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GLOBAL EXPONENTIAL STABILITY OF POSITIVE ALMOST

PERIODIC SOLUTIONS FOR A MODEL OF HEMATOPOIESIS*

Zhibin Chen

Abstract

In this paper, we study the existence and global exponential stability of positive

almost periodic solutions for the generalized model of hematopoiesis with multiple time-

varying delays. Under proper conditions, we employ a novel proof to establish some

criteria to ensure that all solutions of this model converge exponentially to the positive

almost periodic solution.

1. Introduction

In the real-world phenomena, the variation of the environment plays an
important role. As pointed out in [4, 6], periodically varying environment and
almost periodically varying environment are foundations for the theory of nature
selection. Compared with periodic e¤ects, almost periodic e¤ects are more
frequent. Hence, the e¤ects of the almost periodic environment on the evolu-
tionary theory have been the object of intensive analysis by numerous authors
and some of these results can be found in [1, 3, 7, 13]. In a classic study of
population dynamics, the following delay di¤erential equation model

x 0ðtÞ ¼ �aðtÞxðtÞ þ
Xm
i¼1

biðtÞ
1þ xnðt� tiðtÞÞ

;ð1:1Þ

where n is a positive constant, and

a; bi; ti : R ! ð0;þyÞ are continuous functions for i ¼ 1; 2; . . . ;m;

has been used by [5, 9] to describe the dynamics of hematopoiesis (blood
cell production). As we known, equation (1.1) belongs to a class of biological
systems and it (or its analogue equation) has been attracted more attention on
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problem of almost periodic solutions because of its extensively realistic signifi-
cance. For example, some criteria ensuring the existence and stability of positive
almost periodic solutions were established in [2, 12, 15] and the references cited
therein. However, after a careful examination on the above references, we find
that the su‰cient conditions for the attractivity of almost periodic solutions in
[12] are delay-dependent; In the argument of Theorem 3.1 in [2], the zero func-
tion belongs to the set D, and the possible almost periodic may be identically
vanishing; The exponential stability results on almost periodic solutions obtained
in [15] only holds in a locally bounded region. Moreover, to the best of our
knowledge, the global exponential stability of positive almost periodic solutions
of (1.1) have not been su‰ciently researched. On the other hand, since the
exponential convergent rate can be unveiled, the global exponential stability of
positive almost periodic solutions plays a key role in characterizing the behavior
of dynamical system (see [8, 10, 14]). Thus, it is worth while to continue to
investigate the existence and global exponential stability of positive almost
periodic solutions of (1.1).

Motivated by the above discussions, in this paper, we consider the existence,
uniqueness and global exponential stability of positive almost periodic solutions
of (1.1). Here in this present paper, a new approach will be developed to obtain
a delay-independent condition for the global exponential stability of the positive
almost periodic solutions of (1.1), and the exponential convergent rate can be
unveiled.

Throughout this paper, for i ¼ 1; 2; . . . ;m, it will be assumed that
a; bi; ti : R ! ð0;þyÞ are almost periodic functions, and

a� ¼ inf
t AR

aðtÞ; aþ ¼ sup
t AR

aðtÞ; b�i ¼ inf
t AR

biðtÞ > 0; bþi ¼ sup
t AR

biðtÞ;ð1:2Þ

r ¼ max
1aiam

sup
t AR

tiðtÞ
� �

> 0:ð1:3Þ

Let Rþ denote a nonnegative real number space, C ¼ Cð½�r; 0�;RÞ be the con-
tinuous function space equipped with the usual supremum norm k � k, and let
Cþ ¼ Cð½�r; 0�;RþÞ. If xðtÞ is defined on ½�rþ t0; sÞ with t0; s A R, then we
define xt A C where xtðyÞ ¼ xðtþ yÞ for all y A ½�r; 0�.

Due to the biological interpretation of model (1.1), only positive solutions
are meaningful and therefore admissible. Thus we just consider admissible initial
conditions

xt0 ¼ j; j A Cþ and jð0Þ > 0:ð1:4Þ
We write by xtðt0; jÞðxðt; t0; jÞÞ an admissible solution of admissible initial value
problem (1.1) and (1.4). Also, let ½t0; hðjÞÞ be the maximal right-interval of the
existence of xtðt0; jÞ.

