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GLOBAL EXPONENTIAL STABILITY OF POSITIVE ALMOST
PERIODIC SOLUTIONS FOR A MODEL OF HEMATOPOIESIS*

ZHIBIN CHEN

Abstract

In this paper, we study the existence and global exponential stability of positive
almost periodic solutions for the generalized model of hematopoiesis with multiple time-
varying delays. Under proper conditions, we employ a novel proof to establish some
criteria to ensure that all solutions of this model converge exponentially to the positive
almost periodic solution.

1. Introduction

In the real-world phenomena, the variation of the environment plays an
important role. As pointed out in [4, 6], periodically varying environment and
almost periodically varying environment are foundations for the theory of nature
selection. Compared with periodic effects, almost periodic effects are more
frequent. Hence, the effects of the almost periodic environment on the evolu-
tionary theory have been the object of intensive analysis by numerous authors
and some of these results can be found in [1, 3, 7, 13]. In a classic study of
population dynamics, the following delay differential equation model

(L.1) x'(t) = —a(6)x(t) + i:bl—(t)
' - 1+ 3 (1 — ()
where n is a positive constant, and
a,b;,7; : R — (0,+00) are continuous functions for i =1,2,...,m,

has been used by [5, 9] to describe the dynamics of hematopoiesis (blood
cell production). As we known, equation (1.1) belongs to a class of biological
systems and it (or its analogue equation) has been attracted more attention on
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problem of almost periodic solutions because of its extensively realistic signifi-
cance. For example, some criteria ensuring the existence and stability of positive
almost periodic solutions were established in [2, 12, 15] and the references cited
therein. However, after a careful examination on the above references, we find
that the sufficient conditions for the attractivity of almost periodic solutions in
[12] are delay-dependent; In the argument of Theorem 3.1 in [2], the zero func-
tion belongs to the set D, and the possible almost periodic may be identically
vanishing; The exponential stability results on almost periodic solutions obtained
in [15] only holds in a locally bounded region. Moreover, to the best of our
knowledge, the global exponential stability of positive almost periodic solutions
of (1.1) have not been sufficiently researched. On the other hand, since the
exponential convergent rate can be unveiled, the global exponential stability of
positive almost periodic solutions plays a key role in characterizing the behavior
of dynamical system (see [8, 10, 14]). Thus, it is worth while to continue to
investigate the existence and global exponential stability of positive almost
periodic solutions of (1.1).

Motivated by the above discussions, in this paper, we consider the existence,
uniqueness and global exponential stability of positive almost periodic solutions
of (1.1). Here in this present paper, a new approach will be developed to obtain
a delay-independent condition for the global exponential stability of the positive
almost periodic solutions of (1.1), and the exponential convergent rate can be
unveiled.

Throughout this paper, for i=1,2,...,m, it will be assumed that
a,bi,t; : R — (0,400) are almost periodic functions, and
(12) a =inf a(t), a" =supa(t), b7 =inf b;(t) >0, b; =sup b(z),

teR teR teR teR
(1.3) r = max {sup r,-(t)} > 0.
I<i<m | teR
Let R, denote a nonnegative real number space, C = C([—r,0],R) be the con-
tinuous function space equipped with the usual supremum norm | -||, and let
Ci = C([-r,0],Ry). If x(z) is defined on [—r—+ ty,0) with 7,6 € R, then we
define x; € C where x,(0) = x(t+ 0) for all 0 [—r,0].

Due to the biological interpretation of model (1.1), only positive solutions
are meaningful and therefore admissible. Thus we just consider admissible initial
conditions

(L.4) X, =¢, 9peC; and ¢(0) > 0.

We write by x;(t, ¢)(x(t; fo, ¢)) an admissible solution of admissible initial value
problem (1.1) and (1.4). Also, let [#,#(p)) be the maximal right-interval of the
existence of x,(o, ).

2. Preliminary results

In this section, some lemmas and definitions will be presented, which are of
importance in proving our main results in Section 3.
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DeriNITION 2.1 (see [4, 6]). Let u(f) : R — R be continuous in 7. u(f) is
said to be almost periodic on R if, for any ¢>0, the set T(u¢) =
{0 |u(t+9J) —u(f)| < e for all te R} is relatively dense, i.e., for any ¢ >0, it
is possible to find a real number / = /(¢) > 0, for any interval with length /(¢),
there exists a number J =d(¢) in this interval such that |u(z+0) —u(r)| < e, for
all teR.

