A. S. JANFADA AND S. SALAMI
KODAI MATH. J.
38 (2015), 352-364

ON 0-CONGRUENT NUMBERS ON REAL QUADRATIC
NUMBER FIELDS
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Abstract

Let K = Q(y/m) be a real quadratic number field, where m > 1 is a squarefree
integer. Suppose that 0 < § < z has rational cosine, say cos() = s/r with 0 < |s| <r
and ged(r,s) =1. A positive integer n is called a (K, #)-congruent number if there is
a triangle, called the (K,6,n)-triangles, with sides in K having 6 as an angle and noy
as area, where oy = Vr? —s?. Consider the (K,0)-congruent number elliptic curve
E,o:y*=x(x+ (r+s)n)(x— (r — s)n) defined over K. Denote the squarefree part of
positive integer ¢ by sqf(¢). In this work, it is proved that if m # sqf (2r(r — s)) and
mn # 2,3,6, then n is a (K, 0)-congruent number if and only if the Mordell-Weil group
E, 9(K) has positive rank, and all of the (K, @, n)-triangles are classified in four types.

1. Introduction

A positive integer n is called a congruent number if it is the area of a right
triangle with rational sides. Finding all congruent numbers is one of the classical
problems in the modern number theory. We cite [8] for an exposition of the
congruent number problem, and [4] to see the first study of #-congruent numbers
as a generalization of the classic one. Let 0 < 6 < x has rational cosine cos(f) =
s/r with 0 < |s| <r and ged(r,s) = 1. Let (U, V, W), denote a triangle with an
angle 0 between sides U and V. A positive integer n is called a 0-congruent
number if there exists a triangle (U, V, W), with sides in Q having area nuoy,
where oy = Vr2 —s2. In other words, n is a 0-congruent number if it satisfies

2
2n=UV, W?= U2+V2—7SUV.

An ordinary congruent number is nothing but a 7z/2-congruent number. Clearly,
if n is a O-congruent number, then so is nt?, for any positive integer . We shall
concentrate on squarefree numbers whenever O-congruent numbers concerned.
Let

Eyo:y? =x(x+ (r+s)n)(x— (r—s)n)
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be the #-congruent number elliptic curve, where r and s are as above. Theorem
2.4 gives an important connection between #-congruent numbers and the Mordell-
Weil group E, 9(Q). For more information and recent results about -congruent
numbers see [5, 3, 14].

The notion O-congruent number, which is defined over Q, can be extended in
a natural way over real quadratic number fields K. In this case, we refer to n as
a (K, 0)-congruent number and to the triangle (U, V, W), as a (K, 0, n)-triangle.
When # is not a f#-congruent number over Q, a question proposed naturally: Is
n a (K, 0)-congruent number for some real quadratic number field K? Tada [13]
answered this question in the case 0 = /2, by studying the structure of the
K-rational points on the elliptic curve E, /> : y*> = x(x?> —n?). In this paper, we
answer the above question for any 0 < 6 < 7 and classify all (K, 6, n)-triangles.
Through the paper we shall consider K = Q(y/m) to be a real quadratic field,
where m > 1 is squarefree. We denote the squarefree part of any positive integer
N by sqf(N). The main results of this paper are the following theorems.

THEOREM 1.1. Let n be a positive squarefree integer with ged(m,n) = 1 such
that mn #2,3,6 and m # sqf (2r(r — 5)), where m, r, s are as before. Then n is
a (K, 0)-congruent number if and only if rank(E, ¢(K)) > 0. Moreover, n is a
(K, 8)-congruent number if and only if either n or mn is a 0-congruent number
over Q.

Theorem 1.1 is an extension of Part (2) of Theorem 2.4 in the following.
Note that the non-equality conditions for mn and m in Theorem 1.1 are necessary.
For a counterexample, when n=1 and 6 =2xr/3, we have r=2, s=—1,
ap = /3. Now taking m = 3 = sqf (2r(r — s)), there is a (Q(+/3),0, 1)-triangle
with sides (2,2,2v/3) and area /3 but using Theorem 2.1, rank(E 4(Q(v/3))) =
rank(E} 4(Q)) + rank(E; 4(Q)) = 0.

