — p; for j¢ I

and at least d(P) +m for jel. Note that be C*. If d(P)+m >0, we get a

contradiction b; =0 for jel. If d(P)+m <0, we get

fap) _ Ofap) .
0=o0yp——=(b) +d———(b), Vj
6zj 62j

which says b is a mixed critical point of fj, a contradiction to the strong non-
degeneracy. Thus d(P)+m =0 and

) _ fap) .

(10) bj = g 52, (b) + & —az'j (b), jel
) _ fawp) .

(11) O—OC() (72, (b)+0€00—z_l(b)7 ]GK—I

The equality (11) says that the point (b)), g, is a critical point of the face
function f) as a function of varianles {z;, j € K — I}, fixing z; = b;, i e I with
pa(b) < py. This is a contradiction on the assumption. O

Remark 8. The assertion (2) also follows from as-condition (see Proposition
11 below.)
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2.5. Tubular Milnor fibration. Put

D) ={neC|0<|y| <do}, S; =0D(Go)" ={neC|lyl=0d}
E(r,00)" = f1(D(0)")N B, 0E(r,60)" = f~'(S}) N B>

By Lemma 4 and the theorem of Ehresman ([16]), we obtain the following
description of the tubular Milnor fibration (i.e., the Milnor fibration of the second

type) ([5])-

THEOREM 9 (Tubular Milnor fibration). Assume that f(z,Z) is a strongly
non-degenerate mixed function which is locally tame along the vanishing coordinate
subspaces. Take positive numbers r < p, and oy <5(r) as in Lemma 7. Then
S E(r,d0)" — D(do)" and [ : GE(r,00)" — S5 are locally trivial fibrations and the
topological isomorphism class does not depend on the choice of éy and r.

2.6. Spherical Milnor fibration. Consider the spherical Milnor fibration
(i.e., Milnor fibration of the first kind):

f/lfl:8-K—S', K=vnSs.

In the proof of the existence of the spherical fibration and the equivalence to the
tubular Milnor fibration (Theorem 52, [9]), we have assumed “‘super strongly non-
degeneracy”. However this assumption is used only to prove the Hamm-L¢é type
assertion (Lemma 51, [9]). We have proved this Lemma with locally tameness
assumption (Lemma 7). Thus we get

THEOREM 10. Assume that f is a strongly non-degenerate mixed function
which is locally tame along vanishing coordinate subspaces. For a sufficiently
small r, the spherical and tubular Minor fibrations exist and they are equivalent
each other.

3. Boundary stability, as-condition and transversality of the nearby fibers

In this section, we consider further geometric properties about mixed poly-
nomials.

3.1. as-condition. Assume that f is a mixed polynomial and we assume
that a Whitney regular stratification % of C” is given so that V = f~1(0) is
a union of strata M < V. We says that f satisfies Thom’s as-condition with
respect to & (locally at 0) if there exist positive numbers r and J « r which
satisfies the following condition. ¥, = f~!(y) with n # 0, |y| <& is smooth in B,
and take any sequence z") which converges to some w # 0, we M, where M is a
stratum in VNS and suppose that the tangent space Ty, f~( £ zM)) converges
to some t in the suitable Grassmanian space. Then TwM is a subspace of .
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The following says that the nearby fiber’s transversality follows from
ar-condition.

PropOSITION 11.  Assume that f satisfies ar-condition at 0 and the nearby
fibers are smooth. Then there exists a ro > 0 such that for any 0 < r; < rg, there
exists a positive 0 so that any nearby fiber V,, intersects transversely with the sphere
S, for i <r<ry and 0 < || <6.

