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WEIERSTRASS SEMIGROUPS ON DOUBLE COVERS
OF PLANE CURVES OF DEGREE 5

SEON JEONG KiM AND JIRYO KOMEDA

Abstract

We investigate Weierstrass semigroups of ramification points on double covers of
plane curves of degree d. Using the results we determine all the Weierstrass semigroups
in the case d =5 when the genus of the covering curve is greater than 17 and the
ramification point is on a non-ordinary flex.

1. Introduction

Let C be a smooth irreducible curve of genus g, where a curve means a
projective curve over an algebraically closed field of characteristic 0. For a point
P of C we define the Weierstrass semigroup H(P) of P as follows:

H(P) = {neNo|there is a rational function f on C such that (f) =nP},

where Ny is the additive monoid of non-negative integers and (f), means the
polar divisor of f. Then H(P) is a numerical semigroup of genus g, which means
a submonoid of Ny whose complement is a finite set with cardinality g. The
genus of a numerical semigroup H is denoted by g(H). For a numerical
semigroup H we denote by d>(H) the set consisting of the elements / for
2h € H, which is a numerical semigroup. For positive integers ai,...,a, we
denote by {ay,...,a;y the additive monoid generated by ay,...,as.

We will study about the numerical semigroups H which are the Weierstrass
semigroups of ramification points on double covers of smooth plane curves of
degree d. In this paper such a numerical semigroup H is said to be of double
covering type of a plane curve, which is abbreviated to DCP. In this case, d>(H)
is the Weierstrass semigroup of a point on a smooth plane curve of degree d.
If dr(H) is the Weierstrass semigroup of a point on a smooth plane curve of
degree d < 3, ie., dh(H) =Ny or <2,3), then we can show that H is DCP (for
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example, see [8]). In the case d =4, i.e., dr(H) = (3,4>,<3,5,7) or <{4,5,6,7)
the papers [9], [4], [5] and [6] show that every numerical semigroup H with
g(H) =6 is DCP except H =<8,10,12,14,n,n+4) with odd n=9, H=
{7—10,12> and H =<{5,7,8>. The excluded semigroups are not DCP.

Let C be a smooth plane curve and P its point. Let Z be a plane curve.
We denote by C.Z the intersection divisor of C with Z. Moreover, let
ordp(C.Z) be the multiplicity of C.Z at P. We denote by 7Tp the tangent
line at P on C. We note the following:

i) If P is a total flex on a smooth plane curve C of degree 5, i.e.,
ordp C.Tp =5, then H(P) = (4,5).

ii) If P is a point with ordp C.Tp =4 on a smooth plane curve C of degree
5, then H(P) =<4,7,10,13).

The following is the main result of this article:

MAIN THEOREM. Let H be a numerical semigroup of genus = 18.

1) If dh(H) =<4,5), then H is DCP.

i) Assume that dy(H) =<4,7,10,13>. If H is distinct from 2dr(H)+
<n,n+4)y and 2d)(H) + <{n,n+ 12> with odd n =13, then it is DCP. The
excluded semigroups are not DCP.

Corollary 2.7 in Section 2 shows i) in the above theorem. Corollary 3.2 in
Section 3 and Theorem 4.2 in Section 4 mean ii) in Main Theorem.

2. Ramification points over total flexes

A numerical semigroup H is called an a-semigroup if the least positive
integer in H is a. For an a-semigroup H we set S(H) = {a,s1,...,s,—1} where
s; =min{h € H |h =i mod a}, which is called the standard basis for H. Let d
be an integer which is larger than 2. In this section we set

H;={d—-1,dy and s;=id for 1<i<d—2.

Then we have S(Hy) = {d —1,s1,5,...,5-2}.

First we will show that eight kinds of numerical semigroups H with
dry(H) ={d - 1,dy are DCP. We use the following lemma when we calculate
the genera g(H) of such numerical semigroups H.

Lemma 2.1. Let m and [ be positive integers with 2<m=<d -1 and
1< ((d-—m)d)/(d—1). Let n be an odd number with n = d(d —2). Set

H=2H;+{n,n+2s4_,, —2(d — 1)).
Then
H=Q2H; +nNo)U{n+ss_;i —2j(d—-1)|2=i<m 1= j=< 1},
which implies that g(H) = (d —1)(d = 2)+ (n—1)/2 —I(m —1).
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Proof. By the assumption on n and Remark 2.1 in [7] we have
S(2Hd + nNo) = {2(d — 1), 281, ..y 28q_ 2, n,n+28),... .0+ st,z}.

Assume that n+ 2s;_,,—1 — 2(d — 1) belongs to H. Then the element se S(H)
with s =n+2d(d —m —1) mod 2(d — 1) is written by

S=n+285_, —20(d—1)+1,

where ¢ is the minimum in H =2H,;+ {n,n+ 2s4_, —21(d — 1)) with =
2d(d —2) mod 2(d —1). Since

2(1’1 + 284—m — 2l(d — 1)) — 2840 = 2(1’! — Sd,z) + 4(Sd—m — l(d — 1)) =0

by the assumptions n = d(d —2) and [ < ((d —m)d)/(d — 1), we have ¢ = 2s,4_5.
Hence, we get n+2sy_p-1 —2(d—1)=n+2s4_p, —2I(d — 1) 4+ 254>, which
implies that (/—1)(d —1)=(d —1)d. Thus, we have /=d+ 1. Then the
assumption on / induces d + 1 </ < ((d —m)d)/(d — 1), which implies that

d>—1<(d—m)d =< (d—-2)d=d*—2d.

This is a contradiction. Therefore, we obtain n+2sy_,,_1 —2(d — 1) ¢ H.