The following theorem classifies all types of (K, #,n)-triangles.

THEOREM 1.2. Assume that n is not a 0-congruent number over Q and let o be
the generator of Gal(K/Q). Then any (K,0,n)-triangle with (U,V, W) e (K*)*?
and (0 < U <V < W) is necessarily one of the following types:

Type 1. Uy/m, Vy/m, W/me Q;

Type 2. U, V., W\/meQ;

Type 3. U,V e K\Q such that o(U) =V, WeQ;

Type 4. U,V € K\Q such that o(U)=-V, WeQ.

Let A = sqf (r* — %), B =sqf (2r(r — s)) and C = sqf (2r(r +s)). The follow-
ing proposition shows when there is no (K, 0,n)-triangle of Types 2, 3 and 4.

PropPOSITION 1.3.  Let p be a prime number and the pair (m, A) (resp. (m, B)
and (m, C)) can be written as (p*a, p’b), where o, € {0,1} and ged(p,ab) = 1.
Then there is no (K, 0,n)-triangle of Type 2 (resp. Type 3 and Type 4) whenever
one of the following conditions hold.
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— (0,1) and (a, )

(1’ 3)7 (175)7 (37 1)’ (373>7 (57 1)7 (577>7 (775>7

2) pgl; () = (0,1) and (%):—1, (a,8) = (1,0) and (g)z—l,
(0, ) = (1,1) and %) %):_1;
(3) p23:(wp)=(0,1) and (;’))__1, (o, ) = (1,0) and (=)= —1,

The next result settles a condition on n and mn to be 0-congruent over Q.

THEOREM 1.4. Let n be a positive squarefiee integer such that gcd(m,n) =1
and mn # 2,3,6. Then the following statements are equivalent.
(1) There is a (K, 0,n)-triangle (U, V, W), with0 < U <V < W, W ¢ Q and
Wym ¢ Q;

(2) The integers n and mn are O-congruent numbers over Q.

2. Preliminaries

Consider an elliptic curve E : y> = x> +ax? 4 bx + ¢ over Q. Recall that
the m-twist E™ of E is an elliptic curve over Q defined by y? = x3 + amx? +

bm?x + cm?. The next result establishes a fact about ranks [10].

THEOREM 2.1. Let E be an elliptic curve over Q. Then
rank(E(K)) = rank(E(Q)) + rank(E™(Q)).

We denote the torsion subgroup of the groups E(K) and E™(K) by T(E,K)
and T(E™,K), respectively. Also, we write 7, ¢(K) and T,"(K), respectively, in
the case £ = E, 9. The following proposition and theorem have essential roles
in the proof of our results.

ProprosITION 2.2 ([9, Proposition 1]). Let E be an elliptic curve over K
Then the map

¢:T(EK)/T(E,Q) — T(E",Q), ¢(P):=P—o(P)

is an injective map of abelian groups, where o is the generator of Gal(K/Q).
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THEOREM 2.3 ([7, Theorem 4.2]). Let F be an algebraic number field and E
an elliptic curve over F defined by

y2 =x—o)(x—o)(x—oa3), op,o0,o0eF.

Suppose that (xo, yo) be an F-rational point of E. Then, there exists an F-rational
point (xy, y1) with 2(x1, y1) = (x0, yo) if and only if xo — oy, X0 — o2, Xo — 003 are
squares in F.

The next results give important information about 6-congruent numbers
over Q.

THEOREM 2.4 (Fujiwara, [4]). Consider 0 < 0 < with rational cosine.

(1) A positive integer n is a 0-congruent number if and only if E, ¢(Q) has a
point of order greater than 2;

(2) If n #1,2,3,6, then n is a 6-congruent number if and only if E, ¢(Q) has
positive rank.

All possibilities for the torsion subgroup of E, 4(Q) can be found in the next
result.

THEOREM 2.5 (Fujiwara, [5]). Let T,9(Q) be the torsion subgroup of the
0-congruent number elliptic curve E, g over Q.

(1) T,0(Q) = Z, @ Zs if and only if there exist integers a,b >0 such that
gcd(a,b) =1, a and b have opposite parity and satisfy either of the
following conditions.

