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UNIQUENESS OF NON-TOPOLOGICAL SOLUTIONS FOR
THE CHERN-SIMONS SYSTEM WITH TWO HIGGS PARTICLES
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Abstract

We study the non-topological radial solutions of the Abelian Chern-Simons equa-
tion with two Higgs particles. We establish the non-degeneracy property of linearized
equation and the uniqueness property for the corresponding non-topological radial
solutions.

1. Introduction

The Chern-Simons theories were developed to explain certain particle
physics, condensed physics, superconductivity, quantum mechanics and so on.
The Chern-Simons equations of various models correspond to non-linear elliptic
equations, which are both interesting and challenging.

In this paper, we consider the non-linear elliptic system

Au+e’(l—e")y=pu
(1.1) {Au+e”(1—e”):v

where x and v are finite measure of the form 47> J, on R, This system arises
in a relativistic Abelian Chern-Simons model involving two Higgs scalar fields
and two gauge fields. We refer to [8] for the details on the derivation of this
system and [6, 7] for the background physics. For the past twenty years, the
Abelian Chern-Simons equation with one Higgs particle,

Au—+e'(l1—e") = 47{25]%,

in R?

has been extensively studied. We refer reader to [13, 1, 14, 2, 12, 3, 5, 10] and
references therein for the recent developments.

In the literature, there are two natural boundary conditions for the solutions
of (1.1) at infinity, namely,

(1) lim‘x|_,ao u(x) = lim‘x‘ﬁx v(x) =0

(2) limyy_o u(x) = limjy_, v(x) = —o0
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If (u,v) satisfies the boundary condition (1), then (u,v) is called a topological
solution of (1.1).

In [8], Lin-Ponce-Yang showed the existence of topological solutions for (1.1)
for any given set of singularities.

Turorem 1.1 ([8]).  For any given sets {p1,...,px,} and {qi,...,qn,}+ on R?,
(1.1) with u=4n >N 0, and v=4n Zj/izl 0y, possesses a topological solution.

Lin-Prajapat [9] proved the existence of maximal and mountain-pass solu-
tions of (1.1) on a torus. Lin-Yan [11] studied the bubbling solutions of (1.1) on
a torus. Chern-Chen-Lin [4] studied the radial solutions of (1.1) with all { p,},ﬁ 4
and {g;} to be the origin.

J
Au + e"(l — 6’”) = 4nN10g
Av + e(1 — ") = 4nN2dy

They showed the uniqueness of topological solutions of (1.2) by studying the non-
degeneracy property of linearized equations and classify all entire radial solutions
of (1.2) according to their behaviours at oo:
Type (I):  lim,_o (u(r), v(r)) = (0,0).
Type (II): lim,_o (u(r), v(r)) = (—o0, —c0) with f; < o and f, < co. For
this case, (u,v) is called a non-topological solution.
Type (III): lim,_, (u(r),v(r)) = (—o0, —00), and either 2N, < ff; < 2N + 2,
=00 or iy =00, 2N, < i, < 2N, +2.
Type (IV): lim,_ o (u(r),v(r)) = (—cy, 00) or lim,_ (u(r),v(r)) = (—o0, —c¢,)
for some constants ¢, >0 and ¢, > 0.
Type (V): lim,_, o (u(r),v(r)) = (+00,—00) or lim,_, (u(r),v(r)) = (—o0,+00).
Here,

(1.2) n R%

r
r

o0

B = J e'(l1—e"yrdr, p,= J e"(1 —e"rdr.
0 0

However, the issues of the uniqueness of the non-topological solutions have not
been understood yet.
In this paper, we consider the radial solution of (1.1) with u=v=20:

Au+e’(l —e*)=0
Av+e¥(l —e’) =0

The following theorem is the main theorem of this paper. We prove the
uniqueness result for the non-topological radial solutions of (1.3).

(1.3) in R?.

