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A GENERALIZATION OF A COMPLETENESS LEMMA
IN MINIMAL SURFACE THEORY

YUSUKE OKUYAMA AND KATSUTOSHI YAMANOI

Abstract

We settle a question posed by Umehara and Yamada, which generalizes a com-
pleteness lemma useful in differential geometry.

The following answers affirmatively a question posed by Umehara and
Yamada [7, Question C].

THEOREM. Let f be a holomorphic function on {|{| > 1} = C such that
SH{I¢ > 1}) = C\{0} and let n be a non-negative integer. If every real-analytic
curve y:[0,1) — {|{| > 1} tending to oo satisfies

1) | o crisl1ac = o,
y
then f is meromorphic at 0.

In the special case of n = 0, this Theorem reduces to the completeness lemma
due to MacLane and Voss (cf. Osserman [5, p. 89]), which plays an important
role in minimal surface theory. A new insight by Umehara and Yamada is the
possibility to take into account the variation of the argument of the curve vy,
namely the imaginary part of log y, motivated by their investigation of parabolic
ends of constant mean curvature one surfaces in de Sitter 3-space. A notable
consequence of Theorem is an affirmative answer to [8, Question 2]. This
implication is due to Umehara and Yamada [8]. For more details and back-
grounds, we refer [7] and [8]. Our proof is based on the theory of entire func-
tions, i.e., holomorphic functions on C, and of harmonic measures, while the
problem has its origin in differential geometry.

After having written this article, we learned that the Theorem, except for
the real-analyticity of the path p, could be shown using Huber’s result [3]. Our
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proof of the Theorem is an improvement of the argument in Osserman’s book

[5].

Proof. Since the integral in (1) is non-decreasing as n > 0 increases, the
Theorem for n =0 is a consequence of that for n > 0. We assume that n is a
positive integer.

We reduce the problem to the case where f is defined over all of C and
satisfies f(C\{0}) = C\{0} (cf. Osserman [5, p. 89]). Let us consider possibly
multivalued holomorphic functions log f({) and log { on {|{| > 1}, and choose
k € Z such that log f({) — k log { is single-valued and holomorphic on {|{| > 1}.
Then its Laurent expansion is written as

o0

log f(Q) —klogl =" ¢t/ = H() +h(0),

j=—

where H({) = Zjﬁo ¢i¢/ is an entire function and h({) = Zj_:lfm Gl is a
holomorphic function on {|{| > 1}U{oo} < C such that h(co) =0. Hence
1) = "k,

Set g(¢) = (%" if k>0, and g(¢) = e”© if k < 0. Then g is entire and
f(0)/g(0) is holomorphic near co. The condition (1) implies

| tog c71g(0) el = o

and if g is meromorphic at oo, then so is f. Hence replacing f with ¢ if
necessary, we may assume that f is an entire function on C and that f(C\{0}) =

C\{0}.

Consider an indefinite integral

of f. Since the zeros of G are isolated, there is @ > 0 such that

min |G(e“™™)| > 0.
teR

We fix a > 0 with this property throughout. Set

a+

F(z) := J Zz"f(ez)ez dz.

a

Then we note from our earlier discussion that —a is the only critical point of F,
that is,

{zeC;F'(z) =0} = {—a}.
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Let { = n(z) := e be a covering map from C to C\{0}. For any real-analytic
curve I' in z-plane, we have

(2) J ; [log £|"| £ ()] || = (the Euclidean length of FoT).

LemMmA 1. limy g |- |F(if)] = 0.

Proof. Let us define n + 2 auxiliary entire functions Gy, Gy, ..., G, induc-
tively; put

and for each je{0,1,...,n},

(G-

Then Gi({) = G({), and for every je{0,1,...,n},

dGyi (1)
dt

dg.