G) n=1, r=8a** r—s=(a—b)* (1+V2)b>a>b,
(i) n=2, r=(a*—b2* r—s5s=32a*"% a> (1+V2)b;

(2) T00(Q) =Zy, ® Zs if and only if there exist integers u,v >0 such that

gcd(u,v) = 1, u > 2v and satisfy one of the following conditions:

i) n=1, r:%(u—v)S(u—&—v), r4s=u(u—2v),

() n=2, r=(—0)>w+v), r+s="2u(u—"2v),
(i) n=3, r=%(u— V) (u+v), r+s= Lud(u — 2v),
(iv) n=6, r==%(u-— v)*(u+ ), r+s=2%u’(u—2v);
(3) Tuo(Q) =Zy, ®Zy if and only if either of the following holds.
1) n=1, 2r and r — s are squares but not satisfy (i) of Part (1),
i) n=2, r and 2(r —s) are squares but not satisfy (i) of Part (1);
(4) Otherwise, T, 9(Q) = Zr ® Z,.

—~—

Remark 2.6. For any squarefree integer m > 1, the m-twist E", of the
elliptic curve E,, is defined by y? = x(x+ (r+ s)mn)(x — (r — s)mn) which is
equal to E,, g, as seen. Therefore E",(Q) = E,, (Q), and hence Tn"fg(Q) =
Tmn7()(Q)~ ’
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3. Proofs

Appealing to Proposition 2.2, we first settle all possibilities for the torsion
subgroup of E, (K). Let h, k, and d be integers such that 2r = h? sqf(2r),
r—s=k?sqf(r—s) and 2r(r —s) = d*m, where m = sqf (2r(r — s)).

ProPOSITION 3.1.  Assume that m > 1 and n are squarefree positive integers
such that ged(m,n) =1 and mn #2,3,6. Let T, ¢(K) be the torsion subgroup of
Enﬁ(K)'

(1) If m=sqf(2r(r—s)) and n = sqf(2r), then

nuK»-{wQOw—u+wmmxv—@mm,

d*mn

<(nh)2—nd\/ﬁi< - —n%dﬂ)),

<(nh)2 4 ndv/m, + (dzl’l"” + n%dﬁ)) };
(2) If m=sqf(2r(r—s)) and n=sqf(r —s), then
7o) = { 2. 0,00, (<-4 510). (= 5. 0),

d*mn

((nk)z—ndm,i< k —nzkdm)>,

((nk)2 + nd/m, i(dz;:m + nzkd\/fﬁ)> };

(3) Otherwise, T, ¢(K) = {00, (0,0),(—(r+ s)n,0), ((r — s)n,0)}.

Proof. The 2-torsion subgroup of E, ¢(K) is:
Enﬂ[z](K) = {007 (Oa O)a (—(V + S)I’l, 0)7 ((r - S)”? 0)}

Therefore, we have T, ¢(K) o E, 9[2|(K) @ Z/2Z ® Z/2Z. By Remark 2.6 and
Theorem 2.5, T"(Q) = Ty o(Q) = Z/2Z & Z/2Z. Since T, s(Q) = Z/2Z &
Z./27Z, by Proposition 2.2 and [9, Theorem 1] we have

T, o(K) =~ Z/2Z ® Z/2Z or Z)2Z & Z/AL.

First let T, ¢(K) @ Z/2Z @®Z/4Z. Then there exists a point P = (xg, o) of
order 4 in T, 4(K). Then 2P must be one of the points (0,0), (—(r + s)n,0) and
((r—s)n,0). If 2P =(0,0) then both (r+s)n and —(r — s)n are squares in K,
which is impossible since K is a real quadratic number field and hence —1 is not
a square in K. Similarly, if 2P = (—(r + s)n,0), then —(r+ s)n and —2rn are
squares in K, again a contradiction by the same reason. If 2P = ((r — s)n,0),
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then (r — s)n and 2rn are squares in K. Since n is squarefree, these integers are
squares in K if m =sqf(2r(r —s)). By a simple computation using the dupli-
cation formula we obtain (1) and (2). Now, T, ¢(K) = Z/2Z ® Z/2Z implies
(3), and the proof is completed. O

Proof of Theorem 1.1. Consider the two sets
S={(U,V,W)e(K*)’:0<U<V < W,UV =2 and
U+ V2= 25UV [r = W?},
T = {(u,v) € 2E, g(K)\{c0} : v > 0}.