Proof. Take ry so that for any r < ry, the sphere S, intersects transversely
with all strata M < V. Note that M and S, intersect transversely if and only if
for any ae M NS,, T,M and T,S, intersect transversely. That is T,M & T,S,.
Take a sequence of points z") converging to ae M < V where M is a stratum
and a #0. Putn, = f(z") and r, = ||z")|| and ' := ||a||, ro =+ >r;. Assume
that V), intersects S, non-transversely at z’. Then this implies T, f"(;yl,) c
T,»S,. Assume that T,. f '(y,) converges to 7. Then 7 c T,S,. On the
other hand, as-condition says that T,M ct and T,M & T,S.. This is a
contradiction. O

3.2. Boundary stability condition. Assume that ro > 0 is chosen so that
o= f/If]: S,\K — S! is a fibration for any r <r,. We wish to consider the
boundary condition Fy > K is satisfied or not. This property is always true
for holomorphic functions but not always true for mixed functions. For the
argument’s simplicity, we consider as follows. Consider the Milnor fibration in

a open ball:
(12) 0o =F/If1: B =V =S 9_,(2) = f(2)/|f(2)

and put Fy ., = ¢_l(e"). To distinguish this fibration with usual Milnor fibra-
tion on a sphere, we call this fibration an open ball Milnor fibration.

DerFINITION 12, We say the open Milnor fibration satisfies the stable
boundary condition if Fy., > VNB, for any 0. Note that the Milnor fibra-
tion in a ball is homotopically equivalent to the one on a fixed sphere

TSl SAK — St

Recall that a continuous mapping ¢ : X — Y is an open mapping along a
subset A — X if for any point a € A and any open neighborhood U of a in X,
@(U) is a neighborhood of ¢(a) in Y. The following is an immediate con-
sequence of the definition.

PropPOSITION 13.  The next two conditions are equivalent.

(1) The boundary stability condition for the Milnor fibration of f is satisfied.

(2) f:C" — C is an open mapping along V N B, for a sufficiently small r > 0.
In particular, if { is a holomorphic function, it satisfies the boundary stability
condition.
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LemMma 14.  Assume that f(z,7) is a strongly non-degenerate and locally tame
along vanishing coordinate subspaces. Then the Milnor fiibration satisfies the stable
boundary property.

Proof. Take a point a = (ay,...,a,) € VNInt(B,) and put I = {i|a; # 0}.

(i) Assume that I € .%,,(f) so that a is a non-singular point of ¥"*/.  Then it
is obvious that a € Fy, as {V,}, [n| <J « ris a transversal family with the spheres
S, for ||a||/2< ¢ <r and V, < Fy ., for n, argn = 0.

(ii) Assume that f!/=0. Take an essential non-compact face A = A(P)
with T(A) = I and consider the face function fp(z,z). Put fp, be the restric-
tion of fp on z;=a; iel. Thus we consider the polynomial mapping
fr.a c 5 . As Jr.a, 1s a strongly non-degenerate function for sufficiently
small a;, there exists b = (;);,; such that fp ., (b) = pe'’ for some p. Take an
arc b(s), —e < s <e so that fp,(b(s)) = pe'®*) and b(0) =b. This is possible
as fpa, : C" "l  C is a submersion. Consider the path:

bj(s)lp/a ]¢I
Clj, ]EI

(19) = b(t5) = By 1)1, (e = {
Then we have
F(b(,5)) = fr.a,(b(5))2??) + (higher terms)
= pe@919P) 4 (higher terms).

Take a sequence t, — 0. As the arg f(b(z,,5)) — 0+ s, we can take a sequence
sy, —e<s, <¢ such that arg f(b(t,s,)) =0 for sufficiently small |¢,|. For
example, assume that arg f(b(z,0)) < 6. Note that arg f(b(z,¢)) > 6 as long
as t < 1. Thus we use the mean value theorem to chose such a s,. The point
b(t,,s,) € Fy <, for sufficiently small |z,| and it converges to a. This implies that
the closure of Fp ., contains V. O

3.3. Strongly non-degenerate polynomials which is not locally tame. (1) Ex-
ample 1. Consider the example of M. Tibar: f(z) = z1|z2|* (13, 1, 2]). This is
a mixed weighted homogeneous polynomial. Thus it is strongly non-degenerate.
A polar weight can be P = /(1,0). S'-action is defined as po (z1,z2) = (z1p, 22)
for pe S'. Then for any r >0, there exists a spherical Milnor fibration:
p=1/\f]: S\K — SI.