= iGj(€a+it).
Hence for je{0,1,...,n—1},

! ; .
iJ (a+it)" 7 Gi(e™) dt
0
! L dGjy (e4tih)
_ AT j+1
= L(a +it) — dt
. ) t ) A
= [(a+it)" Gjy1 (e“T)]g — (n — j)iL(a +it)" 7 G (41T dt
t

= (a+i0)"7 Gj1(e“T) — a" T Gy (e%) — (n — j)iJ (a+it)"" UGy (et dr.
0

Similarly,

t
iJ Gu(e®™) dt = Guy1(e“™) — Gii(e?).
0

Hence there are constants C;e C (j=2,...,n+ 1) and C € C such that for every
teR,

t
z"Go(e”) dz = J (a+ it)"Go(e“ )i dt

0
= Gi(e“™(a+it)" + Z Cin1 G (e ™ (a+it)"™ + C.
=1

a-+it

F(it) = J

a
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Now the assumption min,cg|Gi(e*"™)| > 0 together with max,cr|Gj(e“™)| < oo
(j=2,...,n+1) completes the proof. O

Next we consider asymptotic curves of F. A curve T':[0,1) — C is called
an asymptotic curve of an entire function g with a finite asymptotic value b € C
if T' tends to oo and lim,,; goI'(#) =b. We recall the following well-known

IVERSEN’S THEOREM (cf. [4]). Let g be a non-constant entire function. Sup-
pose that zy € C is not a critical point of g, and put wy := g(zo). Let ¢ be a single-
valued analytic branch of g=' at wy such that ¢(wo) = zo, and y:[0,1] — C be a
curve with y(0) = wq.  If the analytic continuation of ¢ along 7| |0, 1] is possible for
any t€[0,1), but impossible for t =1, then either

« lim,,; ¢ o p(t) € C exists and is a critical point of g, or

c povy tends to co. In this case, ¢ oy is an asymptotic curve of g with the

finite asymptotic value y(1).

For completeness, we include a proof.

Proof We claim that the cluster set C := ﬂteOl doy(t,1)), where the
closure is taken in C, is non- empty and connected: 1ndeed from the compact-
ness of C, C # 0. If C is not connected, then there are distinct open subsets
U, and U, in C intersecting C such that (CNU;)U(CNU,) =C. There are
(tj) and (/) in [0,1) tending to 1 such that 11mﬁ1 (/5( (¢)) exists in CNU; for

each i e {1,2} and that for every je N, t <l <t For every j €N, since
¢ oy is continuous, ¢oy([. 2]) is connected. Hence there is ¢ € [l],tf] such

that ¢(y(1;)) € C\(U, U Us). From the compactness of C, there is a subsequence
(s7) of (¢ ) tending to 1 such that lim;_.; ¢(y(s;)) exists in C\(U1 UU,). Thisis a
contradlctlon Thus C is connected.

Unless C is a singleton, C is a continuum. From g(¢ o y(¢)) = y(¢) for every
te[0,1) and the continuity of g, g(C) = {y(1)}. Then by the identity theorem,
g must be constant. This is a contradiction. Hence C is a singleton, so z; :=
lim,_; ¢(p(¢)) € C exists. If z; € C, then z; is a critical point of g since ¢ cannot
be continued analytically along all over the y. If z; = oo, then ¢ oy tends to oo.

U

For each wy e C and each r > 0, put D,(wy) := {we C;|w—wy| <r}. Put
H, ={zeCRz>0}, I:={zeC;Rz=0} and H_ := {ze C; Rz < 0}.

LemMa 2. Let T:[0,1) — C be an asymptotic curve of F with a finite
asymptotic value. Then for every t € [0,1) close enough to 1, we have T'(t) e H_.

Proof. We begin with

Cramm 1. For any real-analytic curve C:[0,1) — H, tending to oo, the
length of F o C is infinite.
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Proof. If the real part RC of C tends to oo, then the curve 7o C also tends
to co. Thus by (2), assumption (1) implies that the length of F o C is infinite.
If M :=supRC < o0, then 7o C <= {e < |{| <Mt} and lim,_;|arg(m o C(2))]
= o0o. Hence

(3) j 1©l1de) = .

Since |log {| > a on the curve zo C, (3) with equality (2) implies that the length
of Fo C is infinite.

In the remaining case, C should transverse some vertical strip {b; < Rz <
by} infinitely often. Then mo C transverses a round annulus {e’** < |{| <
e”*4} infinitely many times. Hence again we get (3), and the same argument
as the above implies that the length of Fo C is infinite. O

Let w; € C be the finite asymptotic value of F along I': [0,1) — C, that is,
lim,,; FoT(¢) =wy.

