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Abstract

We investigate the links between the lattice IdlðRÞ of ideals of a commutative ring

R and the lattices IdlðR 0Þ of ideals of various new rings R 0 constructed from R,

in particular, the ring S�1R of fractions and the ring R½X � of polynomials. For any

partially ordered set P, we construct another poset NðPÞ and show that P satisfies the

ascending chain condition if and only if NðPÞ satisfies the ascending chain condition.

As an application of this result, we give an order version proof for Hilbert’s Basis

Theorem.

1. Introduction

From a given commutative ring R, one can construct new rings in a number
of standard ways, such as quotient rings, rings of fractions and the ring R½X � of
polynomials. The set IdlðRÞ of all ideals of R is a complete lattice with respect
to the inclusion order. Since Emmy Noether and her school’s series of work, the
lattice IdlðRÞ has been regarded as the most important order structure associated
to the ring R. For instance, the definitions of both Noetherian rings and
Artinian rings can be characterized in terms of the order structures of ðIdlðRÞ;JÞ;
a ring R is arithmetical if and only if ðIdlðRÞ;JÞ is a distributive lattice [5] [2].
When we have a new ring R 0 constructed from a given ring R, a naturally raised
question would be: how are the lattices IdlðRÞ and IdlðR 0Þ linked?

It is well known that for any ideal I of a commutative ring R, there is a
one-to-one correspondence between the ideals of the quotient ring R=I and the
ideals J of R containing I , that is, the poset IdlðR=IÞ is isomorphic to the
principal filter " I of IdlðRÞ. Also, for any multiplicatively closed subset S of R
(that is, 1R A S and s1; s2 A S imply s1s2 A S), the lattice IdlðS�1RÞ of ideals of
the ring of fractions determined by S is isomorphic to a subposet of IdlðRÞ
through the mapping h�1 : IdlðS�1RÞ ! IdlðRÞ, where h : R ! S�1R is the natural
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homomorphism which sends x A R to
x

1R
(see Lemma 5.24 of [7]). Thus IdlðS�1RÞ

is isomorphic to a subposet of IdlðRÞ which is closed under arbitrary meets. It
seems, however, that there is still no characterization of subsets of IdlðRÞ that
correspond to the set of ideals of the ring of fractions S�1R for some multi-
plicatively closed subset S of R.

On the other hand, there generally does not exist order-embedding of
IdlðR½X �Þ into IdlðRÞ, simply because IdlðR½X �Þ usually has much more com-
plicated and richer contents than IdlðRÞ does. For example, when K is a field,
IdlðKÞ only has two elements, while IdlðK ½X �Þ contains infinitely many elements.

In this paper, we first characterize the subposets of IdlðRÞ which are iso-
morphic to IdlðS�1RÞ for some multiplicative closed set S of a commutative ring
R. Next we construct a partially ordered set NðPÞ from any given poset P, and
show that there is a weak form of order embedding G : IdlðR½X �Þ ! NðIdlðRÞÞ;
this G, when restricted to any sub-chain of IdlðR½X �Þ, is an order-embedding.
It is then proved that a poset P satisfies the ascending chain condition if and only
if NðPÞ satisfies the ascending chain condition. As an application, we give an
order version proof for Hilbert’s Basis Theorem.

All the rings considered in this paper are commutative rings with identity.
The identity of R will be denoted by 1R.

2. Ideals of rings of fractions

Let R be a commutative ring and let S�1R be the ring of fractions
determined by a multiplicatively closed subset S (also called an m-closed
subset) of R. Let h : R ! S�1R be the natural ring homomorphism, where

hðxÞ ¼ x

1R
for each x A R. For any I A IdlðS�1RÞ, h�1ðIÞ A IdlðRÞ. Let

IdlSðRÞ ¼ fh�1ðIÞ : I A IdlðS�1RÞg. Then IdlSðRÞ is a subposet of IdlðRÞ.
The mapping h�1 : IdlðS�1RÞ ! IdlðRÞ is an order embedding [7], thus IdlSðRÞ
is order isomorphic to IdlðS�1RÞ. One natural converse problem is: given a
collection A of ideals of R, under what conditions is there an m-closed set S
of R, such that A ¼ IdlSðRÞ?