First we show that the boundary stability is not satisfied. Take a fiber Fj.
K has two components, K; = {z; =0} and K, = {z, =0}. The closure of Fy
is given as Fy = FyUK;U{(re®,0)}. Thus the intersection FyNK, is a single
point (re”” 0) and this point (re?”,0) turns along K, once when 6 goes from 0
to 2n. Note that K, is a S'-orbit of the action. We call K, a rotating axis.
The function f is not locally tame along the vanishing axis z; = 0 by Lemma 14.
In fact, take a point (a,0) e K, and put a = pe””. Take an open set U =
{z1||z1 —a| <&} x{z2||z2] < &} and put o to be the small positive angle so
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that tan « = ¢/p. Then the image of U by f is contained in the closure of the
angular region {# € C|0 — o < argn < 0 + o} where 0 is on the boundary. Thus
it is not an open mapping. More precisely we assert

ASSERTION 15.  Fy is homeomorphic to Cone(Kj).

For example, taking r = 1, consider the mapping v : Fy — Cone(K;), defined
by ¥(z1,z2) = (1 — |z1|,arg(z2)). Here we understand

Cone(K;) = [0,1] x K2/{0} x K3, K, ~S'.

M. Tibar observed that f does not have any stratification which satisfies
the as-condition along z; axis ([11]). Put f =g+ ih with g = x;(x? + »3) and
h = yi(x3+ y3). Then the Jacobian matrix is given as

J(g.h) = x% + y% 0 2x1x2  2x1 )2
’ 0 X3 +y3 2nx 2ny

Note that the last 2 x 2 minor has rank one and this makes the problem at the
limit. Take a point p = (a; +ib;,0). Consider the rotated mixed polynomial

S = (b1 +aii)f and write it as f =g+ ih. Note that /~'(f(p)) = f'(f(p))
and § = bjg — ath. Then the normalized gradient of § is given by

grad g - (bla 7a17070)'
Put p = (a1 + b1i,z2). Thus when z; — 0,
T,/ ' (f(p)) = T,d"(d(p)) # C x {0}.

This implies, if there is a stratification which satisfies as-condition, the stratum of
C x {0} which contains p can not be two dimensional at p € {z = 0}. As this
is the case at any point of {z; = 0}, there does not exist any stratification which
satisfies as-condition. On the other hand, we assert that

PROPOSITION 16.  f satisfies the transversality condition for the nearby fibers.

Proof. We may assume that the sphere has radius 1, by the polar homoge-
nuity. Assume that there is a sequence p, = (u,,v,) € S; such that f~1(f(p,)) is
not transverse to S; and f(p,) — 0. Then either u, — 0 or v, — 0 (equivalently
either |v,| — 1 or |u,| — 1). We may assume that p, = «,0f + adf by Lemma 2
which is equivalent to

B 2
{ uy = ay|vy]
vy = 0,y Uy + Oy Uy D, .

i0, i0,

From the first equality, we can put u, = r,e", a =p.e The second equality
says that 1 =2p,r, as v, #0. Thus p, — 1/2 if r, — 1 which implies |v,| — 2
and |f(p,)| # 0. Assume that r, — 0. Then |v,|* =r,/p, =2r2 — 0. This is

also impossible, as |p,| = L. Ul
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This example shows that the transversality of nearby fibers does not implies
either tameness or ay-condition. On the other hand, tameness with strong non-
degeneracy implies transversality of the nearby fibers, as we will see below.

(2) Example of A. Parusinski: [ =z(z»+z3)% ([11], see also [,
2]). Note that f is strongly non-degenerate.

PROPOSITION 17 (A. Parusinski). Consider I = {1} and note that f|C' = 0.
Then f does not satisfy ar-condition along zi-axis {z» = z3 = 0}.

Proof. The proof goes in the same line as that in Example 1. Consider the
weight P = (0,1,3). Then fp = z1|z5|* and d(P) = 2. Assume that there exists
a stratification & satisfying as-condition. We show a contradiction. Take a
point p = (re™?,0,0) and assume that p e M where M is a real two dimensional
stratum of C’.  Consider the modified function f = (sin @ + i cos 0)f. Then the
real part g of f is given as

g = sin g — cos Oh
= (x1 sin 0 — y; cos 0)|za]* + R(e >0z 2,22)

and the gradient vector of § at z(t) := (p, tay, t3a3) for ay,az € C* fixed is given
as

grad §(p, tay, Paz) = (sin 0, —cos 6,0,0,0,0)|a|* 1
+0().
Thus the normalized gradient vector converges to

v := (sin 0, —cos 6,0,0,0,0).
This implies that

t—0

Ty S (f(2(1)) = Tyng " (G(z(t)) — v 5 C'.

