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WEIERSTRASS SEMIGROUPS ON DOUBLE COVERS

OF PLANE CURVES OF DEGREE 5

Seon Jeong Kim and Jiryo Komeda

Abstract

We investigate Weierstrass semigroups of ramification points on double covers of

plane curves of degree d. Using the results we determine all the Weierstrass semigroups

in the case d ¼ 5 when the genus of the covering curve is greater than 17 and the

ramification point is on a non-ordinary flex.

1. Introduction

Let C be a smooth irreducible curve of genus g, where a curve means a
projective curve over an algebraically closed field of characteristic 0. For a point
P of C we define the Weierstrass semigroup HðPÞ of P as follows:

HðPÞ ¼ fn A N0 j there is a rational function f on C such that ð f Þy ¼ nPg;
where N0 is the additive monoid of non-negative integers and ð f Þy means the
polar divisor of f . Then HðPÞ is a numerical semigroup of genus g, which means
a submonoid of N0 whose complement is a finite set with cardinality g. The
genus of a numerical semigroup H is denoted by gðHÞ. For a numerical
semigroup H we denote by d2ðHÞ the set consisting of the elements h for
2h A H, which is a numerical semigroup. For positive integers a1; . . . ; as we
denote by ha1; . . . ; asi the additive monoid generated by a1; . . . ; as.

We will study about the numerical semigroups H which are the Weierstrass
semigroups of ramification points on double covers of smooth plane curves of
degree d. In this paper such a numerical semigroup H is said to be of double
covering type of a plane curve, which is abbreviated to DCP. In this case, d2ðHÞ
is the Weierstrass semigroup of a point on a smooth plane curve of degree d.
If d2ðHÞ is the Weierstrass semigroup of a point on a smooth plane curve of
degree de 3, i.e., d2ðHÞ ¼ N0 or h2; 3i, then we can show that H is DCP (for
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example, see [8]). In the case d ¼ 4, i.e., d2ðHÞ ¼ h3; 4i; h3; 5; 7i or h4; 5; 6; 7i
the papers [9], [4], [5] and [6] show that every numerical semigroup H with
gðHÞf 6 is DCP except H ¼ h8; 10; 12; 14; n; nþ 4i with odd nf 9, H ¼
h7 ! 10; 12i and H ¼ h5; 7; 8i. The excluded semigroups are not DCP.

Let C be a smooth plane curve and P its point. Let Z be a plane curve.
We denote by C:Z the intersection divisor of C with Z. Moreover, let
ordPðC:ZÞ be the multiplicity of C:Z at P. We denote by TP the tangent
line at P on C. We note the following:

i) If P is a total flex on a smooth plane curve C of degree 5, i.e.,
ordP C:TP ¼ 5, then HðPÞ ¼ h4; 5i.

ii) If P is a point with ordP C:TP ¼ 4 on a smooth plane curve C of degree
5, then HðPÞ ¼ h4; 7; 10; 13i.

The following is the main result of this article:

Main Theorem. Let H be a numerical semigroup of genusf 18.
i) If d2ðHÞ ¼ h4; 5i, then H is DCP.
ii) Assume that d2ðHÞ ¼ h4; 7; 10; 13i. If H is distinct from 2d2ðHÞþ

hn; nþ 4i and 2d2ðHÞ þ hn; nþ 12i with odd nf 13, then it is DCP. The
excluded semigroups are not DCP.

Corollary 2.7 in Section 2 shows i) in the above theorem. Corollary 3.2 in
Section 3 and Theorem 4.2 in Section 4 mean ii) in Main Theorem.

2. Ramification points over total flexes

A numerical semigroup H is called an a-semigroup if the least positive
integer in H is a. For an a-semigroup H we set SðHÞ ¼ fa; s1; . . . ; sa�1g where
si ¼ minfh A H j h1 i mod ag, which is called the standard basis for H. Let d
be an integer which is larger than 2. In this section we set

Hd ¼ hd � 1; di and si ¼ id for 1e ie d � 2:

Then we have SðHdÞ ¼ fd � 1; s1; s2; . . . ; sd�2g:
First we will show that eight kinds of numerical semigroups H with

d2ðHÞ ¼ hd � 1; di are DCP. We use the following lemma when we calculate
the genera gðHÞ of such numerical semigroups H.

Lemma 2.1. Let m and l be positive integers with 2eme d � 1 and
le ððd �mÞdÞ=ðd � 1Þ. Let n be an odd number with nf dðd � 2Þ: Set

H ¼ 2Hd þ hn; nþ 2sd�m � 2lðd � 1Þi:
Then

H ¼ ð2Hd þ nN0ÞU fnþ sd�i � 2jðd � 1Þ j 2e iem; 1e je lg;

which implies that gðHÞ ¼ ðd � 1Þðd � 2Þ þ ðn� 1Þ=2� lðm� 1Þ:
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Proof. By the assumption on n and Remark 2.1 in [7] we have

Sð2Hd þ nN0Þ ¼ f2ðd � 1Þ; 2s1; . . . ; 2sd�2; n; nþ 2s1; . . . ; nþ 2sd�2g:

Assume that nþ 2sd�m�1 � 2ðd � 1Þ belongs to H. Then the element s A SðHÞ
with s1 nþ 2dðd �m� 1Þ mod 2ðd � 1Þ is written by

s ¼ nþ 2sd�m � 2lðd � 1Þ þ t;

where t is the minimum in H ¼ 2Hd þ hn; nþ 2sd�m � 2lðd � 1Þi with t1
2dðd � 2Þ mod 2ðd � 1Þ. Since

2ðnþ 2sd�m � 2lðd � 1ÞÞ � 2sd�2 ¼ 2ðn� sd�2Þ þ 4ðsd�m � lðd � 1ÞÞf 0

by the assumptions nf dðd � 2Þ and le ððd �mÞdÞ=ðd � 1Þ, we have t ¼ 2sd�2.
Hence, we get nþ 2sd�m�1 � 2ðd � 1Þf nþ 2sd�m � 2lðd � 1Þ þ 2sd�2; which
implies that ðl � 1Þðd � 1Þf ðd � 1Þd. Thus, we have lf d þ 1. Then the
assumption on l induces d þ 1e le ððd �mÞdÞ=ðd � 1Þ, which implies that

d 2 � 1 < ðd �mÞde ðd � 2Þd ¼ d 2 � 2d:

This is a contradiction. Therefore, we obtain nþ 2sd�m�1 � 2ðd � 1Þ B H:
Moreover, we will show that nþ 2sd�2 � 2ðl þ 1Þðd � 1Þ B H. Assume

that nþ 2sd�2 � 2ðl þ 1Þðd � 1Þ A H. Then the element s A SðHÞ with s1
nþ 2dðd � 2Þ mod 2ðd � 1Þ is written by

s ¼ nþ 2sd�m � 2lðd � 1Þ þ t;

where t is the minimum in H ¼ 2Hd þ hn; nþ 2sd�m � 2lðd � 1Þi with t1
2dðm� 2Þ mod 2ðd � 1Þ. Since

2ðnþ 2sd�m � 2lðd � 1ÞÞ � 2sm�2

¼ 2n� 4lðd � 1Þ þ 2dð2d � 3mþ 2Þf 2dðd �mÞf 2d > 0

by the assumptions nf dðd � 2Þ, le ððd �mÞdÞ=ðd � 1Þ and me d � 1, we have
t ¼ 2sm�2. Hence, we get

nþ 2sd�2 � 2ðl þ 1Þðd � 1Þf nþ 2sd�m � 2lðd � 1Þ þ 2sm�2;

which implies that 1f d. This is a contradiction.

