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ON THE NUMBER OF EXCEPTIONAL POINTS OF

HOLOMORPHIC CURVES AND THE DEFECT

RELATION FOR HOLOMORPHIC CURVES

Nobushige Toda

Abstract

Let X nð2Þ be a subset of C nþ1nf0g any two elements of which are not propo-

tional. We estimate the number of exceptional points in X nð2Þ for several holo-

morphic curves and we consider the defect relation for holomorphic curves. We

shall give an example for which the defect relation is extremal and then give some

holomorphic curves for which the defect relation is not extremal over X nð2Þ. Another

defect relation is also considered.

1. Introduction

Let f ¼ ½ f1; . . . ; fnþ1� be a holomorphic curve from C into the n-dimensional
complex projective space PnðCÞ with a reduced representation

ð f1; . . . ; fnþ1Þ : C ! C nþ1nf0g;
where n is a positive integer. We put

k f ðzÞk ¼ ðj f1ðzÞj2 þ � � � þ j fnþ1ðzÞj2Þ1=2

and the characteristic function of f is given as follows (see [14]):

Tðr; f Þ ¼ 1

2p

ð2p
0

logk f ðreiyÞk dy� logk f ð0Þk:

It is known ([1]) that for UðzÞ ¼ max1ajanþ1j fjðzÞj

Tðr; f Þ ¼ 1

2p

ð2p
0

log UðreiyÞ dyþOð1Þ:

We suppose throughout the paper that f is transcendental; that is to say,

lim
r!y

Tðr; f Þ=log r ¼ y:
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The order rf of f is given as follows:

rf ¼ lim sup
r!y

log Tðr; f Þ=log r:

For a ¼ ða1; . . . ; anþ1Þ A C nþ1nf0g, we put

ða; f Þ ¼ a1 f1 þ � � � þ anþ1 fnþ1

and we use the standard notaitions Nðr; a; f Þ, Nnðr; a; f Þ, dða; f Þ, dnða; f Þ as usual
(see e.g. [12, Introduction]).

Let Sðr; f Þ be any quantity satisfying

Sðr; f Þ ¼ oðTðr; f ÞÞ ðr ! y; r B EÞ;
where E is a subset of ð0;yÞ of finite linear measure.

We suppose throughout the paper that f is linearly non-degenerate over C :
Namely, the Wronskian of the functions f1; . . . ; fnþ1 is not identically equal to
zero. Let X be a subset of C nþ1nf0g in N-subgeneral position and we put

(a) D1 ¼ fa A X j dnða; f Þ ¼ 1g;
(b) P ¼ fa A X j ða; f Þ has at most a finite number of zeros in jzj < yg;
(c) M 1 ¼ fa A X j ða; f Þ has no zeros in jzj < yg,
(d) B ¼ fa A X j lim supr!y log Nnðr; a; f Þ=log r < rf g,

where N is an integer such that Nb n: We say that a A B is Borel exceptional
for f : Then, M 1 HPHD1 and it is known that

aPaaD1
a 2N � nþ 1; BUD1; D1 UB and aM 1

aN þN=n

(see e.g. [3], [9], [13]).
In this paper, with the set X in N-subgeneral position, we consider the

following subsets of C nþ1nf0g, which are not always in subgeneral position. For
k ¼ 1; . . . ; nþ 1, let X nðkÞ be a subset of C nþ1nf0g, satisfying that any k
elements of which are linearly independent. In particular, our main one is
X nð2Þ in this paper. From the definition it satisfies

(*) For any a; b A X nð2Þ, a0 ab ða A CÞ:
The set X nðnþ 1Þ is in general position.
The first purpose of this paper is to estimate the number of elements of the

following subsets of X nð2Þ.

Definition 1.A. (1) D1 ¼ fa A X nð2Þ j dnða; f Þ ¼ 1g
(2) P ¼ fa A X nð2Þ j ða; f Þ has at most a finite number of zeros in jzj < yg;
(3) M1 ¼ fa A X nð2Þ j ða; f Þ has no zeros in jzj < yg;
(4) B ¼ fa A X nð2Þ j lim supr!y log Nnðr; a; f Þ=log r < rf g:

The main tool is the fundamental inequality of H. Cartan ([1]). Some
applications of our results are given. We estimate them when f is linearly non-
degenerate over a function field

Note 1.1. An interesting result is given in a more delicate situation ([2,
Theorem 5.2]).
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The second purpose is to estimate afD1 UBg in X and to estimate
afD1 UBg in X nð2Þ under a condition.

The last purpose is to give the defect relation of holomorphic curves, one of
which is extremal and others are not extremal.

As is cited above the main tool in this paper is the fundamental inequality
of H. Cartan ([1]) for holomorphic curves. We also use its generalization by
Nochka ([7]).

2. Number of exceptional points of holomorphic curves

Let f , X , X nð2Þ, N, n etc. be as in Section 1. First of all we give the main
tool of this paper, the fundamental inequality by H. Cartan ([1]).

2-1. Lemma. We shall give some lemmas for later use in this section.

Lemma 2.1 ([1]). For any q elements aj ð j ¼ 1; . . . ; qÞ of C nþ1nf0g in general
position ðnþ 2a q < yÞ, we have the following inequalities:

(I) ðq� n� 1ÞTðr; f Þa
Pq

j¼1 Nnðr; aj; f Þ þ Sðr; f Þ:
(II)

Pq
j¼1 dnðaj; f Þa nþ 1:

Note 2.1. When rf is finite, the error term Sðr; f Þ can be replaced by
Oðlog rÞ without exceptional intervals (see the proof of (I) and [4, Theorem
2.2(i)]).