Proposition 2.1. Let S be an m-closed subset of the commutative ring R.
The following statements are equivalent for an ideal I of R:

(1) I A IdlSðRÞ.
(2) For every x A R and s A S,

sx A I implies x A I :

Proof. Let h : R ! S�1R be the natural ring homomorphism. For any
J A IdlðRÞ, let J e ¼ hhðJÞi be the ideal of S�1R generated by hðJÞ, called the
extension of J to S�1R.
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If I A IdlSðRÞ, then there is an ideal I of S�1R such that I ¼ h�1ðIÞ,
which implies that I ¼ h�1ðI eÞ. Now if x A R and s A S such that sx A I , then

hðxÞ ¼ x

1R
¼ a

s
A I e, where a ¼ sx. Hence x A h�1ðI eÞ ¼ I . So (1) implies (2).

Now let I satisfy the condition in (2). We prove that I ¼ h�1ðI eÞ, showing

that I A IdlSðRÞ. Suppose x A h�1ðI eÞ, then hðxÞ A I e, i.e.
x

1R
¼ a

s
for some a A I

and s A S. Thus there is an u A S such that usx ¼ ua. Put s 0 ¼ us. Then s 0 A S
and s 0x ¼ ua A I . Hence x A I by the assumption. Thus h�1ðI eÞJ I . As the
converse inclusion is always true, thus I ¼ h�1ðI eÞ.

It follows that (1) and (2) are equivalent. r

Corollary 2.2. If fIkgk AM J IdlSðRÞ then

7
k AM

Ik A IdlSðRÞ:

Corollary 2.3. If B is a directed family of members of IdlSðRÞ ( for any
J;K A B there is H A B such that JJH, KJH), then

6
I AB

I A IdlSðRÞ:

Corollary 2.4. If I A IdlSðRÞ then
ffiffiffi
I

p
A IdlSðRÞ.

Proof. Suppose sx A
ffiffiffi
I

p
with s A S and x A R. Then there is an n A Zþ

such that ðsxÞn A I , so snxn A I . As sn A S and I A IdlSðRÞ, by Proposition 2.1,
we have xn A I , i.e. x A

ffiffiffi
I

p
. All these show, again by Proposition 2.1, thatffiffiffi

I
p

A IdlSðRÞ. r

From the above discussion, it is seen that for any m-closed set S of R, the
family A ¼ IdlSðRÞ satisfies the following conditions:

(1) R A A;
(2) A is closed under arbitrary intersections;
(3) A is closed under unions of directed subfamilies;
(4) A is closed under taking radicals of ideals.
Now given a family A of ideals of R satisfying the conditions (1) to (4)

above, must there be an m-closed set S of R such that A ¼ IdlSðRÞ? In the
next section, we will answer this question.

3. More characterizations of families IdlSðRÞ

In this section, we prove a di¤erent characterization of IdlSðRÞ for m-closed
sets S of a commutative ring R. A more concrete characterization for the
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ring of integers (actually for every principal ideal domain) will be derived. A
negative answer is given to the problem posed at the end of last section.

Let E be a subset of a commutative ring R. Define

CðEÞ ¼ fI A IdlðRÞ : for any x A R and t A E; tx A I implies x A Ig:

Also for any collection A of ideals of R, define

FðAÞ ¼ fs A R : for any I A A and x A R; sx A I implies x A Ig:

Remark 3.1. (1) For every AJ IdlðRÞ, S ¼ FðAÞ is closed under multi-
plication and contains the identity 1R.

