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UNIQUENESS OF NON-TOPOLOGICAL SOLUTIONS FOR

THE CHERN-SIMONS SYSTEM WITH TWO HIGGS PARTICLES

Hsin-Yuan Huang and Chang-Shou Lin

Abstract

We study the non-topological radial solutions of the Abelian Chern-Simons equa-

tion with two Higgs particles. We establish the non-degeneracy property of linearized

equation and the uniqueness property for the corresponding non-topological radial

solutions.

1. Introduction

The Chern-Simons theories were developed to explain certain particle
physics, condensed physics, superconductivity, quantum mechanics and so on.
The Chern-Simons equations of various models correspond to non-linear elliptic
equations, which are both interesting and challenging.

In this paper, we consider the non-linear elliptic system

Duþ evð1� euÞ ¼ m

Dvþ euð1� evÞ ¼ n

�
in R2ð1:1Þ

where m and n are finite measure of the form 4p
P

s dps on R2. This system arises
in a relativistic Abelian Chern-Simons model involving two Higgs scalar fields
and two gauge fields. We refer to [8] for the details on the derivation of this
system and [6, 7] for the background physics. For the past twenty years, the
Abelian Chern-Simons equation with one Higgs particle,

Duþ euð1� euÞ ¼ 4p
X
s

dps ;

has been extensively studied. We refer reader to [13, 1, 14, 2, 12, 3, 5, 10] and
references therein for the recent developments.

In the literature, there are two natural boundary conditions for the solutions
of (1.1) at infinity, namely,

(1) limjxj!y uðxÞ ¼ limjxj!y vðxÞ ¼ 0
(2) limjxj!y uðxÞ ¼ limjxj!y vðxÞ ¼ �y
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If ðu; vÞ satisfies the boundary condition (1), then ðu; vÞ is called a topological
solution of (1.1).

In [8], Lin-Ponce-Yang showed the existence of topological solutions for (1.1)
for any given set of singularities.

Theorem 1.1 ([8]). For any given sets fp1; . . . ; pN1
g and fq1; . . . ; qN2

g on R2,

(1.1) with m ¼ 4p
PN1

i¼1 dpi and n ¼ 4p
PN2

j¼1 dqj possesses a topological solution.

Lin-Prajapat [9] proved the existence of maximal and mountain-pass solu-
tions of (1.1) on a torus. Lin-Yan [11] studied the bubbling solutions of (1.1) on
a torus. Chern-Chen-Lin [4] studied the radial solutions of (1.1) with all fpigN1

i¼1

and fqjgN2

j¼1 to be the origin.

Duþ evð1� euÞ ¼ 4pN1d0

Dvþ euð1� evÞ ¼ 4pN2d0

�
in R2:ð1:2Þ

They showed the uniqueness of topological solutions of (1.2) by studying the non-
degeneracy property of linearized equations and classify all entire radial solutions
of (1.2) according to their behaviours at y:

Type (I): limr!yðuðrÞ; vðrÞÞ ¼ ð0; 0Þ.
Type (II): limr!yðuðrÞ; vðrÞÞ ¼ ð�y;�yÞ with b1 < y and b2 < y. For

this case, ðu; vÞ is called a non-topological solution.
Type (III): limr!yðuðrÞ; vðrÞÞ ¼ ð�y;�yÞ, and either 2N1 < b1 a 2N1 þ 2,

b2 ¼ y or b1 ¼ y, 2N2 < b2 a 2N2 þ 2.
Type (IV): limr!yðuðrÞ; vðrÞÞ ¼ ð�cu;yÞ or limr!yðuðrÞ; vðrÞÞ ¼ ð�y;�cvÞ

for some constants cu > 0 and cv > 0.
Type (V): limr!yðuðrÞ;vðrÞÞ ¼ ðþy;�yÞ or limr!yðuðrÞ;vðrÞÞ ¼ ð�y;þyÞ.

Here,

b1 ¼
ðy
0

evð1� euÞr dr; b2 ¼
ðy
0

euð1� evÞr dr:

However, the issues of the uniqueness of the non-topological solutions have not
been understood yet.