2. Preliminary results

In this section, some lemmas and definitions will be presented, which are of
importance in proving our main results in Section 3.
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Definition 2.1 (see [4, 6]). Let uðtÞ : R ! R be continuous in t. uðtÞ is
said to be almost periodic on R if, for any e > 0, the set Tðu; eÞ ¼
fd : juðtþ dÞ � uðtÞj < e for all t A Rg is relatively dense, i.e., for any e > 0, it
is possible to find a real number l ¼ lðeÞ > 0, for any interval with length lðeÞ,
there exists a number d ¼ dðeÞ in this interval such that juðtþ dÞ � uðtÞj < e, for
all t A R:

From the theory of almost periodic functions in [4, 6], it follows that for any
� > 0, it is possible to find a real number l ¼ lð�Þ > 0, for any interval with length
lð�Þ, there exists a number d ¼ dð�Þ in this interval such that

jaðtþ dÞ � aðtÞj < �; jbiðtþ dÞ � biðtÞj < �; jtiðtþ dÞ � tiðtÞj < �;ð2:1Þ

for all t A R and i ¼ 1; 2; . . . ;m:

Lemma 2.1 (see [15, Lemma 2.3]). Every solution xðt; t0; jÞ of (1.1) and (1.4)
is positive and bounded on ½t0; hðjÞÞ, and hðjÞ ¼ þy.

Lemma 2.2. Suppose that there exists two positive constants k and M such
that

M > k; sup
t AR

�aðtÞM þ
Xm
i¼1

biðtÞ
( )

< 0; inf
t AR

�aðtÞkþ
Xm
i¼1

biðtÞ
1þMn

( )
> 0:ð2:2Þ

Then, there exists tj > t0 such that

k < xðt; t0; jÞ < M for all tb tj:ð2:3Þ

Proof. Let xðtÞ ¼ xðt; t0; jÞ. We first claim that there exists ta A ½t0;þyÞ
such that

xðtaÞ < M:ð2:4Þ

Otherwise,

xðtÞbM for all t A ½t0;þyÞ;

which together with (2.2), implies that

x 0ðtÞ ¼ �aðtÞxðtÞ þ
Xm
i¼1

biðtÞ
1þ xnðt� tiðtÞÞ

a�aðtÞM þ
Xm
i¼1

biðtÞ
1þMn

a�aðtÞM þ
Xm
i¼1

biðtÞ
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a sup
t AR

�aðtÞM þ
Xm
i¼1

biðtÞ
( )

< 0; for all tb t0:

This yields that

xðtÞ ¼ xðt0Þ þ
ð t

t0

x 0ðsÞ dsa xðt0Þ þ sup
t AR

�aðtÞM þ
Xm
i¼1

biðtÞ
( )

ðt� t0Þ; Etb t0:

Thus

lim
t!þy

xðtÞ ¼ �y;

which contradicts the fact that xðtÞ is positive and bounded on ½t0;þyÞ. Hence,
(2.4) holds. In the sequel, we prove that

xðtÞ < M for all t A ½ta;þyÞ:ð2:5Þ

Suppose, for the sake of contradiction, that there exists ~tt A ðta;þyÞ such that

xð~tt Þ ¼ M; xðtÞ < M for all t A ½ta; ~tt Þ:ð2:6Þ

Calculating the derivative of xðtÞ, together with (2.2), (1.1) and (2.6) imply that

0a x 0ð~tt Þ

¼ �að~tt Þxð~tt Þ þ
Xm
i¼1

bið~tt Þ
1þ xnð~tt� tið~tt ÞÞ

a�að~tt ÞM þ
Xm
i¼1

bið~tt Þ

< 0;

which is a contradiction and hence (2.5) holds.
We finally show that l ¼ lim inf t!y xðtÞ > k. By way of contradiction, we

assume that 0a la k. By the fluctuation lemma [11, Lemma A.1.], there exists
a sequence ftkgkb1 such that

tk ! þy; xðtkÞ ! lim inf
t!þy

xðtÞ; x 0ðtkÞ ! 0 as k ! þy:

Since fxtkg is bounded and equicontinuous, by the Ascoli-Arzelá theorem, there
exists a subsequence, still denoted by itself for simplicity of notation, such that

xtk ! j�ðk ! þyÞ for some j� A Cþ:

Moreover,

j�ð0Þ ¼ la j�ðyÞaM for y A ½�r; 0Þ:
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Without loss of generality, we assume that all aðtkÞ, biðtkÞ and tiðtkÞ are con-
vergent to a�, b�

i and t�i , respectively. This can be achieved because of almost
periodicity. It follows from

x 0ðtkÞ ¼ �aðtkÞxðtkÞ þ
Xm
i¼1

biðtkÞ
1þ xnðtk � tiðtkÞÞ

that (taking limits)

0 ¼ �a�l þ
Xm
i¼1

b�
i

1þ ðj�ð�t�i ÞÞ
n

b�a�l þ
Xm
i¼1

b�
i

1þMn

b�a�kþ
Xm
i¼1

b�
i

1þMn

b inf
t AR

�aðtÞkþ
Xm
i¼1

biðtÞ
1þMn

( )

> 0;

a contradiction. This proves that l > k. Thus, from (2.5), we can choose
tj > t0 such that

k < xðt; t0; jÞ < M for all tb tj:

This ends the proof of Lemma 2.2.

Lemma 2.3. Suppose that ð2:2Þ holds, and

sup
t AR

�aðtÞ þ
Xm
i¼1

biðtÞ
n

4k

( )
< 0:ð2:7Þ

Moreover, assume that xðtÞ ¼ xðt; t0; jÞ is a solution of equation (1.1) with initial
condition ð1:4Þ and j 0 is bounded continuous on ½�r; 0�. Then for any � > 0,
there exists l ¼ lð�Þ > 0, such that every interval ½a; aþ l� contains at least one
number d for which there exists N > 0 satisfing

jxðtþ dÞ � xðtÞja �; for all t > N:ð2:8Þ

Proof. Define a continuous function GðuÞ by setting

GðuÞ ¼ sup
t AR

�½aðtÞ � u� þ
Xm
i¼1

biðtÞ
n

4k
eru

( )
; u A ½0; 1�:ð2:9Þ
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Then, we have

Gð0Þ ¼ sup
t AR

�aðtÞ þ
Xm
i¼1

biðtÞ
n

4k

( )
< 0;

which implies that there exist two constants h > 0 and l A ð0; 1� such that

GðlÞ ¼ sup
t AR

�½aðtÞ � l� þ
Xm
i¼1

biðtÞ
n

4k
elr

( )
< �h < 0:ð2:10Þ

For t A ð�y; t0 � r�, we add the definition of xðtÞ with xðtÞ1 xðt0 � rÞ.
Set

�ðd; tÞ ¼ �½aðtþ dÞ � aðtÞ�xðtþ dÞð2:11Þ

þ
Xm
i¼1

½biðtþ dÞ � biðtÞ�
1

1þ xnðtþ d� tiðtþ dÞÞ

þ
Xm
i¼1

biðtÞ
1

1þ xnðtþ d� tiðtþ dÞÞ �
1

1þ xnðtþ d� tiðtÞÞ

� �
;

t A R:

By Lemma 2.2, the solution xðtÞ is bounded and

k < xðtÞ < M; for all tb tj:ð2:12Þ

which implies that the right-hand side of (1.1) is also bounded, and x 0ðtÞ is a
bounded function on ½t0 � r;þyÞ. Thus, in view of the fact that xðtÞ1 xðt0 � rÞ
for t A ð�y; t0 � r�, we obtain that xðtÞ is uniformly continuous on R. From
(2.1), for any � > 0, there exists l ¼ lð�Þ > 0, such that every interval ½a; aþ l�,
a A R, contains a d for which

j�ðd; tÞja 1

2
h�; for all t A R:ð2:13Þ

Let N0 bmaxft0; t0 � d; tj þ r; tj þ r� dg. For t A R, denote

uðtÞ ¼ xðtþ dÞ � xðtÞ:

Then, for all tbN0, we get

duðtÞ
dt

¼ �aðtÞ½xðtþ dÞ � xðtÞ�ð2:14Þ

þ
Xm
i¼1

biðtÞ
1

1þ xnðtþ d� tiðtÞÞ
� 1

1þ xnðt� tiðtÞÞ

� �
þ �ðd; tÞ:
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From (2.14) and the inequalities