(2) Let s1; s2 A R be any two elements in R such that s1s2 A S ¼ FðAÞ. For
any I A A and x A R, if s2x A I , then s1s2x A I because I is an ideal, which then
implies x A I , therefore s2 A S. Similarly, s1 A S. It follows that S ¼ FðAÞ
satisfies the following property:

For any s; t A R; st A S if and only if s A S and t A S:

In particular, if sn A S for some positive integer n, then s A S.
(3) For any EJR, R A CðEÞ and CðEÞ is closed under arbitrary inter-

sections and unions of directed subfamilies.
(4) For every EJR and AJ IdlðRÞ,

EJFðCðEÞÞ; AJCðFðAÞÞ:

If EJD, then CðDÞJCðEÞ. Similarly, if AJB then FðBÞJFðAÞ.
Thus C and F define a Galois connection between the power sets of R and

that of IdlðRÞ. It follows from the general properties of a Galois connection,
that for any subset E of R and any subset A of IdlðRÞ, CðFðCðEÞÞÞ ¼ CðEÞ and
FðCðFðAÞÞÞ ¼ FðAÞ.

Proposition 3.2. (1) Let AJ IdlðRÞ. Then A ¼ IdlSðRÞ for some m-
closed set S if and only if CðFðAÞÞ ¼ A.

(2) Let S be an m-closed set of R. Then there is an AJ IdlðRÞ such that
S ¼ FðAÞ if and only if S ¼ FðCðSÞÞ.

Proof. As the proofs of the two parts are similar, we just prove (1).
If CðFðAÞÞ ¼ A, then S ¼ FðAÞ is an m-closed set of R and A ¼ IdlSðRÞ

by Proposition 2.1.
Now assume that A ¼ IdlSðRÞ for some m-closed set S of R. Then

A ¼ CðSÞ, by Proposition 2.1. By Remark 3.1(4), CðFðAÞÞ ¼ CðFðCðSÞÞÞ ¼
CðSÞ ¼ A. r

An m-closed set S of R is called a full m-closed set if for any x; y A R, xy A S
if and only if x A S and y A S. By Remark 3.1(2), S ¼ FðAÞ is a full m-closed
set of R for any AJ IdlðRÞ.
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For any m-closed set S of R, there is a smallest full m-closed set containing
S, which is the intersection of all full m-closed sets containing S.

Let ŜS ¼ fx A R : there exists y A R such that xy A Sg. Then one can easily
show that ŜS is the smallest full m-closed set containing S.

The following proposition shows that every ring of fractions is defined by a
full m-closed set.

Proposition 3.3. For any m-closed set S of R, S�1R is isomorphic to
ŜS�1R.

Proof. Define f : S�1R ! ŜS�1R by f
x

s

� �
¼ x

s
. Clearly f is a ring

homomorphism. If f
x

s

� �
¼ f

y

t

� �
, then there exists r A ŜS such that rtx ¼ rsy

holds in R. Now there exists u A R such that ur A S, so urtx ¼ ursy, implying
x

s
¼ y

t
as ur A S. Thus f is injective. For any

z

v
A ŜS�1R, there exists u A R

such that uv A S. Then u A ŜS and
z

v
¼ uz

uv
¼ f

uz

uv

� �
, showing that f is surjective.

Therefore f is a ring isomorphism. r

Using Proposition 2.1, we can derive a more concrete characterization of
IdlSðZÞ, where Z is the ring of integers.

Proposition 3.4. Let AJ IdlðZÞ be a non-empty set with Z A A. Then the
following statements are equivalent:

(1) A ¼ IdlSðZÞ for some m-closed set S of Z.
(2) For any I ; J A IdlðZÞ, IJ A A if and only if I A A and J A A.

Proof. (1) implies (2): Since (1) holds, A ¼ CðSÞ by Proposition 2.1.
Note that for any hai A IdlðZÞ, hai A CðSÞ if and only if gcdða; sÞ ¼ 1 for all
s A S.

For any I ¼ hai and J ¼ hbi, IJ A A ¼ CðSÞ if and only if gcdðab; sÞ ¼ 1
for all s A S, if and only if gcdða; sÞ ¼ 1 and gcdðb; sÞ ¼ 1 for all s A S. This is
equivalent to I ¼ hai A A and J ¼ hbi A A.