This is a contradiction. O

Remark 18. We do not know (and do not care) if f~'(5), n#0 is a
transverse family for sufficiently small 7.
(3) Example 3. Consider

m

f(2.2) =z2ik(z), k(z) =) |z = > |5*
i=1

Jj=m+1

for 2<m<n. Then f is not strongly non-degenerate but polar weighted
homogeneous and it has a Milnor fibration. However it is not locally tame
along the vanishing coordinate subspaces and f does not satisfy the as-condition.
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In fact the link has two components K; = {z; =0} and K, = {k(z) =0}. The
component K, has real codimension 1 and at any point of K;\Kj, f is not open
mapping and thus

Fy=F)UK U{zeS, |argz = +0}

where sign is the same as that of k(z). Thus K; is a rotation axis. The mono-
dromy is the rotation arround z; axis:

hg : F() — Fg)7 (Zl,Z,) — (21€i67ll).

The fiber Fy has two components, F, = {argz =0,k(z) >0} and F; =
{arg z; = -0, k(z) < 0}.

Remark 19. The function k(z) is a real valued polynomial and the fibers
k='(5) are smooth for # #0 and k~'(0) has an isolated singularity as a real
hypersurface. However as a mixed function k:C" — C, it has no regular
points.

3.4. Thom’s as-condition. By analyzing above examples, we notice that
the limit of two independent hyperplanes 7,g~'(g(p)) and T,h~!(h(p)) may not
independent when p goes to some point of vanishing coordinate C’, and this
phenomena induces a failure of as-condition. This problem does not occur under
the tameness condition.

THEOREM 20. Assume that f(z) is a strongly non-degenerate polynomial and
assume that f is locally tame along vanishing coordinate subspaces. We consider
the canonical stratification .., which is defined by

Fran AV NCT,CNVNC! T £u(£)YULCT [T 5(1)}.

Then f satisfies as-condition with respect to Sqy in the ball B/%g’ where py is as in
Lemma 7.

Proof. Take a point q/ = (qj)/.e, e ¥NC*. Using Curve Selection Lemma,
it is enough to check the q,«'-condition along an arbitrary analytic path. So take
any analytic path z(7) such that z(0) = q/ and z(r) e C*/ for ¢t #0 with I < J
with 7 # J. As the argument is precisely the same, we assume hereafter that
J=A{1,...,n}. We will show that as-condition is satisfied for this curve. By
non-degeneracy, we may assume that I € .%(f) so that C’ is a vanishing coor-
dinate. (Otherwise, q’ is a smooth point of ¥ and the a,-condition is obviously
satisfied.) Consider the Taylor expansion:

pi=0,a=q;, jel

z;(t) = a;t” + (higher terms), { .
1() J ( g ) pj>07 ]¢I
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Put P="(p1,...,pu), a=(ai,...,ay), d =d(P) and A = A(P). For notation’s
simplicity, we assume that 7 = {m+1,...,n}. Note that

g—gj(z 1) = %(a)tdﬁf + (higher terms)
oh oh .
6_2]- (z(1)) = ﬁ—Z]A- (a)td*”f + (higher terms).

For simplicity, we assume that p; > p, >--- > p,. For a vector v=
(v1,...,v,) and 1 < a < <m, we consider the truncation

VP = (vg, ..., vp).

o
We choose 1 < a < f <m as follows.

(A-1) For any j < o, aigA(a) =0, aihA(a) =0 and
(L) () % (0.0).

(A-2) Two complex vectors
- 0 0
p_
(agA(a)):x - (az—“ gA(a)’ st 62/3 gA(a)>

- 0 0
B_ (2 —
ha(a) = (a0 L a(o)
are linearly independent over R and (ggA(a))f , (éhA(a))f/ are linearly dependent
over R for any B’ < . For simplicity, we use the notations:

vy(2) == dg(z(1)) = (Vg 15 0g.m), On(t) :=0h(z(2)) = (vn1,---sVg.m)-

We consider the order of v,(f) = dg(z(¢)) and vj(f) = h(z(f)). (Here the order
is the lowest degree of in t.)