CrAaM 2. There exists r > 0 such that any component of F~1(D,(w)) which
intersects 1 is bounded.

Proof. By Lemma 1, there is R > 0 such that min,cg |5 z|F(is)| = [wi] + 1.
Increasing R > 0 if necessary, we assume that w; ¢ F({|z| = R}), so there is
re (0,1) such that D.(w;)NF({|z| = R}) =0. Then F~'(D,(w)) intersects nei-
ther 7N {|z| > R} nor {|z| = R}, so any component of F~!(D,(w;)) intersecting
with I is contained in {|z| < R}. O

Fix r > 0 with the property claimed above. Fix #, €[0,1) such that
(4) FoI([ty, 1)) = Dyja(wr).

Let Q be a component of F~!(D,(w)) which contains I'(fy). Then Q contains
the whole I'([#, 1)), so Q is unbounded. Hence by Claim 2, Q does not intersect
with I, so is contained in either H_ or H,.

Assume contrary that the conclusion of the lemma does not hold. Then
QcH,. Let ¢ be a germ of a single-valued analytic branch of F~! at
F(I'(ty)) such that ¢(F(I'(#))) =T(t). Then ¢ is holomorphic on the disc
D, /»(F(I'(7))), or else there exists a largest disk D,(F(I'(7))) with p e (0,r/2) to
which ¢ can be extended analytically.

But the latter cannot occur: for there would then be a point &€
0D, (F(I'(ty))) over which ¢ cannot extend analytically. Let a« be the radial
segment [0,1] 35— F(I'(19)) + s(& — F(I'(10))) € D2 (F(I'(#))) Joining F(I'(0))
and ¢, Since D, 2 (F(I'(%))) = D3,/4(w1), the curve ¢ o «[[0,1) is contained in Q,
so in H,. Since the unique critical point —a of F is in H_, Iversen’s theorem
yields that the curve ¢oa|[0,1) tends to co. On the other hand, ¢oa|[0,1) is
real-analytic and the length of Fo (¢oa][0,1)) = a][0,1) is finite, so by Claim 1,
¢poal|[0,1) cannot tend to co. This is a contradiction.
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Thus ¢ is holomorphic on D,/,(F(I'(#))), which contains F o T'([t,1)) by
(4). Hence lim,; I'(¢) = ¢(lim,,; F o T'(¢)) = ¢(w;), which contradicts that T’
tends to oo.

Now the proof is complete. O

For a domain D in C, a subset ¢ in D is called a crosscut (or a transverse
arc) of D if ¢ is homeomorphic to (0, 1), the closure ¢ in C is homeomorphic to
[0,1] and ¢NdD consists of two points.

For each r >0, put D, :=D,(0) = {we C;|w| < r}.

Lemma 3. For every R>0, F-'(Dg)NH, has no unbounded components.

Proof. Let Q be a component of F~!(Dg)NH,. From Lemma 1, (6Q) N[
has at most finitely many components, which are closed intervals. The image
of each component of (Q)N/7 under F is a real-analytic curve in Dg, and
DR\F((0Q)NTI) has at most finitely many components. Fix a triangulation of
Dz such that the interior of any triangle is contained in Dg\F((0Q)NI).

As convention, we call the interior of each triangle an open triangle.

Crav 1. For every open triangle V' and every component U of F -4y naQ,
U is bounded and the restriction F of F on U is a homeomorphism from U

onto V.

Proof. Fix zpe U. By F'(zp) #0, there is a germ ¢ of a single-valued
branch of F~! with ¢(F(zp)) =zo. Assume that there is a curve y:[0,1] — V
with y(0) = F(zy) such that the analytic continuation of ¢ along y|[0,¢] is
possible for any 7€ [0,1), but impossible for = 1.

Since the unique critical point —a of F is in H_, by Iversen’s theorem, the
curve ¢ oy is an asymptotic curve of F with the finite asymptotic value y(1) € C.
Then by Lemma 2, there is 7 €[0,1) such that ¢oy(p) e H_. On the other
hand, from F(I)NV =0, U is a component of F~!(V). Moreover, U is a
component of F~!(¥) since there is no critical point of F on I. Thus the curve
¢poyis in U, so in H, UI. This contradicts that ¢o () e H_.