There is a one to one correspondence between the two sets S and 7 via the two
mutually inverse maps ¢: S — 7 and ¢ : T — S defined by

p(U VW)= (W[4, W (V= U?)/8),
W(u,v) = (Vu+ (r+s)n— Ju— (r—s)n,Ju+ (r+s)n+/u— (r—s)n,2\/u).

Clearly, E, ¢(K)\E, ¢[2](K) # 0 if and only if S # 0.

Suppose that m # sqf(2r(r —s)) and mn #2,3,6. Then by proposition
3.1, we have T, y(K) = E,¢[2](K). Therefore, rank(E, ¢(K)) >0 if and only
if E,oK)\E,o[2](K)#0. So rank(E,(K))>0 if and only if either
rank(E, (Q)) > 0 or rank(E]",(Q)) >0, by Theorem 2.1. The second part
of the theorem follows from Remark 2.6. O

Proof of Theorem 1.2. Assume n is a (K,0)-congruent number and
(U,V,W), is the corresponding (K, 0,n)-triangle with area noy such that 0 <
U<V < W. Asin the proof of the Theorem 1.1, there is a point P = (x, y) in
E, o(K)\E, 0[2](K) such that ¥(P)= (U, V,W). Substituting P by P+ (0,0),
P+ (—(r+sn,0) or P+ ((r—s)n,0), if necessary, we may assume that x >
[(r+s)+ +/2r(r — s)]n. Putting 2P = (u,v) and using the map y in the proof of
Theorem 1.1, we obtain

U=2mnx/|y|, V=x*42nx— (" —sn?/|y], W=x>+(0*-sn?/|y,

where x, y €K and | -| is the usual absolute value induced from the embedding
1: K — R with (y/m) positive. Suppose o is a generator of Gal(K/Q) and put
o(P) = (o(x),0(y)). Since P+ o(P) is an element of E, (Q) and n is not a
f-congruent number, P + o(P) € T, 9(Q) = {0, (0,0), (—(r + $)n,0), ((r — 5)n,0)}.
Hence, one of the following cases necessarily happens:
I. P+o(P)=o0. In this case, o(x) =x and o(y) =—y. So, x,y/m
and hence U./m, V\/m and W.,/m are rational and we obtain a
(K, 8, n)-triangle of Type 1.
II. P+o(P)=(0,0). We have o(x)/x =0a(y)/y, which we denote by o.
Then,

a(y)” = oa?y? = o?x% 4 2sn0>x? — (rF — s’ x.



358 ALI S. JANFADA AND SAJAD SALAMI
Since o(P) is a point on E, », we get

2 2

o(y)? = a(x)? + 2sn0(x)* — (r* — s*)n’o(x)
= o®x? + 2smo’x? — (r? — sH)nox.
Clearly, o # 0,1 and x # 0, which implies xo(x) = ax?> = —(r*> — s?)n°.

Therefore,
V=x(x+2m+0(x)/|yl, Wvm=x(x—a(x)vVm/|y|.

Since x/y = o(x/y) and x > [(r +s) + /2r(r — s)|n, then x/|y| is ratio-
nal and hence U =2rnx/|y|, V and W./m are rational, which gives a
(K, 8, n)-triangle of Type 2.

II. P+o(P)=((r—s)n0). We have oa(x—(r—sn)/(x—(r—sn)=
a(y)/y, which we denote by f. Put z=x— (r—s)n. Then,

o(y)? = B> + (Br — $)nz* + 2r(r — s)n’z).
Since ¢o(P) is a point on E,, we get
o(y)2 = B3z 4+ (3r — s)np*z* + 2r(r — s)n’pz.