Suppose ord vy =r and the smallest index 1 <i<m with ordv,; =r is
called leading index. Assume that s is the leading index of v,(f). We call
the coefficient of ¢ in the expansion of v, ,(¢) the leading coefficient. Put s’ be
the leading index of vy.

For simplicity, we assume that s<s' and if s=s we assume also
ord v,(t) < ord v,(¢). This is possible by changing g and / considering if" (z,Z%),
if necessary.

First we observe that

ord v, ;(?),ord v (1) = d — p;, s<o.

(If s> a, this means ai_gA(a) =0 and ai_hA(a) # 0 which is a contradiction
Za Za

to the assumption s <s'.)
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STRATEGY. Put r = ord v,(7), ¥’ = ord v,(¢). We have three possible cases.

(1) s> s or

(2-a) s =’ and the coefficients of " of v, , and the coefficient of " of vy,
are linearly independent over R or

(2-b) s =5’ and the coefficients of " of v, ; and the coefficient of " of U, s
are linearly dependent over R.

For (1) or (1-a), we have nothing to do. In fact, write

vg(1) = v, t" + (higher terms), v, e C”
vn(t) = vf°t" + (higher terms), v}° € C".

Then the normalized limit of v,(7), vs(¢) are given by v)/|lv;°|, v /||v,°,°|| In
this case, the limit of v, and v, for  — 0 are complex Vectors v, vy (up to
scalar multlphcatlons) which are 1n C™ x {0} They are hnearly independent
over R. Thus the limit of 7, f '(f(z(1)) is the real orthogonal complement

o oo\l _ 00l o0 L : . 1
o750 >~ = v, " Nu~ which contams (O

Assume s = s’ and the coefficients of " in v, ; and the coefficient of " in U, s
are linearly dependent over R. Then we consider the following operation.

OPERATION. Put ' =ordv,. We have assumed r' >r. Take a unique
real number A and replace Uh by v, = vy — lt""’vg with r = ord v, ;, 1’ = ord vy,
to kill the coefficient of ¢ of vps- (We have assumed r <r'.)

Note that after this operation, the vector changes into

0 0 .

vy (1) = (—hA( a) — Aa—gA(a))td_”f + (higher terms)
’ 0z; 0

where ¢ =1 or 0 according to r' =r or r’' > r respectively. We observe that

if " >r, the leading term of v, ,(#) does not change. If r'=r, the (leading)

. 0 . . .
coeflicient 6_'hA(a) of 197/ in v, ; is changed into
Zj

T a(a) = ().
the above two properties (A-1), (A-2) are unchanged.

We continue the operation as long as the leading mdex of vy is still s.
Suppose that this operation stops at k-th step. Then put s*) the leading index
of v and r®) be the order of Ulgk). By the above two properties, s < s < p
and r* ) <d— pp. This implies that the limit of the normalized gradient vectors
vy and u,(zk), say v,”, v;° are independent vectors in C” x {0} = C’" over R. On
the other hand, by the definition of the above operations,

To S ™ (f(2(2)) = vy (1) Noy(0)
= v,() Noj(0) = = v, (1) N (0 (1)
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Thus the limit of T, f~'(f(z(r)) is nothing but (v;@)lﬂ(v‘,jo)L. Note that
(v;“)L N (u,jo)L > C’. This show that the ay-property is satisfied along this curve.
O

The following will be practically useful.

Lemma 21. Let fa be a face function associated with an essential non-
compact face A€ Tn.(f) with I =1(A). Assume that I ={m+1,... ,n}.
(1) For f(z) a holomorphic function, the following is necessary and sufficient
for fa to be locally tame.

(L0 i)

071 0Zm
is a nomn-zero vector for any z with ||z;]| < py.