! þ2 (nþ 2sd�m � 2lðd� 1Þ)
p

(nþ 2sd�m�1 � 2ðd� 1Þ) (nþ 2sd�3 � 2lðd � 1Þ) (nþ 2sd�2 � 2ðlþ 1Þðd � 1Þ)
� � � � � �
� � � � � � # þ2ðd � 1Þ

(nþ 2sd�m�1) � �
(nþ 2sd�m) � �

& þ2d (nþ 2sd�3) �
(nþ 2sd�2)

The elements of H ¼ 2Hd þ hn; nþ 2sd�m � 2lðd � 1Þi
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Let if 2 and jf l þ 1. Then

nþ 2sd�2 � 2ðl þ 1Þðd � 1Þ � ðnþ 2sd�i � 2jðd � 1ÞÞ
¼ 2ði � 2Þd þ 2ð j � l � 1Þðd � 1Þ A 2Hd :

Since nþ 2sd�2 � 2ðl þ 1Þðd � 1Þ B H, we must have nþ 2sd�i � 2jðd � 1Þ B H.
Let ifmþ 1 and jf 1. Then

nþ 2sd�m�1 � 2ðd � 1Þ � ðnþ 2sd�i � 2jðd � 1ÞÞ
¼ 2ði �m� 1Þd þ 2ð j � 1Þðd � 1Þ A 2Hd :

Since nþ 2sd�m�1 � 2ðd � 1Þ B H, we obtain nþ 2sd�i � 2jðd � 1Þ B H. Hence,
the largest odd number n 0 in the complement of H is nþ 2sd�m�1 � 2ðd � 1Þ or
nþ 2sd�2 � 2ðl þ 1Þðd � 1Þ and gðH þ hn 0iÞ ¼ gðHÞ � 1, which follows from the
above figure. Thus, we have

H ¼ ð2Hd þ nN0ÞU fnþ 2sd�i � 2jðd � 1Þ j 2e iem; 1e je lg;
because Hn2Hd contains no even number. Since we have gð2Hd þ nN0Þ ¼
ðd � 1Þðd � 2Þ þ ðn� 1Þ=2, we get our desired result. r

In the rest of this section we are in the following situation: Let C be a
smooth plane curve of degree df 5 with a point P satisfying ordP C:TP ¼ d, i.e.,
HðPÞ ¼ Hd . We state the following Namba’s famous lemma (see Lemma 2.3.2
in [12]), since it plays an important role in the calculation of ordPðC1:C2Þ, which
is the intersection multiplicity of plane curves C1 and C2 at P.

Lemma 2.2. Let C1, C2 and C3 be plane curves. Assume that C1 is irre-
ducible and is neither a component of C2 nor of C3. Let P be a smooth point of
C1. Then

ordPðC2:C3ÞfminfordPðC1:C2Þ; ordPðC1:C3Þg:

The following lemma is useful for determining the Weierstrass semigroup of a
ramification point on a double cover of a plane curve.

Lemma 2.3. Let Cd�3 be a plane curve of degree d � 3 such that
ordPðCd�3:CÞf ðd � 3� lÞd with an integer le d � 4. Then Cd�3 ¼ T d�3�l

P Cl ,
where Cl is a plane curve of degree l, which implies that ordPðCl :CÞf
ordPðCd�3:CÞ � ðd � 3� lÞd.

Proof. We have ordPðT d�3�l
P :CÞ ¼ ðd � 3� lÞd. Hence, by the assump-

tion and Lemma 2.2 we get ordPðCd�3:T
d�3�l
P Þf ðd � 3� lÞd. Thus, we have

Cd�3 ¼ TPCd�4, where Cd�4 is a plane curve of degree d � 4. Moreover, we get

ordPðCd�4:CÞf ðd � 4� lÞd and ordPðT d�4�l
P :CÞ ¼ ðd � 4� lÞd;

which implies that ordPðCd�4:T
d�4�l
P Þf ðd � 4� lÞd. Hence, we get Cd�3 ¼

T 2
PCd�5 if d � 4� lf 1, where Cd�5 is a plane curve of degree d � 5. Using this
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method successively we get Cd�3 ¼ T d�3�l
P Cl , where Cl is a plane curve of

degree l. r

To prove that a numerical semigroup is DCP we use the following theorem many
times, which is stated in Theorem 2.2 of [9].

Theorem 2.4. Let H be a numerical semigroup. Set

n ¼ minfh A H j h is oddg:
Then

gðHÞ ¼ 2gðd2ðHÞÞ þ ðn� 1Þ=2� r

with some non-negative integer r ( for example, see Lemma 3.1 in [4]). Assume
that d2ðHÞ is Weierstrass. Take a pointed curve ðC;PÞ with HðPÞ ¼ d2ðHÞ. Let
Q1; . . . ;Qr be points of C di¤erent from P with h0ðQ1 þ � � � þQrÞ ¼ 1. Moreover,
assume that H has an expression

H ¼ 2d2ðHÞ þ hn; nþ 2l1; . . . ; nþ 2lsi

of generators with positive integers l1; . . . ; ls such that

h0ðliPþQ1 þ � � � þQrÞ ¼ h0ððli � 1ÞPþQ1 þ � � � þQrÞ þ 1

for all i. If the divisor nP� 2Q1 � � � � � 2Qr is linearly equivalent to some
reduced divisor not containing P, then there is a double covering p : ~CC ! C
with a ramification point ~PP over P satisfying Hð ~PPÞ ¼ H.

We may replace the assumption in Theorem 2.2 of [9] that the complete
linear system jnP� 2Q1 � � � � � 2Qrj is base point free by the above assumption
that the divisor nP� 2Q1 � � � � � 2Qr is linearly equivalent to some reduced
divisor not containing P, because the same proof as in Theorem 2.2 of [9] works
well under our assumption.

Theorem 2.5. Let n be an odd number with nf dðd � 2Þ. Let Hd denote
HðPÞ ¼ hd � 1; di. Let H be a numerical semigroup which is one of the
following:

(i) 2Hd þ hn; nþ 2t1i with t1 ¼ sd�2 � lðd � 1Þ where l is a positive integer
with le d � 2 and nf ðd � 1Þðd � 2Þ þ 1þ 2l:

(ii) 2Hd þ hn; nþ 2t1i with t1 ¼ sd�m � ðd � 1Þ where m is an integer with
2eme d � 1 and nf ðd � 1Þðd � 2Þ � 1þ 2m.

(iii) 2Hd þ hn; nþ 2t1i with t1 ¼ sd�m � 2ðd � 1Þ where m is an integer with
2eme d � 2 and nf ðd � 1Þðd � 2Þ � 3þ 4m.

(iv) 2Hd þ hn; nþ 2t1; nþ 2t2i with t1 ¼ sd�2 � 2ðd � 1Þ and t2 ¼ sd�m �
ðd � 1Þ where m is an integer with 3emed � 1 and nfðd � 1Þðd � 2Þ
þ 1þ 2m.