Moreover, we will show that n+2s;0—2(/+1)(d—1)¢ H. Assume
that n+2s5o—2(/+1)(d—1)e H. Then the element se S(H) with s=
n+2d(d —2) mod 2(d — 1) is written by

S=n+285_,m —20(d —1) + 1,

where ¢ is the minimum in H =2H,;+ {n,n+ 2s4_,, —21(d — 1)) with =
2d(m —2) mod 2(d —1). Since

2(n+2s4-m —21(d — 1)) — 285,y—2
=2n—4l(d—1)+2d2d —3m+2) =2 2d(d —m) =22d >0

by the assumptions n = d(d —2), I < ((d —m)d)/(d — 1) and m < d — 1, we have
t =2s,->. Hence, we get

n+2sg =20+ 1)(d—=1)Zn+2s5_ —21(d = 1) + 25,2,

which implies that 1 = d. This is a contradiction.

— 42 (n+25d,m—21(d—1))
©}
(n+254-pm—1 —2(d—1)) (n+2s4-3=21(d—1)) (n+2s5-2—2(l4+1)(d—-1))
X ce e} X
. o o] 42(d-1)
(4 284-m-1) . o
(n+284-m) . o
N\ +2d (n + 23,173) .

(ﬂ + 2S‘1,2)

The elements of H =2H,; + {n,n+ 2s4_p, —21(d — 1))
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Let i=2 and j=/+ 1. Then
n—|—2sd_2—2(l+l)(d— 1)—(n+2sd_,~—2j(d— 1))
=2(i—-2)d+2(j—1-1)(d—-1)e2H,.

Since n+2s;,—2(I+1)(d—1)¢ H, we must have n+2s; ;—2j(d—1)¢ H.
Let iZm+1 and j=1. Then

n4+285-m1 —2(d—1) — (n+2s4-; — 2j(d — 1))
=2(l—m—1)d+2(j—1)(d—1)e2H,.

Since n+2sy_pm—1 —2(d — 1) ¢ H, we obtain n+2s,_; —2j(d — 1) ¢ H. Hence,
the largest odd number n’ in the complement of H is n+ 2s;_,,,—1 —2(d — 1) or
n+2sq_2 —2(l+1)(d — 1) and g(H + <{n')) = g(H) — 1, which follows from the
above figure. Thus, we have

because H\2H,; contains no even number. Since we have ¢g(2H;+ nNy) =
(d—=1)(d-2)+(n—1)/2, we get our desired result. O

In the rest of this section we are in the following situation: Let C be a
smooth plane curve of degree d = 5 with a point P satisfying ordp C.Tp =d, i.c.,
H(P) = H,;. We state the following Namba’s famous lemma (see Lemma 2.3.2
in [12]), since it plays an important role in the calculation of ordp(C;.C3), which
is the intersection multiplicity of plane curves C; and C, at P.

Lemma 2.2. Let Cy, Cy and C; be plane curves. Assume that Cy is irre-
ducible and is neither a component of C, nor of C3. Let P be a smooth point of
Cl. Then

ordp(C,.C5) = min{ordp(C;.Cy), ordp(C,.C3)}.

The following lemma is useful for determining the Weierstrass semigroup of a
ramification point on a double cover of a plane curve.

Lemma 2.3. Let Cy.3 be a plane curve of degree d—3 such that
ordp(Cy—3.C) = (d — 3 — 1)d with an integer | £d —4. Then Cy_3 = Tg’3’lC/,
where C; is a plane curve of degree [, which implies that ordp(C;.C) =
ordp(Cd_3.C) — (d -3 l)d

Proof. We have ordp(Tg¢3!.C) = (d -3 —1)d. Hence, by the assump-
tion and Lemma 2.2 we get ordp(Cy3.T¢37!) = (d —3 —1)d. Thus, we have
Cy_3 = TpCy_4, where C,_4 is a plane curve of degree d — 4. Moreover, we get

ordp(Cy4.C) = (d —4—1)d and ordp(TE *'.C)=(d -4 -1,

which implies that ordp(Cy4.Tf*') = (d —4 —1)d. Hence, we get C; 3 =
T,% Cyssifd—4—1=1, where Cy_s is a plane curve of degree d — 5. Using this
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method successively we get C, 3 = T 3'C;, where C; is a plane curve of
degree /. O

To prove that a numerical semigroup is DCP we use the following theorem many
times, which is stated in Theorem 2.2 of [9].

THEOREM 2.4. Let H be a numerical semigroup. Set
n=min{he H|h is odd}.
Then
g(H) =29(dr(H)) + (n—=1)/2 =1
with some non-negative integer r (for example, see Lemma 3.1 in [4]). Assume
that dy(H) is Weierstrass. Take a pointed curve (C, P) with H(P) = dy(H). Let

01, ..., 0, be points of C different from P with h°(Q1 + ---+ Q,) = 1. Moreover,
assume that H has an expression

H=2d)(H)+<n,n+2h,...,n+ 2L

of generators with positive integers Ii,... Iy such that
WP+ Q1+ + Q) = (= )P+ Q01+ + Q) +1
SJor all i. If the divisor nP —201 —---—20Q, is linearly equivalent to_ some

reduced divisor not containing P, then there is a double covering n:C — C
with a ramification point P over P satisfying H(P) = H.

We may replace the assumption in Theorem 2.2 of [9] that the complete
linear system |nP —2Q; —--- —2Q,| is base point free by the above assumption
that the divisor nP —2Q; —--- —2Q, is linearly equivalent to some reduced
divisor not containing P, because the same proof as in Theorem 2.2 of [9] works
well under our assumption.

THEOREM 2.5. Let n be an odd number with n = d(d —2). Let Hy denote
H(P)=<d—-1,d). Let H be a numerical semigroup which is one of the
following:

(i) 2H;+<{n,n+2t;) with ty =545 — I(d — 1) where [ is a positive integer

with | <d—2and n=(d—1)(d—-2)+ 142l

(i) 2Hg;+ {nyn+2t1) with t; = sq_y — (d — 1) where m is an integer with
2<m<d-1land nz(d—-1)(d-2)—1+2m

(i) 2H;+ {n,n+2t;) with t; = 54, — 2(d — 1) where m is an integer with
2=m=d-2and nz(d—-1)(d-2)—3+4m.

