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ON MILNOR FIBRATIONS OF MIXED FUNCTIONS,

af -CONDITION AND BOUNDARY STABILITY

Mutsuo Oka

Abstract

Convenient mixed functions with strongly non-degenerate Newton boundaries

have a Milnor fibration ([9]), as the isolatedness of the singularity follows from the

convenience. In this paper, we consider the Milnor fibration for non-convenient

mixed functions. We also study geometric properties such as Thom’s af -condition,

the transversality of the nearby fibers and stable boundary property of the Milnor

fibration and their relations.

1. Preliminary

Let f ðz; zÞ be a mixed function and write it as sum of real and imaginary
part: f ¼ gþ ih. Writing z ¼ ðz1; . . . ; znÞ and zj ¼ xj þ iyj ð j ¼ 1; . . . ; nÞ with
xj; yj A R, the mixed hypersurface f f ¼ 0g can be understood as the real
analytic variety in R2n defined by fg ¼ h ¼ 0g. The real and imaginary part
g, h are also (real-valued) mixed functions and we also consider them as real
analytic functions of variables x ¼ ðx1; . . . ; xnÞ and y ¼ ðy1; . . . ; ynÞ. By abuse of
notations we use both notations gðz; zÞ and gðx; yÞ etc. We recall some nota-
tions. The real gradient vector for a real-valued mixed function kðx; yÞ is defined
as

grad k ¼ ðgradx k; grady kÞ A R2nð1Þ

gradx k ¼ ðkx1 ; . . . ; kxnÞ; grady k ¼ ðky1 ; . . . ; kynÞ:ð2Þ

Here kxi , kyj are respective partial derivatives. Cn and R2n are identified by
z $ zR ¼ ðx; yÞ. Under this identification, the Euclidean inner product in R2n

(denoted as ð�; �ÞR) and the hermitian inner product in Cn (denoted as ð�; �Þ) are
related as ðzR; z 0RÞR ¼ <ðz; z0Þ. For a mixed function k (not necessarily real-
valued), we define also holomorphic and anti-holomorphic gradients as
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gradq k ¼ qk

qz1
; . . . ;

qk

qzn

� �
;

grad
q
k ¼ qk

qz1
; . . . ;

qk

qzn

� �
:

For simplicity of notations, we use the following notations:

dk :¼ grad k; dxk :¼ gradx k; dyk :¼ grady k;

qk :¼ gradq k; qk :¼ grad
q
k:

Note that if k is real-valued,

qk ¼ qk;ð3Þ

and real vector dk A R2n corresponds to the complex vector 2qk A Cn.

1.0.1. Tangent spaces. Let kðz; zÞ is a real valued mixed function. Then
the tangent space of a regular point a of Vh :¼ k�1ðhÞ, h A R is described as
follows. For a complex vector a A Cn, we denote the corresponding real vector
as aR A R2n.

TaVh ¼ fvR A R2n j ðvR; dkðaRÞÞR ¼ 0g

¼ fv A Cn j <ðv; qkðaÞÞ ¼ 0g:

Consider the mixed hypersurface Vh ¼ f �1ðhÞ, h0 0. We introduce two vectors
in Cn which are more convenient to describe the Milnor fibration of the first type:

v1 :¼ q log f ðz; zÞ þ q log f ðz; zÞ;

v2 :¼ iðq log f ðz; zÞ � q log f ðz; zÞÞ:

These vectors describe the respective tangent spaces at a regular point a of the
real codimension 1 varieties

V1 :¼ fz j j f ðz; zÞj ¼ j f ða; aÞjg;
V2 :¼ fz j arg f ðz; zÞ ¼ arg hg:

Namely, we have shown (Lemma 30, Observation 32, [9])

TaV1 :¼ fv j <ðv; v1ðaÞÞ ¼ 0g
TaV2 :¼ fv j <ðv; v2ðaÞÞ ¼ 0g:

Note that Vh ¼ V1 VV2. Observe that the two subspaces of dimension two

hqgða; aÞ; qhða; aÞiR; hv1ðaÞ; v2ðaÞiR
are equal. In fact we have:
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v1 ¼
qf

f
þ qf

f
¼ 1

j f j2
ð f ðqg� iqhÞ þ f ðqgþ iqhÞÞ ¼ 1

j f j2
ð2gqgþ 2hqhÞ

v2 ¼ i
qf

f
þ qf

f
¼ i

j f j2
ð f ðqg� iqhÞ þ f ðqgþ iqhÞÞ ¼ 1

j f j2
ð�2hqg� 2gqhÞ

Proposition 1 ([8]). Put f ¼ gþ hi as before. The next conditions are
equivalent.

(1) a A Cn is a critical point of the mapping f : Cn ! C.
(2) dgðaRÞ, dhðaRÞ are linearly dependent over R.
(3) qgða; aÞ, qhða; aÞ are linearly dependent over R.
(4) There exists a complex number a with jaj ¼ 1 such that qf ða; aÞ ¼

aqf ða; aÞ.

Under the above equivalent conditions, we say that a is a mixed singular
point of the mixed hypersurface f �1ð f ðaÞÞ.

Lemma 2 (cf [3]). Put Vh ¼ f �1ðhÞ and take p A Sr VVh. Assume that p is
a non-singular point of Vh and let kðz; zÞ be a real valued mixed function. The
following conditions are equivalent.

(1) The restriction kjVh has a critical point at p A Vh.
(2) There exists a complex number a A C� such that qkðpÞ ¼ aqf ðp; pÞþ

aqf ðp; pÞ.
(3) There exist real numbers c, d such that

qkðpÞ ¼ cqgðp; pÞ þ dqhðp; pÞ:

(4) There exist real numbers c 0, d 0 such that

qkðpÞ ¼ c 0v1ðp; pÞ þ d 0v2ðp; pÞ:

Proof. As p A V is assumed a non-singular point, (1) and (3) are equivalent.
We show the implication (3) ) (2). Assume

qkðpÞ ¼ cqgðp; pÞ þ dqhðp; pÞ; bc; d A R:

We use the equality:

qgðp; pÞ ¼ qf ðp; pÞ þ qf ðp; pÞ
2

;ð4Þ

qhðp; pÞ ¼ � iðqf ðp; pÞ � qf ðp; pÞÞ
2

ð5Þ

to obtain the equality:

qkðpÞ ¼ c� di

2
qf ðp; pÞ þ cþ di

2
qf ðp; pÞ:
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The implication ð2Þ ) ð3Þ can be shown similarly, using the equality

qf ¼ qgþ iqh; qf ¼ qgþ iqh:ð6Þ r

1.0.2. Newton boundary and strong non-degeneracy condition. Let f ðz; zÞ ¼P
n;m cnmz

nzm be a mixed polynomial. The Newton polygon Gþð f Þ is defined by
the convex hull of 6ðnþ mþ Rn

þÞ where the sum is taken for n, m with cnm 0 0.
Newton boundary Gð f Þ is the union of compact faces of Gþð f Þ as usual. f is
called convenient if for any i ¼ 1; . . . ; n, Gð f Þ intersects with zi-axis.