(v) 2Hd þ hn; nþ 2t1; nþ 2t2i with t1 ¼ sd�2 � lðd � 1Þ and t2 ¼ sd�3 �
ðd � 1Þ where l is an integer with 3e le d � 2 and nf ðd � 1Þðd � 2Þ
þ 3þ 2l.
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(vi) 2Hd þ hn; nþ 2t1; nþ 2t2i with t1 ¼ sd�4 � ðd � 1Þ and t2 ¼ sd�2 �
3ðd � 1Þ where nf ðd � 1Þðd � 2Þ þ 11:

(vii) 2Hd þ hn; nþ 2t1; nþ 2t2i with t1 ¼ sd�3 � 2ðd � 1Þ and t2 ¼ sd�2 �
3ðd � 1Þ where nf ðd � 1Þðd � 2Þ þ 11:

(viii) 2Hd þ hn; nþ 2t1; nþ 2t2i with t1 ¼ sd�4 � ðd � 1Þ and t2 ¼ sd�3 �
2ðd � 1Þ where nf ðd � 1Þðd � 2Þ þ 11:

Then H is DCP.

Proof. To prove that H is DCP we use Theorem 2.2 in [9]. We show step
by step that H satisfies the conditions of the theorem in [9].

Step 1. By Lemma 2.1 we have

gðHÞ ¼ ðd � 1Þðd � 2Þ þ n� 1

2
� r

where (i) r ¼ l, (ii) r ¼ m� 1 and (iii) r ¼ 2ðm� 1Þ.
(iv) We note that nþ 2sd�2 � 4ðd � 1Þ is the largest number in the com-

plement of the semigroup 2hd � 1; diþ hn; nþ 2sd�m � 2ðd � 1Þi in N0 (see the
figure below).

! þ2

(nþ 2sd�m � 2ðd � 1Þ)
p # þ2ðd � 1Þ
� (nþ 2sd�2 � 4ðd � 1Þ)

(nþ 2sd�m) � � � � p
� �

& þ2d (nþ 2sd�3) �
(nþ 2sd�2)

The elements of H ¼ 2hd � 1; diþ hn; nþ 2sd�2 � 4ðd � 1Þ; nþ 2sd�m � 2ðd � 1Þi

Using Lemma 2.1 we get r ¼ m.
(v) We have r ¼ l þ 1. In fact, we note that

nþ 2sd�3 � 2ðd � 1Þ � ðnþ 2sd�2 � 2ðl þ 1Þðd � 1ÞÞ ¼ 2ððl � 1Þðd � 1Þ � 1Þ > 0;

which implies that nþ 2sd�3 � 2ðd � 1Þ is the largest number in the complement
of the semigroup 2hd � 1; diþ hn; nþ 2sd�2 � 2lðd � 1Þi in N0. Using Lemma
2.1 we get r ¼ l þ 1.

(vi) We have r ¼ 5. In fact, we have the following figure:

(nþ 2sd�4 � 2ðd � 1Þ) (nþ 2sd�2 � 6ðd � 1Þ)
p p
� � �

(nþ 2sd�4) � �
(nþ 2sd�3) �

(nþ 2sd�2)
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(vii) We have r ¼ 5. In fact, we have the following figure:

(nþ 2sd�3 � 4ðd � 1Þ) (nþ 2sd�2 � 6ðd � 1Þ)
p p
� �
� �

(nþ 2sd�3) �
(nþ 2sd�2)

(viii) We have r ¼ 5. In fact, we have the following figure:

(nþ 2sd�4 � 2ðd � 1Þ) (nþ 2sd�3 � 4ðd � 1Þ)
p p
� � �

(nþ 2sd�4) � �
(nþ 2sd�3) �

(nþ 2sd�2)

Step 2. Let E be a divisor of degree n� 2r on a smooth plane curve
of degree d. By the assumption on n in each case we have deg Ef

ðd � 2Þðd � 1Þ þ 1, which implies that E is very ample.

Step 3. In each case we choose r points Q1; . . . ;Qr of C with Qi 0P for all
i satisfying the equality

h0ðQ1 þ � � � þQrÞ ¼ 1:ð1Þ
To choose the points Q1; . . . ;Qr satisfying the equality (1) we use the following:
Let P1; . . . ;Pk ðke dÞ be points on a smooth plane curve of degree df 4. Then
h0ðP1 þ � � � þ PkÞ ¼ 1 unless kf d � 1 and at least d � 1 points of P1; . . . ;Pk are
collinear. This follows from the fact that a smooth plane curve of degree df 4
is ðd � 1Þ-gonal and has a unique g2d , which is cut out by lines. The latter fact is
called Namba’s Theorem (see [12]).

(i) Let us take a line L with L dP. We set L:C ¼ Q1 þ � � � þQd with
Qi 0P for all i. Since C is ðd � 1Þ-gonal (see [1]), we have the equality (1)
because r ¼ le d � 2.

(ii) Let L be a line through P distinct from the tangent line TP. We set
L:C ¼ PþQ1 þ � � � þQd�1 with Qi 0P, all i. Then we have the equality (1)
because r ¼ m� 1e d � 2.

(iii) Take two distinct lines L1 and L2 through P di¤erent from TP. We set

L1:C ¼ Pþ R1 þ � � � þ Rd�1 and L2:C ¼ Pþ S1 þ � � � þ Sd�1:

Then

h0ðR1 þ � � � þ Rm�1 þ S1 þ � � � þ Sm�1Þ ¼ 1:ð2Þ
Indeed, we have

jR1 þ � � � þ Rm�1 þ S1 þ � � � þ Sm�1j ¼ jL1 þ L2 � Ej;
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where E is an e¤ective divisor of degreef 6. It is known that a complete linear
system of degree at most 2d � 5 on a smooth plane curve of degree df 4 is
zero-dimensional or empty unless its free part is a g1d�1 or a g2d (and hence it
contains at least d � 1 collinear points). This fact follows from Theorem 3.1 in
[3]. Hence we get the equality (2). We set Qi ¼ Ri for i ¼ 1; . . . ;m� 1 and
Qm�1þi ¼ Si for i ¼ 1; . . . ;m� 1. Hence we get the equality (1).

(iv) Let L be a line through P, distinct from TP. We set L:C ¼
Pþ R1 þ � � � þ Rd�1. For i ¼ 1; . . . ;m� 1 we set Qi ¼ Ri and take a point
Qm A C which is not in L. If r ¼ me d � 2, we get the equality (1). Hence, we
may assume that m ¼ d � 1. Since Q1; . . . ;Qd�1 are not collinear, we get the
equality (1).

(v) Let L be a line not passing through P with L:C ¼ R1 þ � � � þ Rd . We
set Qi ¼ Ri for i ¼ 1; . . . ; l. Choose Qlþ1 A C with Qlþ1 0P and Qlþ1 B L. By
the same way as in (iv) we get the equality (1).

(vi) Let L be a line through P with L0TP and L:C ¼ Pþ R1 þ � � � þ Rd�1.
We set Q1 ¼ R1, Q2 ¼ R2 and Q3 ¼ R3. Take two distinct points Q4 and
Q5 of C which do not belong to the line L such that the line LQ4;Q5

through
Q4 and Q5 does not contain P. It su‰ces to show the equality in the case
d ¼ 5; 6. Let d ¼ 5. Take a curve C2 of degree 2 with C2:CfQ1 þ � � � þQ5.
Since we have L:CfQ1 þQ2 þQ3, we get C2:LfQ1 þQ2 þQ3. Hence, we
have C2 ¼ LL1 where L1 is a line. Since the line L contains neither Q4 nor
Q5, a line L1 must contain Q4 and Q5. Hence, L1 is uniquely determined.
Thus, C2 is uniquely determined. Therefore, we get h0ðQ1 þ � � � þQ5Þ ¼ 1. Let
d ¼ 6. The points Q1; . . . ;Q5 are not collinear. Hence we obtain the equality
(1).