(iv) 2H;+<{n,n+2t;,n+26) with t1 =s5.0,—2(d—1) and tr =s4_p —
(d — 1) where m is an integer with3<m=<d—1and n=(d—1)(d—2)
+142m.

(V) 2H;+<{nn+2t1,n+26) with ty =s420—1(d—1) and t) =s54-3—
(d — 1) where | is an integer with 3<1=<d—-2andnz (d—-1)(d—2)
+3+2L
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(vi) 2H;+ <{n,n+2t,n+26) with t ZSd,4—(d—1) and t) = Sj_n —
3(d—=1) where n= (d — 1)(d —2) + 11.
(vil) 2Hy+ {n,n+2t;,n+2t) with t; =s4_3—2(d—1) and t) =s4-2—
3(d—1) where n= (d —1)(d —2) + 11.
(viii) 2Hy + {nyn+2t,n+ 26y with ty =s4-4—(d—1) and t,=543—
2(d — 1) where n =z (d—1)(d —2) +11.
Then H is DCP.

Proof. To prove that H is DCP we use Theorem 2.2 in [9]. We show step
by step that H satisfies the conditions of the theorem in [9].

Step 1. By Lemma 2.1 we have

n—1

g(H)=(d—-1)(d-2)+ —r
where (i) r=1, (i) r=m—1 and (iii)) r =2(m — 1).

(iv) We note that n+ 2s;_» —4(d — 1) is the largest number in the com-
plement of the semigroup 2{d — 1,d) + {n,n+ 255, —2(d — 1)) in Ny (see the
figure below).

— 42
(n+2s4-m —2(d — 1))
) 1 +2(d-1)
° (}’l + 28542 — 4(d — 1))
(n + 2Sd_m) s o [©)
N +2d (n+2s4-3) .
(l’l + 2Sd,2)

The elements of H =2{d — 1,d) + <{n,n+2s4_p —4(d — 1),n+ 2s4_, — 2(d — 1))

Using Lemma 2.1 we get r =m.
(v) We have r=/+1. In fact, we note that

nt2503—2(d—1)— (n+2s40—2(+1)(d = 1)) =2((l = 1)(d = 1) = 1) > 0,

which implies that n+ 2s;_3 —2(d — 1) is the largest number in the complement
of the semigroup 2<{d — 1,d) + <{n,n+ 2s4_5 — 2/(d — 1)) in Ny. Using Lemma
2.1 we get r=1+1.

(vi) We have r=5. In fact, we have the following figure:

(n+2s4-4 —2(d — 1)) (n+2s4-2 — 6(d — 1))
O} O}
[ ] o (o)
(n+2s4-4) . o
(n + 2S,1,3) .
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(vil) We have r=15. In fact, we have the following figure:

(n +2s4-3 — 4(d — 1)) (}’l + 2842 — 6(d — 1))

©} ©

o o

. o

(n+2s4-3) .
(l’l + 23(1,2)

(viii) We have r=5. In fact, we have the following figure:

(n+2s4-4—2(d — 1)) (n+2s4-3—4(d-1))

O] O]
[ ] [e] [e]
(n+2s4-4) . o
(n —+ 23,1,3) °

(n+2s4-2)

STeP 2. Let E be a divisor of degree n—2r on a smooth plane curve
of degree d. By the assumption on n in each case we have degE =
(d—2)(d—1)+ 1, which implies that E is very ample.

STeP 3. In each case we choose r points Oy, ..., Q, of C with Q; # P for all
i satisfying the equality
(1) WO+ +0)=1.
To choose the points Q, ..., Q, satisfying the equality (1) we use the following:

Let Py,..., P; (k =d) be points on a smooth plane curve of degree d = 4. Then
hO(Pl +:--4+ P;)=1 unless k = d— 1 and at least d — 1 points of Py,..., Py are
collinear. This follows from the fact that a smooth plane curve of degree d = 4
is (d — 1)-gonal and has a unique g3, which is cut out by lines. The latter fact is
called Namba’s Theorem (see [12]).

(i) Let us take a line L with L$P. We set L.C=Q;+ -+ Qg with
Q; # P for all i. Since C is (d —1)-gonal (see [1]), we have the equality (1)
because r=1=d — 2.

(i) Let L be a line through P distinct from the tangent line 7Tp. We set
LC=P+Q1+---+4+ 041 with Q; # P, all i. Then we have the equality (1)
because r=m—1=d — 2.

(iii) Take two distinct lines L; and L, through P different from Tp. We set

Li.C=P+Ri+--+Ry; and L,,C=P+ S+ ---+Ss1.
Then
(2) WO(R 4+ 4+ Ry +S1+-+8,_1) =1
Indeed, we have

|R1+"'+Rm—l+51+"'+Sm_1|:|L1+L2—E|,
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where E is an effective divisor of degree > 6. It is known that a complete linear
system of degree at most 2d — 5 on a smooth plane curve of degree d =4 is
zero-dimensional or empty unless its free part is a gall_l or a g§ (and hence it
contains at least 4 — 1 collinear points). This fact follows from Theorem 3.1 in
[3]. Hence we get the equality (2). We set Q;=R; for i=1,...,m—1 and
Omn_1+i=S; for i=1,....m—1. Hence we get the equality (1).

(iv) Let L be a line through P, distinct from 7p. We set L.C =
P+R+---+Ry ;. Fori=1,....m—1 we set Q;=R; and take a point
OneCwhichisnotin L. If r=m <d — 2, we get the equality (1). Hence, we
may assume that m =d — 1. Since Qi,...,Qys 1 are not collinear, we get the
equality (1).

(v) Let L be a line not passing through P with L.C =R +---+ R;. We
set Q;=R; fori=1,...,I. Choose Q.1 € C with Q;,1 # P and Q.1 ¢ L. By
the same way as in (iv) we get the equality (1).