For any non-negative weight vector P, it defines a linear function lP on
Gþð f Þ by lPðxÞ ¼ p1x1 þ � � � þ pnxn where P ¼ tðp1; . . . ; pnÞ, x ¼ ðx1; . . . ; xnÞ A
Gþð f Þ and the minimal value is denoted as dðPÞ and the face where this mini-
mal value is taken is denoted by DðPÞ. In other word, DðPÞ :¼ fx A Gþð f Þ jPn

i¼1 pixi ¼ dðPÞg. The face function associated by P is defined as fP :¼ fDðPÞ.
For any coordinate subspace CI , we denote the restriction f jCI as f I as usual.
Note that if P is strictly positive (i.e., pi > 0, for any i ¼ 1; . . . ; n), DðPÞ is a face
of Gð f Þ.

To treat the case of non-convenient functions, we define the modified Newton
boundary Gncð f Þ by adding essential non-compact faces X. Here X is called
an essential non-compact face if there exists a semi-positive weight vector P ¼
tðp1; . . . ; pnÞ such that

(1) DðPÞ ¼ X with X being a non-compact face and f IðPÞ 1 0 where IðPÞ ¼
fi j pi ¼ 0g and

(2) for any i A IðPÞ and any point n A X, the half line starting from n,
nþ RþEi is contained in X. Here Ei is the unit vector in the direction
of i-th coordinate axis.

The weight vector P may not unique but IðPÞ does not depend on P. Thus
we denote it as IðXÞ and it is called the non-compact direction of X. See

Figure 1. Non-compact face
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Figure 1 which shows the modified Newton boundary of f ¼ z31 þ z32 þ z2z
2
3 in

Example 3.
f is called strongly non-degenerate if (1) for any compact face DHGncð f Þ,

the face function fD :¼
P

nþm AD cnmz
nzm has no critical point as a function

fD : C�n ! C and (2) for a non-comact face D A Gncð f Þ, fD0
: C�n ! C has no

critical point where D0 ¼ DVGð f Þ.

Example 3. Consider a holomorphic function f ¼ z31 þ z32 þ z2z
2
3 of three

variables. Note that Gncð f Þ has three vertices A ¼ ð3; 0; 0Þ, B ¼ ð0; 3; 0Þ, C ¼
ð0; 1; 2Þ and the face D :¼ fAC þ RþE3gHGncð f Þ where AC is the edge with
endpoints A, C. The non-compact faces with edge AB and BC are not essential.
They are not vanishing coordinates i.e., f does not vanish on fz1 ¼ z3 ¼ 0g or
fz2 ¼ z3 ¼ 0g. See Figure 1.

2. Milnor fibration

Asume that f ðz; zÞ ¼
P

n;m cnmz
nzm is a strongly non-degenerate mixed poly-

nomial and let V ¼ f �1ð0Þ. In this section, we study the Milnor fibration of
f . If f ðz; zÞ has a convenient Newton boundary, the singularity is isolated
and there exists a spherical Milnor fibration (¼ a Milnor fibration of the first
type):

f =j f j : Sr � K ! S1; K ¼ V VSr

and also a tubular Milnor fibration (¼ a Milnor fibration of the second type):
f : qEðr; dÞ� ! S1

d where qEðr; dÞ� ¼ fz A Br j j f ðz; zÞj ¼ dg for su‰ciently small
r, d such that 0 < df r. They are Cy-equivalent (Theorems 19, 33, 37, [9]).

For non-convenient mixed function, the singularity need not be isolated.
We have proved the same assertion under an extra condition ‘‘super strongly non-
degenerate’’ (Theorem 52, [9]). In this paper, we prove the existence of Milnor
fibrations for any strongly non-degenerate functions with a weaker assumption
than the assumption ‘‘super’’. We will study also some geometric properties
behind the argument.

2.1. Smoothness of the nearby fibers. First we recall the following:

Lemma 4 (Lemma 28, [9]). Assume that f ðz; zÞ is a strongly non-degenerate
mixed function. Then there exists a positive number r0 and d such that the fiber
Vh :¼ f �1ðhÞ has no mixed singularity in the ball B2n

r0
for any non-zero h with

jhja d.

Proof. Though the proof is the same as that in [9], we repeat it for the
beginner’s convenience. We show a contradiction, assuming that the assertion
does not hold. Then using the Curve Selection Lemma ([6, 4]), we can find
an analytic path zðtÞ, 0a ta 1 such that zð0Þ ¼ O and f ðzðtÞ; zðtÞÞ0 0 and zðtÞ
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is a critical point of the function f : Cn ! C for any t0 0. Using Proposition 1,
we can find a real analytic family lðtÞ in S1 HC such that

qf ðzðtÞ; zðtÞÞ ¼ lðtÞqf ðzðtÞ; zðtÞÞ:ð7Þ

Put I ¼ f j j zjðtÞ2 0g. We may assume for simplicity that I ¼ f1; . . . ;mg and
we consider the restriction f I ¼ f jCI . As f ðzðtÞ; zðtÞÞ ¼ f I ðzðtÞ; zðtÞÞ2 0, we
see that f I 0 0. Consider the Taylor expansions of zðtÞ and lðtÞ:

ziðtÞ ¼ bit
ai þ ðhigher termsÞ; bi 0 0; ai > 0; i ¼ 1; . . . ;m

lðtÞ ¼ l0 þ ðhigher termsÞ; l0 A S1 HC:

Consider the weight vector A ¼ tða1; . . . ; amÞ and a point in the torus b ¼
ðb1; . . . ; bmÞ A C�I and we consider the face function f I

A of f I ðz; zÞ. Then we
have for j A I

qf

qzj
ðzðtÞ; zðtÞÞ ¼ qf I

A

qzj
ðb; bÞtd�aj þ ðhigher termsÞ;

qf

qzj
ðzðtÞ; zðtÞÞ ¼ qf I

A

qzj
ðb; bÞtd�aj þ ðhigher termsÞ

where d ¼ dðA; f I Þ. The equality (7) says that

qf I

qzj
ðzðtÞ; zðtÞÞ ¼ lðtÞ qf

I

qzj
ðzðtÞ; zðtÞÞ; j ¼ 1; . . . ;m:

which implies the next equality:

ordt
qf I

qzj
ðzðtÞ; zðtÞÞ ¼ ordt

qf I

qzj
ðzðtÞ; zðtÞÞ; j ¼ 1; . . . ;m:

Thus we get the equality:

qf I
A ðb; bÞ ¼ l0qf

I
A ðb; bÞ; b A C�m:

This implies that b is a critical point of f I
A : C�I ! C, which is a contradiction to

the strong non-degeneracy of f I
A ðz; zÞ. r

2.2. Vanishing coordinate subspaces and essentially non-compact face func-
tions. We assume that f is a mixed polynomial (not only mixed analytic
function). We denote by Invð f Þ the set of subset I H f1; 2; . . . ; ng such that
f I 2 0 (we denoted this set as NVð f Þ in [9]). We denote by Ivð f Þ the set
of subset I H f1; 2; . . . ; ng such that f I 1 0, and for I A Ivð f Þ and we consider
also the set of non-compact faces D A Gncð f Þ such that there exists (possibly not
unique) a non-negative weight P such that DðPÞ ¼ D and IðPÞ ¼ I . Here IðPÞ ¼
fi j pi ¼ 0g. CI is called a vanishing coordinate subspace. Note that CI HV .
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Definition 5. Let pI : C
n ! CI be the projection and put zI ¼ pI ðzÞ.