From the theory of almost periodic functions in [4, 6], it follows that for any
e > 0, it is possible to find a real number / = /(e) > 0, for any interval with length
I(e), there exists a number 0 =d(e) in this interval such that

2.1) la(t+0) —a(t) < e, |bi(t+0) — b)) <e |rt+3) — ()| <e,

for all teR and i=1,2,...,m.

Lemma 2.1 (see [15, Lemma 2.3]). Every solution x(t; ty, ¢) of (1.1) and (1.4)
is positive and bounded on [ty,n(9p)), and n(p) = +o0.

LEMMA 2.2.  Suppose that there exists two positive constants k and M such
that

(2.2) M >, sup{—a(l)M + ibi(t)} <0, jgg{—a(f)’c + Zm: 1 i(j?l} >0

teR i=1 i=1

Then, there exists t, > ty such that
(2.3) K< x(tito,0) <M for all t>1,.

Proof. Let x(t) = x(t;t,p). We first claim that there exists # € [¢g, +00)
such that
(2.4) x(t#) < M.
Otherwise,

x(t) = M for all € [ty,+0),

which together with (2.2), implies that

x'(t) = —a(0)x(t) + il-l-xnb(ll(t—)l'(l))
i=1 '

m bl(t)
< —a(t)M + .
2 m

m

< —a()M + > bi(1)
i=1
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m
< flellg{—a(t)M + Z; b,(z)}
<0, for all > t.
This yields that
1 m
x(1) = x(t9) + L) x'(s) ds < x(to) + igg{—a(t)M + Zbi(l)}(t —ty), Vi>1.

Thus

which contradicts the fact that x(z) is positive and bounded on [fyp,4+00). Hence,
(2.4) holds. In the sequel, we prove that

(2.5) x(t) < M for all te[t? +o0).

Suppose, for the sake of contradiction, that there exists 7 e (¢#,+00) such that

(2.6) x(f)=M, x(t)<M for all re[t” 7).

Calculating the derivative of x(7), together with (2.2), (1.1) and (2.6) imply that
0 < x'(7)

b

)
14+ x"(f —7:(7))

= —a(f)x(f) + z’”:

< —a(f)M + zm: bi(P)
i=1

<0,

which is a contradiction and hence (2.5) holds.

We finally show that / = liminf,,, x(#) > x. By way of contradiction, we
assume that 0 </ <x. By the fluctuation lemma [11, Lemma A.l.], there exists
a sequence {#t},- such that

th — 40, x(&) — lierinf x(6), Xx'(tx) —0 as k— +oo.
t—+00

Since {x, } is bounded and equicontinuous, by the Ascoli-Arzeld theorem, there
exists a subsequence, still denoted by itself for simplicity of notation, such that

X, — ¢ (k — 4+00) for some ¢* € C,.
Moreover,

p*(0)=1<¢" (@) <M for Oe[-r,0).
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Without loss of generality, we assume that all a(f;), b;(tx) and 7;(¢;) are con-
vergent to a*, b/ and t/, respectively. This can be achieved because of almost
periodicity. It follows from

x'(tk) = —a(te)x(t) + Z T xn[();l(lk_)‘('(tk))
=1 o

that (taking limits)

m b*
> _ % ]
> —a K+ 2 15 M7
o~ bi(1)
= }22{—“<Z>K+;1+Mn}
> 0,

a contradiction. This proves that /> x. Thus, from (2.5), we can choose
t, > to such that

K < x(t;to,0) <M for all t>1¢,.

This ends the proof of Lemma 2.2.

LemmA 2.3.  Suppose that (2.2) holds, and

(2.7 sup{—a(l) + Zm:bi(l)%} <0.

teR

Moreover, assume that x(z) = x(¢; 7y, ¢) is a solution of equation (1.1) with initial
condition (1.4) and ¢’ is bounded continuous on [—r,0]. Then for any e > 0,
there exists / =/(e) > 0, such that every interval [x,« + /] contains at least one
number ¢ for which there exists N > 0 satisfing

(2.8) [x(t+0) —x(r)| <e, for all 1> N.