(vii) Let Q1; . . . ;Q5 be general points. Then we get the equality (1).
(viii) Let L1 be a line through P with L1 0TP and L1:C ¼ Pþ R1 þ � � � þ

Rd�1: We set Q1 ¼ R1 and Q2 ¼ R2. Take a point Q3 of C which does not
belong to the line L1. Let L2 be the line through Q3 and P. We set L2:C ¼
PþQ3 þ S1 þ � � � þ Sd�2. Let Q4 ¼ S1 and Q5 ¼ S2. Then we have Q4;Q5 B
fQ1;Q2g and L2:C =fQi for i ¼ 1; 2. It su‰ces to show the equality in the
case d ¼ 5; 6. Let d ¼ 5. Let C2 be a conic with C2:CfQ1 þ � � � þQ5. Since
L2:CfQ3 þQ4 þQ5, we obtain C2 ¼ L2L where L is a line. Now we have
Q1 þ � � � þQ5 eL2:C þ L:C, which implies that L:CfQ1 þQ2. Hence, we get
L ¼ L1. Thus, a conic C2 is uniquely determined. Let d ¼ 6. The points
Q1 . . . ;Q5 are not collinear. Thus, we have the equality (1).

Step 4. We set Dr ¼ Q1 þ � � � þQr. In this step Ci means a plane curve
of degree i. We will show that

h0ðK � tiP�DrÞ ¼ h0ðK � ðti � 1ÞP�DrÞ

for i ¼ 1; 2 where K is a canonical divisor on C. Let Cd�3:Cf ðti � 1ÞPþDr.
It su‰ces to show that Cd�3:Cf tiPþDr because of the fact that
H 0ðP2;OP2ðd � 3ÞÞFH 0ðC;OCðKÞÞ.
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(i) By Lemma 2.3 we obtain Cd�3 ¼ T d�2�l
P Cl�1. Hence, we have

T d�2�l
P :C þ Cl�1:Cf ðt1 � 1ÞPþDr ¼ ðd � 2� lÞdPþ ðl � 1ÞPþDr;

which implies that Cl�1:Cf ðl � 1ÞPþDr: Thus, we get L:Cl�1 fDr where L
is as in Step 3. In view of r ¼ l we get Cl�1 ¼ LCl�2, which implies that Cd�3 ¼
T d�2�l
P LCl�2. Moreover, we obtain

ðd � 2� lÞdPþQ1 þ � � � þQd þ Cl�2:Cf ððd � 2� lÞd þ l � 1ÞPþDr:

Hence, we get Cl�2:Cf ðl � 1ÞP. Since TP:C ¼ dP and d � 3f l � 1, we have
Cl�2:TP f ðl � 1ÞP, which implies that Cl�2 ¼ TPCl�3. Thus, we get Cd�3 ¼
T d�1�l
P LCl�3. Therefore, we have

Cd�3:C ¼ T d�1�l
P :C þ L:C þ Cl�3:C

f ðd � 1� lÞdPþDr > ððd � 2� lÞd þ lÞPþDr:

(ii) By Lemma 2.3 we get Cd�3 ¼ T d�m�1
P Cm�2. Hence, we have

ðd �m� 1ÞdPþ Cm�2:C ¼ ðd �m� 1ÞTP:C þ Cm�2:Cf ðd �m� 1ÞdPþDr;

which implies that Cm�2:CfDr. Since L:CfDr, we have L:Cm�2 fDr, which
implies that Cm�2 ¼ LCm�3. Thus, we obtain Cd�3 ¼ T d�m�1

P LCm�3. Hence,
we have

Cd�3:C ¼ ðd �m� 1ÞdPþ L:C þ Cm�3:Cf ðd �m� 1ÞdPþ PþDr ¼ t1PþDr:

(iii) By Lemma 2.3 we obtain Cd�3 ¼ T d�2�m
P Cm�1, which implies that

Cm�1:CfPþDr: On the other hand, we have

L1:CfPþQ1 þ � � � þQm�1 and L2:CfPþQm þ � � � þQ2ðm�1Þ;

from which we get

Cm�1:L1 fPþQ1 þ � � � þQm�1 and Cm�1:L2 fPþQm þ � � � þQ2ðm�1Þ:

Hence, we obtain Cm�1 ¼ L1L2Cm�3. Thus, we get

Cd�3:C ¼ T d�2�m
P L1L2Cm�3:CfT d�2�m

P :C þ L1:C þ L2:C

f ððd � 2�mÞd þ 2ÞPþDr ¼ t1PþDr:

(iv) Let ti ¼ t2. By Lemma 2.3 we obtain Cd�3 ¼ T d�m�1
P Cm�2, which

implies that Cm�2:CfDr. Hence, we get Cm�2:LfQ1 þ � � � þQm�1, which
implies that Cm�2 ¼ LCm�3. Thus, we have Cd�3 ¼ T d�m�1

P LCm�3. Hence,
we obtain

Cd�3:C ¼ T d�m�1
P :C þ L:C þ Cm�3:Cf ððd �m� 1Þd þ 1ÞP;

which implies that Cd�3:Cf ððd �m� 1Þd þ 1ÞPþDr ¼ t2PþDr.
We have

h0ðK � ðt1 � 1ÞP�Q1Þ ¼ h0ððd � 1ÞP�Q1Þ ¼ 1:
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Hence, there is a unique e¤ective divisor E which is linearly equivalent to
ðd � 1ÞP�Q1. Then E should be Q2 þ � � � þQm�1 þ Rm þ � � � þ Rd�1, because
we have

dP ¼ TP:C@L:C ¼ PþQ1 þQ2 þ � � � þQm�1 þ Rm þ � � � þ Rd�1:

Since Qm is di¤erent from Q1; . . . ;Qm�1, Rm; . . . ;Rd�1, we get

h0ððd � 1ÞP�Q1 �Qm �Q2 � � � � �Qm�1Þ ¼ 0:

Thus, it follows that 0 ¼ h0ðK � ðt1 � 1ÞP�DrÞ ¼ h0ðK � t1P�DrÞ.
(v) Let ti ¼ t1. By Lemma 2.3 we obtain Cd�3 ¼ T d�2�l

P Cl�1. Hence, we
get Cl�1:Cf ðl � 1ÞPþDr. Moreover, we have L:C ¼ Q1 þ � � � þQr�1 þ Rlþ1

þ � þRd . Thus, we obtain Cl�1:LfQ1 þ � � � þQr�1, which implies that Cl�1 ¼
LCl�2. Hence, we get Cd�3 ¼ T d�2�l

P LCl�2. Moreover, we have

Q1 þ � � � þQr�1 þ Rlþ1 þ � þ Rd þ Cl�2:C ¼ L:C þ Cl�2:Cf ðl � 1ÞPþDr;

which implies that Cl�2:Cf ðl � 1ÞPþQr: Hence, we get Cl�2:TP f ðl � 1ÞP.
Thus, we have Cl�2 ¼ TPCl�3. Hence, we get Cd�3 ¼ T d�2�l

P LTPCl�3. There-
fore, we obtain

Cd�3:Cf ðd � 2� lÞdPþQ1 þ � � � þQl þ dPþQlþ1 > t1PþDr:

We have K � ðt2 � 1ÞP@ ðd 2 � 3d � d 2 þ 4dÞP ¼ dP where t2 ¼ ðd � 4Þd þ 1.
Since C is ðd � 1Þ-gonal, we get h0ðdP�Q1 �Q2Þ ¼ 1. We note that Qlþ1 is
general. Hence, we get h0ðdP�Q1 �Q2 �Qlþ1Þ ¼ 0. Thus, we get

0 ¼ h0ðK � ðt2 � 1ÞP�DrÞ ¼ h0ðK � t2P�DrÞ:

(vi) Let ti ¼ t1. By Lemma 2.3 we have Cd�3 ¼ T d�5
P C2. Hence, we get

C:C2 fQ1 þ � � � þQ5, which implies that C2:LfQ1 þQ2 þQ3. Therefore, we
obtain C2 ¼ LLQ4;Q5

. Hence, we have

Cd�3:C ¼ T d�5
P :C þ L:C þ LQ4;Q5

:C

¼ dðd � 5ÞPþ PþQ1 þQ2 þQ3 þ R4 þ � � � þ Rd�1 þ LQ4;Q5
:C;

which implies that Cd�3:Cf t1PþDr.
Suppose that there exists a curve Cd�3 such that Cd�3:Cf ðt2 � 1ÞPþDr,

where t2 ¼ ðd � 5Þd þ 3. By Lemma 2.3 and the above method we have Cd�3 ¼
T d�5
P LLQ4;Q5

. Then we obtain

ðd � 5Þd þ 2e ordP Cd�3:C ¼ ðd � 5Þd þ 1;

which is a contradiction. Hence, we get

0 ¼ h0ðK � ðt2 � 1ÞP�DrÞ ¼ h0ðK � t2P�DrÞ:
(vii) We have

h0ðK � ðt1 � 1ÞP�DrÞ ¼ h0ðð2d � 1ÞP� ðQ1 þ � � � þQ5ÞÞ ¼ 5� 5 ¼ 0;
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because Q1; . . . ;Q5 are general points. It is enough to show that
h0ðK � ðt2 � 1ÞP�DrÞ ¼ 0, which is clear since t2 ¼ t1 þ 1.

(viii) Let ti ¼ t1. We get Cd�3 ¼ T d�5
P C2. Hence, we have C:C2 fQ1

þ � � � þQ5. Since C:L2 fQ3 þQ4 þQ5, we have C2 ¼ L1L2, which implies that

1 ¼ h0ðK � ðt1 � 1ÞP�DrÞ ¼ h0ðK � t1P�DrÞ ¼ h0ðK � t2P�DrÞ:

Step 5. By Step 2 the divisor nP� 2Q1 � � � � � 2Qr is very ample. It
follows from Step 4 and Theorem 2.2 in [9] that H is DCP. r

In the rest of this section we denote by H a numerical semigoroup with d2ðHÞ ¼
h4; 5i. Using Theorem 2.5 we will prove that the numerical semigroup H is
DCP. Let n be the least odd number in H. In the following figure a cross �
is one of the candidates of the elements N0nH which are odd numbers larger
than n.

! þ2 ðnþ 2Þ ðnþ 4Þ ðnþ 6Þ
� � � � #
ðnÞ � � � þ8

ðnþ 10Þ � �
& þ10 ðnþ 20Þ �

ðnþ 30Þ

The candidates of odd gaps > n

In fact, for any odd nf 13 we have

Sð2h4; 5iþ nN0Þ ¼ f8; 10; 20; 30; n; nþ 10; nþ 20; nþ 30g
(see [7] if nf 15). We note that HP 2h4; 5iþ nN0.

Lemma 2.6. A numerical semigroup H with d2ðHÞ ¼ h4; 5i and the least odd
number nf 13 in H is one of the following:

(a) Hn ¼ 2h4; 5iþ nN0, (b) Hn þ hnþ 2ti, t ¼ 1; 2; 3; 6; 7; 11,
(c) Hn þ hnþ 2t; nþ 14i, t ¼ 1; 6, (d) Hn þ hnþ 6; nþ 12i, (e) Hn þ hnþ 4;

nþ 6i,
(f ) Hn þ hnþ 2; nþ 4; nþ 6i, (g) Hn þ hnþ 2; nþ 6i, (h) Hn þ hnþ 2; nþ 4i.

Proof. By the figure ‘‘The candidates of odd gaps > n’’ we get the clas-
sification. r

Applying Theorem 2.5 to the cases of Lemma 2.6 we get the following:

Corollary 2.7. Let H be a numerical semigroup of genusf 18 with
d2ðHÞ ¼ h4; 5i. Then H is DCP.

Proof. We use the classification in Lemma 2.6, because the least odd
number ne 11 in H implies gðHÞe gð2h4; 5iþ nN0Þe 2 � 6þ ð11� 1Þ=2 ¼ 17.
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In the case (a) by Proposition 2.3 in [7] we get the result if gðHÞf 18.
In the case (b) we can apply Theorem 2.5 (i) to the cases t ¼ 3; 7; 11 if

gðHÞf 18. We can apply Theorem 2.5 (ii) to the cases t ¼ 1; 6 if gðHÞf 18.
Theorem 2.5 (iii) is applied to the case t ¼ 2 if gðHÞf 18. We can apply
Theorem 2.5 (iv), (v), (vii), (vi) and (viii) to the cases (c), (d), (e), (g) and (h)
respectively if gðHÞf 18.

By Lemma 2.3 and Proposition 2.4 in [9] we get the result (f ) if gðHÞf 18.
r

3. Non-DCP numerical semigroups

By [9] we know that any numerical semigroup H of genus gf 9 with
d2ðHÞ ¼ h3; 5; 7i is DCP. We note that a point P on a smooth plane curve C
of degree 4 with HðPÞ ¼ h3; 5; 7i satisfies ordPðC:TPÞ ¼ 3. But the following
theorem shows that for any df 5 there is a numerical semigroup H whose d2ðHÞ
is the Weierstrass semigroup of a point P on a plane curve C of degree d with
ordP C:TP ¼ d � 1 such that H is not DCP. In this case we have

d2ðHÞ ¼ hd � 1; d � 1þ d � 2; 2ðd � 1Þ þ d � 3; . . . ; ðd � 2Þðd � 1Þ þ 1i ðsee ½2�Þ;
which is denoted by H 0

d . In this section we assume that df 5.

Theorem 3.1. Let n be an odd number with nf ðd � 2Þðd � 1Þ þ 1. As-
sume that H is 2H 0

d þ hn; nþ 2ti with t ¼ ðd � 3Þðd � 1Þ þ 2� lðd � 1Þ for l ¼ 1
or 2. Then the semigroup H is not DCP.

Proof. We have the standard basis SðH 0
dÞ ¼ fd � 1; s1; . . . ; sd�2g for H 0

d ,
where si ¼ ðd � 1� iÞðd � 1Þ þ i for all i. It follows from the condition nf
ðd � 2Þðd � 1Þ þ 1 and Remark 2.1 in [7] that

Sð2H 0
d þ nN0Þ ¼ f2ðd � 1Þ; 2s1; . . . ; 2sd�2gU fn; nþ 2s1; . . . ; nþ 2sd�2g:

By Remark 2.1 in [7] we have gð2H 0
d þ nN0Þ ¼ 2gðH 0

dÞ þ ðn� 1Þ=2.