Now B #0,1 and z # 0, which implies fz? = 2r(r — s)n>. Substituting
this equation and x=z+ (r—s)n in U, V and W, we obtain
U— z(o(z) + 2rn) _ z(z+2n) W z(z4+2(r — s)n+a(2))
L b || '

)

Since z/y = o(z/y) and z > 0, then z/|y| and hence W is rational and
o(U)=V. This time we obtain a (K,0,n)-triangle of Type 3.

IV. P+0o(P)=(—(r+s)n,0). Put w=x+ (r+s)n. Asin Case III, w/|y|
and

W = ww—2(r + )+ a(w)) /|
are rational and o(U) = —V, where
U=w2m—aw)/lyl, V=ww-=2rn)/ly|
Therefore, we obtain a (K, 0,n)-triangle of Type 4. O

Proof of Proposition 1.3. If we suppose that there is a (K, #,n)-triangle
of Type 2, say (U,V,W),= (u,v,wy/m) with u,o,we Q", then (x,y,z)=
(ru — sv,v,mrw) is a non-zero solution of the equation

(3.1) 22 = mx* + m(r? — s?)y%
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And, if there is a (K, 6,n)-triangle of Type 3, say (U,V,W),= (u—vym,
u + vy/m,w) such that o(U) = V, then (x, y,z) = (u,v,rw) is a non-zero solution
of

(3.2) 22 = 2r(r — §)x% + 2mr(r + 5) 2.

Similarly, if (U, V, W), = (—u+ vy/m,u+ vy/m,w) is a (K, 0,n)-triangle of Type
4 such that ¢(U) = —V, then (x, y,z) = (u,v,rw) satisfies

(3.3) 22 = 2r(r + 5)x% + 2mr(r — 5) 2.

By the Hasse local-global principle, the equations (3.1), (3.2) and (3.3) have
solutions in Q if and only if they have a solution in Q, for every prime p,
where Q, is the field of p-adic numbers. We assume that 4 = sqf (r* —s?), and
for a prime p the pair (m,A) ((m,B), and (m,C), resp.) can be written as
(p*a, p”b), where o, € {0,1} and ged(p,a,b) = 1. Then, using Hilbert symbols
[11, Theorem 1, III], the equations (3.1), (3.2) and (3.3) have solutions in Q,
if and only if one of the followiilg cases happens:

1) (aaﬁ) = (an) and (a7 b) # (373)9

ii) (o, ) =(0,1) and (a,b) j‘é (3,1),(3,5),(7,5),(7,7)

iii) (o, ) =(1,0) and (a,b) # (1,3),(1,5),(3,5),(3,7),(5,3),(5,7),(7,3),
7,7);

iWééﬂH)md@ﬁ%@%@ﬁ@%@%@%@%@ﬁ

only if one of the following happens:

i) (2,8 =(0,1) and (%) 1;
i) (xf) = (1,0) and (%) 1;

iii) (o, f) = (1,1) and (%) (%) = 1.

Proof of Theorem 1.4. Casg 1. n and mn are (Q,6)-congruent numbers.
Consider the (Q,0,n)-triangle (Ui, Vi, W1), and the (Q,0,mn)-triangle
(Uz, Vz, WQ)H, where

25UV,
O<U sV < W, 2rm=UJ, U12+V12_ Sala

2
:W17

2SU2 V2

0< Uy < Vo< W, 2rmn=UyVy, UZ+VF— = Wi

Hence, (U>/v/m, V>/\/m, W>/\/m), is a (K, 0,n)-triangle. Recall the maps ¢ and
Y in the proof of Theorem 1.2 and put

P = (u,v) = (U, Vi, W1)) + o((U2//m, Vo //m, W [\/m)).
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Then the additive law on E, ¢(K) implies u = a + b\/m, where

LMWV U WV - U (W Wy

—+—+2sn> >0,
4m(W3 —lez)2 4 4dm
(v - UY)(VE - U3)ym

2W3 —mwp)’

b:

We may assume v > 0. Since (u,v) € T, then ¥((u,v)) € S which indicates the
sides of a (K, 0, n)-triangle (U, V,W),. In fact, if we suppose U = uj + ur/m,
V =v| +vy/m and W = wy + wa/m, where uy, us, vy, v, Wi, wp are rational,
then