THEOREM 1.2. For any given pair (B;,0,) with 2 < f;, < o, i=1,2, and
(B —2)(B, —2) > 4, there exists a unique non-topological radial solution of (1.3)
satisfies
w

Jve”(l—e”)rdr:ﬂl and J e'(1 —erdr=p,.
0 0
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The proof is based on the non-degeneracy of linearized equations. The
linearized equations at (u,v) of (1.2) is called degenerate if there exists a nonzero
bounded solution (4, B) of

Ad+e'(1 = e")B— e g = 0
(1.4) { Fel(l—e)Be

in R?.
AB+e'(1—e)A—e"B=0

In Sec. 2, we will show the non-degeneracy of linearized equations at a non-
topological solution. We hope that the method developed here could be helpful
for a similar non-linear elliptic systems, like 4, B, and G, Chern-Simons system.
For the single Chern-Simons-Higgs model, the uniqueness result for the non-
topological solution with one singularity at the origin was proved in [3]. s there
any uniqueness result for the non-topological solutions of (1.2) with (f;,f,)
satisfying

(B1 = 2(N1 + 1))(By = 2(N2 + 1)) > 4(Ny + 1)(N2 + 1)?

We will come back to this issue in a coming paper.

The paper is organized as follows. We investigate the non-degeneracy
property of the linearized equations on the non-topological solutions of (1.3)
in Sec. 2. Theorem 1.2 is proved in Sec. 3.

2. Non-degeneracy of linearized equations

In this section, we consider the radial solutions of
Au+e’(l—e*)=0
Av+e'(l1—e")=0

Denote (u(r;oq,00),v(r; 01, 02) be the solution of (2.1) with (u(0),v(0)) = (o1, )
and

(2.1) in R%.

o0

Bi(or,00) = J etlrimm) (] — gulrion )y gy
0
[e¢]

Boloy, 00) = J eu(r:m.,az)(l _ ev(r:,oq,az))r dr.
0

Remark 2.1.  For any solution of (2.1) with f; < +00 and f, < +00, we can
prove that (u,v) is symmetric with respect to some point p € R%. The proof can
be obtained via the method of moving planes.

Denote the set of the initial conditions of the non-topological solutions of
(2.1).

Q = {(o1,%2) € R? [u(0) = o1, 0(0) = o2,
such that u(r) <0 and v(r) <0 and f, < 40, f, < 40}
In [4], Chern-Chen-Lin prove
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ProprosITION 2.2. Q is simply connected.

Let
ou .
¢i(r)—67«i7 l—1,2.
ov
. = i =1.2.
l/jl(r) aai) l bl

Then (¢;,y;), i =1,2 satisfied the linearized equation
Ag; — e+ e"(1 —e")y; =0
(2.2) Ay — e+ e(1 —e")g; =0
$1(0) = 2(0) = 1, ¢,(0) = 1(0) =0, 4;(0) = y{(0) =0.
By [4], we have the monotone property of (¢;,y;), i =1,2.

PropoSITION 2.3. ¢(r) >0 and y,(r) >0 for r=0, and ¢,(r) <0 and
W (r) <0 for r >0 provided that (u,02) € Q.

It is not difficult to show that
¢, (r)= A logr+ O(1), ¢,(r) =—=B;logr+ O(1),
Yi(r) = =Bylogr+ O(1), (r) = Az log r+ O(1),

as r — 4oo, for some 4; >0 and B; >0, i=1,2. More precisely,

s}

A= [ ey et e Br= | (et et (1 i)
0 0

s}

B, = J:(—€“+UW1 +e'(1—e")g)rdr, A= Jo (", — (1 —e")y)r dr.

It is clear that both (¢,,¥,) and (¢,,,) satisfy the linearized equation (1.4). In
fact, any solution (¢,y) of the linearized equation comes from a linear com-
bination of (¢;,¥,) and (¢,,¥5).

We want to show that the linearized equation is non-degenerate. It is
not difficult to see it is equivalent to saying that for any solution (¢,y) of the
linearized equation, |¢(x)| + |¥(x)| is not bounded in [0, c0). Thus, it is equiv-

alent to
Al _Bl
det 0.
¢ (Bz A ) 7
We will utilize the following the Pohozaev’s identity for (1.3) to prove it.
R 2.,/ ’ 2( ,u(R) o(R) _ ,(u+v)(R)
) ) Ru'(R)v'(R) + R
J (eb+eu_ell+l/)rdr: u( )U( )+ (62 + e e )
0
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By differentiating the above identity with respect to the initial value of (u,v), we
have

R
@3) | e

0

=—['(R)Y'(R) + v'(R)Y'(R)]
+ - [e"BP(R) + "By (R) — "B (y 4 y)(R)].