We have shown that ¢ extends analytically along all curves in V. Now by
the monodromy theorem, a single-valued continuous branch F~!: 7V — U exists.
Hence U is bounded and Fy: U — V is homeomorphic. O

Let N be the number of triangles in Dg.
CLAM 2. There is an increasing sequence of closed sets
Dl CD2CCDN:D_R

such that for each je{l,...,N}, D; consists of j triangles and int D; is connected
and simply connected.



512 YOUSUKE OKUYAMA AND KATSUTOSHI YAMANOI

Proof. This is clear if N =1, so we assume that N > 2. The construction
is decreasingly inductive. For j= N, Dy = Dy consists of N triangles and
int Dy = Dg is connected and simply connected. Fix je{l,...,N —1}, and
suppose that we obtain a closed set D;;; consisting of j+ 1 triangles such that
int D;; is connected and simply connected.

Let % be the set of all triangles A in D;,| having an edge in dD;;; such that
int(Dj;1\A) is not connected. Let us find a triangle A; in D;;; which has an
edge in 0D, and does not belong to .. We can certainly do this when % = 0.
Suppose that & # 0. For each A € ¥, there are two components P and P’ of
int(D;;1\A) and put N(A) be the minimum of the number of triangles in P and
that of P’. Fix a triangle A € & satisfying
(5) N(A) = min N(A'),

ANed
and a component P of int(D;;1\A) such that P consists of N(A) triangles. Then
any triangle A; in P having an edge in (0Dj11) N P will not belong to S for, if
Aj € &, then there is a component of int(D;.;\A;), which is a subset of int(P\A;),
so N(Aj) < N(A). This contradicts (5).

With such A;, set D;:=D;{\A;. Then int D; is connected, and moreover
(0Aj)N(int Djyy) is a crosscut of int Dj;q, so int D; is simply connected.  [J

Let (D;) be the increasing sequence of closed sets obtained in Claim 2. We
show by induction that for each je{l,...,N}, F~!(int D;) NH; has no un-
bounded components.

For j=1, D; is a single triangle. This case is covered by Claim 1.

Fix je{l,...,N — 1}, and suppose the assertion holds for D;. Put C:=
(0D;) Nint D;1;, which is a crosscut of int D;;. Assume that a component Qg
of F~'(int D;;1) NH; is unbounded. Let ¢; be a component of F~'(C)NQy.
Since F has no critical point in Qg, ¢; is a crosscut of €, and Q\c;, which is
possibly still connected, has an unbounded component Q.

Let U; be a component of Q;\F~!'(C) such that ¢; = 6U;. Then Uj is a
component of either F~!(int D;)NQ or F~!(int A;))NQ. In either case, by the
assumption for j and the assertion for j = 1, U; is bounded. Hence Q;\U,; has
an unbounded component Q,. Let ¢; be a component of 0Q, N Q. Then ¢; is
a crosscut of Q; and ¢, < dU;.

Let U, be a component of Q,\F~!(C) such that ¢; = dU,. Then U, is
bounded by the same reason. Let ¢3 be a component of dU, NQ,, which is a
crosscut of Q.

Now ¢, = dU;NAdU,. Hence at least one of U; and U, say U,, is a
component of F~!(int Aj)NQ. By Claim 1, F restricts to a homeomorphism
from 0(U,) to 0A;. But F~!(C)Nd(U,) contains not only ¢, but also either ¢
or ¢3, which is a contradiction.

Hence F~!(int D;;1) NH, also has no unbounded components. This com-
pletes the induction.

This applies in particular to int Dy = Dg. Hence F~!(Dg)NH, has no
unbounded components, which completes the proof. O
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LeEmMA 4. For every

zeH_UI, |F(z)|] < max{|z], |a|}"+1 - 2" maxg <. |Cf ()]

Proof. For each ze H_UI,

‘F(Z)| = J[ ]Z”f(ez)e: dz| < (|Z| + ‘al)”|z| \{“?jlxd |Cf(®|,
a,a+z e
where [a,a+ z] is the closed segment joining ¢ and a + z. O

Lemma 5. For each r > 0, put
0, () = min{[F(2)]sz e Hy UL, || = r).
If f is transcendental, then liminf, ., pu (r) < L.
Proof. For every r > 0, put
D, :={r/4 <|z| < 2r} NH;.