We put

Mf ¼ fj jmeromorphic in jzj < y; Tðr; jÞ ¼ Sðr; f Þg

and when 0 < rf < y

Mo ¼ fj jmeromorphic in jzj < y; rj < rf g;

where rj is the order of j:
We know that the sets Mf and Mo are fields. We denote by M the field

Mf , any subfield of Mf or Mo and from now on we suppose that the curve
f ¼ ½ f1; . . . ; fnþ1� is linearly non-degenerate over M:

We note that j 0 A Mf for j A Mf because Tðr; j 0Þa 2Tðr; jÞ þ Sðr; jÞ:

Lemma 2.2. Let aj ¼ ðaj1; . . . ; ajnþ1Þ ð j ¼ 1; . . . ; n; 2a na nþ 1Þ be n lin-
early independent vectors in C nþ1, let a be a vector in C nþ1 such that

a ¼
Xn
j¼1

cjaj ðcj 0 0 A CÞ

and we put

Fj ¼ ðaj; f Þ ð j ¼ 1; . . . ; nÞ; Fo ¼ ða; f Þ:

122 nobushige toda



Let g be an entire function such that the functions F1=g; . . . ;Fn=g are entire
functions without common zeros and put F ¼ ½F1=g; . . . ;Fn=g�:

Then, we have the followings:
(I) The functions F1; . . . ;Fn are linearly independent over M.
In particular,

Fj1=Fj2 B M ð1a j1 0 j2 a nÞ:

(II) (i) Tðr;F ÞaTðr; f Þ þOð1Þ ðrb 1Þ:
(ii) Tðr;Fj1=Fj2ÞaTðr;FÞ þOð1Þ ð1a j1 0 j2 a nÞ:
(III) If F is transcendental,

Tðr;FÞa
Xn
j¼1

Nnðr; aj; f Þ þNnðr; a; f Þ þ Sðr;FÞ:

Proof. (I) Suppose that
Pn

j¼1 gjFj ¼ 0 ðgj A MÞ: Then, as f1; . . . ; fnþ1 are
linearly independent over M, we obtain the equation

Xn
j¼1

ajkgj ¼ 0 ðk ¼ 1; . . . ; nþ 1Þ:

We put bk ¼ ða1k; a2k; . . . ; ankÞ ð1a ka nþ 1Þ: Then,

ð ta1; . . . ; tanÞ ¼
b1

..

.

bnþ1

0
BB@

1
CCA and rank ¼

b1

..

.

bnþ1

0
BB@

1
CCA¼ n

since a1; . . . ; an are linearly independent, so that there are n linearly independent
vectors bk1 ; . . . ; bkn in fb1; . . . ; bnþ1g:

From the equation

Xn
j¼1

ajkigj ¼ 0 ði ¼ 1; . . . ; nÞ;

we obtain that g1 ¼ 0; . . . ; gn ¼ 0, so that F1; . . . ;Fn are linearly independent over
M.

(II) (i) From the definition we have the relation

logkFk ¼ log
Xn
j¼1

jFj=gj2
 !1=2

¼ log
Xn
j¼1

jFjj2
 !1=2

� logjgj

a logk f k � logjgj þOð1Þ;

so that

Tðr;F ÞaTðr; f Þ �Nðr; 1=gÞ þOð1ÞaTðr; f Þ þ ð1Þ ðrb 1Þ:
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(ii) From [1, p. 10], we have the inequality

Tðr;F Þ þOð1ÞbT r;
Fj1=g

Fj2=g

� �
¼ Tðr;Fj1=Fj2Þ

(III) We put c ¼ ðc1; . . . ; cnÞ: Then, we have that e1; . . . ; en, c A C n are in
general position since cj 0 0 ð j ¼ 1; . . . ; nÞ and that for Fo ¼ ða; f Þ

Fo ¼
Xn
j¼1

cjFj:ð2:1Þ

We apply Lemma 2.1(I) to (2.1) for n ¼ n� 1;F and fe1; . . . ; en; cg: Then,
we obtain the inequality

Tðr;F Þa
Xn
j¼1

Nn�1ðr; ej ;F Þ þNn�1ðr; c;FÞ þ Sðr;F Þ:

Here, from the definition of counting function we have the relations for rb 1

Nn�1ðr; ej;FÞaNnðr; aj; f Þ ð j ¼ 1; . . . ; nÞ; Nn�1ðr; c;F ÞaNnðr; a; f Þ
since n� 1a n, so that we obtain (III). r

We denote by K any one of D1, P, M1 and B: We suppose that f is
linearly non-degenerate over M, where M ¼ Mf when K ¼ D1, M ¼ CðzÞ when
K ¼ P, M ¼ C when K ¼ M1 and M ¼ Mo when K ¼ B: Then, we obtain
the following.

Lemma 2.3. Suppose that K0 f: Then, for 1a kaminfaK; nþ 1g, any
k vectors in K are linearly independent over C :

Proof. (i) When k ¼ 1: This is trivial since KHX nð2ÞHC nþ1nf0g:
(ii) When k ¼ 2: This is also trivial since K satisfies (*) in Introduction.
(iii) For 2a kaminfaK; nþ 1g � 1, suppose that any k vectors in K are

linearly independent over C : We prove that any k þ 1 vectors in K are linearly
independent over C :

Suppose to the contrary that there are k þ 1 vectors in K : a1; . . . ; ak; a
which are linearly dependent over C : Then, from the hypothesis of the induc-
tion we can write

a ¼
Xk
j¼1

cjaj ðcj 0 0; 1a ja kÞ;

from which we obtain the relation

ða; f Þ ¼
Xk
j¼1

cjðaj; f Þ:ð2:2Þ
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We put

Fj ¼ ðaj; f Þ ð j ¼ 1; . . . ; kÞ and Fo ¼ ða; f Þ:

Then, we obtain that from Lemma 2.2(I) F1; . . . ;Fk are linearly independent
over M and that from (2.2)

Fo ¼
Xk
j¼1

cjFj ðcj 0 0Þ:ð2:3Þ

Let g be an entire function such that the functions F1=g; . . . ;Fk=g are entire
functions without common zeros, where g is polynomial when K ¼ P and g ¼ 1
when K ¼ M1. We put

F ¼ ½F1=g; . . . ;Fk=g�:

Then, F is transcendental from Lemma 2.2(I) and (II)(ii) when K ¼ D1;P or B:
When K ¼ M1, from Lemma 2.2(I) Fj1=Fj2 is not constant ð1a j1 0 j2 a kÞ:
As Fj1 , Fj2 have no zero, Fj1=Fj2 has neither zero nor pole. This implies that
Fj1=Fj2 is transcendental, so that F is transcendental from Lemma 2.2(II)(ii).
Then, from (2.3) and Lemma 2.2(III) we obtain the inequality

Tðr;FÞa
Xk
j¼1

Nnðr; aj; f Þ þNnðr; a; f Þ þ Sðr;FÞ:ð2:4Þ

(a) When K ¼ D1, from Lemma 2.2(I), (II)(i),(ii) and (2.4) we obtain the
inequality

0 < lim sup
r!y; r BE

Tðr;F2=F1Þ
Tðr; f Þ a

Xk
j¼1

lim sup
r!y

Nnðr; aj; f Þ
Tðr; f Þ

þ lim sup
r!y

Nnðr; a; f Þ
Tðr; f Þ þ lim sup

r!y; r BE

Sðr;F Þ
Tðr; f Þ ¼ 0

since aj; a A D1: This is a contradiction. This means that any k þ 1 vectors
in D1 must be linearly independent over C :

(b) When K ¼ P, from (2.4) we obtain the inequality

Tðr;FÞaOðlog rÞ þ Sðr;F Þ ¼ Sðr;F Þ

since aj ; a A P and F is transcendental. This is a contradiction. This means
that any k þ 1 vectors in P must be linearly independent over C :

(c) When K ¼ M1, from (2.4) we obtain the inequality Tðr;FÞaSðr;F Þ
since aj; a A M1. This is a contradiction since F is transcendental. This means
that any k þ 1 vectors in M1 must be linearly independent over C :
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(d) When K ¼ B, from (2.4) and Note 2.1 we obtain the inequality

Tðr;F Þa
Xk
j¼1

Nnðr; aj ; f Þ þNnðr; a; f Þ þOðlog rÞ;

since rF a rf < y: As rF ¼ rf from Lemma 2.2(I) and (II)(i),(ii), we have the
inequality

rf ¼ lim sup
r!y

log Tðr;F Þ
log r

a lim sup
r!y

logð
Pk

j¼1 Nnðr; aj; f Þ þNnðr; a; f Þ þOðlog rÞÞ
log r

< rf

since aj ; a A B. This is a contradiction. This means that any k þ 1 vectors in B
must be linearly independent over C :

From (i), (ii) and (iii) we obtain our lemma. r

Lemma 2.4 (see [4, p. 24]). Let jðzÞ be transcendental meromorphic with at
most a finite number of zeros and poles in jzj < y: Then,

lim inf r!y Tðr; jÞ=r > 0:

Last of all in this section we shall give the following curve for later use.

Lemma 2.5. Let fo ¼ ½1; ez; . . . ; enz�: Then, fo is linearly independent over
Mfo :

Proof. We first note that fo is transcendental since Tðr; foÞ@ ðn=pÞr and
that

Tðr; eði�jÞzÞ@ ji � jj
p

r ði0 jÞ:

(i) When n ¼ 1: We put

g1 þ g2e
z ¼ 0 ðg1; g2 A MfoÞ:

Suppose that g2 0 0: Then, ez ¼ �g1=g2, and we have Tðr; ezÞ ¼
Tðr; g1=g2Þ, so that we have the relation

0 < lim sup
r!y; r BE

Tðr; ezÞ
Tðr; foÞ

¼ lim sup
r!y; r BE

Tðr; g1=g2Þ
Tðr; foÞ

¼ 0;

which is a contradiction. This means that g2 must be equal to zero and we have
that g1 ¼ 0:

(ii) We suppose that this lemma holds for an integer kb 2:

Xk
j¼1

gje
ð j�1Þz ¼ 0 ðgj A MfoÞ ) gj ¼ 0 ð j ¼ 1; . . . ; kÞ
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and we prove that if

Xkþ1

j¼1

gje
ð j�1Þz ¼ 0 ðgj A Mfo ; j ¼ 1; . . . ; k þ 1Þ;ð2:5Þ

then gj ¼ 0 ð j ¼ 1; . . . ; k þ 1Þ:

Proof. (a) When g1 ¼ 0: In this case, from (2.5) we have the relation

Xkþ1

j¼2

gje
ð j�2Þz ¼ 0;

so that from the hypothesis of the induction g2 ¼ 0; . . . ; gkþ1 ¼ 0:
(b) Suppose that g1 0 0: Then, there exists at least one j ð2a ja k þ 1Þ

such thst gj 0 0: If gj ¼ 0 for all j ð2a ja k þ 1Þ, g1 ¼ 0 from (2.5).
From (2.5), we obtain

1þ
Xkþ1

j¼2

gj

g1
eð j�1Þz ¼ 0:ð2:6Þ

Here, gj=g1 A Mfo ð j ¼ 2; . . . ; k þ 1Þ: Di¤erentiating (2.6), we obtain

Xkþ1

j¼2

gj

g1

� �0
þ ð j � 1Þ gj

g1

� �
eð j�1Þz ¼ 0:

Now, gj=g1 A Mfo , ðgj=g1Þ
0 A Mfo ð j ¼ 2; . . . ; k þ 1Þ so that from the hypoth-

esis of the induction we have the relations

gj

g1

� �0
þ ð j � 1Þ gj

g1
¼ 0 ð j ¼ 2; . . . ; k þ 1Þ:

For j ð2a ja k þ 1Þ such that gj 0 0, the function gj=g1 satisfies the
di¤erential equation

ðgj=g1Þ0=ðgj=g1Þ ¼ �ð j � 1Þ
from which we obtain

gj=g1 ¼ ce�ð j�1Þz ðc0 0Þ and T r;
gj

g1

� �
¼ Tðr; ce�ð j�1ÞzÞ:

From this relation we have that

0 ¼ lim sup
r!y; r BE

Tðr; gj=g1Þ
Tðr; foÞ

¼ lim sup
r!y; r BE

Tðr; ce�ð j�1ÞzÞ
Tðr; foÞ

> 0;

which is a contradiction. This implies that g1 must be equal to 0. Then, we
obtain that g2 ¼ 0; . . . ; gkþ1 ¼ 0 as in (a).

This means that fo is linearly non-degenerate over Mfo : r

127exceptional points of holomorphic curves



2-2. Theorem. Let f , n, X , X nð2Þ, D1 etc. be as in Section 1.

Theorem 2.1.
(I) Suppose that f is linearly non-degenerate over Mf . Then, aD1 a nþ 1:
(II) Suppose that f is linearly non-degenerate over CðzÞ. Then,aPa nþ 1:
(III) Suppose that f is linearly non-degenerate over C . Then,aM1 a nþ 1:
(IV) Suppose that f is linearly non-degenerate over Mo and 0 < rf < y:

Then, aBa nþ 1:

Proof. We denote by K any one of D1, P, M1 and B: We suppose that
f is linearly non-degenerate over M, where M ¼ Mf when K ¼ D1, M ¼ CðzÞ
when K ¼ P, M ¼ C when K ¼ M1 and M ¼ Mo when K ¼ B.

Suppose thataK > nþ 1: Then, K contains at least nþ 2 elements. Let
a1; . . . ; anþ2 be in K: Then, from Lemma 2.3, any nþ 1 vectors of a1; . . . ; anþ2

are linearly independent over C : This means that a1; . . . ; anþ2 are in general
position in C nþ1:

(i) When K ¼ D1;P or M1: As f is transcendental in this paper, from
lemma 2.1(II) we have the inequality

Xnþ2

j¼1

dnðaj ; f Þa nþ 1:

On the other hand as dnðaj; f Þ ¼ 1 ð j ¼ 1; . . . ; nþ 2Þ in any case, we have
the equality Xnþ2

j¼1

dnðaj; f Þ ¼ nþ 2;

which is a contradiction. This means that aKa nþ 1:
(ii) When K ¼ B: From Lemma 2.1 and Note 2.1, we have the inequality

Tðr; f Þa
Xnþ2

j¼1

Nnðr; aj; f Þ þOðlog rÞ;

from which we obtain the inequality

rf a lim sup
r!y

logð
Pnþ2

j¼1 Nnðr; aj ; f Þ þOðlog rÞÞ
log r

< rf

since aj A B ð j ¼ 1; . . . ; nþ 2Þ, which is a contradiction.
From (i) and (ii) we have our theorem. r

Corollary 2.1. Let a1; . . . ; anþ2 be any nþ 2 elements in X nð2Þ:
(I) If f is linearly non-degenerate over Mf , then

lim sup
r!y

Pnþ2
j¼1 Nnðr; aj; f Þ

Tðr; f Þ > 0:ð2:7Þ
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(II) If f is linearly non-degenerate over CðzÞ, then

lim
r!y

Pnþ2
j¼1 Nnðr; aj; f Þ

log r
¼ y:ð2:8Þ

(a) In particular, if a1; . . . ; anþ1 A P and if f is of order finite (resp. infinite),

lim inf
r!y

Nnðr; anþ2; f Þ
r

> 0 ðresp: lim sup
r!y; r BE

Nnðr; anþ2; f Þ
r

> 0Þ:ð2:9Þ

(III) If f is linearly non-degenerate over C , then

6
nþ2

j¼1

fz j ðaj ; f ðzÞÞ ¼ 0g0 f:ð2:10Þ

(b) In particular, if a1; . . . ; anþ1 A M1,

lim
r!y

Nnðr; anþ2; f Þ=log r ¼ y:ð2:11Þ

(IV) If f is linearly non-degenerate over Mo and 0 < rf < y, then

lim sup
r!y

logð
Pnþ2

j¼1 Nnðr; aj ; f ÞÞ
log r

¼ rf :

Proof. (I) Suppose that there exist nþ 2 vectors a1; . . . ; anþ2 A X nð2Þ such
that

lim sup
r!y

Pnþ2
j¼1 Nnðr; aj; f Þ

Tðr; f Þ ¼ 0:

Then, for aj ð j ¼ 1; . . . ; nþ 2Þ we obtain that

lim sup
r!y

Nnðr; aj; f Þ=Tðr; f Þ ¼ 0:

This implies that

dnðaj; f Þ ¼ 1 ð j ¼ 1; . . . ; nþ 2Þ;
so that aD1 b nþ 2, which contradicts Theorem 2.1(I). (2.7) must hold.