1

1þ xn
� 1

1þ yn

����
����¼ �nyn�1

ð1þ ynÞ2

�����
�����jx� yja nyn�1

ð2
ffiffiffiffiffi
yn

p
Þ2

jx� yja n

4k
jx� yj;ð2:15Þ

where x; y A ½k;M�, y lies between x and y, we obtain

D�ðelsjuðsÞjÞjs¼tð2:16Þ

a leltjuðtÞj þ elt

(
�aðtÞjxðtþ dÞ � xðtÞj

þ
Xm
i¼1

biðtÞ
1

1þ xnðtþ d� tiðtÞÞ
� 1

1þ xnðt� tiðtÞÞ

� �
þ �ðd; tÞ

�����
�����
)

a leltjuðtÞj þ elt �aðtÞjuðtÞj þ
Xm
i¼1

biðtÞ
n

4k
juðt� tiðtÞÞj þ j�ðd; tÞj

( )

¼ �½aðtÞ � l�eltjuðtÞj þ
Xm
i¼1

biðtÞ
n

4k
eltiðtÞelðt�tiðtÞÞjuðt� tiðtÞÞj

þ eltj�ðd; tÞj; for all tbN0:

Let

UðtÞ ¼ sup
�y<sat

felsjuðsÞjg:ð2:17Þ

It is obvious that eltjuðtÞjaUðtÞ, and UðtÞ is non-decreasing.
Now, we distinguish two cases to finish the proof.

Case one.

UðtÞ > eltjuðtÞj for all tbN0:ð2:18Þ
We claim that

UðtÞ1UðN0Þ is a constant for all tbN0:ð2:19Þ

Assume, by way of contradiction, that (2.19) does not hold. Then, there exists
t1 > N0 such that Uðt1Þ > UðN0Þ. Since

eltjuðtÞjaUðN0Þ for all taN0:

There must exist b A ðN0; t1Þ such that

elbjuðbÞj ¼ Uðt1ÞbUðbÞ;
which contradicts (2.18). This contradiction implies that (2.19) holds. It
follows that there exists t2 > N0 such that

juðtÞja e�ltUðtÞ ¼ e�ltUðN0Þ < � for all tb t2:ð2:20Þ
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Case two. There is a t�0 bN0 that Uðt�0 Þ ¼ elt
�
0 juðt�0 Þj. Then, in view of

(2.10), (2.13) and (2.16), we get

0aD�ðelsjuðsÞjÞjs¼t �
0

ð2:21Þ

a�½aðt�0 Þ � l�elt �0 juðt�0 Þj

þ
Xm
i¼1

biðt�0 Þ
n

4k
eltiðt

�
0
Þelðt

�
0
�tiðt �0 ÞÞjuðt�0 � tiðt�0 ÞÞj þ elt

�
0 j�ðd; t�0 Þj

a �½aðt�0 Þ � l� þ
Xm
i¼1

biðt�0 Þ
n

4k
elr

( )
Uðt�0 Þ þ

1

2
h�elt

�
0

< �hUðt�0 Þ þ h�elt
�
0 ;

which yields that

elt
�
0 juðt�0 Þj ¼ Uðt�0 Þ < �elt

�
0 ; and juðt�0 Þj < �:ð2:22Þ

For any t > t�0 , with the same approach as that in deriving of (2.22), we can
show

eltjuðtÞj < �elt; and juðtÞj < �;ð2:23Þ

if UðtÞ ¼ eltjuðtÞj.
On the other hand, if UðtÞ > eltjuðtÞj and t > t�0 : We can choose t�0 a t3 < t

such that

Uðt3Þ ¼ elt3 juðt3Þj and UðsÞ > elsjuðsÞj for all s A ðt3; t�;

which, together with (2.23), yields

juðt3Þj < �:

With a similar argument as that in the proof of Case one, we can show
that

UðsÞ1Uðt3Þ is a constant for all s A ðt3; t�;ð2:24Þ

which implies that

juðtÞj < e�ltUðtÞ ¼ e�ltUðt3Þ ¼ juðt3Þje�lðt�t3Þ < �:

In summary, there must exist N > maxft�0 ;N0; t2g such that juðtÞja � holds
for all t > N: The proof of Lemma 2.3 is now complete.