THEOREM 2.4.

A1 —B;
det 0.
‘ (-Bz A> ) ”

Proof. Without loss of generality, we assume that
(u,0)(0) = (o, 25) with o5 > o
In the followings, we set
Go(rion,00) = ¢y (r; 00, 00) + ¢y (5 o1, o12)
and
Yo(ryon, 00) = Yy (rion, 00) + ey (ry o, 02)

for some constant ¢. Then (¢,,,) is a solution of the linearized equation. If
¢ <0, then it is clear that (¢,,V,.) is unbounded in [0, 00). Hence, we may only
consider the case ¢ > 0. Let

o = sup{a < a5 | For all e (af,a], there is ¢(f) > 0 such that both

¢ (r;of, ) and ¥ (r;0f,p) change sign once and only once.}

Step 1. If both ¢.(r) and W (r) change sign once and only once, then at
least one of them is unbounded on [0, c0).

Note that ¢,(0) = ¢,(0) > 0 and ¥_(0) = ci,(0) > 0. We know that (¢, V)
satisfies

(24) { A¢c + eu(l - e”)wc - eu+v¢C =0

AW(‘ + eu(l - ev)¢c - eu+vlpc =0

Now, suppose both ¢, and ., are bounded. Then

0

(2.5) Jm e’(1 —e" W rdr= J et r dr

0 0
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and
(2.6) J e'(1 —e")p.rdr= J v et r dr.
0 0

By applying the Pohozaev’s identity, we have

o0

@7) Jw<e“¢g etyrdr= [ et g v an

0 0
On the other hand, by (2.5) and (2.6),

| e+ ervarar =2 et porar
0

0

together with (2.7), it implies

JOC e g+ )rdr=0.
0

Again, by (2.5) and (2.6), one obtains

J e'd.rdr = J ey rdr=0.
0

0

279

Suppose that ¢.(r;) =0 and .(r2) =0 for some r; >0 and r, > 0. Since

u'(r) <0 and v'(r) <0 for r >0, we have
(er) — ' N (r) <0 if r# 7.
Hence,
J J e”(")(e”m) - e”(r))qﬁc,(r)r dr <0,
0

and it implies

@
0 =¢"n) . "V (r)r dr < Jo W g (r)r dr.

Similarly, we have

0 [c¢]
0=e"") | "y (r)rdr < J eIy (r)r dr.
Jo 0

But it yields

o0

0< | eI+ (r))r dr =0,
0

a contradiction. This finishes the step 1.
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Step 2. Suppose ¢.(r) and .(r) change sign only once. Then ¢.(r) =0
and .(r) =0 has only one solution.

We want to prove if ¢@.(ro) =0, then ¢.(rg) <0. Suppose not, i.e.
¢.(ro) = 0. Then there is r; > ro such that ¢.(r;) > 0 and ry is a local maximum
point of ¢..

Since

0 < Ag(ro) = ") (") — 1), (ro),
one has

W.(r) <0.

If ¢.(ro) =0, then we have . (rg) #0. Otherwise, (¢,,.) satisfies a second
order system of equations with ¢.(ro) = ¢.(r0) =0 and Y (ro) = Y .(ro) = 0.
By the uniqueness of ODE, we have ¢, =y, =0, a contradiction. Thus,
lp(/.(}’()) < 0.

Hence, we conclude that either (o) =0 and . (ry) <0, or Y (ro) <0. It
is easy to see that either case implies .(r;) < 0, due to the fact that i/, changes
sign only once.

By the maximum principle,

0< _A¢c(r1) + e(u+v)(r1)¢c(rl) = ev<rl>(1 - eu(”))l//c(rl) <0,

because .(r;) < 0 and u(r;) < 0. This yields a contradiction and then the step 2
is proved.

~

SteP 3. o) = .

We denote S = {f|Both ¢.(r;a,p) and  (r;of,p) change sign once and
only once for some ¢ >0}. Clearly, a; <a;. If a4 < a3, then by definition,
there exists ¢; = ¢(f;) > 0 such that (4., ¥..) = (¢, (r; 7, ;) ¥, (r; o, B;)) changes
sign once and only once, where (¢.(r),¥,.(r)) is a solution of the linearized
equation, where f8; — &. It is easy to see that ¢ < ¢; <e~! for some constant
&> 0. By passing to the limit, we find that (¢,, ) is a solution of the linearized
equation at (u,v) = (u(r,o,8),v(r,01,03)), and ¢. and Y, change their sign at
most once. We want to prove both ¢, and ¥, cannot be bounded. If both ¢,
and Y, are bounded, then we have

o0

| etsnrar=]"ev ar=o.