Step 1. We obtain gðHÞ ¼ 2gðH 0
dÞ þ ðn� 1Þ=2� r, where r ¼ 1 and 3 for

l ¼ 1 and l ¼ 2 respectively. Indeed, if l ¼ 1, then the set Hnð2H 0
d þ hniÞ

consists of one element nþ 2ððd � 3Þðd � 1Þ þ 2� ðd � 1ÞÞ, which implies that
r ¼ 1. The semigroup H with l ¼ 2 contains the following three elements � in
the figure below:

! þ2 (nþ 2ððd � 3Þðd � 1Þ þ 2� 2ðd � 1ÞÞ)
� � � � # þ2ðd � 1Þ
� � �
� � . þ2ðd � 2Þ
� (nþ 2ððd � 3Þðd � 1Þ þ 2Þ)

(nþ 2ððd � 2Þðd � 1Þ þ 1Þ)

The elements of H ¼ 2H 0
d þ nN0 þ ðnþ 2ððd � 3Þðd � 1Þ þ 2� 2ðd � 1ÞÞÞN0
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Assume that there is a double covering p : ~CC ! C with a ramification point
~PP over a point P with Hð ~PPÞ ¼ H.

Step 2. There are r points Q1; . . . ;Qr distinct from P such that 2D is

linearly equivalent to a reduced divisor containing P, where D ¼ nþ 1

2
P�Dr

with Dr ¼ Q1 þ � � � þQr.

Step 3. We show that the equality h0ðK � tP�DrÞ ¼ h0ðK � ðt� 1ÞP�DrÞ
induces a contradiction. Let TP:C ¼ ðd � 1ÞPþQ with Q0P.

First, let l ¼ 1. We consider the case Q1 ¼ Q. Let Cd�3 ¼ T d�4
P L with a

line L passing through P with L0TP. Then in view of df 5 we have

Cd�3:C ¼ ðd � 4Þðd � 1ÞPþ ðd � 4ÞQ1 þ L:C

f ðd � 4Þðd � 1ÞPþQ1 þ P ¼ ððd � 4Þðd � 1Þ þ 1ÞPþQ1

and Cd�3:C =f ððd � 4Þðd � 1Þ þ 2ÞP. This is a contradiction.
We consider the case with Q1 0Q. We set Cd�3 ¼ T d�4

P L with the line L
passing through P and Q1 which is a reducible curve of degree d � 3. In view
of Q1 0Q we note that L0TP. Then

Cd�3:C ¼ T d�4
P :C þ L:C ¼ ðd � 4Þðd � 1ÞPþ ðd � 4ÞQþ L:C

f ðd � 4Þðd � 1ÞPþ ðd � 4ÞQþ PþQ1 f ððd � 4Þðd � 1Þ þ 1ÞPþQ1:

But Cd�3:C =f ððd � 4Þðd � 1Þ þ 2ÞP. This is a contradiction.
Next, let l ¼ 2. We consider the case Q1 ¼ Q2 ¼ Q3 ¼ Q.

Let d ¼ 5. Assume that h0ðK � P� 3QÞ ¼ h0ðK � 2P� 3QÞ. Let C2 be
a conic such that C2:Cf 2Pþ 3Q. Then C2:TP f 2PþQ. Hence, we get
C2 ¼ TPL where L is a line. Moreover, we have

2Pþ 3QeC2:C ¼ TPL:C ¼ TP:C þ L:C ¼ 4PþQþ L:C;

which implies that L ¼ TQ. Hence, we get C2 ¼ TPTQ. Thus, we obtain

1 ¼ h0ðK � 2P� 3QÞ ¼ h0ðK � P� 3QÞ ¼ 6þ 1� 6þ h0ðPþ 3QÞf 2;

which is a contradiction.
Let df 6. Let L1 be a line through P which is distinct from TP. We set

L0 ¼ TQ. Then in view of df 6 we have

T d�5
P L1L0:Cf ðd � 5Þðd � 1ÞPþ ðd � 5ÞQþ Pþ 2Q

¼ ððd � 5Þðd � 1Þ þ 1ÞPþ ðd � 3ÞQf ððd � 5Þðd � 1Þ þ 1ÞPþ 3Q:

But we get T d�5
P L1L0:C =f ððd � 5Þðd � 1Þ þ 2ÞP. This is a contradiction.

We consider the case Q1 0Q when we renumber Q1, Q2 and Q3. Let L0 be
the line such that L0:CfQ2 þQ3. If L0 C P, then we take L1 as a line through
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Q1 and not containing P. If L0 dP, then we take L1 as the line through Q1

and P. Then we get

L0L1T
d�5
p :Cf ððd � 5Þðd � 1Þ þ 1ÞPþQ1 þQ2 þQ3

and L0L1T
d�5
p :C =f ððd � 5Þðd � 1Þ þ 2ÞP. This is a contradiction. r

In the case d ¼ 5 we get the following by Theorem 3.1:

Corollary 3.2. Set HðnÞ ¼ 2h4; 7; 10; 13iþ nN0, where n is an odd number
with nf 13. Then neither HðnÞ þ hnþ 4i nor HðnÞ þ hnþ 12i is DCP.

4. Double coverings of plane curves of degree 5

In this section H denotes a numerical semigroup with d2ðHÞ ¼ h4; 7; 10; 13i.
Let n be the least odd number in H. Then we note that gðHÞe 12þ ðn� 1Þ=2
(for example, see Lemma 3.1 in [4]). Assume that nf 13. In the following
figure a cross � is one of the candidates of the odd numbers in N0nH which are
larger than n.

! þ2 ðnþ 2Þ ðnþ 4Þ ðnþ 6Þ
� � � � #
ðnÞ � � � þ8

� � ðnþ 14Þ
� ðnþ 20Þ . þ6

ðnþ 26Þ

The candidates of odd gaps > n

We get 6þ ðn� 1Þ=2e gðHÞe 12þ ðn� 1Þ=2 by Lemma 2.2 in [7]. Hence, we
set gðHÞ ¼ 12þ ðn� 1Þ=2� r with 0e re 6. By the above figure ‘‘The can-
didates of odd gaps > n’’ the numerical semigroups H are determined as follows:

Lemma 4.1. Set HðnÞ ¼ 2h4; 7; 10; 13iþ nN0. Then H is one of the fol-
lowing:

(i) If gðHÞ ¼ 12þ ðn� 1Þ=2, then H ¼ HðnÞ.
(ii) If gðHÞ ¼ 11þ ðn� 1Þ=2, then H is either
1) HðnÞ þ hnþ 6i or 2) HðnÞ þ hnþ 12i or 3) HðnÞ þ hnþ 18i.
(iii) If gðHÞ ¼ 10þ ðn� 1Þ=2, then H is either
1) HðnÞ þ hnþ 6; nþ 12i or 2) HðnÞ þ hnþ 6; nþ 18i or 3) HðnÞ þ hnþ 10i

or 4) HðnÞ þ hnþ 12; nþ 18i.
(iv) If gðHÞ ¼ 9þ ðn� 1Þ=2, then H is either
1) HðnÞ þ hnþ 2i or 2) HðnÞ þ hnþ 4i or 3) HðnÞ þ hnþ 6; nþ 10i or

4) HðnÞ þ hnþ 6; nþ 12; nþ 18i or 5) HðnÞ þ hnþ 10; nþ 12i.
(v) If gðHÞ ¼ 8þ ðn� 1Þ=2, then H is either
1) HðnÞ þ hnþ 2; nþ 6i or 2) HðnÞ þ hnþ 2; nþ 12i or 3) HðnÞ þ hnþ 4;

nþ 6i or 4) HðnÞ þ hnþ 4; nþ 10i or 5) HðnÞ þ hnþ 6; nþ 10; nþ 12i.
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(vi) If gðHÞ ¼ 7þ ðn� 1Þ=2, then H is either
1) HðnÞ þ hnþ 2; nþ 4i or 2) HðnÞ þ hnþ 2; nþ 6; nþ 12i or 3) HðnÞþ

hnþ 4; nþ 6; nþ 10i.
(vii) If gðHÞ ¼ 6þ ðn� 1Þ=2, then H ¼ HðnÞ þ hnþ 2; nþ 4; nþ 6i.