(2) For a mixed polynomial, fy is locally tame if there exists a jeI¢ such

iy

0
that two complex numbers ﬂ(z), (z) are linearly independent over

R. In other word, 0% 0%
0ga , Oha
x| Y2 _=

\y(é‘fj (z) 5z (z)) # 0.

Sfor any z with ||z;|| < p,.
Proof. Recall that
dg= 36 +3), Gh=1 -7,
If f is holomorphic, og =1df and 0hn = —idgs and they are perpendicular by

the Euclidean inner product. Thus they are independent over R. For the
second assertion, note that the assumption is equivalent to the 2 minor

D) )

—_— a —_
0x; 0y; [ 9A ,_\Ohn

det ﬁhA(a) ahA(a) =-9 a—zj(a)a—zi(a) #0. O
an 6)/]

3.4.1. Examples. Example 1. (Modification of Tibar’s example) Consider
the mixed monomial f = z;z§Z,. Then we have

of =(0,2128), Of = (25z3,a2125 ' 2y)

0g = !

=a a = sa—
(2522, 2125 + az125 " z2)

oh =

N~ N —

=a a = za—1
(—Z822, 2125 — az1 2§ ' z2)
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Consider the vanishing coordinate I = {l1}. Two complex numbers
z1z5 + aflfg_lzz, i(z1z§ — az'lz_g_lzz)

are linearly dependent over R if and only if a =1 as

(z125 + aflfé"lzz)(—i)(flfé‘ — azlzé"lfz)

= —i(l —a®) |z )|z — ia(—23220 "2y + 2222971 5y)

= —i(1 —a®)|z1 )|z - 2aS(z323712)).

Thus the imaginary part of the above complex number is zero if and only if
a=1. Note that f is an open mapping along z; =0 if and only if a > 1.
Example 2. Consider the mixed polynomial

f(2,2) =z{"5 + 252534+ -+ z" 21, ar,...,a, > 2.

Then {i} € %4(f) for all i=1,...,n. Consider for example, I = {n}. Then
possible face functions are

fA —Z 2Z3 4 - +Zg”21 and fE,
where ZE is a face of A. Now we can see that

Afa = (28,0,257, ...,z )

7 _ =a,—1 say—1
Ofa = (0,a225° ' z3,...,ayZ," ' z1)
= 1
-1 —ay—1

Ogn =5 (2 @25 23,28 + @ a2y @ )
- i

_a2,1 az —03—1 ap—1 —a,—1
Oha = 2 (Z)" =@y 23,20" — @ZF 24,20 — @20

Thus

(0ga); - (Oha); = _Z|Z"|2 !

and its imaginary part is non-zero, which satisfies the condition of Lemma 21.
Now we consider a subset = = A.  We consider the first monomial z;” Zj41 so that

Zal7zla"'azjflia]Z/¢fEa Z;ljz_j-ﬁ-l efE~
Then we have
_ _— 1 _
S(0gz); - (ohz); = —Zailzklzak *lzka]* #0.

Thus by symmetry, we conclude that f is locally tame along each vanishing
coordinate axis z;, k=1,...,n
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4. Some application

4.1. Mixed cyclic coverings. Consider positive integer vectors
a::(alv--';an)v b:(bh"'vbn)

such that ¢; >b; >0, j=1,...,n. We consider the mapping

Pap:C"—=C", (z1,...,2,) — (zf‘z’f‘,...,zé’”z’fl’”).

This is a }1:1(4/ — bj)-fold multi-cyclic covering branched along the coordinate
hyperplanes {z; =0}, j=1,...,n. Consider a holomorphic function f(z) which
has a non-degenerate Newton boundary and the pull-back f(z,Z) := f(¢, ,(z,Z))
of f by ¢,y This gives a strongly non-degenerate mixed function ([10]).

PROPOSITION 22.  Assume that f(z) is a non-degenerate holmorphic function
which is locally tame along their vanishing coordinate subspaces. Then f(w,W) :=
S (@, p(W,W)) is a non-degenerate mixed function. Its vanishing coordinate sub-
spaces are the same as that of f(z) and it is locally tame along the vanishing
coordinate subspaces.