3. Main results

In this section, we establish su‰cient conditions on the existence and global
exponential stability of almost periodic solutions of (1.1).
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Theorem 3.1. Under the assumptions of Lemma 2.3, equation (1.1) has at
least one positive almost periodic solution x�ðtÞ. Moreover, x�ðtÞ is globally
exponentially stable, i.e., there exist constants Kj;x � and tj;x � such that

jxðt; t0; jÞ � x�ðtÞj < Kj;x �e�lt for all t > tj;x � ;

where l has been defined in (2.10).

Proof. Let vðtÞ ¼ vðt; t0; jvÞ be a solution of equation (1.1) with initial
conditions satisfying the assumptions in Lemma 2.3. We also add the definition
of vðtÞ with vðtÞ1 vðt0 � rÞ for all t A ð�y; t0 � r�. Set

�ðk; tÞ ¼ �½aðtþ tkÞ � aðtÞ�vðtþ tkÞð3:1Þ

þ
Xm
i¼1

½biðtþ tkÞ � biðtÞ�
1

1þ vnðtþ tk � tiðtþ tkÞÞ

þ
Xm
i¼1

biðtÞ
1

1þ vnðtþ tk � tiðtþ tkÞÞ
� 1

1þ vnðtþ tk � tiðtÞÞ

� �
;

t A R;

where ftkg is any sequence of real numbers. By Lemma 2.2, the solution vðtÞ is
bounded and

k < vðtÞ < M; for all tb tj v ;ð3:2Þ

which implies that the right side of (1.1) is also bounded, and v 0ðtÞ is a bounded
function on ½t0 � r;þyÞ. Thus, in view of the fact that vðtÞ1 vðt0 � rÞ for
t A ð�y; t0 � r�, we obtain that vðtÞ is uniformly continuous on R. Then, from
the almost periodicity of a, bi and ti, we can select a sequence ftkg ! þy such
that

jaðtþ tkÞ � aðtÞja 1

k
; jbiðtþ tkÞ � biðtÞja

1

k
;ð3:3Þ

jtiðtþ tkÞ � tiðtÞja
1

k
; j�ðk; tÞja 1

k
;

for all i, t:
Since fvðtþ tkÞgþy

k¼1 is uniformly bounded and equiuniformly continuous, by
Arzala-Ascoli Lemma and diagonal selection principle, we can choose a sub-
sequence ftkjg of ftkg, such that vðtþ tkj Þ (for convenience, we still denote by
vðtþ tkÞ) uniformly converges to a continuous function x�ðtÞ on any compact set
of R, and

ka x�ðtÞaM; for all t A R:ð3:4Þ

Now, we prove that x�ðtÞ is a solution of (1.1). In fact, for any tb t0 and
Dt A R, from (3.3), we have
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x�ðtþ DtÞ � x�ðtÞð3:5Þ
¼ lim

k!þy
½vðtþ Dtþ tkÞ � vðtþ tkÞ�

¼ lim
k!þy

ð tþDt

t

(
�aðmþ tkÞvðmþ tkÞ

þ
Xm
i¼1

biðmþ tkÞ
1

1þ vnðmþ tk � tiðmþ tkÞÞ

)
dm

¼ lim
k!þy

ð tþDt

t

(
�aðmÞvðmþ tkÞ

þ
Xm
i¼1

biðmÞ
1

1þ vnðmþ tk � tiðmÞÞ
þ �ðk; mÞ

)
dm

¼
ð tþDt

t

�aðmÞx�ðmÞ þ
Xm
i¼1

biðmÞ
1

1þ ðx�ðm� tiðmÞÞÞn

( )
dm

þ lim
k!þy

ð tþDt

t

�ðk; mÞ dm

¼
ð tþDt

t

�aðmÞx�ðmÞ þ
Xm
i¼1

biðmÞ
1

1þ ðx�ðm� tiðmÞÞÞn

( )
dm;

where tþ Dtb t0: Consequently, (3.5) implies that

d

dt
fx�ðtÞg ¼ �aðtÞx�ðtÞ þ

Xm
i¼1

biðtÞ
1

1þ ðx�ðt� tiðtÞÞÞn
:ð3:6Þ

Therefore, x�ðtÞ is a solution of (1.1).
Secondly, we prove that x�ðtÞ is an almost periodic solution of (1.1). From