Then D; = D, under the similarity z +— rz. Let ¢:D; — D; be a (inverse of)
Riemann mapping such that ¢(0) =1e D;. For every r >0, the conformal
map

¢, =r-¢:D; — D,

satisfies that ¢,(0) = r e D, and extends to a homeomorphism from D; onto D,.
The Poisson kernel on D; is

&+ w) 1w
E—w 1€ —w|?
for weD; and &€ dD;. For each weDj, P(w,&)|dE|/(2n) is a probability
measure on 0D;, and more specifically, the harmonic measure for D; with pole at

w (for the details, see, e.g., [6, §1.2]).
Assume that

P(w, &) = 3%(

liminf u, (r) > 1.

Then there is ry > 0 such that log|F| is positive and harmonic on {|z| > ro} N
(HLUT).
Let us compare log|F(r)| and log|F(r/2)| for each r > 4ry. Since log|F o ¢,|

is positive and harmonic on D;, Harnack’s inequality (cf. [6, Theorem 1.3.1])
yields

2 gl ()] < oglF(0/2)

L+ p=t(1/
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(we note that log|F(r)| = log|F o ¢,(0)| and that log|F(r/2)| = log|F o ¢,(p~1(1/2)))).
Hence we have

log|F(r)| < Co log|F(r/2)],

L+]p~'(1/2)]
where we put Cp = ————= > 1.
1= lp=!(1/2)|
A repeated use of this estimate implies that
(6) log|F(r)| < anax{jEN;r/zjﬂrO} - max log|F(s)| < Cir?,

Se [2]‘() s 41‘()]

where we put o :=log, Co >0 and Cy := (2rg) " maX,cy, 4r,] 10g|F(s)| > 0.

Let us next compare log|F(z)| and log|F(|z|)| for each z € H; with |z| > 4r.
Fix zeH; with |z| >4ry and put r=|z|. Then ze D,. Let us decompose
oD, into the disjoint subsets I, := (0D,) NI and S, := (dD,)\I. Then ¢ !(I,) =
p~'(N) and ¢;'(S;) = ¢ '(S1), and

() log|F(z)| = J (log| F(p, ()N P(g; " (2),€) i

(1) 2n

H] L todFa @) .05
o 1(S1) "

Increasing ry > 0 if necessary, Lemma 4 implies that
log|F(ir)] < 2 log(|7|"™") = 2(n + 1) log|1|
for every te R with [f] > ry. Since I, = {it e R;|t] < 2r},

(8) J (logIF(%(é))l)P(cﬂfl(Z),é)@ < 2(n+1) log(2r).
o=\(I) 2n

Put ¢:= ¢ '({z € D,;|z| = r}), which is a crosscut of D;. Note that
{n¢"'eDineciep (S}
is compact in D; and does not contain 1. Put
Gy :=max{P(né ' 1);neé, éecp (S} < .
We note that P(y,&) = P(né~',1) for every ¢edD,. Since ¢ '(z)ec and
log|F| =0 on dD,, we have

| toertuenhre 2,055 <& | el @)
p=1(S1) T oD,

g _
52 = Ca logl (D),

where the final equality follows from the mean value property of harmonic
functions (we note that log|F(¢,(0))| = log|F(r)| and that r = |z[). This with (7)
and (8) concludes

log|F(z)| < 2(n+1) log|2z| + C; log|F(|z])|.
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From this estimate with (6), on H,,
log"|F(z)] = O(log|z|) + O(|z|")

as |z| — oo. This with Lemma 4 implies that the order of F is finite. Thus by
the definition of F, the order of f(e**%) is also finite.

On the other hand, we can show that the order of f(e*™) is infinite, which
will prove our lemma by contradiction. Since f(C\{0}) = C\{0}, we can write
as [({) = ket with some k € NU{0} and some entire function H((). By the
assumption that f is transcendental, H is non-constant. Hence by Hadamard’s
theorem (cf. [1, p. 209]), the order of f is greater than or equal to one. Hence
the order of f(e“*?) is infinite. This is a contradiction.