2
W = i\/Z(a + Va2 —mb?), w,= —b,

Wi

and
U= (o —p1)+ (2= P)vVm, V= _(u+p)+ (02+pr)Vm,
where
bl \/(;l+(r+s)n)2mb2’ -
(a—(r—s)n)i\/(a—(r—s)n)z—mb2 b
ﬂl == B ) ﬁ2:2_ﬂ1'

Conversely, suppose to the contrary that n or mn is not -congruent over Q.
First, assume n is not @-congruent over Q but mn is 0-congruent over Q. By
Theorem 1.2 (1), there is no (K, 0,n)-triangle (U, V, W), satisfying the conditions
O<U<V<W, W¢Q and W/m¢ Q.

Case 2. mn is not O-congruent over Q but n is (K, 0)-congruent. Let
(U,V, W), denotes the sides of the corresponding (K, 0, n)-triangle. Multiplying
the three sides by \/m, we get the (K, 0, mn)-triangle (U+\/m, V/m, W+/m),. For
the positive integer mn, we define the map ¢’ in the same way as ¢. Put

2P = ¢ (U, Vi, W /)

for some point P’ € E,,, y(K). For the generator ¢ of Gal(K/Q), since P’ + o(P’)
is an element in E,, ¢(Q) and mn is not 0-congruent over Q, we have

P! + U(P,) € Tmn,(}(Q) = {OO’ (030)5 (7(r+s)mn’0)a ((77 s)mn,O)}

Therefore, by the same way as in the proof of Theorem 1.2, one of the following
cases necessarily happens:
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Type 1. U, V, W eQ;
Type 2. Uym,Vm, W € Q;
Type 3. U,V e K\Q such that o(U) =V, W{/meQ;
Type 4. U,V € K\Q such that o(U)=—-V, W/meQ.
Hence, there is no (K, 0,n)-triangle (U, V, W), with W ¢ Q and W/m ¢ Q.

Case 3. Both n and mn are not f-congruent numbers over Q, where
mn #2,3,6. If m+#sqf(2r(r —s)), by Theorem 1.1, n is not (K, 8, n)-congruent.
If m =sqf (2r(r —s)) and n is (K, 0, n)-congruent, we have U = V for all (K, 0, n)-
triangles (U, V, W),. Hence, there is no any (K,0,n)-triangle (U, V, W), with
W ¢Q and Wy/m¢ Q. We have completed the proof of Theorem 1.4. O

4. Examples

In this section, we give some examples of (K, #)-congruent numbers and verify
all four types of (K, 0,n)-triangles in Theorem 1.2 in the cases 0 = n/3,2n/3.
Given n, let (U, V, W), be a (K,0,n)-triangle. Then, we have

2
O<U<V<W, UV=2m, W:=U?+V:_"uy.
p

For any (U,V,W),e((U,V,W))=(W?/4, W(V?—-U?)/8) is a point of
2E, 9(K)\{oo}. Also, for any point (u,v) € 2E, o(K)\{c0},

Y ((u,0)) = (Vu+ (r+s)n—Ju— (r—s)n,\Ju+ (r+s)n++/u— (r — s)n,2v/u)).

In our computations we have used Cremona’s MWrank program [2] and the
number theoretic Pari software [1].

I) Case 0 =n/3. In this case, we have r=2, s=1, and oy = V3, and
hence the area of any (K,7/3,n)-triangle is nv/3.

Example 4.1. Take n=3 and m = 13. We have the following (Q(v/13),
n/3,3)-triangles of types 1, 2, 3 and 4 in Theorem 1.1 and the corresponding
points in the set 2E; ,/3(Q(v/13))\{o0}.

Type 1. An easy computing shows that the rank of E3g ,/3(Q) is 2, and the

generators of the group are P; =[-9,-216] and P, = [75,—720].
We have

2P, = [1894/16, —91805/64] € 2E39 9(Q)\{o0}.