Theorem 4.2. If g ¼ gðHÞf 18, then the numerical semigroup H except for
(ii) 2) and (iv) 2) is DCP.

Proof. We give the proofs according to the cases given in Lemma 4.1.
Let ðC;PÞ be a pointed plane curve with HðPÞ ¼ h4; 7; 10; 13i. Then we have
TPðCÞ:C ¼ 4Pþ R with some point R0P, which implies that K @ 8Pþ 2R.
To show that H is DCP we use Theorem 2.2 in [9]. So, we need to choose r
points Q1; . . . ;Qr of C satisfying the assumptions of the theorem in [9]. We set

D ¼ nþ 1

2
P�Q1 � � � � �Qr. Then we note that

degð2D� PÞ ¼ n� 2r ¼ 2g� 23f 36� 23 ¼ 13

because gðHÞf 18. Hence, the divisor 2D� P is very ample.
In the case (i) it follows from Proposition 2.3 in [7] that H is DCP.
We consider the case (ii) 1). Let Q1 ¼ R. Since C is not trigonal, we get

h0ð2Pþ RÞ ¼ 1. It is clear that h0ð3Pþ RÞ ¼ 2 since j4Pþ Rj is a net without
base points. Thus, we get the result. Theorem 3.1 implies that H is not DCP
in the case (ii) 2). In the case (ii) 3) it follows from Proposition 2.4 in [7] that H
is DCP.

Let H be the semigroup in the case (iii) 1). We set Q1 ¼ Q2 ¼ R. We have

h0ð2Pþ 2RÞ ¼ 4þ 1� 6þ h0ð6PÞ ¼ 1 and

h0ð3Pþ 2RÞ ¼ 5þ 1� 6þ h0ð5PÞ ¼ 2:

Moreover, we get

h0ð5Pþ 2RÞ ¼ 7þ 1� 6þ h0ð3PÞ ¼ 3 and

h0ð6Pþ 2RÞ ¼ 8þ 1� 6þ h0ð2PÞ ¼ 4:

In the case (iii) 2) we take a general point Q. Let Q1 ¼ R and Q2 ¼ Q.
Then we have h0ð9Pþ RþQÞ ¼ 6 and h0ð8Pþ RþQÞ ¼ 5, because of 8Pþ Rþ
QS 8Pþ 2R@K . Moreover, we get h0ð2Pþ RþQÞ ¼ �1þ h0ð6Pþ R�QÞ.
Now we have

h0ð6Pþ RÞ ¼ 2þ h0ð2Pþ RÞ ¼ 3;

because C is 4-gonal. Hence, we get h0ð2Pþ RþQÞ ¼ �1þ 2 ¼ 1, because
Q is general. We see that h0ð3PþQþ RÞ ¼ 2 since j4Pþ Rj is a net and
h0ð2Pþ RþQÞ ¼ 1.

In the case (iii) 3) we have

h0ðK � 5PÞ ¼ h0ð5PÞ ¼ 2 and h0ðK � 6PÞ ¼ �1þ h0ð6PÞ ¼ 1:
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Let Q1 be a general point. Since h0ðK � 5P�Q1Þ ¼ 1, there exists a unique
e¤ective divisor E ¼ S1 þ S2 þ S3 þ S4 of degree 4 with E@K � 5P�Q1. The
e¤ective divisor E does not contain P, because h0ðK � 6PÞ ¼ 1. Moreover, we
have E0 4R. Indeed, assume that E ¼ 4R. Then we get

4R@K � 5P�Q1 @ 3Pþ 2R�Q1;

which implies that 2RþQ1 @ 3P. This contradicts h0ð3PÞ ¼ 1. We may as-
sume that S4 0R and S4 0P. We set Q2 ¼ S4. Then we have

h0ðK � 5P�Q1 �Q2Þ ¼ h0ðS1 þ S2 þ S3Þ ¼ 1:

Hence, there exists a unique conic C2 with C:C2 f 5PþQ1 þQ2. Take a conic
C 0

2 with C:C 0
2 f 4PþQ1 þQ2. Since Q1 and Q2 are di¤erent from R, we must

have C 0
2 ¼ TPLQ1;Q2

, where LQ1;Q2
is the line through Q1 and Q2. Hence, we

obtain h0ðK � 4P�Q1 �Q2Þ ¼ 1.
In the case (iii) 4) let Q1 and Q2 be general points. Then we have

h0ð9PþQ1 þQ2Þ ¼ 6 and h0ð8PþQ1 þQ2Þ ¼ 5;

because 8PþQ1 þQ2 SK . Since h0ð3Pþ 2RÞ ¼ h0ð5PÞ ¼ 2, we obtain

h0ð5PþQ1 þQ2Þ ¼ 2þ h0ð3Pþ 2R�Q1 �Q2Þ ¼ 2 and

h0ð6PþQ1 þQ2Þ ¼ 3:

Let H be the semigroup in the case (iv) 1). We take a line LP through P
distinct from TP. Then we have LP:C ¼ Pþ S1 þ S2 þ S3 þ S4. We set Qi ¼ Si

for all i ¼ 1; 2; 3. It is clear that h0ð4Pþ RÞ ¼ 3 and h0ðPþQ1 þQ2 þQ3Þ ¼ 2
by the choice of R and Qi’s.

In the case (iv) 2) H is not DCP by Theorem 3.1.
We consider the case (iv) 3). Let LP be a line as in the case (iv) 1). We set

Q1 ¼ R, Q2 ¼ S3 and Q3 ¼ S4. Then we have

h0ðK � 5P�Q1 �Q2 �Q3Þ
¼ h0ð4Pþ Rþ Pþ S1 þ S2 þQ2 þQ3 � 5P�Q1 �Q2 �Q3Þ
¼ h0ðS1 þ S2Þ ¼ 1:

Moreover, it is enough to show that h0ðK � 2P�Q1 �Q2 �Q3Þ ¼ 1, which is
clear by the choice of Qi’s.