(II) Suppose that there exist nþ 2 vectors a1; . . . ; anþ2 A X nð2Þ such that

lim
r!y

Pnþ2
j¼1 Nnðr; aj; f Þ

log r
< y:

Then, for any j ¼ 1; . . . ; nþ 2 limr!y Nnðr; aj; f Þ=log r < y: This means that
aj A P ð j ¼ 1; . . . ; nþ 2Þ, so thataPb nþ 2, which contradicts Theorem 2.1(II).
(2.8) must hold.

(III) Suppose that there exist nþ 2 vectors a1; . . . ; anþ2 A X nð2Þ such that
ðaj ; f Þ has no zeros ð j ¼ 1; . . . ; nþ 2Þ: Then aj A M1, so that aM1

b nþ 2,
which contradicts Theorem 2.1(III). (2.10) must hold.
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(IV) Suppose that there exist nþ 2 vectors a1; . . . ; anþ2 A X nð2Þ such that

lim sup
r!y

logð
Pnþ2

j¼1 Nnðr; aj ; f ÞÞ
log r

< rf :

then, for any j ¼ 1; . . . ; nþ 2

lim sup
r!y

log Nnðr; aj; f Þ
log r

< rf :

This means that aj A B ð j ¼ 1; . . . ; nþ 2Þ, so that aBb nþ 2, which contadicts
Theorem 2.1(IV). (IV) must hold.

(II)(a) and (III)(b) We denote by K any one of P and M1: We suppose
that f is linearly non-degenerate over M, where M ¼ CðzÞ when K ¼ P and
M ¼ C when K ¼ M1.

As a1; . . . ; anþ1 A K, from Lemma 2.3, a1; . . . ; anþ1 are linearly independent,
and so anþ2 can be represented as a linear combination of a1; . . . ; anþ1 with
constant coe‰cients. We suppose without loss of generality that

anþ2 ¼
Xk
j¼1

cjaj ðcj 0 0; 2a ka nþ 1Þ;

from which we obtain the relation

ða; f Þ ¼
Xk
j¼1

cjðaj; f Þ:ð2:12Þ

We put Fj ¼ ðaj; f Þ ð j ¼ 1; . . . ; kÞ and Fo ¼ ða; f Þ: Then, from Lemma
2.2(I) F1; . . . ;Fk are linearly independent over M and from (2.12)

Fo ¼
Xk
j¼1

cjFj ðcj 0 0Þ:ð2:13Þ

Let g be a polynomial such that the functions F1=g; . . . ;Fk=g are entire
functions without common zeros and put F ¼ ½F1=g; . . . ;Fk=g�, where g ¼ 1 when
K ¼ M1.

Then, from Lemma 2.2(I) and (II)(ii), F is transcendental. We note that
the functions F1; . . . ;Fk have no zeros when K ¼ M1. From Lemma 2.2(III)
applying to (2.13) we have the inequality

Tðr;FÞa
Xk
j¼1

Nnðr; aj; f Þ þNnðr; anþ2; f Þ þ Sðr;F Þð2:14Þ

aNnðr; anþ2; f Þ þ Sðr;F Þ;

since aj A K ð j ¼ 1; . . . ; kÞ:
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(a) When K ¼ P. If the order of f is finite, then that of F is also finite
from Lemma 2.2(II)(i). From Note 2.1 and (2.14) we have that

lim inf
r!y

Nnðr; anþ2; f Þ
Tðr;F Þ b 1;

and so from Lemma 2.2(I), (II)(ii) and Lemma 2.4 we have that

lim inf
r!y

Nnðr; anþ2; f Þ
r

b lim inf
r!y

Nnðr; anþ2; f Þ
Tðr;F Þ � lim inf

r!y

Tðr;F Þ
r

b lim inf
r!y

Tðr;F1=F2Þ
r

> 0:

If the order of f is infinite, from (2.14) we have

lim sup
r!y; r BE

Nnðr; anþ2; f Þ=Tðr;F Þb 1;

and so from Lemma 2.2(I), (II)(ii) and Lemma 2.4 we have that

lim sup
r!y; r BE

Nnðr; anþ2; f Þ
r

b lim sup
r!y; r BE

Nnðr; anþ2; f Þ
Tðr;FÞ � lim inf

r!y; r BE

Tðr;FÞ
r

b lim inf
r!y; r BE

Tðr;F1=F2Þ
r

> 0

We obtain (2.9).
(b) When K ¼ M1. Suppose that Nnðr; anþ2; f Þ ¼ Oðlog rÞ: Then, from

(2.14) we have that Tðr;FÞ ¼ Sðr;FÞ, which is absurd. As Nnðr; anþ2; f Þ is
convex with respect to log r, (2.11) must hold. r

Note 2.2. In (III)(b), we can prove the same conclusion as in (2.9).

Note 2.3. A more delicate result is given in [2, Theorem 5.2].

2-3. Example. Let f , X nð2Þ, D1, P, M1, B, n etc. be as in Introduction
and let ej ð j ¼ 1; . . . ; nþ 1Þ be the standard basis of C nþ1.

Example 2.1. Let f ¼ ½1; ez; . . . ; eðn�1Þz; enz�: Then, from [9, (5.3) p. 95],

Tðr; f Þ ¼ ðn=pÞrþOð1Þ;

so that f is transcendental. Let X nð2Þ be any subset of C nþ1nf0g containing
ej ð j ¼ 1; . . . ; nþ 1Þ, which satisfies (*) in Introduction. From Lemma 2.5 f
is linearly non-degenerate over Mf , over CðzÞ, over C and over Mo: Further
ðej ; f Þ has no zero for j ¼ 1; . . . ; nþ 1 and so

aD1 ¼aP ¼aM1 ¼aB ¼ nþ 1:

This shows that Theorem 2.1 is sharp.
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Further, let a ¼ ða1; . . . ; anþ1Þ A X nð2Þ: Then, at least two elements of
a1; . . . ; anþ1 are di¤erent from 0. Let aj1 0 0; . . . ; ajk 0 0 ð1a j1 < j2 < � � � <
jk a nþ 1; 2a ka nþ 1Þ, aj ¼ 0 ð j0 j1; . . . ; jkÞ and put

F ¼ ½e j1z; . . . ; e jkz�:

Then, Tðr;FÞ ¼ ð jk � j1Þr=pþOð1Þ so that F is transcendental and of order
1. From Lemma 2.2(III) and Note 2.1 we have the inequality

Tðr;F ÞaNnðr; a; f Þ þOðlog rÞ:

From this inequality we obtain that

lim
r!y

log Nnðr; a; f Þ
log r

¼ 1; lim inf
r!y

Nnðr; a; f Þ
Tðr; f Þ b

1

n
; lim inf

r!y

Nnðr; a; f Þ
r

b
1

p
:

Example 2.2. Let gðzÞ be a transcendental entire function such that
Tðr; gÞ ¼ Oððlog rÞ2Þ and let f ¼ ½1; ez; . . . ; eðn�1Þz; gðzÞ�: Then, it is easy to
see from Example 2.1 that there are positive constants a < b < y satisfying

araTðr; f Þa br;

so that f is transcendetral and of order 1. Let

X nð2Þ ¼ fe1; . . . ; enþ1gU fe1 þ aenþ1 j a A C ; 0 0g:

Then, X nð2Þ satisfies (*) in Introduction and

Nnðr; ej; f Þ ¼ 0 ð j ¼ 1; . . . ; nÞ; Nnðr; a; f Þ ¼ Oððlog rÞ2Þ;

where a ¼ e1 þ aenþ1:
1) f is linearly degenerate over Mf , Mo and aD1 ¼aB ¼ y:
2) f is linearly non-degenerate over CðzÞ, aP ¼ n and (2.8) holds, but

(2.9) does not hold since this example does not satisfy the condition of Corollary
2.1(II)(a).

Example 2.3. Let f ¼ ½1; ez; . . . ; eðn�1Þz; z� ðnb 2Þ: Then, f is transcen-
dental and of order 1 as in Example 2.2. Let X nð2Þ be the set given in Example
2.2. Then, X nð2Þ satisfies (*) in Introduction and

Nnðr; ej; f Þ ¼ 0 ð j ¼ 1; . . . ; nÞ; Nnðr; a; f Þ ¼ Oðlog rÞ

where a ¼ e1 þ aenþ1:
1) f is linearly degenerate over CðzÞ and aP ¼ y:
2) f is linearly non-degenerate over C , aM1 ¼ n and (2.10) holds:
Let a1; . . . ; anþ2 be any nþ 2 elements in X nð2Þ: Then,

2aa 6
nþ2

j¼1

fz j ðaj; f ðzÞÞ ¼ 0g
( )

a nþ 2:
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The formula (2.11) does not hold as this example does not satisfy the condition of
Corollary 2.1(III)(b):

a 6
nþ1

j¼1

fz j ðej ; f ðzÞÞ ¼ 0g
( )

¼ 10 0; afz j ða; f ðzÞÞ ¼ 0gg ¼ 1;

where a ¼ e1 þ aenþ1:

3. Relation between D1 and B

Let f , X nð2Þ, n etc. be as in Section 1 or 2.

3-1. Lemma. First of all we shall give the main tool in this section, the
fundamental inequality of H. Cartan ([1]) when N ¼ n (Lemma 2.1) and that in
general case by E. I. Nochka (see [3]) and then several lemmas to prove theorems.

Lemma 3.1 ([1], see [3]). For any q elements aj ð j ¼ 1; . . . ; qÞ of X
ð2N � nþ 2a q < yÞ, we have the following inequalities:

(I) ðq� 2N þ n� 1ÞTðr; f Þa
Pq

j¼1 Nnðr; aj; f Þ þ Sðr; f Þ:
(II)

Pq
j¼1 dnðaj; f Þa 2N � nþ 1:

Note 3.1. When rf is finite, the error term Sðr; f Þ can be replaced by
Oðlog rÞ without exceptional intervals (see the proof of (I) and [4, Theorem
2.2(i)]).

Definition 3.1. For 0a a < rf , we put

Taðr; f Þ ¼
ð r
1

Tðt; f Þ
t1þa

dt; Taðr; jÞ ¼
ð r
1

Tðt; jÞ
t1þa

dt;

and

Nn;aðr; a; f Þ ¼
ð r
1

Nnðt; 0;F Þ
t1þa

dt; dn;aða; f Þ ¼ 1� lim sup
r!y

Nn;aðr; a; f Þ
Taðr; f Þ

;

where j is a meromorphic function in the plane and F ¼ ða; f Þ for a vector
a A C nþ1nf0g:

Proposition 3.1 ([8], Proposition 1). For 0a a < rf , Taðr; f Þ tends to þy
when r ! y and we have the followings:

(1) lim supr!y
log Taðr; f Þ

log r
¼ rf � a; (2) limr!y

T0ðr; f Þ
ðlog rÞ2

¼ þy:

(3) For 0a a < b < rf ,

lim sup
r!y

Taðr; jÞ=Taðr; f Þb lim sup
r!y

Tbðr; jÞ=Tbðr; f Þ:

(4) For any a A C nþ1nf0g and 0a a < b < rf , dn;aða; f Þa dn;bða; f Þ:
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In particular, if a A D1 or if

lim sup
r!y

log Nnðr; 0;F Þ
log r

¼ a < rf ;

then for b > a, dn;bða; f Þ ¼ 1:

Definition 3.2.
1) Cð f Þ ¼ fj jmeromorphic in jzj < y and Tðr; jÞ ¼ oðTðr; f ÞÞ ðr ! yÞg;
2) for 0a a < rf

Cað f Þ ¼ fj jmeromorphic in jzj<y and Taðr; jÞ ¼ oðTaðr; f ÞÞ ðr !yÞg:

Proposition 3.2 ([8], Proposition 2). For 0a a < b < rf , we have the
following:

Cð f ÞHCað f ÞHCbð f Þ:

Proof. (i) Proof of Cð f ÞHCað f Þ: Let j A Cð f Þ: Then, for any positive
number e there is a positive number ro such that for any rb ro we have the
inequality

Tðr; jÞa eTðr; f Þ;
so that we have the inequality

Taðr; jÞ
Taðr; f Þ

a
Taðro; jÞ=fTaðr; f Þ � Taðro; f Þg þ e

Taðro; f Þ=fTaðr; f Þ � Taðro; f Þg þ 1
;

from which we obtain

lim sup
r!y

Taðr; jÞ=Taðr; f Þa e:

As e is arbitrary, we have that

lim
r!y

Taðr; jÞ=Taðr; f Þ ¼ 0:

This means that j belongs to Cað f Þ:
(ii) Proof of Cað f ÞHCbð f Þ: Let j A Cað f Þ: Then, for any positive num-

ber e there is a positive number ro such that for any rb ro we have the inequality

Taðr; jÞa eTaðr; f Þ:ð3:1Þ
On the other hand the integration by parts gives us the following relations

for g ¼ b � a > 0:

Tbðr; jÞ ¼ g

ð r
1

Taðt; jÞ
t1þg

dtþ Taðr; jÞ
rg

and

Tbðr; f Þ ¼ g

ð r
1

Taðt; f Þ
t1þg

dtþ Taðr; f Þ
rg

:
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From the above two equations with (3.1) we obtain

Tbðr; jÞ
Tbðr; f Þ

a eþ g

Ð ro
1

Taðt; jÞ � eTaðt; f Þ
t1þg

dt

g
Ð r
1

Taðt; f Þ
t1þg

dtþ Taðr; f Þ
rg

:

As the denominator of the right-hand side tends to y for r ! y, we obtain
that

lim sup
r!y

Tbðr; jÞ=Tbðr; f Þa e;

from which we obtain that

lim
r!y

Tbðr; jÞ=Tbðr; f Þ ¼ 0;

since e is any positive number. This means that j A Cbð f Þ:

Definition 3.3. We put

Mð f Þ ¼ Cð f ÞU 6
0aa<rf

Cað f Þ
( )

Lemma 3.2. The set Mð f Þ is a field.

Proof. Let j1, j2 be in Mð f Þ. Without loss of generality we suppose that
j1; j2 A Cb for some positive number b < rf :

i) We have the relation from the Definition 3.1:

Tbðr; j1 G j2ÞaTbðr; j1Þ þ Tbðr; j2Þ þOð1Þ ¼ oðTbðr; f ÞÞ ðr ! yÞ;
which means that j1 G j2 A Cbð f ÞHMð f Þ:

ii) From a property of the characteristic function, we obtain the following
inequality

Tbðr; j1 � jG1
2 ÞaTbðr; j1Þ þ Tbðr; j2Þ þOð1Þ ¼ oðTbðr; f ÞÞ ðr ! yÞ;

where j2 0 0 when G1 ¼ �1:
From i) and ii) we have this lemma.

Lemma 3.3. (i)([6], pp. 62–63) For any meromorphic function h in the
plane, ð r

1

mðt; h 0=hÞ
t1þa

dt ¼ O

ð r
1

logþ Tðt; hÞ
t1þa

dt

� �
ðr ! y; 0 < aÞ:

(ii)(see [6], (21), p. 69) For 0 < a < rf

Saðr; f Þ1
ð r
1

Sðt; f Þ
t1þa

dt ¼ O

ð r
1

logþ Tðt; f Þ
t1þa

dt

� �
¼ oðTaðr; f ÞÞ ðr ! yÞ:
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Proof (ii). We obtain this relation from the proof of Lemma 2.1(1) for the
error term, from the inequality ð6 0Þ in [1] and (i) of this lemma.

From now on in this section we suppose that the curve f ¼ ½ f1; . . . ; fnþ1� is
of order 0 < rf ay and is linearly non-degenerate over Mð f Þ: In this case,
Lemma 2.2 holds for M ¼ Mð f Þ since we can apply the proof of Lemma 2.2 for
M ¼ Mð f Þ so that we apply Lemma 2.2 for M ¼ Mð f Þ in Lemma 3.4.

Lemma 3.4. Suppose that fD1UBg0f: Then, for 1akaminfafD1UBg;
nþ 1g, any k vectors in fD1 UBg are linearly independent over C :

Proof. (i) When k ¼ 1. This is trivial since D1 UBHX nð2ÞHC nþ1nf0g:
(ii) When k ¼ 2: This is also trivial since D1 UB satisfies (*) in Introduc-

tion.
(iii) For 2a kaminfafD1 UBg � 1; ng, suppose that any k vectors in

D1 UB are linearly independent over C : We prove that any k þ 1 vectors in
D1 UB are linearly independent over C :

Suppose to the contrary that there are k þ 1 vectors in D1 UB, linearly
dependent over C : Let a1; . . . ; ak; a be in D1 UB and be linearly dependent
over C : Then, from the hypothesis of induction we can write

a ¼
Xk
j¼1

cjaj ðcj 0 0; 1a ja kÞ;

from which we obtain the relation

ða; f Þ ¼
Xk
j¼1

cjðaj; f Þ:ð3:2Þ

We put

Fj ¼ ðaj; f Þ ð j ¼ 1; . . . ; kÞ and Fo ¼ ða; f Þ:
Then, we obtain that from Lemma 2.2(I) F1; . . . ;Fk are linearly independent

over Mð f Þ and that from (3.2)