Proof. Take a face function fp(z) with weight P = '(p1,...,p,). Consider
the weight P which is the primitive weight vector obtained by multiplying the
least common multiple of the denominators of

1 D1 Dn
ap+b’" a,+b,)

Then ¢ , f(w,W) is radially weighted homogeneous with respect to the weight P.
We observe also have fp(w,W) = ¢}, fp(w,W). Thus we see that the Newton
boundary I'(f) corresponds bijectively to that of T'(f) by this mapping.
Suppose that I € 4,(f) = 4 (f). We assume I ={m+1,...,n} for simplicity.
Take a non-compact face A with J(A) =7 and let A be the corresponding
non-compact face of f. We consider f; as the following composition, fixing
(tg1s- - Up) € cH.

~ Pap fa
from 2 om i ¢
where
/ — ay —b am —b, i1 =bys1 an = b,
(pa,b(wh cry Wm) - (Wl Wl 1t Wmm Wmm’ um+1 um+1 I un“un”)'

As (p;’b is an unbranched covering mapping, fA does not have any critical points.

O

4.2. Mixed functions with strongly mixed weighted homogeneous faces. We
say a mixed polynomial h(z,z) is mixed weighted homogeneous if it is radially
weighted homogeneous and also polar weighted homogeneous. /(z,Z) is strongly
mixedr weighted homogeneous if the polar weight and the radial weight can be the
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same. A mixed function f(z,z) is called of strongly mixed weighted homoge-
neous face type if every face function fj is strongly mixed weighted homogeneous
polynomial ([10]). Let I"*(f) be the Newton boundary and let £* be an admissible
regular subdivision of I'*(f) and let 7: X — C" be the associated toric modifi-
cation. Let 7" be the vertices of £* which corresponds to the exceptional divisors
as in §2, [10]. Let %7 be the set of |I| — 1 dimensional faces of T'(f7). It is
shown that #: X — C" topologically resolves the mixed function f:C" — C
([10)). Combining the existence of Milnor fibration and the argument in [10],
we can generalize Theorem 11 ([10]) as follows. For I € .4,,, we denote by %}
the set of weight vectors which correspond to |I| — 1 dimensional faces of T'(f7).
The notations and definitions are the same as in Theorem 11 ([10]).

THEOREM 23. Let f(z,Z) a non-degenerate mixed polynomial of strongly
mixed positive weighted homogeneous face type which is locally tame along
vanishing coordinate subspaces. Let V = f “W(V) be a germ of hypersurface at
the origin and let 'V be the strict transform of V to X. Then

(1) V is topologically smooth and real analytic smooth variety outside of the
union of the exceptional divisors | )., E(P).

(2) The zeta function of the Milnor fibration of f(z,Z) is given by the formula

- , I
(=114, &= (1- (pdee(P 1)) ~1(P)/pdeg(P.]p)
where x(P) is the Euler characteristic of the torus Milnor fiber of fP’
Fp={z,eC"|fi(z) =1}, Pe.
4.2.1. Example: 1. Curves with mixed Brieskorn faces. Consider a mixed
polynomial
[(2.2) = 55 (25 + 523) (22 + 2523)
f is strongly non-degenerate and has two faces which are strongly polar weighted

homogeneous: Put P =7(2,3), Q:=(3,2). There are two faces corresponding
to P and Q.

Jp(2.2) = 255 +535),  folz. D) = 255 (22 + 232)
and fp, fp are strongly polar weighted with pdeg fp = pdeg fp = 20. Thus the

contribution of fp to the zeta-function is (1 — 12°) “*)/2° \where y(P) is the Euler
characteristic of

Fp:={z2eC?| fp(2,7) = 1}.
F} is diffeomorphic to
Fp={zeC?|z}2(+:2) =1}
by Theorem 10 ([8]). Thus x(P) = x(F7) = —20. Thus using the symmetry of
fr and fp, we get {(1) = (1 — 2°)%
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In general, for a non-degenerate non-convenient mixed polynomial of two
variables f(z,Z), consider the right end monomial z/"z/z¢z}. Right end means
that I'(f) is in the space {(v,u)|v<m+nu>a+b}. lfa+b=>1, z; axis is
a vanishing coordinate. It is locally tame along z;-axis if and only if a — b # 0.