Let H be the semigroup in the case (iv) 4). We set Q1 ¼ R. Take two
general points Q2 and Q3. We have

h0ð9PþQ1 þQ2 þQ3Þ ¼ 7 ¼ h0ð8PþQ1 þQ2 þQ3Þ þ 1:

Moreover, we have

h0ð6PþQ1 þQ2 þQ3Þ ¼ 4þ h0ð2Pþ R�Q2 �Q3Þ ¼ 4

and

h0ð5PþQ1 þQ2 þQ3Þ ¼ 3þ h0ð3Pþ R�Q2 �Q3Þ ¼ 3;
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because Q2 and Q3 are general. Let C2 be a conic with C2:Cf 2PþQ1 þ
Q2 þQ3. Then C2 is uniquely determined. Hence, we get

h0ð2PþQ1 þQ2 þQ3Þ ¼ 1 and h0ð3PþQ1 þQ2 þQ3Þ ¼ 2:

We are in the case (iv) 5). Let Q1, Q2 and Q3 be general points of C. We
have

h0ð6PþQ1 þQ2 þQ3Þ ¼ 4þ h0ð2Pþ 2R�Q1 �Q2 �Q3Þ ¼ 4:

In view of h0ð3Pþ 2RÞ ¼ h0ð5PÞ ¼ 2 we have h0ð5PþQ1 þQ2 þQ3Þ ¼ 3.
Moreover, we get h0ð4Pþ 2RÞ ¼ 1þ h0ð4PÞ ¼ 3, which implies that

h0ð4PþQ1 þQ2 þQ3Þ ¼ 2:

We consider the case (v). We note that by Namba’s Theorem we have
h0ðQ1 þQ2 þQ3 þQ4Þ ¼ 1 if four points Q1, Q2, Q3 and Q4 of C do not lie on
a line.

In the case (v) 1) let LP be a line through P with LP 0TP. We set LP:C ¼
PþQ1 þQ2 þQ3 þ S and Q4 ¼ R. Let C2 be a conic with C2:CfPþQ1 þ
Q2 þQ3 þQ4. Then we get C2:LP fPþQ1 þQ2 þQ3. Hence, we have C2 ¼
LPL where L is any line through Q4, which implies that h0ðK � P�Q1 �
Q2 �Q3 �Q4Þ ¼ 2. Let C 0

2 be a conic with C 0
2:Cf 2PþQ1 þQ2 þQ3 þQ4.

Then we have C 0
2:LP fQ1 þQ2 þQ3 þ P. In view of Q4 ¼ R we get C 0

2 ¼
LPTP, which implies that h0ðK � 2P�Q1 �Q2 �Q3 �Q4Þ ¼ 1. It is clear that
h0ðK � 3P�Q1 �Q2 �Q3 �Q4Þ ¼ 1 since C 0

2:C ¼ LPTP:Cf 5Pþ C1 þ C2 þ
C3 þ C4.

We are in the case (v) 2). Let LP be a line through P with LP 0TP. We
set LP:C ¼ PþQ1 þQ2 þQ3 þ S. Let Q4 be a point of C not on the line LP

with Q4 0R. Then we have

h0ð5PþQ1 þQ2 þQ3 þQ4Þ

¼ 4þ h0ðK � 5P�Q1 �Q2 �Q3 �Q4Þ

¼ 4þ h0ð5Pþ RþQ1 þQ2 þQ3 þ S � 5P�Q1 �Q2 �Q3 �Q4Þ

¼ 4þ h0ðRþ S �Q4Þ ¼ 4:

Moreover, we get h0ð6PþQ1 þQ2 þQ3 þQ4Þ ¼ 5: It is clear that h0ðPþQ1 þ
Q2 þQ3 þQ4Þ ¼ 2 since the four points P, Q1, Q2, Q3 lie on the line LP and
Q4 B LP.

Let H be the semigroup in the case (v) 3). We take a line L containing
neither P nor R. We set L:C ¼ Q1 þQ2 þQ3 þ S þ T and Q4 ¼ R. Let C2

be a conic with C2:CfPþQ1 þQ2 þQ3 þQ4. Then C2:LfQ1 þQ2 þQ3.
Hence, we get C2 ¼ LTP. We note that C:C2 f 4PþQ1 þQ2 þQ3 þQ4.

We consider the case (v) 4). Let L1 be a line through P with L1 0TP such
that L1:C ¼ PþQ1 þQ2 þ S1 þ T1. Let L2 be a line through P di¤erent from
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TP and L1 such that L2:C ¼ PþQ3 þQ4 þ S2 þ T2. Then h0ðK � 4P�Q1 �
Q2 �Q3 �Q4Þ ¼ 0 since L1L2 is the only conic passing through P and all Qi’s.
Hence, we get

h0ð5PþQ1 þQ2 þQ3 þQ4Þ ¼ 4 and h0ð4PþQ1 þQ2 þQ3 þQ4Þ ¼ 3:

On the other hand, let C 0
2 be a conic with C 0

2:CfPþQ1 þQ2 þQ3 þQ4.
Then we have C 0

2:L1 fPþQ1 þQ2. Hence, we obtain C 0
2 ¼ L1L

0 where L 0 is
the line with L 0:CfQ3 þQ4. The line L 0 must be L2. Thus, C 0

2 is uniquely
determined. Moreover, we get C 0

2:Cf 2PþQ1 þQ2 þQ3 þQ4.
Let H be the semigroup in the case (v) 5). We set Q1 ¼ Q2 ¼ R. Let Q3

and Q4 be general points of C. Then we have

h0ðK � 2P�Q1 �Q2 �Q3 �Q4Þ ¼ h0ð6P�Q3 �Q4Þ ¼ 0:

We consider the case (vi) 1). Let Q1, Q2 and Q3 be general points of C.
Then we have h0ðK � 2P�Q1 �Q2 �Q3Þ ¼ 1. Hence there is a unique conic
C2 with C2:Cf 2PþQ1 þQ2 þQ3, which is irreducible, because TP does not
contain any Qi and no three of the four points P, Q1, Q2 and Q3 are
collinear. Let C2:C ¼ 2PþQ1 þQ2 þQ3 þQ4 þQ5 þ S1 þ S2 þ S3: Here, we
have Qi 0P for all i and Sj 0P for all j, because C2 is irreducible. Then we
get

h0ðK � 2P�Q1 �Q2 �Q3 �Q4 �Q5Þ ¼ 1:

Moreover, let C 0
2 be a conic with C 0

2:CfQ1 þQ2 þQ3 þQ4 þQ5. Then
C2:C

0
2 fQ1 þQ2 þQ3 þQ4 þQ5. Since C2 is irreducible, we must have

C 0
2 ¼ C2. Hence, we get 1 ¼ h0ðK �Q1 �Q2 �Q3 �Q4 �Q5Þ.

Let H be the semigroup in the case (vi) 2). We take general points Q1, Q2,
Q3 and Q4 of C. We have h0ðK � 2P�Q1 �Q2 �Q3 �Q4Þ ¼ 0; because Q1,
Q2, Q3 and Q4 are general. Since h0ðK � P�Q1 �Q2 �Q3 �Q4Þ ¼ 1, there is
a unique e¤ective divisor E which is linearly equivalent to K � P�Q1 �Q2 �
Q3 �Q4. We have E0 5P, because h0ð2Pþ 2RÞ ¼ 1. We take a point Q5

with Q5 0P such that EfQ5. Then we get

h0ðK � P�Q1 �Q2 �Q3 �Q4 �Q5Þ ¼ h0ðE �Q5Þ ¼ 1:

Since no four points of Q1, Q2, Q3, Q4 and Q5 are collinear, there exists a
unique conic passing through all Qi’s. Thus, we get h0ðK �Q1 �Q2 �Q3 �
Q4 �Q5Þ ¼ 1.

In the case (vi) 3) let Q1, Q2, Q3, Q4 and Q5 be general points of C. Then
we have

h0ðK � P�Q1 �Q2 �Q3 �Q4 �Q5Þ ¼ 0:

In the case (vii) we get the result by Corollary 2.8 in [7]. r
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