(vi) Let L be a line through P with L # Tp and LC=P+ R +---+ Ry_;.
We set Q1 =R, O =R, and Q3 = R;. Take two distinct points Q, and
Os of C which do not belong to the line L such that the line Ly, o, through
Q4 and Qs does not contain P. It suffices to show the equality in the case
d=35,6. Let d=25. Take a curve C, of degree 2 with C;.C = Q| +--- + QOs.
Since we have L.C = Q1 + O, + O3, we get C,.L = 01 + 0> + Q3. Hence, we
have C, = LL; where L; is a line. Since the line L contains neither Q4 nor
QOs, a line L; must contain Q4 and Qs. Hence, L; is uniquely determined.
Thus, C, is uniquely determined. Therefore, we get h°(Qy +---+ Qs) = 1. Let
d =6. The points Qy,...,Qs are not collinear. Hence we obtain the equality
(.

(vii) Let Qy,..., Qs be general points. Then we get the equality (1).

(viii) Let L; be a line through P with L; # Tp and L;.C =P+ R +---+
R; 1. We set Q1 = R; and O, = R,. Take a point Q3 of C which does not
belong to the line L;. Let L, be the line through Q; and P. We set L,.C =
P4+ Qs+ S1+---+Ss-2. Let Q4 =5 and 0Os =5, Then we have 04,05 ¢
{01,02} and L,.C £ Q; for i=1,2. It suffices to show the equality in the
case d =5,6. Letd=15. Let C; be a conic with C,.C = Q) +--- 4+ Qs. Since
Ly.C = Qs+ Q4+ Qs, we obtain C; = L,L where L is a line. Now we have
01+ 4+ 0s < L,.C+ L.C, which implies that L.C = Q1 + Q>. Hence, we get
L=L;. Thus, a conic C, is uniquely determined. Let d =6. The points
Qi...,0s are not collinear. Thus, we have the equality (1).

StePp 4. We set D, = Q1+ ---+ Q,. In this step C; means a plane curve
of degree i. We will show that

(K —t;P—D,)=h"(K — (t; — 1)P — D,)

for i = 1,2 where K is a canonical divisor on C. Let C;_3.C = (t; — 1)P + D,.
It suffices to show that C;3.C =P+ D, because of the fact that
HO(P?, Op>(d — 3)) ~ H*(C, Oc(K)).
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(i) By Lemma 2.3 we obtain Cy_3 = T§>7'C;_;. Hence, we have
T c+C1.C=2(t4 —1)P+D,=(d—-2-1dP+ (- 1)P+ D,

which implies that C;_1.C = (I — 1)P+ D,. Thus, we get L.C;_; = D, where L
is as in Step 3. In view of r =1 we get C;_; = LC;_,, which implies that C;_3 =
T¢~>'LC,,. Moreover, we obtain

d-=2-DdP+ Q01+ - +Q0,+Crr.C=2((d-2-Dd+1-1)P+D,.

Hence, we get C;_»,.C = (I —1)P. Since Tp.C=dP and d —3 =/ — 1, we have
Ci».Tp = (I = 1)P, which implies that C;_, = TpC;_3. Thus, we get Cy_3 =
T¢—'!LC; 5. Therefore, we have

Ci3.C=TF"".C+LCH+C5.C
>(d—1-1)dP+D,> ((d—2—1)d + )P+ D,.
(i) By Lemma 2.3 we get Cy3 = Tf""'C,_». Hence, we have
(d=m—1dP+ Cps.C = (d—m—1)Tp.C+ Cps.C = (d—m—1)dP+D,,

which implies that C,,_,.C = D,. Since L.C = D,, we have L.C,_, = D,, which
implies that C,_» = LC,,_3. Thus, we obtain C; 3= Tg " 'LC, 3. Hence,
we have

Cy3.C=(d—m—1)dP+L.C+ Cp_3.C=(d—m—1)dP+ P+ D, =t,P + D,.

(i) By Lemma 2.3 we obtain C, 3= Tf# >"C, 1, which implies that
Cp_1.C 2 P+ D,. On the other hand, we have

Li.CzP+01+ -+ 0n1 and L, CZP+ Qn+-+ Orm-1),
from which we get
Con1- L1 2P+ Q1+ +0u1 and Cp 1. Ly Z P+ Qn+ -+ Orpmoi)-
Hence, we obtain C,,_; = L;1,C,,_3. Thus, we get
Cy3.C=TI "L L,Cp 3.C=ZTE>"C+L,.C+ L,.C
=2((d-2-md+2)P+D,=1,P+ D,

(iv) Let t; =t,. By Lemma 2.3 we obtain C; 3= Tg " 'C, 5, which
implies that C,,_,.C = D,. Hence, we get C, ».L = Q1+ -+ Q,_1, which
implies that C, , = LC,_3. Thus, we have C; 3=T ;,’"”"LC,,,,g,. Hence,
we obtain

Ci3.C=TF"™ '\ C+LC+Cpis3.C=((d—-m—1)d+1)P,

which implies that C; 5.C = ((d —m—1)d + 1)P+ D, = P+ D,.
We have

WK =t —1)P—=01)=h(d-1)P-0) =1
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Hence, there is a unique effective divisor £ which is linearly equivalent to
(d—1)P— Q. Then E should be Q>+ -+ Qp_1 + Ry +---+ Ry_1, because
we have

dP:TP~C~L'C:P+Q1+Q2+"'+mel+Rm+"'+Rd71~

Since Q,, is different from Qi,...,Qu_1, Ru,...,Rs_1, we get

ho((d_ I)P_ Ql _Qm_ Q2_"'_ mel) =0.
Thus, it follows that 0 = A°(K — (t; — 1)P — D,) = h°(K — P — D).
(v) Let t;=1;. By Lemma 2.3 we obtain C; 3 = T#>7'C;_;. Hence, we

get C;_;.C=(I—1)P+ D,. Moreover, we have L.C=Q;+---+ Q,_1 + Ri1
+-+Ry. Thus, we obtain C;_;.L = Q; + -+ + Q,_1, which implies that C;,_; =
LC; 5. Hence, we get Cy 3 = T§27'LC;_>. Moreover, we have

O+ +0 1+Ru+ +R;+C2.C=LCH+C,.C=(l—-1)P+ D,,

which implies that C;_,.C = (I —1)P+ Q,. Hence, we get C;».Tp = (I —1)P.
Thus, we have C;_, = TpC;_3. Hence, we get Cy3 = T§ > 'LTpC/_3. There-
fore, we obtain

Ci3C2(d-2-0DdP+Q1+---+Q/+dP+ Qi1 > 1P+ D,.