Proof. Define a continuous function I'(x) by setting

(2.9) I(u) = sup{[a(t) —ul + Y bi(0) Z_Kem}, uelo,1].
i=1

teR
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Then, we have

r(0) = sup{ —a(1) + Z bi(1) 4’;} <0,

teR

which implies that there exist two constants # > 0 and A e (0,1] such that

(2.10) (A )sup{ +Zb '}<—;7<0.

teR

For te(—oo,t) —r], we add the definition of x(¢r) with x(z) = x(z —r).
Set

2.11)  €(d,1) = —[a(t + ) — a(t)]x(t + )

m 1
+Z l‘+5 )}1+xil(t+5—l',( +5))

m
+Zb [1 o t+51—‘[,(l+5)) 1 +x”(l—:5—r,-(t)) :
te R

By Lemma 2.2, the solution x(¢) is bounded and

(2.12) k< x(t) <M, forall t>t¢,

which implies that the right-hand side of (1.1) is also bounded, and x'(¢) is a
bounded function on [ty — r,+00). Thus, in view of the fact that x(¢) = x(¢p — r)
for te (—o0,ty —r], we obtain that x(¢) is uniformly continuous on R. From
(2.1), for any e > 0, there exists / =I(e) > 0, such that every interval [o, o + /],
o€ R, contains a ¢ for which

1
(2.13) le(,1)] < e for all 1€ R.

Let Ny > max{ty,t0 —9J,t,+r,t,+r—0J}. For te R, denote
u(t) = x(1 +0) — x(1).

Then, for all t > Ny, we get

(2.14)

= —a(0)[x(1 +0) — x(1)]

m 1 1
+Zb [l—i—xn t+5—f(l))_1+x"(l—f,-(l)) +€(0,1).

du(t)
dt
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From (2.14) and the inequalities

1 1| | —no"! P n-l < |
T e ooy evey ™ < bl
where x, y € [, M], 0 lies between x and y, we obtain

(2.16) D™ (e”[u(s)])l;-,

(2.15) ’

< 7" u()] + e“{—a<r>|x<z +6) — x(1)

}

< e |u(1)] + e“{—a(t)lu(t) + Zbi(t) I—K u(t = 7i(1))] + |9, 1)}

m 1 1
Zb [l—i-x” l+5—71(l>>_1+X”(l—ri(t))}+e(5’[)

= —la(r) — Ze*u(?) |+Zb R G O)]

+ ele(d,1)|, for all > N.
Let
(2.17) U(t)= sup {e®|u(s)|}.

—o0<s<t

It is obvious that e”|u(t)] < U(f), and U(t) is non-decreasing.
Now, we distinguish two cases to finish the proof.

CASE ONE.
(2.18) U(r) > e[u(r)] for all 1> Ny.
We claim that
(2.19) U(t) = U(Ny) is a constant for all ¢ > Ny.

Assume, by way of contradiction, that (2.19) does not hold. Then, there exists
1 > Ny such that U(#;) > U(Np). Since

eM|u(t)] < U(Ny) for all t < Np.
There must exist f € (Ny,#) such that
elu(p)| = U(n) = U(B),

which contradicts (2.18). This contradiction implies that (2.19) holds. It
follows that there exists #, > Ny such that

(2.20) u(1)| < e U() = e U(Ng) < e for all 1> 1.
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Case Two. There is a £ > Ny that U(#;) = e*s|u(t;)|. Then, in view of
(2.10), (2.13) and (2.16), we get

(221) 0 <D (e [uls)])l,y

< —la(t5) — Ae*5u(tg)]
m

o STt * * Aty *
+ 2 bl15) e DG D (e =) + ¢ (0. 5)
=

* N * 1 Aty
s{—[a<t0>—ﬂ~1+zb,-<ro>w }U(to)+§'76€

< —nU(t5) + nee’s,
which yields that
(2.22) Mo lu(tl)| = U(ty) < ee™, and |u(t))] < e

For any ¢ > ¢, with the same approach as that in deriving of (2.22), we can
show

(2.23) eMu(t)| < ee”, and |u(t)| < e,

it U(t) = e*|u(1)).
On the other hand, if U(f) > e*|u(f)| and ¢ > ¢;. We can choose #; < 13 < ¢
such that

U(ts) = e*lu(t3)| and  U(s) > e*u(s)| for all se (13,1,
which, together with (2.23), yields
u(t3)] < e.