(2) implies (1): By Proposition 3.2, it is enough to show CðFðAÞÞ ¼ A. If
A ¼ fZg, then CðFðAÞÞ ¼ A is clearly true. If f0g A A, then by (2), we can
deduce that A = IdlðZÞ and so CðFðAÞÞ ¼ A also holds. Now we consider
the case where A0 fZg and f0g B A. To show CðFðAÞÞ ¼ A, we only need
to check CðFðAÞÞJA since AJCðFðAÞÞ always holds. Since (2) holds,
hai A A if and only if hai ¼ Z or h pi A A for any prime factor p of a. It
follows that there is a set E of positive prime integers such that

A ¼ fh pt1
1 pt2

2 � � � ptn
n i : pi A E; ti A Z and ti b 0; n A Zþg:

(i) We claim that a A FðAÞ i¤ hai ¼ Z or a has no prime factor in E. As
a matter of fact, for any a A FðAÞ, suppose hai0Z and a has a prime factor
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p in E. So a ¼ a1 p for some a1 A Z. Then h pi A A, and for any s A Z,
sa ¼ sa1 p A hpi which implies s A h pi by the definition of FðAÞ. Therefore,
ZJ h pi, which is not possible. Conversely, if hai ¼ Z or a has no prime factor
in E, then clearly a A FðAÞ.

(ii) Let hmi A CðFðAÞÞ and hmi0Z. We show that all the prime factors
of m are in E, therefore hmi A A. Suppose m ¼ pm1, with p a positive prime
integer such that p B E. Then p A FðAÞ by (i). Now pm1 A hmi. So m1 A
hmi since hmi A CðFðAÞÞ. Hence there is a t A Z such that m1 ¼ tm ¼ tpm1

which implies p ¼ 1, a contradiction. All these show that hmi A A. Hence
CðFðAÞÞJA. r

Remark 3.5. From the above proof, we can see that the above proposition
also holds for every principal ideal domain (where the prime numbers are
replaced by prime elements).

Example 3.6. Consider A ¼ fh0i; h4i; h2i; h1ig. Then A is a family of
ideals of Z and satisfies the four properties listed at the end of Section 2. Now
h4i A A but h4i2 ¼ h16i B A. By Proposition 3.4, A0 IdlSðZÞ for any m-
closed set S.

Proposition 3.7. An m-closed subset S of Z is full if and only if S ¼
FðCðSÞÞ.

Proof. If S ¼ FðCðSÞÞ, then by Remark 3.1 (1) and (2), S is full.
Now let S be full. Then a A S implies that each prime factor of a is in S.

It follows that there is a set E of positive prime integers such that

S ¼ fGpt1
1 pt2

2 � � � ptn
n : pi A E; ti A Z and ti b 0; n A Zþg:

One can then deduce that hmi A CðSÞ i¤ hmi ¼ Z or m has no prime factor
in E.

Let x A FðCðSÞÞ. If x has a positive prime factor, say p, such that p B E,
then hpi ACðSÞ. For any s A E, xs A h pi, thus s A hpi since x A FðCðSÞÞ, which
implies s ¼ p, a contradiction. All these show that x A S. So FðCðSÞÞJS,
implying S ¼ FðCðSÞÞ since SJFðCðSÞÞ always holds. r

We still do not know the answer of the following problem.

Problem. Is it true that for any full m-closed set S of a commutative ring
R, S ¼ FðCðSÞÞ?

4. Posets satisfying the ascending chain condition

In the following, by a poset (an abbreviation for partially ordered set) we
mean a non-empty set P equipped with a partial order ‘‘a’’ that is reflexive,
transitive and antisymmetric.
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For a subset B of P, the supremum (infimum) of B in P, denoted by sup B
(inf B) or 4B (5B) if it exists, is the least upper bound (greatest lower bound)
of B. For more about posets and lattices, see [1] [3] [4].