Take an essential non-compact face D A Gncð f Þ. Take a weight function P such
that fP ¼ fD and IðPÞ ¼ IðDÞ. We consider the function rDðzÞ :¼ kzIðDÞk2 ¼P

j A IðDÞ jzj j
2. An essential non-compact face function fD is locally tame if there

exists a positive number rD > 0 such that for any fixed zIðDÞ ¼ aIðDÞ A C�IðDÞ with
rDðzÞa r2D, fD has no critical points in aIðDÞ � C�IðDÞ c as a mixed polynomial
function of n� jIðDÞj-variables fzk j k B IðDÞg. We say that f is locally tame on
the vanishing coordinate subspace CI if any face function fD with IðDÞ ¼ I is
locally tame. We say that f is locally tame along vanishing coordinate subspaces
if f is locally tame on every vanishing coordinate subspaces CI , EI A Iv. This
is slightly weaker condition than ‘‘super strongly non-degenerate’’ in [9].

Put rI ¼ minfrD j IðDÞ ¼ Ig for I A Ivð f Þ and rnc ¼ minfrI j I A Ivð f Þg. If f
is convenient, rnc ¼ þy.

Remark 6. We say that f is ‘‘super strongly non-degenrate’’ if we can take
rD ¼ y in the above definition ([9]).

2.3. Smoothness on the non-vanishing coordinate subspaces. Take I H
f1; . . . ; ng and CI is called a non-vanishing coordinate subspace if f I 2 0.
Put Va¼ 6

I AInvð f Þ V VC�I . Then there exists a r0 > 0 so that Va and

V �I ¼ V VC�I are non-singular in the ball Br0 and for any 0 < ra r0, the sphere
Sr and V �I intersect transversely. The existence of such r0 is shown in Theorem
16, [9].

2.4. Hamm-Lê type theorem. The following is a mixed function version
of Lemma (2.1.4) (Hamm-Lê, [5]). This enables us to prove the existence of
Milnor fibration with locally tame behavior assumption.

Lemma 7. Assume that f ðz; zÞ is a strongly non-degenerate mixed polynomial
which behaves locally tamely along vanishing coordinate subspaces. Put r0 ¼
minfrnc; r0g where rnc and r0 are described above. For any fixed positive number
r1 a r0, there exists positive numbers dðr1Þ (depending on r1) such that for any non-
zero h; jhja dðr1Þ,

(1) the nearby fiber Vh :¼ f �1ðhÞ has no mixed singularity in the ball B2n
r0

and,

(2) for any r; r1 a ra r0, the sphere Sr and the nearby fiber Vh ¼ f �1ðhÞ
intersect transversely.

Proof. We have already proved the assertion (1) (Lemma 4). So we will
prove the assertion (2). Assume that the assertion is false. By the Curve Selec-
tion Lemma, we can find a real analytic curve zðtÞ and a complex valued function
aðtÞ, 0a ta 1

zjðtÞ ¼ aðtÞ qf
qzj

ðzðtÞÞ þ aðtÞ qf
qzj

ðzðtÞÞ; Ejð8Þ
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where zðtÞ, aðtÞ are expanded as

zjðtÞ ¼ bjt
pj þ ðhigher termsÞ; bj 0 0 if zjðtÞ2 0;

aðtÞ ¼ a0t
m þ ðhigher termsÞ; a0 0 0:

and f ðzðtÞÞ0 0 for t0 0. Obviously aðtÞ0 0.
Put K ¼ fi j zjðtÞ2 0g and we consider the equality in CK . Put b ¼ ðbjÞ and

P ¼ ðpjÞ, I ¼ f j A K j pj ¼ 0g, I1 ¼ K � I and D ¼ DðPÞ. In the following, we
assume K ¼ f1; . . . ; ng as the argument is the same.

Case 1. Assume that I A Invð f Þ. Then f I 2 0 and b A Va. We assumed
that Va and Skbk intersect transversely for any b, kbka r0 and thus SkzðtÞk is also
transverse to Vf ðzðtÞÞ at zðtÞ for a small tf 1, which is a contradiction.

Case 2. Assume that I A Ivð f Þ and so f I 1 0. In this case, D A Gncð f Þ.
The above equality (8) says:

bjt
pj þ ðhigher termsÞ ¼ a0

qfDðPÞ
qzj

ðbÞtmþdðPÞ�pj þ ðhigher termsÞ
 !

ð9Þ

þ a0
qfDðPÞ
qzj

ðbÞtmþdðPÞ�pj þ ðhigher termsÞ
� �

; j A K :

We compare the order in t (¼ the lowest degree) of the both side. The left
side has order 0 and the order of the right side is at least dðPÞ þm� pj for j B I
and at least dðPÞ þm for j A I . Note that b A C�n. If dðPÞ þm > 0, we get a
contradiction bj ¼ 0 for j A I . If dðPÞ þm < 0, we get

0 ¼ a0
qfDðPÞ
qzj

ðbÞ þ a0
qfDðPÞ
qzj

ðbÞ; Ej

which says b is a mixed critical point of fD, a contradiction to the strong non-
degeneracy. Thus dðPÞ þm ¼ 0 and

bj ¼ a0
qfDðPÞ
qzj

ðbÞ þ a0
qfDðPÞ
qzj

ðbÞ; j A Ið10Þ

0 ¼ a0
qfDðPÞ
qzj

ðbÞ þ a0
qfDðPÞ
qzj

ðbÞ; j A K � I :ð11Þ

The equality (11) says that the point ðbjÞj AK�I is a critical point of the face
function fD as a function of varianles fzj; j A K � Ig, fixing zi ¼ bi, i A I with
rDðbÞa r0. This is a contradiction on the assumption. r

Remark 8. The assertion (2) also follows from af -condition (see Proposition
11 below.)
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2.5. Tubular Milnor fibration. Put

Dðd0Þ� ¼ fh A C j 0 < jhja d0g; S1
d0
¼ qDðd0Þ� ¼ fh A C j jhj ¼ d0g

Eðr; d0Þ� ¼ f �1ðDðd0Þ�ÞVB2n
r ; qEðr; d0Þ� ¼ f �1ðS1

d0
ÞVB2n

r :

By Lemma 4 and the theorem of Ehresman ([16]), we obtain the following
description of the tubular Milnor fibration (i.e., the Milnor fibration of the second
type) ([5]).

Theorem 9 (Tubular Milnor fibration). Assume that f ðz; zÞ is a strongly
non-degenerate mixed function which is locally tame along the vanishing coordinate
subspaces. Take positive numbers ra r0 and d0 a dðrÞ as in Lemma 7. Then
f : Eðr; d0Þ� ! Dðd0Þ� and f : qEðr; d0Þ� ! S1

d0
are locally trivial fibrations and the

topological isomorphism class does not depend on the choice of d0 and r.

2.6. Spherical Milnor fibration. Consider the spherical Milnor fibration
(i.e., Milnor fibration of the first kind):

f =j f j : Sr � K ! S1; K ¼ V VSr:

In the proof of the existence of the spherical fibration and the equivalence to the
tubular Milnor fibration (Theorem 52, [9]), we have assumed ‘‘super strongly non-
degeneracy’’. However this assumption is used only to prove the Hamm-Lê type
assertion (Lemma 51, [9]). We have proved this Lemma with locally tameness
assumption (Lemma 7). Thus we get

Theorem 10. Assume that f is a strongly non-degenerate mixed function
which is locally tame along vanishing coordinate subspaces. For a su‰ciently
small r, the spherical and tubular Minor fibrations exist and they are equivalent
each other.

3. Boundary stability, af -condition and transversality of the nearby fibers

In this section, we consider further geometric properties about mixed poly-
nomials.