We have K — (& — 1)P ~ (d* —3d —d* + 4d)P = dP where t, = (d —4)d + 1.
Since C is (d — 1)-gonal, we get h°(dP — Q; — Q,) = 1. We note that Q;,; is
general. Hence, we get h°(dP — Q1 — Q> — Q141) = 0. Thus, we get

0="hr"K—(t—1)P—D,) = h"(K — t,P - D,).

(vi) Let t;, =1. By Lemma 2.3 we have C;3=T g‘5C2. Hence, we get
C.Cy = Q1+ -+ QOs, which implies that C,.L = Q1 + Q> + Q3. Therefore, we
obtain C, = LLy, o,. Hence, we have

Cy3.C= Tgis.C—FL.C—FLQMQS.C
=dd—-5P+P+ 01+ Q0+ Q3+ Rs+--+ Ry1+ Lo, 0,-C,

which implies that C; 3.C = {41P + D,.

Suppose that there exists a curve C,_3 such that C; 5.C = (&, — )P+ D,,
where 1, = (d — 5)d + 3. By Lemma 2.3 and the above method we have C,;_3 =
T¢—5LLg, g, Then we obtain

(d—35)d+2=Zordp Cy3.C=(d—5)d+1,
which is a contradiction. Hence, we get
0=hr"K—(t—1)P—D,) =h"(K — 2P — D,).
(vil)) We have
WK = (n=1)P=D;) =h"(2d = 1)P = (Q1 +--- + 05)) =5 -5 =0,
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because Qi,...,0s are general points. It is enough to show that
h°(K — (t — 1)P — D,) = 0, which is clear since #, = #; + 1.

(viii) Let #; =1. We get Cy3=TF3C,. Hence, we have C.C> = Q;
+---4+ Q5. Since C.L, = Q3 + Q4 + Os, we have C, = L{L,, which implies that

=h°K—(ty —1)P—D,) =h"(K —t;,P—D,) = h°(K — t2P — D,).

Step 5. By Step 2 the divisor nP —2Q; —--- —2Q, is very ample. It
follows from Step 4 and Theorem 2.2 in [9] that H is DCP. O

In the rest of this section we denote by H a numerical semigoroup with d>(H) =
<4,5>. Using Theorem 2.5 we will prove that the numerical semigroup H is
DCP. Let n be the least odd number in H. In the following figure a cross x
is one of the candidates of the elements No\H which are odd numbers larger
than n.

— +2 (n+2) (n+4) (n+6)

. X X X l
(n) . X X +8
(n+10) . X
N\ +10 (n+20) .
(n+30)

The candidates of odd gaps > n

In fact, for any odd n = 13 we have
S(2<4,5> + nNy) = {8,10,20,30,n,n + 10,n + 20,1 + 30}
(see [7] if n=15). We note that H 2 2<{4,5) + nNp.

LEmMMA 2.6. A numerical semigroup H with dy(H) = <{4,5) and the least odd
number n = 13 in H is one of the following:
(a) H, =2{4,5> +nNy, (b) H,+ <n+2t), t=1,2,3,6,7,11,
() Hi+<n+2t,n+14), t=1,6, (d) H,+ {n+6,n+ 12>, (e) H, + {n+ 4,
n+6,
() Hy+<{n+2,n+4,n+6), (g) Hy+<{n+2,n+6), (h) H,+<n+2,n+4).

Proof. By the figure “The candidates of odd gaps > n” we get the clas-
sification. ]

Applying Theorem 2.5 to the cases of Lemma 2.6 we get the following:

COROLLARY 2.7. Let H be a numerical semigroup of genus = 18 with
dr(H) =<4,5). Then H is DCP.

Proof. We use the classification in Lemma 2.6, because the least odd
number n < 11 in H implies g(H) < g(2<4,5) +nNg) =26+ (11 - 1)/2 =17.
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In the case (a) by Proposition 2.3 in [7] we get the result if g(H) = 18.
In the case (b) we can apply Theorem 2.5 (i) to the cases t=3,7,11 if
g(H) =z 18. We can apply Theorem 2.5 (ii) to the cases t = 1,6 if g(H) = 18.
Theorem 2.5 (iii) is applied to the case t+=2 if g(H)=18. We can apply
Theorem 2.5 (iv), (v), (vii), (vi) and (viii) to the cases (c), (d), (e), (g) and (h)
respectively if g(H) = 18.
By Lemma 2.3 and Proposition 2.4 in [9] we get the result (f) if g(H) = 18.
O

3. Non-DCP numerical semigroups

By [9] we know that any numerical semigroup H of genus g =9 with
dr(H) = {3,5,7) is DCP. We note that a point P on a smooth plane curve C
of degree 4 with H(P) = (3,5,7) satisfies ordp(C.Tp) =3. But the following
theorem shows that for any ¢ = 5 there is a numerical semigroup H whose d>(H)
is the Weierstrass semigroup of a point P on a plane curve C of degree d with
ordp C.Tp =d — 1 such that H is not DCP. In this case we have

(H)=<d-1,d=14+d—2,2(d—1)+d—3,....,(d=2)(d— 1)+ 1) (see [2]),

which is denoted by H). In this section we assume that d = 5.

THEOREM 3.1. Let n be an odd number with n = (d —2)(d —1)+ 1. As-
sume that H is 2H) + (n,n+ 2ty with t = (d —3)(d —1)+2—-1(d—-1) for [ =1
or 2. Then the semigroup H is not DCP.