With a similar argument as that in the proof of Case one, we can show
that

(2.24) U(s) = U(t3) is a constant for all se (s, 1],
which implies that
(0] < e HU(E) = e Ut5) = fu(as) e 0 < e

In summary, there must exist N > max{z}, No, >} such that |u(z)| < e holds
for all £ > N. The proof of Lemma 2.3 is now complete.

3. Main results

In this section, we establish sufficient conditions on the existence and global
exponential stability of almost periodic solutions of (1.1).
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THEOREM 3.1. Under the assumptions of Lemma 2.3, equation (1.1) has at
least one positive almost periodic solution x*(t). Moreover, x*(t) is globally
exponentially stable, i.e., there exist constants K, - and t, - such that

IX(t; 10, 9) — x*(0)] < K v for all t>t, -,
where A has been defined in (2.10).
Proof. Let v(t) = v(t;10,0") be a solution of equation (1.1) with initial

conditions satisfying the assumptions in Lemma 2.3. We also add the definition
of v(z) with v(¢) = v(tp —r) for all te (—o0,t —r]. Set

(3.1)  elk,t) = —[a(t+ 1) — a(D]o(t + 1)

+Z (14 1) — bi(0)] !

L+ o"(t+ 1 — 7i(t + 1))

1 1
+ > bi( - :
Z {1 For(t+ b — it + 1)) 1 +v(t 4t — (1))
te R,

where {#} is any sequence of real numbers. By Lemma 2.2, the solution v(¢) is
bounded and

(3.2) k<uv(t) <M, forall t=>t,,

which implies that the right side of (1.1) is also bounded, and v’(¢) is a bounded
function on [fp —r,+o00). Thus, in view of the fact that v(r) = v(tp —r) for
te (—o0,t) —r], we obtain that v(7) is uniformly continuous on R. Then, from
the almost periodicity of a, b; and 7;, we can select a sequence {#} — +oo0 such
that

1 1
(3.3) la(t+ 1) —a(?)| < o |b:i(t 4+ 1) — bi(1)] < o
1 1
li(t+ tx) — 7:(2)] < o le(k, 1)] < %
for all i,
Since {v(t + 1)} is uniformly bounded and equiuniformly continuous, by

Arzala-Ascoli Lemma and diagonal selection principle, we can choose a sub-
sequence {f} of {7}, such that v(z+ ;) (for convenience, we still denote by
v(t + t)) uniformly converges to a continuous function x*(#) on any compact set
of R, and

(3.4) Kk <x*(t) <M, for all reR.

Now, we prove that x*(¢) is a solution of (1.1). In fact, for any ¢ > ¢, and
At e R, from (3.3), we have
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(3.5) x"(t+ A1) —x*(2)
= lim [v(t+ At + ) — o(t + ;)]

k—+40

= lim JHA,{—a(u + t)o(p+ 1)

k—+o J;

i=1

X 1
b; t d
+Z (n+ k>1+v”(,u+tk—ri(,u+tk))} a

1+At
— i - ‘
Jim [ —atweta )

m 1

+ ;bi(ﬂ) o e —o(a) e(k,ﬂ)} du

t+At .
_ J {a(ﬂ)X*(ﬂ) +_ bl (X*(ﬂl— ff(ﬂ))>"} dﬂ

t i=1

t+At
+ lim J e(k,p) du

k—+o J;

t+At &
- J {—a(ﬂ)X*(u) +_bilw 1+ (X*(ﬂl— Ti@)))"} o

4 i=1
where ¢+ At > #p. Consequently, (3.5) implies that
I O XU RS D AU Re—
' gr A= Tanx T (=)

i=1

Therefore, x*(¢) is a solution of (1.1).

Secondly, we prove that x*(#) is an almost periodic solution of (1.1). From
Lemma 2.3, for any &> 0, there exists / =/(¢) > 0, such that every interval
[o,00 4+ [] contains at least one number ¢ for which there exists N > 0 satisfies

(3.7 lo(t+0) —v(t)| <e for all t> N.