3.1. af -condition. Assume that f is a mixed polynomial and we assume
that a Whitney regular stratification S of Cn is given so that V ¼ f �1ð0Þ is
a union of strata MHV . We says that f satisfies Thom’s af -condition with
respect to S (locally at 0) if there exist positive numbers r and df r which
satisfies the following condition. Vh ¼ f �1ðhÞ with h0 0, jhja d is smooth in Br

and take any sequence zðnÞ which converges to some w0 0, w A M, where M is a
stratum in V VS and suppose that the tangent space TzðnÞ f

�1ð f ðzðnÞÞÞ converges
to some t in the suitable Grassmanian space. Then TwM is a subspace of t.
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The following says that the nearby fiber’s transversality follows from
af -condition.

Proposition 11. Assume that f satisfies af -condition at 0 and the nearby
fibers are smooth. Then there exists a r0 > 0 such that for any 0 < r1 a r0, there
exists a positive d so that any nearby fiber Vh intersects transversely with the sphere
Sr for r1 a ra r0 and 0 < jhja d.

Proof. Take r0 so that for any ra r0, the sphere Sr intersects transversely
with all strata MHV . Note that M and Sr intersect transversely if and only if
for any a A M VSr, TaM and TaSr intersect transversely. That is TaMQTaSr.
Take a sequence of points zðnÞ converging to a A MHV where M is a stratum

and a0 0. Put hn ¼ f ðzðnÞÞ and rn ¼ kzðnÞk and r 0 :¼ kak, r0 b r 0 b r1. Assume
that Vhn intersects Srn non-transversely at zn. Then this implies TzðnÞ f

�1ðhnÞH
TzðnÞSrn . Assume that TzðnÞ f

�1ðhnÞ converges to t. Then tHTaSr 0 . On the
other hand, af -condition says that TaMH t and TaMQTaSr 0 . This is a
contradiction. r

3.2. Boundary stability condition. Assume that r0 > 0 is chosen so that
j ¼ f =j f j : SrnK ! S1 is a fibration for any ra r0. We wish to consider the
boundary condition F y IK is satisfied or not. This property is always true
for holomorphic functions but not always true for mixed functions. For the
argument’s simplicity, we consider as follows. Consider the Milnor fibration in
a open ball:

jar ¼ f =j f j : Br � V ! S1; jarðzÞ ¼ f ðzÞ=j f ðzÞjð12Þ

and put Fy;ar ¼ j�1
arðeiyÞ. To distinguish this fibration with usual Milnor fibra-

tion on a sphere, we call this fibration an open ball Milnor fibration.

Definition 12. We say the open Milnor fibration satisfies the stable
boundary condition if Fy;ar IV VBr for any y. Note that the Milnor fibra-
tion in a ball is homotopically equivalent to the one on a fixed sphere
f =j f j : SrnK ! S1.

Recall that a continuous mapping j : X ! Y is an open mapping along a
subset AHX if for any point a A A and any open neighborhood U of a in X ,
jðUÞ is a neighborhood of jðaÞ in Y . The following is an immediate con-
sequence of the definition.

Proposition 13. The next two conditions are equivalent.
(1) The boundary stability condition for the Milnor fibration of f is satisfied.
(2) f : Cn ! C is an open mapping along V VBr for a su‰ciently small r > 0.

In particular, if f is a holomorphic function, it satisfies the boundary stability
condition.
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Lemma 14. Assume that f ðz; zÞ is a strongly non-degenerate and locally tame
along vanishing coordinate subspaces. Then the Milnor fiibration satisfies the stable
boundary property.

Proof. Take a point a ¼ ða1; . . . ; anÞ A V V IntðBrÞ and put I ¼ fi j ai 0 0g.
(i) Assume that I A Invð f Þ so that a is a non-singular point of V �I . Then it

is obvious that a A Fy, as fVhg, jhja df r is a transversal family with the spheres
Sr 0 for kak=2a r 0 a r and Vh HFy;ar for h, arg h ¼ y.

(ii) Assume that f I 1 0. Take an essential non-compact face D ¼ DðPÞ
with IðDÞ ¼ I and consider the face function fPðz; zÞ. Put fP;aI be the restric-
tion of fP on zi ¼ ai, i A I . Thus we consider the polynomial mapping

fP;aI : C
n�jI j ! C. As fP;aI is a strongly non-degenerate function for su‰ciently

small aI , there exists b ¼ ðbjÞj B I such that fP;aI ðbÞ ¼ reiy for some r. Take an

arc bðsÞ, �ea sa e so that fP;aI ðbðsÞÞ ¼ reiðyþsÞ and bð0Þ ¼ b. This is possible
as fP;aI : C

n�jI j ! C is a submersion. Consider the path:

ðt; sÞ 7! bðt; sÞ ¼ ðbjðt; sÞÞnj¼1; bjðt; sÞ ¼
bjðsÞtpj ; j B I

aj; j A I :

�
Then we have

f ðbðt; sÞÞ ¼ fP;aI ðbðsÞÞtdðPÞ þ ðhigher termsÞ

¼ reiðyþsÞtdðPÞ þ ðhigher termsÞ:

Take a sequence tn ! 0. As the arg f ðbðtn; sÞÞ ! yþ s, we can take a sequence
sn, �ea sn a e such that arg f ðbðtn; snÞÞ ¼ y for su‰ciently small jtnj. For
example, assume that arg f ðbðt; 0ÞÞ < y. Note that arg f ðbðt; eÞÞ > y as long
as tf 1. Thus we use the mean value theorem to chose such a sn. The point
bðtn; snÞ A Fy;ar for su‰ciently small jtnj and it converges to a. This implies that
the closure of Fy;ar contains V . r

3.3. Strongly non-degenerate polynomials which is not locally tame. (1) Ex-
ample 1. Consider the example of M. Tibar: f ðzÞ ¼ z1jz2j2 ([13, 1, 2]). This is
a mixed weighted homogeneous polynomial. Thus it is strongly non-degenerate.
A polar weight can be P ¼ tð1; 0Þ. S1-action is defined as r � ðz1; z2Þ ¼ ðz1r; z2Þ
for r A S1. Then for any r > 0, there exists a spherical Milnor fibration:
j ¼ f =j f j : SrnK ! S1.

First we show that the boundary stability is not satisfied. Take a fiber Fy.
K has two components, K1 ¼ fz1 ¼ 0g and K2 ¼ fz2 ¼ 0g. The closure of Fy

is given as F y ¼ Fy UK1 U fðreiy; 0Þg. Thus the intersection F y VK2 is a single

point ðreiy; 0Þ and this point ðreiy; 0Þ turns along K2 once when y goes from 0
to 2p. Note that K2 is a S1-orbit of the action. We call K2 a rotating axis.
The function f is not locally tame along the vanishing axis z2 ¼ 0 by Lemma 14.
In fact, take a point ða; 0Þ A K2 and put a ¼ reiy. Take an open set U ¼
fz1 j jz1 � aj < eg � fz2 j jz2j < eg and put a to be the small positive angle so
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that tan a ¼ e=r. Then the image of U by f is contained in the closure of the
angular region fh A C j y� aa arg ha yþ ag where 0 is on the boundary. Thus
it is not an open mapping. More precisely we assert

Assertion 15. Fy is homeomorphic to ConeðK1Þ.