Proof. We have the standard basis S(H)) ={d —1,s1,...,54-2} for H},
where s; = (d —1—1i)(d —1)+i for all i. It follows from the condition n =
(d—2)(d—-1)+1 and Remark 2.1 in [7] that

S(2H; +nNo) = {2(d — 1),2s1,..., 254 2} U{n,n+2s1,...,n+ 2542}
By Remark 2.1 in [7] we have g(2H) + nNy) = 2g(H)) + (n —1)/2.

Step 1. We obtain g(H) =2g(H}) + (n—1)/2 —r, where r=1 and 3 for
[=1 and /=2 respectively. Indeed, if /=1, then the set H\(2H)+ {(n))
consists of one element n+2((d —3)(d — 1) +2 — (d — 1)), which implies that
r=1. The semigroup H with / =2 contains the following three elements o in
the figure below:

— +2 n+2((d-3)(d-1)+2-2(d—-1)))
% o ° 1 +2(d-1)
X o .
o ° / +2(d—2)
. (n+2((d-3)(d—-1)+2))

(n+2((d-2)(d—-1)+1))

The elements of H =2H; +nNo+ (n+2((d —3)(d — 1) +2—2(d — 1)))Np
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_ Assume that there is a double covering = : C — C with a ramification point
P over a point P with H(P)=H.

Step 2. There are r points Qi,...,Q, distinct from P such that 2D is
. . . . 1
linearly equivalent to a reduced divisor containing P, where D :%P— D,

with D, = Q) + - + O,

Step 3. We show that the equality h°(K —tP —D,) =h°(K — (t—1)P — D))
induces a contradiction. Let 7Tp.C = (d —1)P+ Q with Q # P.

First, let / =1. We consider the case Q) = Q. Let Cy 3 = T#*L with a
line L passing through P with L # Tp. Then in view of d = 5 we have

Ci3.C=d-4Hd-1)P+(d—-4)0+L.C
2d-—-4Hd-1D)P+01+P=((d—4)d-1)+1)P+ O

and Cy3.C % ((d —4)(d —1)+2)P. This is a contradiction.

We consider the case with Q) # Q. We set Cy_3 = TS *L with the line L

passing through P and Q; which is a reducible curve of degree d — 3. In view
of Q1 # Q we note that L # Tp. Then

Ci3.C=TF*C+LC=(d—4)(d—-1)P+(d—4)Q+L.C
2d-4)d-1)P+(d-4)Q0+P+012(d-4)d-1)+1)P+ Q.

But C;5.C % ((d —4)(d —1)+2)P. This is a contradiction.

Next, let / =2. We consider the case O, = 0, = 03 = Q.

Let d =5. Assume that /°(K — P —3Q) =h°(K —2P —3Q). Let C, be
a conic such that C,.C =22P+3Q. Then C,.Tp =2P+ Q. Hence, we get
Cy = TpL where L is a line. Moreover, we have

2P+30=C.C=TpLC=Tp.C+L.C=4P+Q+L.C,
which implies that L = Tp. Hence, we get C; = TpTp. Thus, we obtain
1=1"K—-2P-30)=h"(K—-P-30)=6+1-6+h"(P+3Q0) =2,

which is a contradiction.
Let d 2 6. Let L be a line through P which is distinct from 7Tp. We set
Ly=Tp. Then in view of d = 6 we have

Td>LLy.C = (d—5)(d—1)P+(d—50+P+20
=((d-5d-1)+1)P+(d-3)Q0=(d—-5)(d—1)+1)P+30.

But we get TH>L1Ly.C % ((d —5)(d — 1) +2)P. This is a contradiction.
We consider the case Q) # Q when we renumber Q;, O, and Q3. Let Ly be
the line such that Ly.C = 0> + Q3. If Ly > P, then we take L; as a line through
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0 and not containing P. If Ly3 P, then we take L; as the line through Qi
and P. Then we get

LoLiT).C 2 ((d = 5)(d = 1) + )P+ Q1 + 02 + 03
and LyL,T/.C % ((d —5)(d — 1) +2)P. This is a contradiction. O

In the case d =5 we get the following by Theorem 3.1:

COROLLARY 3.2. Set H(n) = 2<{4,7,10,13) 4+ nNy, where n is an odd number
with n 2 13.  Then neither H(n) + <{n+4> nor H(n) +<{n+12) is DCP.

4. Double coverings of plane curves of degree 5

In this section H denotes a numerical semigroup with d»>(H) = (4,7,10,13).
Let n be the least odd number in H. Then we note that g(H) <12+ (n—1)/2
(for example, see Lemma 3.1 in [4]). Assume that n > 13. In the following
figure a cross X is one of the candidates of the odd numbers in No\H which are
larger than n.

— +2 (n+2) (n+4) (n+06)

° X X X |
(n) X X . +8
X . (n+14)
. (n+20) / +6
(n+26)

The candidates of odd gaps > n

We get 6+ (n—1)/2=<g(H) <12+ (n—1)/2 by Lemma 2.2 in [7]. Hence, we
set g(H) =12+ (n—1)/2—r with 0 <r <6. By the above figure “The can-
didates of odd gaps > n”’ the numerical semigroups H are determined as follows:

LemMa 4.1. Set H(n) =2<4,7,10,13)> +nNo. Then H is one of the fol-
lowing:

) If g H)=12+ (n—1)/2, then H = H(n).

() If g(H) =114+ (n—1)/2, then H is either
1) H(n) +<{n+6) or 2) H(n)+<{n+12) or 3) H(n) + <{n+18).
(iii) If g(H) =10+ (n—1)/2, then H is either
1) Hn)+ n+6,n+ 12> or 2) H(n) +<{n+ 6,n+ 18> or 3) H(n) + (n + 10)
or4) Hin)+<n+12,n+ 18).