Then, for any fixed s € R, we can find a sufficient large positive integer Ny > N
such that for any k > Ny,

(3.8) s+t >N, Jo(s+t%+9)—v(s+u) <e
Let kK — 400, we obtain
X" (s +0) - x*(s)| <,

which implies that x*(¢) is an almost periodic solution of equation (1.1).
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Finally, we prove that x*(¢) is globally exponentially stable.
Let x(7) = x(t;t0,9) and y(f) = x(¢) — x*(¢), where 7€ [tp — r,+00). Then

, m 1 1
(39) ¥ = (0 +2_bit [1+ﬂzzun_1+xwuzm»'

It follows from Lemma 2.2 that there exists f, « > #; such that
(3.10) Kk<x(t), x"(t)<M, forall te[t,  —r +0).
We consider the Lyapunov functional

(3.11) V() =|p(n)le”

Calculating the upper left derivative of V'(¢) along the solution y(#) of (3.9), we
have

(3.12) D=(V(1) < —a(n)|y(z Ie“+zb

1
1+ xt (e — (1))

=[—(< )= Ay |+fjb

1
T (- o(0)

1
1+ xm(t — 7:(2))

e+ A y(1)]e”

1
1+x" (t—7i(1))

]e”, for all ¢ > 1, ..

We claim that
(3.13) V() = |y(t)]e”

<eW“( max Lﬂﬂ—ﬁ@ﬂ+0

telto—r,ty ]
=K,y for all > 1, ,-.
Contrarily, there must exist . > #, .+ such that
(3.14) V(t,) =K, and V() <K, for all tetg—r,t.).
Together with (2.15), (3.12) and (3.14), we obtain
0<D (V(1))

—(a(t.) = 2)[y(z.)]

1 1
1+ x(t, —7,(t,)) 1+x (1, — (1))

] ellt*
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m

n. . ) At —Ti(ts
—(a(t) = 2)|p(e)let + D bi(t) e DH TNy, — 7i(0,))
i=1

IA

< {—(a(t*) ) ibi(t*)%e”}[(%x*.

Thus,

0< —(a(t) = )+ Y bilt) 1e”,

=1
which contradicts with (2.10). Hence, (3.13) holds. It follows that

At

|y(0)] < Ky ™ for all t> ¢, .

This completes the proof of Theorem 3.1.

4. An example

In this section, we present an example to check the validity of our results we
obtained in the previous sections.

Example 4.1. Consider the following model of hematopoiesis with multiple
time-varying delays:
1

(4.1) x’(l) = —1.3X(l) +% (2 + % |COS ﬁl‘) m

1/, 1 1
(242 N
3 ( 7 lsin \@l') 1+ x(t — 2e5n1)

Obviously,
at=a =13, by =by=1, bf=by =125 n=1, r=2e
Let x =0.5 and M =2. Then
by +b; 1
e + o pt — ot 1 2 _ b
a M +by +b, 01<0, —a"x+ M 60>(),

1
—a~ + (b} +b;):—K= ~1342.5x 5= —0.05 <0,

which imply that (4.1) satisfies the assumptions of Theorem 3.1. Therefore,
equation (4.1) has a unique positive almost periodic solution x*(#), which is
globally exponentially stable with the exponential convergent rate 1= 0.0001.
The numerical simulation in Fig. 1 strongly supports the conclusion.
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FiGURE 1. Numerical solution x(7) of equation (4.1) for initial value ¢(s) = 0.65, s € [—2e,0].

Remark 4.1. We remark that the results in [12] and [15] give no opinions
about global exponential convergence for the positive almost periodic solution.
Moreover, the authors in [1] considered (1.1) with the following conditions:

m=1, sup b(f) <inf a(¢), b;(0)=0.
teR teR
Thus, the results in [1, 12, 15] and the references therein cannot be applied to
prove the global exponential stability of positive almost periodic solution for
(4.1). This implies that the results of this paper are new and they complement
previously known results. In particular, in this present paper, we employ a novel
proof to establish some criteria to guarantee the global dynamic behaviors of
positive almost periodic solutions for non-autonomous model of hematopoiesis
with multiple time-varying delays.
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