For example, taking r ¼ 1, consider the mapping c : Fy ! ConeðK1Þ, defined
by cðz1; z2Þ ¼ ð1� jz1j; argðz2ÞÞ. Here we understand

ConeðK2Þ ¼ ½0; 1� � K2=f0g � K2; K2 FS1:

M. Tibar observed that f does not have any stratification which satisfies
the af -condition along z1 axis ([11]). Put f ¼ gþ ih with g ¼ x1ðx2

2 þ y22Þ and
h ¼ y1ðx2

2 þ y22Þ. Then the Jacobian matrix is given as

Jðg; hÞ ¼ x2
2 þ y22 0 2x1x2 2x1 y2

0 x2
2 þ y22 2y1x2 2y1 y2

� �
Note that the last 2� 2 minor has rank one and this makes the problem at the
limit. Take a point p ¼ ða1 þ ib1; 0Þ. Consider the rotated mixed polynomial
~ff :¼ ðb1 þ a1iÞ f and write it as ~ff ¼ ~ggþ i~hh. Note that f �1ð f ðpÞÞ ¼ ~ff �1ð ~ff ðpÞÞ
and ~gg ¼ b1g� a1h. Then the normalized gradient of ~gg is given by

grad ~gg ¼ ðb1;�a1; 0; 0Þ:
Put p ¼ ða1 þ b1i; z2Þ. Thus when z2 ! 0,

Tp f
�1ð f ðpÞÞHTp~gg

�1ð~ggðpÞÞRC� f0g:

This implies, if there is a stratification which satisfies af -condition, the stratum of
C� f0g which contains p can not be two dimensional at p A fz2 ¼ 0g. As this
is the case at any point of fz2 ¼ 0g, there does not exist any stratification which
satisfies af -condition. On the other hand, we assert that

Proposition 16. f satisfies the transversality condition for the nearby fibers.

Proof. We may assume that the sphere has radius 1, by the polar homoge-
nuity. Assume that there is a sequence pn ¼ ðun; vnÞ A S3

1 such that f �1ð f ðpnÞÞ is
not transverse to S3

1 and f ðpnÞ ! 0. Then either un ! 0 or vn ! 0 (equivalently
either jvnj ! 1 or junj ! 1). We may assume that pn ¼ anqf þ aqf by Lemma 2
which is equivalent to

un ¼ anjvnj2

vn ¼ anunvn þ anunvn:

�
From the first equality, we can put un ¼ rne

iyn , a ¼ rne
iyn . The second equality

says that 1 ¼ 2rnrn as vn 0 0. Thus rn ! 1=2 if rn ! 1 which implies jvnj ! 2

and j f ðpnÞj 6! 0. Assume that rn ! 0. Then jvnj2 ¼ rn=rn ¼ 2r2n ! 0. This is
also impossible, as jpnj ¼ 1. r
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This example shows that the transversality of nearby fibers does not implies
either tameness or af -condition. On the other hand, tameness with strong non-
degeneracy implies transversality of the nearby fibers, as we will see below.

(2) Example of A. Parusinski: f ¼ z1ðz2 þ z23Þz2 ([11], see also [1,
2]). Note that f is strongly non-degenerate.

Proposition 17 (A. Parusinski). Consider I ¼ f1g and note that f jCI 1 0.
Then f does not satisfy af -condition along z1-axis fz2 ¼ z3 ¼ 0g.

Proof. The proof goes in the same line as that in Example 1. Consider the
weight P ¼ tð0; 1; 3Þ. Then fP ¼ z1jz2j2 and dðPÞ ¼ 2. Assume that there exists
a stratification S satisfying af -condition. We show a contradiction. Take a
point p ¼ ðreiy; 0; 0Þ and assume that p A M where M is a real two dimensional
stratum of CI . Consider the modified function ~ff ¼ ðsin yþ i cos yÞ f . Then the
real part ~gg of ~ff is given as

~gg ¼ sin yg� cos yh

¼ ðx1 sin y� y1 cos yÞjz2j2 þ <ðeiðp=2�yÞz1z2z
2
3Þ

and the gradient vector of ~gg at zðtÞ :¼ ðp; ta2; t3a3Þ for a2; a3 A C� fixed is given
as

grad ~ggðp; ta2; t3a3Þ ¼ ðsin y;�cos y; 0; 0; 0; 0Þja2j2t2

þOðt3Þ:

Thus the normalized gradient vector converges to

v :¼ ðsin y;�cos y; 0; 0; 0; 0Þ:
This implies that

TzðtÞ f
�1ð f ðzðtÞÞHTzðtÞ~gg

�1ð~ggðzðtÞÞ �!t!0
v? RCI :

This is a contradiction. r

Remark 18. We do not know (and do not care) if f �1ðhÞ, h0 0 is a
transverse family for su‰ciently small h.

(3) Example 3. Consider

f ðz; zÞ ¼ z1kðzÞ; kðzÞ :¼
Xm
i¼1

jzij2ai �
Xn

j¼mþ1

jzjj2aj

for 2am < n. Then f is not strongly non-degenerate but polar weighted
homogeneous and it has a Milnor fibration. However it is not locally tame
along the vanishing coordinate subspaces and f does not satisfy the af -condition.
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In fact the link has two components K1 ¼ fz1 ¼ 0g and K2 ¼ fkðzÞ ¼ 0g. The
component K2 has real codimension 1 and at any point of K2nK1, f is not open
mapping and thus

Fy ¼ Fy UK1 U fz A Sr j arg z1 ¼Gyg

where sign is the same as that of kðzÞ. Thus K2 is a rotation axis. The mono-
dromy is the rotation arround z1 axis:

hy : F0 ! Fy; ðz1; z 0Þ 7! ðz1eiy; z0Þ:

The fiber Fy has two components, F þ
y ¼ farg z1 ¼ y; kðzÞ > 0g and F �

y ¼
farg z1 ¼ �y; kðzÞ < 0g.

Remark 19. The function kðzÞ is a real valued polynomial and the fibers
k�1ðhÞ are smooth for h0 0 and k�1ð0Þ has an isolated singularity as a real
hypersurface. However as a mixed function k : Cn ! C, it has no regular
points.

3.4. Thom’s af -condition. By analyzing above examples, we notice that
the limit of two independent hyperplanes Tpg

�1ðgðpÞÞ and Tph
�1ðhðpÞÞ may not

independent when p goes to some point of vanishing coordinate CI , and this
phenomena induces a failure of af -condition. This problem does not occur under
the tameness condition.

Theorem 20. Assume that f ðzÞ is a strongly non-degenerate polynomial and
assume that f is locally tame along vanishing coordinate subspaces. We consider
the canonical stratification Scan which is defined by

Scan : fV VC�I ;C�InV VCI j I A Invð f ÞgU fC�I j I A Ivð f Þg:

Then f satisfies af -condition with respect to Scan in the ball B2n
r0

where r0 is as in
Lemma 7.

Proof. Take a point q I ¼ ðqjÞj A I A V VC�I . Using Curve Selection Lemma,

it is enough to check the af -condition along an arbitrary analytic path. So take
any analytic path zðtÞ such that zð0Þ ¼ qI and zðtÞ A C�J for t0 0 with I H J
with I 0 J. As the argument is precisely the same, we assume hereafter that
J ¼ f1; . . . ; ng. We will show that af -condition is satisfied for this curve. By
non-degeneracy, we may assume that I A Ivð f Þ so that CI is a vanishing coor-
dinate. (Otherwise, qI is a smooth point of V and the af -condition is obviously
satisfied.) Consider the Taylor expansion:

zjðtÞ ¼ ajt
pj þ ðhigher termsÞ;

pj ¼ 0; aj ¼ qj; j A I

pj > 0; j B I :

�
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Put P ¼ tðp1; . . . ; pnÞ, a ¼ ða1; . . . ; anÞ, d ¼ dðPÞ and D ¼ DðPÞ. For notation’s
simplicity, we assume that I ¼ fmþ 1; . . . ; ng. Note that

qg

qzj
ðzðtÞÞ ¼ qgD

qzj
ðaÞtd�pj þ ðhigher termsÞ

qh

qzj
ðzðtÞÞ ¼ qhD

qzj
ðaÞtd�pj þ ðhigher termsÞ:

For simplicity, we assume that p1 b p2 b � � �b pm. For a vector v ¼
ðv1; . . . ; vnÞ and 1a aa bam, we consider the truncation

vba :¼ ðva; . . . ; vbÞ:

We choose 1a aa bam as follows.