(iv) If g(H) =9+ (n—1)/2, then H is either

1) Hn)+{n+2) or 2) Hn)+<n+4) or 3) Hn)+<n+6,n+10) or
4) Hn)+n+6,n+12,n+18) or 5) H(n)+<n+10,n+ 12).
(v) If g(H) =8+ (n—1)/2, then H is either
1) Hn)+ <{n+2,n4+6) or 2) Hmn)+<n+2,n+12) or 3) H(n) +<{n+4,
n+6y or 4 Hn)+<n+4,n+10) or 5) Hn)+<n+6,n+ 10,n+ 12>.
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i) If g(H) =74 (n—1)/2, then H is either

1) Hn)+{n+2,n+4y or 2) Hn)+<n+2,n+6,n+12) or 3) H(n)+
n+4,n+6,n+10>.

(vil) If g(H) =6+ (n—1)/2, then H=H(n)+<{n+2,n+4,n+ 6).

THEOREM 4.2. If g = g(H) = 18, then the numerical semigroup H except for
(i) 2) and (iv) 2) is DCP.

Proof. We give the proofs according to the cases given in Lemma 4.1.
Let (C,P) be a pointed plane curve with H(P) =<4,7,10,13>. Then we have
Tp(C).C =4P + R with some point R # P, which implies that K ~ 8P + 2R.
To show that H is DCP we use Theorem 2.2 in [9]. So, we need to choose r
points Qy,...,Q, of C satisfying the assumptions of the theorem in [9]. We set

1
nt P—Q;—---—0Q,. Then we note that

D=
2

deg2D—P)=n—-2r=29—-23=236-23=13

because g(H) = 18. Hence, the divisor 2D — P is very ample.

In the case (i) it follows from Proposition 2.3 in [7] that H is DCP.

We consider the case (ii) 1). Let Q; = R. Since C is not trigonal, we get
h°(2P+ R) =1. 1t is clear that h°(3P + R) = 2 since |[4P + R| is a net without
base points. Thus, we get the result. Theorem 3.1 implies that H is not DCP
in the case (ii) 2). In the case (ii) 3) it follows from Proposition 2.4 in [7] that H
is DCP.

Let H be the semigroup in the case (iii) 1). We set Q1 = Q> = R. We have

W’(2P+2R)=4+1—-6+1r"6P)=1 and

(3P +2R) =5+1—-6+h"(5P) =2.
Moreover, we get

(5P +2R)=7+1—-6+h"(3P)=3 and

h°(6P +2R) =8+ 1— 6+ h°(2P) = 4.

In the case (iii) 2) we take a general point Q. Let Q; =R and O, = Q.
Then we have /(9P + R+ Q) = 6 and h°(8P + R+ Q) = 5, because of 8P + R+
Q +8P+2R ~ K. Moreover, we get h'®2P+ R+ Q) = —1+h°(6P+ R— Q).
Now we have

h°(6P+ R) =2+ h°(2P + R) = 3,

because C is 4-gonal. Hence, we get h°(2P+ R+ Q) = —1+2 =1, because
O is general. We see that 1°(3P+ Q+ R) =2 since [4P+ R| is a net and
Q2P+R+Q)=1.

In the case (iii) 3) we have

(K —5P)=h"(5P) =2 and K%K —6P) = —1+h°(6P) = 1.
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Let Q; be a general point. Since h°(K — 5P — Q) = 1, there exists a unique
effective divisor E = S} + S> + S5 + Sy of degree 4 with E ~ K — 5P — Q. The
effective divisor E does not contain P, because h1°(K — 6P) = 1. Moreover, we
have E # 4R. Indeed, assume that £ =4R. Then we get
AR~ K —5P—Q; ~3P+2R— 0,
which implies that 2R + Q; ~ 3P. This contradicts /°(3P) = 1. We may as-
sume that Sy # R and Sy # P. We set 0> = S4. Then we have
WK —5P—01— Q) =h"(S1 +S+S;) =1.

Hence, there exists a unique conic C, with C.C, = 5P+ Q1 + Q>. Take a conic
C; with C.C5 2 4P + Q) + 0. Since Q) and Q, are different from R, we must
have C; = TpLg, o,, Where Lo, o, is the line through Q; and Q,. Hence, we
obtain A%(K —4P — Q) — Q1) = 1.
In the case (iii) 4) let Q) and Q, be general points. Then we have
WP+ Q1+ 0x) =6 and A'8P+ Q1+ Q) =5,

because 8P+ Q) + Q> + K. Since h°(3P +2R) = h°(5P) = 2, we obtain
(5P + 01+ 0y)=2+h"3P+2R— 0, —0,) =2 and
h(6P + Q1 + 02) = 3.

Let H be the semigroup in the case (iv) 1). We take a line Lp through P
distinct from Tp. Then we have Lp.C =P+ S+ S, + S5+ S4. Weset Q; = S;
for all i =1,2,3. It is clear that /°(4P+ R) =3 and h°(P+ Q1 + O» + Q3) =2
by the choice of R and Q;’s.

In the case (iv) 2) H is not DCP by Theorem 3.1.

We consider the case (iv) 3). Let Lp be a line as in the case (iv) 1). We set
O =R, O,=3S3 and Q3 =S4;. Then we have

h’(K —5P— Q1 — 0, — 03)
="(A4P+ R+ P+ S+ S5+ 0+ 05 —5P— 01— 0 — 03)
=S +85) =1.

Moreover, it is enough to show that 4°(K — 2P — Q1 — O, — Q3) = 1, which is
clear by the choice of Q;’s.
Let H be the semigroup in the case (iv) 4). We set Q) = R. Take two
general points O and Q3. We have
BPOP+ 01+ 0+ 03)=T=h"BP+ 01+ 0>+ 03) + 1.
Moreover, we have
6P+ 01+ 0y +03) =4+ h° 2P+ R— 0, — 03) = 4
and
WGSP+ 01+ 0+ 03)=3+h"3P+R—- 0, — 03) =3,
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because O, and Q3 are general. Let C, be a conic with C,.C =2 2P+ Q)+
0>+ 0s. Then C; is uniquely determined. Hence, we get

W2P+Q1+ 0+ 03) =1 and h'(3P+ Q1+ Q2+ 03) =2

We are in the case (iv) 5). Let Q;, O, and Q3 be general points of C. We
have

W(6P+ Q1+ 02+ 03) =4+ h (2P + 2R~ Q1 — 0y — 05) =4,

In view of h°(3P+2R)=h"(5P) =2 we have h°(5P+ Qi+ Q>+ Q3) =3.
Moreover, we get h°(4P+2R) = 1+ h°(4P) = 3, which implies that

AP+ Q1+ 0y + 03) = 2.