An ascending chain in P is a sequence fai : i A Zþg of elements such
that

a1 a a2 a � � �a ai a � � � :

A descending chain in P is a sequence of elements fai : i A Zþg such
that

a1 b a2 b � � �b ai b � � � :

A poset P is said to satisfy the ascending chain condition (or ACC for short)
if for any ascending chain fai : i A Zþg in P, there is i0 such that ak ¼ ai0 for all
kb i0. The dual notion is the descending chain condition (DCC).

Example 4.1. (1) If R is a commutative ring and IdlðRÞ is the poset of all
ideals ordered by inclusion, then R is Noetherian if and only if IdlðRÞ satisfies
ACC. Dually, R is Artinian if and only if IdlðRÞ satisfies DCC.

(2) Let V be a vector space and (SubðVÞ;JÞ be the poset of all subspaces
of V ordered by inclusion. Then V is finite dimensional if and only if SubðVÞ
satisfies ACC.

(3) Let G be a group and (SubðGÞ;JÞ be the poset of all subgroups of G
ordered by inclusion. Then every subgroup of G is finitely generated if and only
if SubðGÞ satisfies ACC.

(4) Let M be an R-module with R a commutative ring and ðSubðMÞ;JÞ be
the poset of all submodules of M ordered by inclusion. Then M is Noetherian
if and only if SubðMÞ satisfies ACC.

An ideal I of a poset P is a nonempty subset of P satisfying the following:
(i) For any x A P and y A I , if xa y, then x A I .
(ii) For any two elements x, y in I , there is a z A I such that xa z and

ya z.
Let IdlðPÞ denote the poset of all ideals of P ordered by inclusion. The

following results can be easily verified.

Proposition 4.2. (1) If P satisfies ACC (DCC resp.) and P1 is a subposet of
P, then P1 satisfies ACC (DCC resp.).

(2) If P and Q satisfy ACC (DCC resp.) then the cartesian product P�Q
also satisfies ACC (DCC resp.).

(3) A poset P satisfies ACC if and only if ðIdlðPÞ;JÞ satisfies ACC.

A monotone map f : P ! Q between posets is a mapping such that f ðaÞa
f ðbÞ holds in Q for any aa b in P. A mapping f : P ! Q is an order
embedding if for any a; b A P, f ðaÞa f ðbÞ if and only if aa b.
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Example 4.3. (1) Let f : R ! A be a surjective ring homomorphism.
Then

f �1 : IdlðAÞ ! IdlðRÞ
is an order embedding, where f �1 sends I A IdlðAÞ to f �1ðIÞ.

(2) Let S be a multiplicatively closed subset of a commutative ring R
and S�1R be the ring of fractions of R. Let h : R ! S�1R be the natural ring

homomorphism that sends r A R to
r

1R
. Then h�1 : IdlðS�1RÞ ! IdlðRÞ is an

order embedding (see [7], Lemma 5.24).

Definition 4.4. A monotone map f : P ! Q between two posets is called
a pre-order embedding if for any a; b A P, aa b and f ðaÞ ¼ f ðbÞ imply a ¼ b.

Example 4.5. (1) Every order embedding is a pre-order embedding.
(2) Let IðRÞ be the set of all open intervals of R ordered by inclusion.

Define f : IðRÞ ! R by f ðða; bÞÞ ¼ b� a. Then f is a pre-order embedding
that is not injective.

(3) Let L ¼ fðx; yÞ : x; y A R; xb 0; yb 0g with the pointwise order. De-
fine g : L ! R by gða; bÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
. Then g is a pre-order embedding.

(4) Let (SubfinðVÞ;JÞ be the poset of all the subspaces of finite dimensions
of a vector space V . Define g : SubfinðVÞ ! E by gðWÞ ¼ dimðWÞ for each
W A SubfinðVÞ, where E ¼ f0; 1; 2; . . .g is equipped with the ordinary order of
numbers. Then g is a pre-order embedding.