(A-1) For any j < a,
q

qzj
gDðaÞ ¼ 0,

q

qzj
hDðaÞ ¼ 0 and

q

qza
gDðaÞ;

q

qza
hDðaÞ

� �
0 ð0; 0Þ.

(A-2) Two complex vectors

ðqgDðaÞÞba ¼ q

qza
gDðaÞ; . . . ;

q

qzb
gDðaÞ

� �

ðqhDðaÞÞba ¼ q

qza
hDðaÞ; . . . ;

q

qzb
hDðaÞ

� �

are linearly independent over R and ðqgDðaÞÞb
0

a ; ðqhDðaÞÞ
b0

a are linearly dependent
over R for any b 0 < b. For simplicity, we use the notations:

vgðtÞ :¼ qgðzðtÞÞ ¼ ðvg;1; . . . ; vg;mÞ; vhðtÞ :¼ qhðzðtÞÞ ¼ ðvh;1; . . . ; vg;mÞ:

We consider the order of vgðtÞ ¼ qgðzðtÞÞ and vhðtÞ ¼ qhðzðtÞÞ. (Here the order
is the lowest degree of in t.)

Suppose ord vg ¼ r and the smallest index 1a iam with ord vg; i ¼ r is
called leading index. Assume that s is the leading index of vgðtÞ. We call
the coe‰cient of tr in the expansion of vg; sðtÞ the leading coe‰cient. Put s 0 be
the leading index of vh.

For simplicity, we assume that sa s 0 and if s ¼ s 0 we assume also
ord vgðtÞa ord vhðtÞ. This is possible by changing g and h considering if ðz; zÞ,
if necessary.

First we observe that

ord vg; iðtÞ; ord vh; iðtÞb d � pi; sa a:

(If s > a, this means
q

qza
gDðaÞ ¼ 0 and

q

qza
hDðaÞ0 0 which is a contradiction

to the assumption sa s 0.)
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Strategy. Put r ¼ ord vgðtÞ, r 0 ¼ ord vhðtÞ. We have three possible cases.
(1) s 0 > s or
(2-a) s ¼ s 0 and the coe‰cients of tr of vg; s and the coe‰cient of tr

0
of vh; s

are linearly independent over R or
(2-b) s ¼ s 0 and the coe‰cients of tr of vg; s and the coe‰cient of tr

0
of vh; s

are linearly dependent over R.
For (1) or (1-a), we have nothing to do. In fact, write

vgðtÞ ¼ vyg tr þ ðhigher termsÞ; vyg A Cn

vhðtÞ ¼ vyh tr
0 þ ðhigher termsÞ; vyh A Cn:

Then the normalized limit of vgðtÞ, vhðtÞ are given by vyg =kvyg k, vyh =kvyh k. In
this case, the limit of vg and vh for t ! 0 are complex vectors vyg , vyh (up to
scalar multiplications) which are in Cm � f0g. They are linearly independent
over R. Thus the limit of TzðtÞ f

�1ð f ðzðtÞÞ is the real orthogonal complement

hvyg ; vyh i? ¼ vy?
g V vy?

h which contains CI .

Assume s ¼ s 0 and the coe‰cients of tr in vg; s and the coe‰cient of tr
0
in vh; s

are linearly dependent over R. Then we consider the following operation.

Operation. Put r 0 ¼ ord vh. We have assumed r 0 b r. Take a unique
real number l and replace vh by v 0h ¼ vh � ltr

0�rvg with r ¼ ord vg; s, r
0 ¼ ord vh; s

to kill the coe‰cient of tr
0
of vh; s. (We have assumed ra r 0.)

Note that after this operation, the vector changes into

v 0h; jðtÞ ¼
q

qzj
hDðaÞ � le

q

qzj
gDðaÞ

� �
td�pj þ ðhigher termsÞ

where e ¼ 1 or 0 according to r 0 ¼ r or r 0 > r respectively. We observe that
if r 0 > r, the leading term of v 0h; jðtÞ does not change. If r 0 ¼ r, the (leading)

coe‰cient
q

qzj
hDðaÞ of td�pj in vh; j is changed into

q

qzj
hDðaÞ � l

q

qzj
gDðaÞ;

the above two properties (A-1), (A-2) are unchanged.
We continue the operation as long as the leading index of v 0h is still s.

Suppose that this operation stops at k-th step. Then put sðkÞ the leading index

of v
ðkÞ
h and rðkÞ be the order of v

ðkÞ
h . By the above two properties, s < sðkÞ a b

and rðkÞ a d � pb. This implies that the limit of the normalized gradient vectors

vg and v
ðkÞ
h , say vyg , vyh are independent vectors in Cm � f0g ¼ CI c

over R. On

the other hand, by the definition of the above operations,

TzðtÞ f
�1ð f ðzðtÞÞ ¼ vgðtÞ? V vhðtÞ?

¼ vgðtÞ? V v 0hðtÞ
? ¼ � � � ¼ vgðtÞ? V ðvðkÞh ðtÞÞ?:
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Thus the limit of TzðtÞ f
�1ð f ðzðtÞÞ is nothing but ðvyg Þ? V ðvyh Þ?. Note that

ðvyg Þ? V ðvyh Þ? ICI . This show that the af -property is satisfied along this curve.
r

The following will be practically useful.

Lemma 21. Let fD be a face function associated with an essential non-
compact face D A Gncð f Þ with I ¼ IðDÞ. Assume that I ¼ fmþ 1; . . . ; ng.

(1) For f ðzÞ a holomorphic function, the following is necessary and su‰cient
for fD to be locally tame.

q

qz1
fDðzÞ; . . . ;

q

qzm
fDðzÞ

� �
is a non-zero vector for any z with kzIka r0.

(2) For a mixed polynomial, fD is locally tame if there exists a j A I c such

that two complex numbers
qgD

qzj
ðzÞ, qhD

qzj
ðzÞ are linearly independent over

R. In other word,

= qgD

qzj
ðzÞqhD

qzj
ðzÞ

� �
0 0:

for any z with kzIka r0.