Now, using the map ¢ and , defined in the proof of the Theorem

1.1 we get a rational n/3-triangle (13/2,24,43/2) with area 39,

which gives the following (Q(v/13),7/3,3)-triangle of Type 1:
(U, V. W), = (V13/2,24V13/13,43V13/26)

which corresponds to the following point Q = (1894/208,
91805v/13/416).
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Type 2. We have a (Q(v/13),7/3,3)-triangle (U, V, W)= (3,4, V13) of
type 2 with the corresponding point Q = (13/4, 7f 13/8).

Type 3. Let U=u—vV13, V=u+vV/13 and W =w, where u,v,we
Q\{0}. Then the pair (u,v) satisfies the equation u? — 130 = 12.
An easy solution of this equation is (ug,v9) = (5,1). Parametrizing
u and v in terms of /€ Q we obtain u = —51> + 261 — 65/1> — 13
and v = > — 10t + 13/¢> — 13. By putting these into w? = u? + 3902
and taking ¢ = 13/4 one can see that w? = u? 4 3902 is a square in
Q. So, we obtain (U, V,W), ;= (41 —11v/13/3,41 + 11V13/3,
80/3), with (Q(+/13),7/3,3)-triangle of type 3 with the correspond-
ing point Q = (1600/3,18040/13/9).

Type 4. Let U= —u+vV13, V=u+vV13 and W =w, where u,v,we
Q\{0}. Then the pair (u,v) satisfies 13v> —u?> =12 with a solu-
tion (up,v9) = (1,1). A similar discussion as in the previous step,
taking ¢ = 8, leads us to a (Q(+/13),7/3, 3)-triangle of Type 4, with
the corresponding point Q = (24964/51,1002352v/13/51).

Example 42. Let n=11 and m =5. One can see that n is n/3-congruent
over Q and there is a (Q,n/3,11)-triangle (U;, V1, W) = (55/12,48/5,499/60).
Also, nm =55 is n/3-congruent over Q and (U, V>, Ws) = (8,55/2,49/2) is a
rational 7/3-triangle with area 11v/3. Dividing its sides by /5, we obtain a
(Q(V/5),m/3, 11)-triangle

(U5, VaJ V5, Wa/V'5) = (8V/5/5,11V/5/2,49V/5/10).

Now, a calculations as in the proof of Theorem 1.4 leads to a (Q(v/5),7/3,11)-
triangle

(U, V, W)= <310(1470+499I) (1470 — 499+/5),

5909

53170 (4145193 — 12554399\@))

satisfying in Theorem 1.4.
II) Case 0 =2n/3. In this case, we have r =2, s = —1, and oy = /3. So,
as in the case I, the area of any (K,27/3,n)-triangle is nv/3.

Example 4.3. Take n=17 and m = 13. By a similar way as in Example
4.1, we find the following (Q(+/13),27r/3,17)-triangles with area 17v/13 of types
1, 2, 3 and 4 preceding by their corresponding points in 2E7 2,/3(Q(v/13))\{e0}.
Type 1. (U, V, W)y, 5 = (17V13/26,8V13,217V13/26),  Q = (47089/16,
9325575/13/10816);
Type 2. (U, V, W)y, 5 = (1,68,19v13), Q = (13/4,7V13/8);
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Type 3. (U, V, W)y3 = (9~ V13,9 + V13,16), 0= (64,72V13);
Type 4. (U, V, W), 5 = (=5+7V13/3,5+7V/13/3,44/3), Q= (484/9,
770v/13/27).

Example 44. Let n=19 and m = 6. Then 19 is a 2n/3-congruent number
over Q and there is a (Q,2r/3,6)-triangle (U, Vi, W;) = (544/105,1995/136,
254659/14280) with area 19v/3. Also, the integer nm = 114 is a 27/3-congruent
number over Q and (U, V>, Wh) = (5,912/10,469/5) is a 27n/3-triangle with area
114+/3 from which we obtain a (Q(v/6),2xr/3, 19)-triangle

(5v/6/6,76V6/5,469v6/30).
By a similar methods as in Example 4.2, one can find a (Q(v/6),271/3,19)-triangle

(U, V, W)y, 5 = (25449816 -+ 48385211/6) /4683550,
20(4145193 — 125543991/6) /28499829,
7(3589965612532 — 2573211605723v/6)/1170880474675),

satisfying Theorem 1.4.
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