In this paper, we consider the radial solution of (1.1) with m ¼ n ¼ 0:

Duþ evð1� euÞ ¼ 0

Dvþ euð1� evÞ ¼ 0

�
in R2:ð1:3Þ

The following theorem is the main theorem of this paper. We prove the
uniqueness result for the non-topological radial solutions of (1.3).

Theorem 1.2. For any given pair ðb1; b2Þ with 2 < bi < y, i ¼ 1; 2, and
ðb1 � 2Þðb2 � 2Þ > 4, there exists a unique non-topological radial solution of (1.3)
satisfies ðy

0

evð1� euÞr dr ¼ b1 and

ðy
0

euð1� evÞr dr ¼ b2:
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The proof is based on the non-degeneracy of linearized equations. The
linearized equations at ðu; vÞ of (1.2) is called degenerate if there exists a nonzero
bounded solution ðA;BÞ of

DAþ evð1� euÞB� euþvA ¼ 0

DBþ euð1� evÞA� euþvB ¼ 0

�
in R2:ð1:4Þ

In Sec. 2, we will show the non-degeneracy of linearized equations at a non-
topological solution. We hope that the method developed here could be helpful
for a similar non-linear elliptic systems, like A2, B2 and G2 Chern-Simons system.
For the single Chern-Simons-Higgs model, the uniqueness result for the non-
topological solution with one singularity at the origin was proved in [3]. Is there
any uniqueness result for the non-topological solutions of (1.2) with ðb1; b2Þ
satisfying

ðb1 � 2ðN1 þ 1ÞÞðb2 � 2ðN2 þ 1ÞÞ > 4ðN1 þ 1ÞðN2 þ 1Þ?
We will come back to this issue in a coming paper.

The paper is organized as follows. We investigate the non-degeneracy
property of the linearized equations on the non-topological solutions of (1.3)
in Sec. 2. Theorem 1.2 is proved in Sec. 3.

2. Non-degeneracy of linearized equations

In this section, we consider the radial solutions of

Duþ evð1� euÞ ¼ 0

Dvþ euð1� evÞ ¼ 0

�
in R2:ð2:1Þ

Denote ðuðr; a1; a2Þ; vðr; a1; a2Þ be the solution of (2.1) with ðuð0Þ; vð0ÞÞ ¼ ða1; a2Þ
and

b1ða1; a2Þ ¼
ðy
0

evðr;a1;a2Þð1� euðr;a1;a2ÞÞr dr;

b2ða1; a2Þ ¼
ðy
0

euðr;a1;a2Þð1� evðr;a1;a2ÞÞr dr:

Remark 2.1. For any solution of (2.1) with b1 < þy and b2 < þy, we can

prove that ðu; vÞ is symmetric with respect to some point p A R2. The proof can
be obtained via the method of moving planes.

Denote the set of the initial conditions of the non-topological solutions of
(2.1).

W ¼ fða1; a2Þ A R2 j uð0Þ ¼ a1; vð0Þ ¼ a2;

such that uðrÞ < 0 and vðrÞ < 0 and b1 < þy; b2 < þyg

In [4], Chern-Chen-Lin prove
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Proposition 2.2. W is simply connected.

Let

fiðrÞ ¼
qu

qai
; i ¼ 1; 2:

ciðrÞ ¼
qv

qai
; i ¼ 1; 2:

Then ðfi;ciÞ, i ¼ 1; 2 satisfied the linearized equation

Dfi � euþvfi þ evð1� euÞci ¼ 0

Dci � euþvci þ euð1� evÞfi ¼ 0

f1ð0Þ ¼ c2ð0Þ ¼ 1; f2ð0Þ ¼ c1ð0Þ ¼ 0; f 0
i ð0Þ ¼ c 0

i ð0Þ ¼ 0:

8><
>:ð2:2Þ

By [4], we have the monotone property of ðfi;ciÞ, i ¼ 1; 2.

Proposition 2.3. f1ðrÞ > 0 and c2ðrÞ > 0 for rb 0, and f2ðrÞ < 0 and
c1ðrÞ < 0 for rb 0 provided that ða1; a2Þ A W.