Proof. Recall that

qg ¼ 1

2
ðqf þ qf Þ; qh ¼ i

2
ðqf � qf Þ:

If f is holomorphic, qg ¼ 1
2 qf and qhD ¼ �iqgD and they are perpendicular by

the Euclidean inner product. Thus they are independent over R. For the
second assertion, note that the assumption is equivalent to the 2 minor

det

qgD

qxj
ðaÞ qgD

qyj
ðaÞ

qhD

qxj
ðaÞ qhD

qyj
ðaÞ

0
BBB@

1
CCCA¼ �= qgD

qzj
ðaÞqhD

qzj
ðaÞ

� �
0 0: r

3.4.1. Examples. Example 1. (Modification of Tibar’s example) Consider
the mixed monomial f ¼ z1z

a
2z2. Then we have

qf ¼ ð0; z1za2 Þ; qf ¼ ðza2z2; az1za�1
2 z2Þ

qg ¼ 1

2
ðza2z2; z1za2 þ az1z

a�1
2 z2Þ

qh ¼ i

2
ð�za2z2; z1z

a
2 � az1z

a�1
2 z2Þ

597on milnor fibrations, af -condition and boundary stability



Consider the vanishing coordinate I ¼ f1g. Two complex numbers

z1z
a
2 þ az1z

a�1
2 z2; iðz1za2 � az1z

a�1
2 z2Þ

are linearly dependent over R if and only if a ¼ 1 as

ðz1za2 þ az1z
a�1
2 z2Þð�iÞðz1za2 � az1z

a�1
2 z2Þ

¼ �ið1� a2Þjz1j2jz2j2a � iað�z21z
2a�1
2 z2 þ z21z

2a�1
2 z2Þ

¼ �ið1� a2Þjz1j2jz2j2a � 2a=ðz21z2a�1
2 z2Þ:

Thus the imaginary part of the above complex number is zero if and only if
a ¼ 1. Note that f is an open mapping along z2 ¼ 0 if and only if a > 1.

Example 2. Consider the mixed polynomial

f ðz; zÞ ¼ za11 z2 þ za22 z3 þ � � � þ zann z1; a1; . . . ; an b 2:

Then fig A Ivð f Þ for all i ¼ 1; . . . ; n. Consider for example, I ¼ fng. Then
possible face functions are

fD ¼ za22 z3 þ � � � þ zann z1 and fX;

where X is a face of D. Now we can see that

qfD ¼ ðzann ; 0; za22 ; . . . ; zan�1

n�1 Þ

qfD ¼ ð0; a2za2�1
2 z3; . . . ; anz

an�1
n z1Þ

qgD ¼ 1

2
ðzann ; a2z

a2�1
2 z3; z

a2
2 þ a2z

a3�1
3 z4; . . . ; z

an�1

n�1 þ anz
an�1
n z1Þ

qhD ¼ i

2
ðzann ;�a2z

a2�1
2 z3; z

a2
2 � a2z

a3�1
3 z4; . . . ; z

an�1

n�1 � anz
an�1
n z1Þ:

Thus

ðqgDÞ1 � ðqhDÞ1 ¼ � i

4
jznj2an

and its imaginary part is non-zero, which satisfies the condition of Lemma 21.
Now we consider a subset XHD. We consider the first monomial z

aj
j zjþ1 so that

zann z1; . . . ; z
aj�1

j�1 zj B fX; z
aj
j zjþ1 A fX:

Then we have

=ðqgXÞj � ðqhXÞj ¼ � 1

4
a2k jzkj

2ak�2jzkþ1j2 0 0:

Thus by symmetry, we conclude that f is locally tame along each vanishing
coordinate axis zk, k ¼ 1; . . . ; n.
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4. Some application

4.1. Mixed cyclic coverings. Consider positive integer vectors

a :¼ ða1; . . . ; anÞ; b ¼ ðb1; . . . ; bnÞ

such that aj > bj b 0, j ¼ 1; . . . ; n. We consider the mapping

ja;b : C
n ! Cn; ðz1; . . . ; znÞ 7! ðza11 zb11 ; . . . ; zann zbnn Þ:

This is a
Qn

j¼1ðaj � bjÞ-fold multi-cyclic covering branched along the coordinate
hyperplanes fzj ¼ 0g, j ¼ 1; . . . ; n. Consider a holomorphic function f ðzÞ which
has a non-degenerate Newton boundary and the pull-back ~ff ðz; zÞ :¼ f ðja;bðz; zÞÞ
of f by ja;b. This gives a strongly non-degenerate mixed function ([10]).

Proposition 22. Assume that f ðzÞ is a non-degenerate holmorphic function
which is locally tame along their vanishing coordinate subspaces. Then ~ff ðw;wÞ :¼
f ðja;bðw;wÞÞ is a non-degenerate mixed function. Its vanishing coordinate sub-
spaces are the same as that of f ðzÞ and it is locally tame along the vanishing
coordinate subspaces.

Proof. Take a face function fPðzÞ with weight P ¼ tðp1; . . . ; pnÞ. Consider
the weight ~PP which is the primitive weight vector obtained by multiplying the
least common multiple of the denominators of

t p1

a1 þ b1
; . . . ;

pn

an þ bn

� �
:

Then j�
a;b f ðw;wÞ is radially weighted homogeneous with respect to the weight ~PP.

We observe also have ~ff ~PPðw;wÞ ¼ j�
a;b fPðw;wÞ. Thus we see that the Newton

boundary Gð ~ff Þ corresponds bijectively to that of Gð f Þ by this mapping.
Suppose that I A Ivð f Þ ¼ Ivð ~ff Þ. We assume I ¼ fmþ 1; . . . ; ng for simplicity.

Take a non-compact face D with IðDÞ ¼ I and let ~DD be the corresponding
non-compact face of ~ff . We consider ~ff~DD as the following composition, fixing
ðumþ1; . . . ; unÞ A C�I :

~ff~DD : C�m �!j 0
a; b

C�m �!fD C

where

j 0
a;bðw1; . . . ;wmÞ ¼ ðwa1

1 wb1
1 ; . . . ;wam

m wbm
m ; uamþ1

mþ1u
bmþ1

mþ1 ; . . . ; u
an
n ubn

n Þ:

As j 0
a;b is an unbranched covering mapping, ~ff~DD does not have any critical points.

r

4.2. Mixed functions with strongly mixed weighted homogeneous faces. We
say a mixed polynomial hðz; zÞ is mixed weighted homogeneous if it is radially
weighted homogeneous and also polar weighted homogeneous. hðz; zÞ is strongly
mixedr weighted homogeneous if the polar weight and the radial weight can be the
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same. A mixed function f ðz; zÞ is called of strongly mixed weighted homoge-
neous face type if every face function fD is strongly mixed weighted homogeneous
polynomial ([10]). Let G�ð f Þ be the Newton boundary and let S� be an admissible
regular subdivision of G�ð f Þ and let p̂p : X ! Cn be the associated toric modifi-
cation. Let V be the vertices of S� which corresponds to the exceptional divisors
as in §2, [10]. Let SI be the set of jI j � 1 dimensional faces of Gð f I Þ. It is
shown that p̂p : X ! Cn topologically resolves the mixed function f : Cn ! C
([10]). Combining the existence of Milnor fibration and the argument in [10],
we can generalize Theorem 11 ([10]) as follows. For I A Inv, we denote by SI

the set of weight vectors which correspond to jI j � 1 dimensional faces of Gð f I Þ.
The notations and definitions are the same as in Theorem 11 ([10]).