Example 2. Consider D, singularity:

D, : f(z1,22,23) = 212 —1—2523 +Z§”1.

Then the Milnor number u(f) of f is n and the zeta function is given as {(z) =
("' +1)(¢* = 1). f has a vanishing axis z, but V' is non-singular except at the
origin. Consider

f(W,V_V) = Q;lf(W,V_V)
= Wil + wywswiims + w§<”’1>wg"1

f has a vanishing coordinate axis w, but the data for the zeta function is exactly
same as f. As @, is a homeomorhism, u(f) =7 and it has the same zeta
functions as f. See also Corollary 15, [10].

4.3. Join type polynomials. We consider the join type polynomial
f(z,z,w,W) = fi(z,Z) + fo(w,W), (z,w)eC" x C".

PROPOSITION 24. Assume that fi and f, are strongly non-degenerate mixed
polynomial.  Then f is also strongly non-degenerate. We assume that fi, f>
do not have any linear term so that they have a critical point at the respective
origin. Then we have

(1) If fi and f> are locally tame along vanishing coordinate subspaces, f is

also locally tame along vanishing coordinate subspaces. In particular, f
satisfies ar-condition.

(2) If fi or fr does not satisfy ar-condition, f does not satisfy as-condition.

Proof. Assume that I, € I(f;) and L el(f;). Then f|C! xC":=0.
Take A; € I'o(f1) with I(Ay) =1 and A, € T,.(f2) with I(A;) = ,. Then A :=
A% Ay e Do (f) and fa(z,Z,w, W) = fia,(z,Z) + foa,(W, W) satisfies certainly the
local tameness condition. (Here A; % A, is the convex polyhedron spanned by A
and A,.) Conversely suppose that A = T,(f) with 7 =1I(A). Then f|C’ =0.
Put [, =IN{l,...,n} and L =1I\I,. Then I, € 4,(f1) and L € 4,(f;). Take
P so that I(P) =1 and put Ay = ANC" and A, = ANC™. Then A=A % A;.
Let Py, P, be the projection to C" or C™ respectively. Then A(P;) =A; and
A(Py) = A, and fp= fi,p(2,Z) + fo,p,(W,W) and it is certainly locally tame.
This proves (1).

To prove the assertion (2), assume for example f; does not satisfies a;-
condition. Take a stratification % such that its restriction to C" and C” are
stratification /{ and % for f; and f; respectively. By the assumption, there
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exists pe V3 = V(f}) and a stratum M of 9 with pe M and an analytic curve
z(t) in C"\{0} such that z(0) =p and as-condition is not satisfied along this
curve. Write f| =g +ihi, fo =¢>+ihy and f =g+ ih. We may assume that

0g1(2(1)) = v r" + (higher terms)

and it converges to v’. We assume ord 0/ (z(7)) > ord dgi(z(¢))._ By the same
technique as in the proof of Theorem 20, we take a new vector dhj := ohy(t) —
k(1)0g1(z(z)) so that

oh{ (1) = vyt + (higher terms)

so that the leading coefficient vectors v, v, are linearly independent over R.
Thus the limit of the tangent space T fl’l( fi(z(7)) is given by U“OL Noy—. By
the assumption, we have that v;“ﬂv ol 4 T,0M. Note that d is the order

of dhj(z(t)). Consider the analytic path (z(t ),w( )) where w(t) = (£3,...,89).
Let us consider

Ohs(w(t)) == dha(w(1)) — k(t)0ga(w(2)).
Then it is easy to see that ord dg»(w(7)), 0hy(w(z)) > 2d. Put

(
Oh' (2(1), w(1)) = 0h(z(1), w(t)) — k(1)0g(2(1), w(1)).

Thus this implies that ord dg(z(¢),w(t)) = ord dg;(z(¢)) and ord oh’(z(¢), w(1)) =
ord 0h{(z(t)) > 2d and the normalized limits are given as

gg(z(l)vw(l)) - (09170)7 éh’(z(t),w(t)) - (U/“,O)

which implies the limit of Ty wief ' (f(2(2), w(2)) is (v;°" Not) x C™. By
the assumption, (v Nv;*t) x C" 2 Ty M. O
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