It is not di‰cult to show that

f1ðrÞ ¼ A1 log rþOð1Þ; f2ðrÞ ¼ �B1 log rþOð1Þ;
c1ðrÞ ¼ �B2 log rþOð1Þ; c2ðrÞ ¼ A2 log rþOð1Þ;

as r ! þy, for some Ai > 0 and Bi > 0, i ¼ 1; 2. More precisely,

A1 ¼
ðy
0

ðeuþvf1 � evð1� euÞc1Þr dr; B1 ¼
ðy
0

ð�euþvf2 þ evð1� euÞc2Þr dr;

B2 ¼
ðy
0

ð�euþvc1 þ euð1� evÞf1Þr dr; A2 ¼
ðy
0

ðeuþvc2 � euð1� evÞf2Þr dr:

It is clear that both ðf1;c1Þ and ðf2;c2Þ satisfy the linearized equation (1.4). In
fact, any solution ðf;cÞ of the linearized equation comes from a linear com-
bination of ðf1;c1Þ and ðf2;c2Þ.

We want to show that the linearized equation is non-degenerate. It is
not di‰cult to see it is equivalent to saying that for any solution ðf;cÞ of the
linearized equation, jfðxÞj þ jcðxÞj is not bounded in ½0;yÞ. Thus, it is equiv-
alent to

det
A1 �B1

�B2 A2

� �
0 0:

We will utilize the following the Pohozaev’s identity for (1.3) to prove it.ðR

0

ðev þ eu � euþvÞr dr ¼ R2u 0ðRÞv 0ðRÞ þ R2ðeuðRÞ þ evðRÞ � eðuþvÞðRÞÞ
2

:
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By di¤erentiating the above identity with respect to the initial value of ðu; vÞ, we
have ðR

0

ðeufþ evc� euevðfþ cÞÞr drð2:3Þ

¼ R2

2
½u 0ðRÞc 0ðRÞ þ v 0ðRÞc 0ðRÞ�

þ R2

2
½euðRÞfðRÞ þ evðRÞcðRÞ � eðuþvÞðRÞðcþ cÞðRÞ�:

Theorem 2.4.

det
A1 �B1

�B2 A2

� �
0 0:

Proof. Without loss of generality, we assume that

ðu; vÞð0Þ ¼ ða�
1 ; a

�
2 Þ with a�

2 > a�
1 :

In the followings, we set

fcðr; a1; a2Þ ¼ f1ðr; a1; a2Þ þ cf2ðr; a1; a2Þ
and

c2ðr; a1; a2Þ ¼ c1ðr; a1; a2Þ þ cc2ðr; a1; a2Þ

for some constant c. Then ðfc;ccÞ is a solution of the linearized equation. If
ca 0, then it is clear that ðfc;ccÞ is unbounded in ½0;yÞ. Hence, we may only
consider the case c > 0. Let

ba2a2 ¼ supfa < a�
2 jFor all b A ða�

1 ; a�; there is cðbÞ > 0 such that both

fcðr; a�
1 ; bÞ and ccðr; a�

1 ; bÞ change sign once and only once:g

Step 1. If both fcðrÞ and ccðrÞ change sign once and only once, then at
least one of them is unbounded on ½0;yÞ:

Note that fcð0Þ ¼ f1ð0Þ > 0 and ccð0Þ ¼ cc2ð0Þ > 0. We know that ðfc;ccÞ
satisfies

Dfc þ evð1� euÞcc � euþvfc ¼ 0

Dcc þ euð1� evÞfc � euþvcc ¼ 0

�
ð2:4Þ

Now, suppose both fc and cc are bounded. Thenðy
0

evð1� euÞccr dr ¼
ðy
0

euþvfcr drð2:5Þ
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and ðy
0

euð1� evÞfcr dr ¼
ðy
0

euþvccr dr:ð2:6Þ

By applying the Pohozaev’s identity, we haveðy
0

ðeufc þ evccÞr dr ¼
ðy
0

euþvðfc þ ccÞr dr:ð2:7Þ

On the other hand, by (2.5) and (2.6),ðy
0

ðeufc þ evccÞr dr ¼ 2

ðy
0

euþvðfc þ ccÞr dr

together with (2.7), it impliesðy
0

euþvðfc þ ccÞr dr ¼ 0:

Again, by (2.5) and (2.6), one obtainsðy
0

eufcr dr ¼
ðy
0

evccr dr ¼ 0:

Suppose that fcðr1Þ ¼ 0 and ccðr2Þ ¼ 0 for some r1 > 0 and r2 > 0. Since
u 0ðrÞ < 0 and v 0ðrÞ < 0 for r > 0, we have

ðevðr1Þ � evðrÞÞfcðrÞ < 0 if r0 r1:

Hence, ðy
0

euðrÞðevðr1Þ � evðrÞÞfcðrÞr dr < 0;

and it implies

0 ¼ evðr1Þ
ðy
0

euðrÞfcðrÞr dr <
ðy
0

eðuþvÞðrÞfcðrÞr dr:

Similarly, we have

0 ¼ euðr2Þ
ðy
0

evðrÞccðrÞr dr <
ðy
0

eðuþvÞðrÞccðrÞr dr:

But it yields

0 <

ðy
0

eðuþvÞðrÞðfcðrÞ þ ccðrÞÞr dr ¼ 0;

a contradiction. This finishes the step 1.
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Step 2. Suppose fcðrÞ and ccðrÞ change sign only once. Then fcðrÞ ¼ 0
and ccðrÞ ¼ 0 has only one solution.

We want to prove if fcðr0Þ ¼ 0, then f 0
cðr0Þ < 0. Suppose not, i.e.

f 0
cðr0Þ ¼ 0. Then there is r1 > r0 such that fcðr1Þ > 0 and r1 is a local maximum

point of fc.
Since

0aDfcðr0Þ ¼ evðr0Þðeuðr0Þ � 1Þccðr0Þ;
one has

ccðr0Þa 0:

If ccðr0Þ ¼ 0, then we have c 0
cðr0Þ0 0. Otherwise, ðfc;ccÞ satisfies a second

order system of equations with fcðr0Þ ¼ f 0
cðr0Þ ¼ 0 and ccðr0Þ ¼ c 0

cðr0Þ ¼ 0.
By the uniqueness of ODE, we have fc 1cc 1 0, a contradiction. Thus,
c 0
cðr0Þ < 0:

Hence, we conclude that either ccðr0Þ ¼ 0 and c 0
cðr0Þ < 0, or ccðr0Þ < 0. It

is easy to see that either case implies ccðr1Þa 0, due to the fact that cc changes
sign only once.

By the maximum principle,

0 < �Dfcðr1Þ þ eðuþvÞðr1Þfcðr1Þ ¼ evðr1Þð1� euðr1ÞÞccðr1Þa 0;

because ccðr1Þ < 0 and uðr1Þ < 0. This yields a contradiction and then the step 2
is proved.

Step 3. a�
2 ¼ ba2a2.

We denote S ¼ fb jBoth fcðr; a�
1 ; bÞ and ccðr; a�

1 ; bÞ change sign once and
only once for some c > 0g. Clearly, ba2a2 a a�

2 . If ba2a2 < a�
2 , then by definition,

there exists ci ¼ cðbiÞ > 0 such that ðfci ;cci
Þ ¼ ðfciðr; a�

1 ; biÞ;cci
ðr; a�

1 ; biÞÞ changes
sign once and only once, where ðfciðrÞ;cci

ðrÞÞ is a solution of the linearized
equation, where bi ! ba2a2. It is easy to see that ea ci a e�1 for some constant
e > 0. By passing to the limit, we find that ðfc;ccÞ is a solution of the linearized
equation at ðu; vÞ ¼ ðuðr; a1; ba2a2Þ; vðr; a1; ba2a2ÞÞ, and fc and cc change their sign at
most once. We want to prove both fc and cc cannot be bounded. If both fc
and cc are bounded, then we haveðy

0

eufcðrÞr dr ¼
ðy
0

evccðrÞ dr ¼ 0;

which implies both fc and cc must change their sign. Thus, fc and cc must
change their sign once and only once. And then by the step 1, we know that fc
and cc cannot be both bounded.

We thus consider the following possible cases:
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(a) Both fc and cc change sign once and only once.
(b) fcðrÞb 0 and ccðrÞb 0 for r A ½0;yÞ.
(c) fcðrÞb 0 and ccðrÞ changes sign only once.

We need to exclude the last two cases.