Thus we have proved liminf, ., u, (r) > 1. O

Let us complete the proof of Theorem.

Assume that f is transcendental. Fix R; > max{l,|F(—a)|}. Then by
Lemma 5, F~!(Dg )NH, is unbounded, and then by Lemma 3, there are
infinitely many (bounded) components of F~!(Dg,)NH,. By Lemma 1, the
boundaries of at most finitely many components of F~'(Dg,)NH, intersect 7,
so the other (infinitely many) components of F~!(Dg,)NH, are all relatively
compact in H.. Let ¥ and W be distinct such components. Then VN W =0
since F has no critical point in H,. Join ¥ and W by a compact line segment
I, take R| > max./|F(z)|(> R;) and let Q; be the component of F~!(Dg/) such

that / = Q. Then VUW = Q NF~'(Dg). Put 4, :={R, < |w| < R} and
Q) := Q\F '(Dg,).

Then Q[ is a component of F~'(4;) and is at least triply-connected. The
restriction

Fo 1 Q) — 4

is locally homeomorphic, i.e., has no critical point since F(—a) ¢ 4;. If F has
also no asymptotic curve in Q[ with a finite asymptotic value in A;, then
Iversen’s theorem concludes that F, have the curve lifting property, that is, any
closed curve may be lifted uniquely under Fg given any preimage of the initial
point (for the details, see, e.g., [2, Definition 4.13]), and then by [2, Theorem
4.19], the local homeomorphism Fg; must be a covering. Since the universal
covering of A; is topologically a disk and 7 (4,) is Z, 7;(Q]) must be either Z or
{1}, so Qf must be topologically either an annulus or a disk. This contradicts
that Q[ is at least triply connected.

Hence F has an asymptotic curve I'j = Q] with a finite asymptotic value a;
in 4, ={R; <|w| < R{}. By Lemma 2, we may assume that ' = Q; NH_.

Fix R, > R|. By the same argument applied to R,, we obtain R} > Ry, a
component Q5 of F~'({R, < |w| < R}}) and an asymptotic curve I'; = Q5 NH_
of F with a finite asymptotic value a; € {R, < |[w| < R}}. We note that I'i NI,
= (. Without loss of generality, we assume that both I'| and I', are simple.
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Let U be an unbounded domain contained in H_ such that
oU = 1"1 U 1"2 U c,

where ¢ is an arc joining the endpoint of I'; and that of I'; in H_. Since
a; # ap, by Lindel6f’s theorem (cf. [4, p. 65]),

sup |[F| = oo.
U

On the other hand, we can show that |F| is bounded on U, which will prove
the Theorem by contradiction. First, we note that

M := max log|F(z)| < c0.
zedU

For a bounded domain D c C, let (z,E)— wp(z, E) be the harmonic
measure of D, where ze D and E = dD is a Borel subset. For the details,
see, e.g., [6, §4.3].

Fix zyp e U. For every r > |z|, let U, be the component of UND, which
contains zyp. Then by the two constant theorem (cf. [6, p. 101]),

log|F(z0)| < Mwy,(zo, 0U\0D,) + ( sup 10g|F(z)|>wU,_(zo7 U, NaD,)
zeD,NH_

<M-1+ ( sup 10g|F(z)|>(uU,_(zo,(’)U,ﬂ@Dr)7
zeD,NH_
so we have
(9)  log|F(zp)| < M + lim sup(( sup 10g|F(z)|>wU,_(zo, ou.N 6D,)>.
r—n zeD,NH_
By the monotonicity of harmonic measures (cf. [6, Corollary 4.3.9]),
wy, (Z(), oUu, N 6D,) < Wp,NH_ (Z(), ou,. N 6Dr)

D) .
< Wp,NH_ (Z()7 6Dr N H,) = ; arg I+ zo

ir — zo
(for the final equality, cf. [6, p. 100]). Hence as r — oo,
oy, (20,0U,N3D,) = O(r~ ).
This with Lemma 4 implies that
limsup<< sup 10g|F(z)|>a)U,(zo,6U,ﬂ6D,,)> <0.
r—00 zeD,NH_

Hence by (9), we conclude supy; log|F| < M since zp € U is arbitrary. Now the
proof is complete. Ul
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