We consider the case (v). We note that by Namba’s Theorem we have
h°(Q1 + Oy + 03 + Q4) = 1 if four points Q;, 0>, Q3 and Q4 of C do not lie on
a line.

In the case (v) 1) let Lp be a line through P with Lp # Tp. We set Lp.C =
P+0Q1+0,+03+S and Q4 = R. Let C, be a conic with C,.C = P+ Q; +
0>+ O3+ Q4. Then we get C,.Lp = P+ Q1 + O + O3. Hence, we have C; =
LpL where L is any line through Q4 which implies that A°(K — P — Q) —
0> — 03— 04)=2. Let Cj be a conic with C;.C =Z2P+ Q1+ 0>+ Q3 + Q4.
Then we have Cj.Lp= Q01+ 02+ Q3+ P. In view of Qs =R we get C) =
LpTp, which implies that h°(K —2P — Q) — O, — Q3 — Q4) = 1. It is clear that
hO(K — 3P — Ql — Q2 — Q3 — Q4) =1 since CZ,C =LpTp.CZ=2Z5P+Ci +Co+
C; 4+ Cy.

We are in the case (v) 2). Let Lp be a line through P with Lp # Tp. We
set Lp.C=P+ Q01+ 0»+ 03+ S. Let Q4 be a point of C not on the line Lp
with Q4 # R. Then we have

h°(5P+ Q1+ 0r + 03 + Q4)
=4+4+1°(K—-5P—0,—0r— 03— Q4)
=44+h°5P+R+ 01+ 0+ Q3 +S—5P— 01— 0 — 03 — Q)
=4+ h"R+5—-04) =4

Moreover, we get hi°(6P + Q1 + Q> + Q3 + Q4) = 5. It is clear that A°(P + Q; +
0>+ O3 + Q4) = 2 since the four points P, Qi, Q», Q3 lie on the line Lp and
Os ¢ Lp.

Let H be the semigroup in the case (v) 3). We take a line L containing
neither P nor R. We set LC=01+ 0+ Q03+S+ 7T and Q4 =R Let C;
be a conic with C,.C =P+ Q1+ 0>+ Q3+ Q4. Then Cr.L = Q1+ Qs + Os.
Hence, we get C; = LTp. We note that C.C; Z 4P+ Q1 + Qs + O3 + Os.

We consider the case (v) 4). Let L; be a line through P with L; # Tp such
that L1.C=P+ Q1+ 0, +S1+T,. Let L, be a line through P different from
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Tp and L; such that L,.C =P+ Q3+ Qs+ Sy + T>. Then h°(K —4P — Q) —
0> — Q3 — Q4) =0 since L1L, is the only conic passing through P and all Q;’s.
Hence, we get

WGP+ 014+ 0:+0:+04) =4 and h°(4P+ Q1+ 0y 4+ Q3+ Q) = 3.

On the other hand, let C} be a conic with C}.C =P+ Q)+ Q>+ O3 + Oas.
Then we have C;.L; = P+ Q1 + O>. Hence, we obtain C) = LL’ where L’ is
the line with L'.C = Q3 + Q4. The line L’ must be L,. Thus, Cj is uniquely
determined. Moreover, we get C;.C =2 2P+ Q) + Q> + O3 + Oa.

Let H be the semigroup in the case (v) 5). We set Q1 = 0, = R. Let O3
and Q4 be general points of C. Then we have

h(K—2P— Q1 — 0y — Qs — Q4) = h°(6P — O3 — Q4) = 0.

We consider the case (vi) 1). Let Q;, Q> and Q3 be general points of C.
Then we have h°(K —2P — Q) — Q> — Q3) = 1. Hence there is a unique conic
Cy with G,.C =2 2P + Q; + O, + O3, which is irreducible, because 7Tp does not
contain any @Q; and no three of the four points P, Q;, O, and Q; are
collinear. Let C,b.C=2P+ Q1+ O»+ Q3+ Q4+ Qs+ S1 + S» +S3. Here, we
have Q; # P for all i and S; # P for all j, because C, is irreducible. Then we
get

W(K—=2P—Q1—0:— 03— 04— Qs) = 1.
Moreover, let C; be a conic with C,.C = Q1+ Q>+ Q03+ 04+ Os. Then
CG.Cz201+0,+ 03+ Qs+ 0s. Since C, is irreducible, we must have
C; = C,. Hence, we get 1 =h°(K — Q01— 0> — 03 — Qs — 0Os).

Let H be the semigroup in the case (vi) 2). We take general points Q;, Q»,
Q3 and Q4 of C. We have h°(K —2P — Q) — Q> — Q3 — Q4) = 0, because 0,
05, 03 and Qy are general. Since /(K — P — Q1 — O — Q3 — Q4) = 1, there is
a unique effective divisor £ which is linearly equivalent to K — P — Q; — Q> —
03 — Q4. We have E # 5P, because h°(2P +2R) =1. We take a point Qs
with Qs # P such that £ > Qs. Then we get

W(K~P—01~ 005~ 04— 05) =h'(E~Q5) = 1.
Since no four points of Q), @», O3, Q4 and Qs are collinear, there exists a

unique conic passing through all Q;s. Thus, we get h°(K — Q) — O, — Q3 —

04— Qs)=1.
In the case (vi) 3) let Q1, 0>, O3, Q4 and Qs be general points of C. Then
we have

h(K =P =01 =0~ Q03— 04— 05) = 0.
In the case (vii) we get the result by Corollary 2.8 in [7]. O
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