Lemma 2.3, for any e > 0, there exists l ¼ lðeÞ > 0, such that every interval
½a; aþ l� contains at least one number d for which there exists N > 0 satisfies

jvðtþ dÞ � vðtÞja e; for all t > N:ð3:7Þ

Then, for any fixed s A R, we can find a su‰cient large positive integer N1 > N
such that for any k > N1,

sþ tk > N; jvðsþ tk þ dÞ � vðsþ tkÞja e:ð3:8Þ

Let k ! þy, we obtain

jx�ðsþ dÞ � x�ðsÞja e;

which implies that x�ðtÞ is an almost periodic solution of equation (1.1).
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Finally, we prove that x�ðtÞ is globally exponentially stable.
Let xðtÞ ¼ xðt; t0; jÞ and yðtÞ ¼ xðtÞ � x�ðtÞ, where t A ½t0 � r;þyÞ. Then

y 0ðtÞ ¼ �aðtÞyðtÞ þ
Xm
i¼1

biðtÞ
1

1þ xnðt� tiðtÞÞ
� 1

1þ x� nðt� tiðtÞÞ

� �
:ð3:9Þ

It follows from Lemma 2.2 that there exists tj;x � > t0 such that

ka xðtÞ; x�ðtÞaM; for all t A ½tj;x � � r;þyÞ:ð3:10Þ
We consider the Lyapunov functional

VðtÞ ¼ jyðtÞjelt:ð3:11Þ
Calculating the upper left derivative of VðtÞ along the solution yðtÞ of (3.9), we
have

D�ðVðtÞÞa�aðtÞjyðtÞjelt þ
Xm
i¼1

biðtÞ
���� 1

1þ xnðt� tiðtÞÞ
ð3:12Þ

� 1

1þ x� nðt� tiðtÞÞ

����elt þ ljyðtÞjelt

¼
"
�ðaðtÞ � lÞjyðtÞj þ

Xm
i¼1

biðtÞ
���� 1

1þ xnðt� tiðtÞÞ

� 1

1þ x� nðt� tiðtÞÞ

����
#
elt; for all t > tj;x � :

We claim that

VðtÞ ¼ jyðtÞjeltð3:13Þ

< eltj; x � max
t A ½t0�r; tj; x � �

jxðtÞ � x�ðtÞj þ 1

� �

:¼ Kj;x � for all t > tj;x � :

Contrarily, there must exist t� > tj;x � such that

Vðt�Þ ¼ Kj;x � and VðtÞ < Kj;x � for all t A ½t0 � r; t�Þ:ð3:14Þ
Together with (2.15), (3.12) and (3.14), we obtain

0aD�ðVðt�ÞÞ

a

"
�ðaðt�Þ � lÞjyðt�Þj

þ
Xm
i¼1

biðt�Þ
1

1þ xnðt� � tiðt�ÞÞ
� 1

1þ x� nðt� � tiðt�ÞÞ

����
����
#
elt�
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a�ðaðt�Þ � lÞjyðt�Þjelt� þ
Xm
i¼1

biðt�Þ
n

4k
eltiðt�Þelðt��tiðt�ÞÞjyðt� � tiðt�ÞÞj

a �ðaðt�Þ � lÞ þ
Xm
i¼1

biðt�Þ
n

4k
elr

( )
Kj;x � :

Thus,

0a�ðaðt�Þ � lÞ þ
Xm
i¼1

biðt�Þ
n

4k
elr;

which contradicts with (2.10). Hence, (3.13) holds. It follows that

jyðtÞj < Kj;x �e�lt for all t > tj;x � :

This completes the proof of Theorem 3.1.

4. An example

In this section, we present an example to check the validity of our results we
obtained in the previous sections.

Example 4.1. Consider the following model of hematopoiesis with multiple
time-varying delays:

x 0ðtÞ ¼ �1:3xðtÞ þ 1

2
2þ 1

2
jcos

ffiffiffi
2

p
tj

� �
1

1þ xðt� 2ecos tÞð4:1Þ

þ 1

2
2þ 1

2
jsin

ffiffiffi
3

p
tj

� �
1

1þ xðt� 2e sin tÞ :

Obviously,

aþ ¼ a� ¼ 1:3; b�1 ¼ b�2 ¼ 1; bþ1 ¼ bþ2 ¼ 1:25; n ¼ 1; r ¼ 2e:

Let k ¼ 0:5 and M ¼ 2. Then

�a�M þ bþ1 þ bþ2 ¼ �0:1 < 0; �aþkþ b�1 þ b�2
1þM

¼ 1

60
> 0;

�a� þ ðbþ1 þ bþ2 Þ
n

4k
¼ �1:3þ 2:5� 1

2
¼ �0:05 < 0;

which imply that (4.1) satisfies the assumptions of Theorem 3.1. Therefore,
equation (4.1) has a unique positive almost periodic solution x�ðtÞ, which is
globally exponentially stable with the exponential convergent rate lA0:0001.
The numerical simulation in Fig. 1 strongly supports the conclusion.
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Remark 4.1. We remark that the results in [12] and [15] give no opinions
about global exponential convergence for the positive almost periodic solution.
Moreover, the authors in [1] considered (1.1) with the following conditions:

m ¼ 1; sup
t AR

b1ðtÞ < inf
t AR

aðtÞ; b1ð0Þ ¼ 0:

Thus, the results in [1, 12, 15] and the references therein cannot be applied to
prove the global exponential stability of positive almost periodic solution for
(4.1). This implies that the results of this paper are new and they complement
previously known results. In particular, in this present paper, we employ a novel
proof to establish some criteria to guarantee the global dynamic behaviors of
positive almost periodic solutions for non-autonomous model of hematopoiesis
with multiple time-varying delays.

References

[ 1 ] S. Ahmad and I. M. Stamova, Almost necessary and su‰cient conditions for survival of

species, Nonlinear Anal. Real World Appl. 5 (2004), 219–229.

[ 2 ] J. O. Alzabut, J. J. Nieto and G. Tr. Stamov, Existence and exponential stability of positive

almost periodic solutions for a model of hematopoiesis, Bound. Value Probl. (2009), Article

ID 127510, 1–10.

[ 3 ] W. Chen and B. Liu, Positive almost periodic solution for a class of Nicholson’s blowflies

model with multiple time-varying delays, J. Comput. Appl. Math. 235 (2011), 2090–2097.

[ 4 ] A. M. Fink, Almost periodic di¤erential equations, Lecture notes in mathematics 377,

Springer, Berlin, 1974.

Figure 1. Numerical solution xðtÞ of equation (4.1) for initial value jðsÞ1 0:65, s A ½�2e; 0�.

272 zhibin chen



[ 5 ] I. Gyori and G. Ladas, Oscillation theory of delay di¤erential equations with applications,

Clarendon, Oxford, 1991.

[ 6 ] C. Y. He, Almost periodic di¤erential equation, Higher Education Publishing House, Beijing,

1992 (in Chinese).

[ 7 ] Y. Kuang, Delay di¤erential equations with applications in population dynamics, Academic

Press, New York, 1993.

[ 8 ] B. Liu, Almost periodic solutions for a delayed Nicholson’s blowflies model with a nonlinear

density-dependent mortality term, Adv. Di¤erence Equ. 72 (2014), 1–16.

[ 9 ] M. C. Mackey and L. Glass, Oscillations and chaos in physiological control systems,

Sciences 197 (1977), 287–289.

[10] C. Ou, Almost periodic solutions for shunting inhibitory cellular neural networks, Nonlinear

Anal.: Real World Appl. 10 (2009), 2652–2658.

[11] H. L. Smith, An introduction to delay di¤erential equations with applications to the life

sciences, Springer New York, 2011.

[12] X. Yang, Existence and global attractivity of unique positive almost periodic solution for a

model of hematopoiesis, Appl. Math. J. Chinese Univ. 25 (2010), 25–34.

[13] T. Yoshizawa, Stability theory and the existence of periodic solutions and almost periodic

solutions, Applied mathematical sciences 14, Springer, Berlin, 1975.

[14] H. Zhang and J. Shao, Existence and exponential stability of almost periodic solutions for

CNNs with time-varying leakage delays, Neurocomputing 121 (2013), 226–233.

[15] H. Zhang, L. Wang and M. Yang, Existence and exponential convergence of the positive

almost periodic solution for a model of hematopoiesis, Applied Mathematics Letters 26

(2013), 38–42.

Zhibin Chen

School of Science

Hunan University of Technology

Zhuzhou, Hunan 412000

P.R. China

E-mail: chenzhibinbin@aliyun.com

273global exponential stability for a model of hematopoiesis