The following lemma follows directly from the respective definitions.

Lemma 4.6. If g : P ! Q is a pre-order embedding and Q satisfies ACC
(DCC resp.), then P also satisfies ACC (DCC resp.).

5. The monotone extension NðPÞ of P

Let N be the set of non-negative integers with the ordinary order of numbers.
In this section, we construct a poset NðPÞ from any given poset P, called the

monotone extension of P, and show that P satisfies ACC if and only if NðPÞ
satisfies ACC.

Definition 5.1. For any poset P, let NðPÞ be the poset of all monotone
mappings f : N ! P with the ordera defined by f a g i¤ f ðnÞa gðnÞ for every
n A N.

In the following, we shall use NðPÞ to denote the poset ðNðPÞ;aÞ.

Remark 5.2. It can be verified that if P is a meet ( join) semilattice, then
NðPÞ is also a meet ( join) semilattice, where f5g and f4g are defined by
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ð f5gÞðnÞ ¼ f ðnÞ5gðnÞ and ð f4gÞðnÞ ¼ f ðnÞ4gðnÞ for every n A N respectively.
Furthermore, if P is a distributive (modular) lattice, then NðPÞ is also a distri-
butive (modular) lattice.

For any poset P, define FP : P ! NðPÞ by

FPðaÞ : N ! P; for all a A P;

where ðFPðaÞÞðnÞ1 a is the constant mapping with value a.
Define GP : NðPÞ ! P by GPð f Þ ¼ f ð0Þ for each f A NðPÞ.
Then both FP and GP are monotone, and for any a A P and f A NðPÞ,

GPðFPðaÞÞ ¼ a and FPðGPð f ÞÞa f :

Obviously GP is surjective and FP is an order embedding.

Theorem 5.3. For any poset P, P satisfies ACC if and only if NðPÞ satisfies
ACC.

Proof. Since FP is an order-embedding, the su‰ciency follows from Lemma
4.6.

Now suppose that P satisfies ACC. Let

f1 a f2 a � � �a fn a � � �

be an ascending chain in NðPÞ. Note that if nam then fnðnÞa fnðmÞa fmðmÞ,
so the following is an ascending chain in P:

f1ð1Þa f2ð2Þa � � �a fnðnÞa � � � :
By the assumption on P, there is an m such that fkðkÞ ¼ fmðmÞ whenever kbm.
Now for each iam,

f1ðiÞa f2ðiÞa � � �a fkðiÞa � � �

is an ascending chain in P, so there is a ti such that fkðiÞ ¼ ftiðiÞ for all kb ti.
Let t ¼ maxft1; t2; . . . ; tm;mg.

We claim that fk ¼ ft for all kb t.
As a matter of fact, for any l A N,
(i) if lam then, as tl a ta k, fkðlÞ ¼ ftl ðlÞ ¼ ftðlÞ;
(ii) if m < l, then fmðmÞa fmðlÞa ftðlÞa fkðlÞa fsðsÞ ¼ fmðmÞ, where s ¼

maxfl; kg. The last equation holds because ma s. This again shows that
fkðlÞ ¼ fmðmÞ ¼ ftðlÞ.

All these show that fk ¼ ft.
Thus NðPÞ satisfies ACC. r

Lemma 5.4. Let R be a commutative ring. Then there is a pre-order
embedding

G : IdlðR½X �Þ ! NðIdlðRÞÞ:
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Proof. Define the mapping G : IdlðR½X �Þ ! NðIdlðRÞÞ as follows: for any
ideal I of R½X � and i A N,

GðIÞðiÞ ¼ fa A R : there exists a0 þ a1X þ � � � þ ai�1X
i�1 þ aX i A Ig:

Then Lemma 8.6 of [7] says exactly that G is a pre-order embedding. r

Corollary 5.5 (Hilbert’s Basis Theorem). Let R be a commutative Noe-
therian ring and X be an indeterminant. Then the ring R½X � of polynomials is
again a Noetherian ring.
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