0
which implies both ¢, and ¥, must change their sign. Thus, ¢, and ¥, must
change their sign once and only once. And then by the step 1, we know that ¢,

and . cannot be both bounded.
We thus consider the following possible cases:
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(a) Both ¢, and ¢, change sign once and only once.
(b) ¢.(r) =0 and .(r) >0 for re |0, c0).
(c) ¢.(r) =0 and y.(r) changes sign only once.
We need to exclude the last two cases.
Cast (b). Since
#.(r) = (4, — Bic) logr+ O(1) at o
and
W (r) = (=By + Axc) logr + O(1) at oo,

we have A4 — Bjc >0 and —B; + Ayc > 0 (but equality can hold only for one
equation), which implies

ie.,
A1 Ay — BB, > 0.
But, we can prove that (see step 4 below)
AjAy — BiBy <0,

and it yields a contradiction. Hence this case is excluded.

Case (c). Let r; be the last local maximum of ¢.(r) > 0. Hence,
0 < —Ad (1) + g, (1) = €M O(1 = )y (1),
which implies v (r;) > 0. Thus,
., (r) >0 for rel0,r]

If r; — 400, then we have .(r) >0, a contradiction to the assumption of
this case. Hence, {r;} are bounded, and then ¢.(r) <0 for large r. Thus, ¢.(r)
is bounded.

For 6 > 0, we denote

Gers(r) = (¢ + chy +04,)(r) and . 5(r) = (g + chy +6Y5)(r).

CLamm. If 6 is small, then both ¢.. 5 and ., s changes sign once and only
once.

Suppose ¢, s changes sign more than once. Since ¢, 5(r) < 0 for large r, we
may assume that ¢, s attains local positive maximum at r,(6). By the maximum
principle,

0 < —Ag5(r2(9)) + g 5 (12(0)) = e (1 = ")y, 5(2(0)),
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which implies ., 5(r2(d)) > 0. Hence, r(0) < C for some constant C as ¢ is
close to 0.
Since ¢.,; changes sign more than once, there is a r3(d) < r2(d) such that

$.,s attains negative local minimum at r3(J).

Denote rg = limy_ 2(d) and rg = limy_ r3(0). By passing 0 — 0, we have
$.(r3) =0 and ¢.(r))=0. As in step 2, we have either Y (r}) =0 and
Yi(r)) <0, or Y. (r)) <0. But it yields a contradiction to

Uer2) = lim Y5 (12(0)) = 0.

Similarly, we can prove . s changes sign once and only once. We

conclude that
aeS.

Since S is an open set, & + ¢ € S for some ¢ > 0 provided that a; < ;. Hence,
o = 0.

Step 4. For any f €S, then

A1A> — B1B, < 0.

Let ¢.(r;0f,p) and y.(r;0f,f) change sign once and only once. Then
A —cB1 <0
and
By —cA, <0.
Because the two inequalities cannot be equality simultaneously,
A4y — BiB, < 0.

Hence, this theorem is proved. O

3. The Proof of Theorem 1.2
Recall that

o0

pilon,m) = | errm 1 = ety ar,
0

Po(o,00) = J v e“<"?°‘"“2)(l - e”<"“’""°‘2>)r dr.
0

Hence,
0 @ ) . (-
ﬂl ((/;727“2) _ J [‘/j[(r; OC],OC2)€D<r’“]’“2)(1 _ eu(uoq,a.g)) _ ¢i(r; C}Cl’062)6(14+L)(r.(xl,otz)]r dr
i 0
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and
Py, 00) [~ o (- ANro o
ZET = JO [ (r; ocl,ocz)e”( «,11<12)(1 — e .,oq,ozz)) —,(r; ocl,otz)e(“+”)( s, 2)]r dr,
i=1,2.
By Theorem 2.4, we have
P

Oy Oy ( A —B >
det = det #0
B, P, -B, A

0061 50(2

for (ay,00) € Q. Hence this theorem is proved.
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