Case (b). Since

fcðrÞ ¼ ðA1 � B1cÞ log rþOð1Þ at y

and

ccðrÞ ¼ ð�B2 þ A2cÞ log rþOð1Þ at y;

we have A1 � B1cb 0 and �B2 þ A2cb 0 (but equality can hold only for one
equation), which implies

B2

A2
a ca

A1

B1
;

i.e.,

A1A2 � B1B2 > 0:

But, we can prove that (see step 4 below)

A1A2 � B1B2 a 0;

and it yields a contradiction. Hence this case is excluded.

Case (c). Let ri be the last local maximum of fciðrÞ > 0: Hence,

0a�DfciðriÞ þ eðuiþviÞðriÞfciðriÞ ¼ eviðriÞð1� euiðriÞÞcci
ðriÞ;

which implies cci
ðriÞ > 0: Thus,

cci
ðrÞ > 0 for r A ½0; ri�:

If ri ! þy, then we have ccðrÞb 0, a contradiction to the assumption of
this case. Hence, frig are bounded, and then f 0

cðrÞa 0 for large r. Thus, fcðrÞ
is bounded.

For d > 0, we denote

fcþdðrÞ ¼ ðf1 þ cf2 þ df2ÞðrÞ and ccþdðrÞ ¼ ðc1 þ cc2 þ dc2ÞðrÞ:

Claim. If d is small, then both fcþd and ccþd changes sign once and only
once.

Suppose fcþd changes sign more than once. Since fcþdðrÞ < 0 for large r, we
may assume that fcþd attains local positive maximum at r2ðdÞ. By the maximum
principle,

0a�Dfcþdðr2ðdÞÞ þ eðuþvÞðr2ðdÞÞfcþdðr2ðdÞÞ ¼ evðr2ðdÞÞð1� euðr2ðdÞÞÞccþdðr2ðdÞÞ;
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which implies ccþdðr2ðdÞÞ > 0: Hence, r2ðdÞaC for some constant C as d is
close to 0.

Since fcþd changes sign more than once, there is a r3ðdÞ < r2ðdÞ such that

fcþd attains negative local minimum at r3ðdÞ:
Denote r02 ¼ limd!0 r2ðdÞ and r03 ¼ limd!0 r3ðdÞ. By passing d ! 0, we have
fcðr03Þ ¼ 0 and f 0

cðr03Þ ¼ 0. As in step 2, we have either ccðr03Þ ¼ 0 and
c 0
cðr03Þ < 0, or ccðr03Þ < 0. But it yields a contradiction to

ccðr02Þ ¼ lim
d!0

ccþdðr2ðdÞÞb 0:

Similarly, we can prove ccþd changes sign once and only once. We
conclude that

ba2a2 A S:

Since S is an open set, ba2a2 þ e A S for some e > 0 provided that ba2a2 < a�
2 . Hence,ba2a2 ¼ a�

2 .

Step 4. For any b A S, then

A1A2 � B1B2 < 0:

Let fcðr; a�
1 ; bÞ and ccðr; a�

1 ; bÞ change sign once and only once. Then

A1 � cB1 a 0

and

B2 � cA2 a 0:

Because the two inequalities cannot be equality simultaneously,

A1A2 � B1B2 < 0:

Hence, this theorem is proved. r

3. The Proof of Theorem 1.2

Recall that

b1ða1; a2Þ ¼
ðy
0

evðr;a1;a2Þð1� euðr;a1;a2ÞÞr dr;

b2ða1; a2Þ ¼
ðy
0

euðr;a1;a2Þð1� evðr;a1;a2ÞÞr dr:

Hence,

qb1ða1; a2Þ
qai

¼
ðy
0

½ciðr; a1; a2Þevðr;a1;a2Þð1� euðr;a1;a2ÞÞ � fiðr; a1; a2ÞeðuþvÞðr;a1;a2Þ�r dr
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and

qb2ða1; a2Þ
qai

¼
ðy
0

½fiðr; a1; a2Þeuðr;a1;a2Þð1� evðr;a1;a2ÞÞ � ciðr; a1; a2ÞeðuþvÞðr;a1;a2Þ�r dr;

i ¼ 1; 2:
By Theorem 2.4, we have

det

qb1
qa1

qb1
qa2

qb2
qa1

qb2
qa2

0
BBB@

1
CCCA¼ det

A1 �B1

�B2 A2

� �
0 0

for ða1; a2Þ A W. Hence this theorem is proved.
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