Theorem 23. Let f ðz; zÞ a non-degenerate mixed polynomial of strongly
mixed positive weighted homogeneous face type which is locally tame along
vanishing coordinate subspaces. Let V ¼ f �1ðVÞ be a germ of hypersurface at
the origin and let ~VV be the strict transform of V to X. Then

(1) ~VV is topologically smooth and real analytic smooth variety outside of the
union of the exceptional divisors 6

P AV ÊEðPÞ.
(2) The zeta function of the Milnor fibration of f ðz; zÞ is given by the formula

zðtÞ ¼
Y
I

zI ðtÞ; zI ðtÞ ¼
Y
P ASI

ð1� tpdegðP; f
I
P
ÞÞ�wðPÞ=pdegðP; f I

P
Þ

where wðPÞ is the Euler characteristic of the torus Milnor fiber of f I
P

F �
P ¼ fzI A C�I j f I

P ðzI Þ ¼ 1g; P A SI :

4.2.1. Example: 1. Curves with mixed Brieskorn faces. Consider a mixed
polynomial

f ðz; zÞ ¼ z21z
2
2ðz61z31 þ z42z

2
2Þðz41z21 þ z62z

3
2Þ

f is strongly non-degenerate and has two faces which are strongly polar weighted
homogeneous: Put P ¼ tð2; 3Þ, Q :¼ tð3; 2Þ. There are two faces corresponding
to P and Q.

fPðz; zÞ ¼ z61z
2
1z

2
2ðz61z31 þ z42z

2
2Þ; fQðz; zÞ ¼ z21z

6
2z

2
2ðz41z21 þ z62z

3
2Þ

and fP, fQ are strongly polar weighted with pdeg fP ¼ pdeg fQ ¼ 20. Thus the

contribution of fP to the zeta-function is ð1� t20Þ�wðPÞ=20 where wðPÞ is the Euler
characteristic of

F �
P :¼ fz A C�2 j fPðz; zÞ ¼ 1g:

F �
P is di¤eomorphic to

F 0
P :¼ fz A C�2 j z41z22ðz31 þ z22Þ ¼ 1g

by Theorem 10 ([8]). Thus wðPÞ ¼ wðF �
P Þ ¼ �20. Thus using the symmetry of

fP and fQ, we get zðtÞ ¼ ð1� t20Þ2.
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In general, for a non-degenerate non-convenient mixed polynomial of two
variables f ðz; zÞ, consider the right end monomial zm1 z

n
1z

a
2z

b
2 . Right end means

that Gð f Þ is in the space fðn; mÞ j namþ n; mb aþ bg. If aþ bb 1, z1 axis is
a vanishing coordinate. It is locally tame along z1-axis if and only if a� b0 0.

Example 2. Consider Dn singularity:

Dn : f ðz1; z2; z3Þ ¼ z21 þ z22z3 þ zn�1
3 :

Then the Milnor number mð f Þ of f is n and the zeta function is given as zðtÞ ¼
ðtn�1 þ 1Þðt2 � 1Þ. f has a vanishing axis z2 but V is non-singular except at the
origin. Consider

~ff ðw;wÞ ¼ j�
2;1 f ðw;wÞ

¼ w4
1w

2
1 þ w4

2w
2
2w

2
3w3 þ w

2ðn�1Þ
3 wn�1

3

~ff has a vanishing coordinate axis w2 but the data for the zeta function is exactly
same as f . As j2;1 is a homeomorhism, mð ~ff Þ ¼ n and it has the same zeta
functions as f . See also Corollary 15, [10].

4.3. Join type polynomials. We consider the join type polynomial

f ðz; z;w;wÞ ¼ f1ðz; zÞ þ f2ðw;wÞ; ðz;wÞ A Cn � Cm:

Proposition 24. Assume that f1 and f2 are strongly non-degenerate mixed
polynomial. Then f is also strongly non-degenerate. We assume that f1, f2
do not have any linear term so that they have a critical point at the respective
origin. Then we have

(1) If f1 and f2 are locally tame along vanishing coordinate subspaces, f is
also locally tame along vanishing coordinate subspaces. In particular, f
satisfies af -condition.

(2) If f1 or f2 does not satisfy af -condition, f does not satisfy af -condition.

Proof. Assume that I1 A Ivð f1Þ and I2 A Ivð f2Þ. Then f jCI1 � CI2 1 0.
Take D1 A Gncð f1Þ with IðD1Þ ¼ I1 and D2 A Gncð f2Þ with IðD2Þ ¼ I2. Then D :¼
D1 � D2 A Gncð f Þ and fDðz; z;w;wÞ ¼ f1D1

ðz; zÞ þ f2D2
ðw;wÞ satisfies certainly the

local tameness condition. (Here D1 � D2 is the convex polyhedron spanned by D1

and D2.) Conversely suppose that DHGvð f Þ with I ¼ IðDÞ. Then f jCI 1 0.
Put I1 ¼ I V f1; . . . ; ng and I2 ¼ InI1. Then I1 A Ivð f1Þ and I2 A Ivð f2Þ. Take
P so that IðPÞ ¼ I and put D1 ¼ DVCn and D2 ¼ DVCm. Then D ¼ D1 � D2.
Let P1, P2 be the projection to Cn or Cm respectively. Then DðP1Þ ¼ D1 and
DðP2Þ ¼ D2 and fP ¼ f1;P1

ðz; zÞ þ f2;P2
ðw;wÞ and it is certainly locally tame.

This proves (1).
To prove the assertion (2), assume for example f1 does not satisfies af -

condition. Take a stratification S such that its restriction to Cn and Cm are
stratification S1 and S2 for f1 and f2 respectively. By the assumption, there
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exists p A V1 ¼ Vð f1Þ and a stratum M of S1 with p A M and an analytic curve
zðtÞ in Cnnf0g such that zð0Þ ¼ p and af -condition is not satisfied along this
curve. Write f1 ¼ g1 þ ih1, f2 ¼ g2 þ ih2 and f ¼ gþ ih. We may assume that

qg1ðzðtÞÞ ¼ vyg1 t
s1 þ ðhigher termsÞ

and it converges to vyg1 . We assume ord qh1ðzðtÞÞb ord qg1ðzðtÞÞ. By the same
technique as in the proof of Theorem 20, we take a new vector qh 0

1 :¼ qh1ðtÞ�
kðtÞqg1ðzðtÞÞ so that

qh 0
1ðtÞ ¼ vyh1 t

d þ ðhigher termsÞ

so that the leading coe‰cient vectors vg1 , vh1 are linearly independent over R.
Thus the limit of the tangent space TzðtÞ f

�1
1 ð f1ðzðtÞÞ is given by vy?

g1
V vy?

h1
. By

the assumption, we have that vy?
g1

V vy?
h1

RTzð0ÞM. Note that d is the order

of qh 0
1ðzðtÞÞ. Consider the analytic path ðzðtÞ;wðtÞÞ where wðtÞ ¼ ðt3d ; . . . ; t3dÞ.

Let us consider

qh 0
2ðwðtÞÞ :¼ qh2ðwðtÞÞ � kðtÞqg2ðwðtÞÞ:

Then it is easy to see that ord qg2ðwðtÞÞ; qh 0
2ðwðtÞÞb 2d. Put

qh 0ðzðtÞ;wðtÞÞ ¼ qhðzðtÞ;wðtÞÞ � kðtÞqgðzðtÞ;wðtÞÞ:

Thus this implies that ord qgðzðtÞ;wðtÞÞ ¼ ord qg1ðzðtÞÞ and ord qh 0ðzðtÞ;wðtÞÞ ¼
ord qh 0

1ðzðtÞÞb 2d and the normalized limits are given as

qgðzðtÞ;wðtÞÞ ! ðvg1 ; 0Þ; qh 0ðzðtÞ;wðtÞÞ ! ðvh1 ; 0Þ

which implies the limit of TðzðtÞ;wðtÞÞ f
�1ð f ðzðtÞ;wðtÞÞ is ðvy?

g1
V vy?

h1
Þ � Cm. By

the assumption, ðvy?
g1

V vy?
h1

Þ � Cm RTzð0ÞM. r
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