Fo ¼
Xk
j¼1

cjFj ðcj 0 0Þ:ð3:3Þ

Let g be an entire function such that the functions F1=g; . . . ;Fk=g are entire
functions without common zeros. We put F ¼ ½F1=g; . . . ;Fk=g�: Then, F is
transcendental from Lemma 2.2(I) and (II)(i),(ii). From (3.3) and Lemma
2.2(III) we obtain the inequality

Tðr;FÞa
Xk
j¼1

Nnðr; aj; f Þ þNnðr; a; f Þ þ Sðr;FÞ:ð3:4Þ
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(a) When D1 UB ¼ D1: From Lemma 2.2(I), (II)(ii) and (3.4) we obtain
the inequality

0 < lim sup
r!y

Taðr;F2=F1Þ
Taðr; f Þ

a
Xk
j¼1

lim sup
r!y

Nn;aðr; aj; f Þ
Taðr; f Þ

þ lim sup
r!y

Nn;aðr; a; f Þ
Taðr; f Þ

þ lim sup
r!y

Saðr; f Þ
Taðr; f Þ

¼ 0

from Lemma 3.3(ii) and Proposition 3.1(4) since aj ; a A D1: This is a contra-
diction. This means that any k þ 1 vectors in D1 must be linearly independent
over C :

(b) When D1 UB ¼ B: Suppose that

lim sup
r!y

log Nnðr; a; f Þ
log r

¼ a; and lim sup
r!y

log Nnðr; aj; f Þ
log r

¼ aj ð j ¼ 1; . . . ; kÞ:

Then, there is a number rf > b > maxfa; aj ð j ¼ 1; . . . ; kÞg as a; aj ð j ¼ 1; . . . ; kÞ
are in B:

From Lemma 2.2(I), (II)(ii) and (3.4) we obtain the inequality

0 < lim sup
r!y

Tbðr;F2=F1Þ
Tbðr; f Þ

a
Xk
j¼1

lim sup
r!y

Nn;bðr; aj; f Þ
Tbðr; f Þ

þ lim sup
r!y

Nn;bðr; a; f Þ
Tbðr; f Þ

þ lim sup
r!y

Sbðr; f Þ
Tbðr; f Þ

¼ 0

from Lemma 3.3(ii) and Proposition 3.1(4) since aj, a are of order less than b:
This is a contradiction. This means that any k þ 1 vectors in B must be linearly
independent over C :

(c) When D1 0 f and B0 f: We may suppose without loss of generality
that D1 ¼ fa; a1; . . . ; ak1g and B ¼ fak1þ1; . . . ; akg, where 0a k1 a k � 1:

Suppose that

lim sup
r!y

log Nnðr; aj; f Þ
log r

¼ aj ð j ¼ k1 þ 1; . . . ; kÞ:

Let aj ð j ¼ k1 þ 1; . . . ; kÞ < b < rf : From Lemma 2.4(I), (II)(ii) and (3.4)
we obtain the inequality

0 < lim sup
r!y

Tbðr;F2=F1Þ
Tbðr; f Þ

a
Xk
j¼1

lim sup
r!y

Nn;bðr; aj; f Þ
Tbðr; f Þ

þ lim sup
r!y

Nn;bðr; a; f Þ
Tbðr; f Þ

þ lim sup
r!y

Sbðr; f Þ
Tbðr; f Þ

¼ 0

from Lemma 3.3(ii) and Proposition 3.1(4) since a; aj ð1a ja k1Þ are in D1

and aj ðk1 þ 1a ja kÞ are of order less than b: This is a contradiction.
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This means that any k þ 1 vectors in D1 UB must be linearly independent
over C :

3-3. Estimates of afD1 UBg and of afD1 UBg. We shall give two
theorems on D1, D1, B and B

Theorem 3.1. Suppose that rf > 0. Then, afD1 UBga 2N � nþ 1:

Proof. (a) When fD1 UBg ¼ D1: It is trivial from Lemma 3.1(II) that
aD1 a 2N � nþ 1 in this case.

(b) When fD1 UBg ¼ B: Let B ¼ faj j j ¼ 1; . . . ; qgðHXÞ,

lim sup
r!y

Nnðr; aj; f Þ=log r ¼ aj ð j ¼ 1; . . . ; qÞ

and aj < b < rf ð j ¼ 1; . . . ; qÞ: Supppose that q > 2N � nþ 1: Then from
Lemma 3.1(I) we obtain the inequality

ðq� 2N þ n� 1ÞTbðr; f Þa
Xq
j¼1

Nn;bðr; aj; f Þ þ Sbðr; f Þ;

from which we obtain that

o < q� 2N þ n� 1a
Xq
j¼1

lim sup
r!y

Nn;bðr; aj ; f Þ
Tbðr; f Þ

þ lim sup
r!y

Sbðr; f Þ
Tbðr; f Þ

¼ 0

from Proposition 3.1(4) and Lemma 3.3(ii). This is a contradiction. This
means that

aBa 2N � nþ 1:

(c) When D1 ¼ faj j j ¼ 1; . . . ; kg and B ¼ faj j j ¼ k þ 1; . . . ; qg ð1a ka
q� 1Þ: Let

lim sup
r!y

log Nnðr; aj; f Þ=log r ¼ aj ð j ¼ k þ 1; . . . ; qÞ

and aj < b < rf ð j ¼ k þ 1; . . . ; qÞ:
Supppose that q > 2N � nþ 1: Then from Lemma 3.1(I) we obtain the

inequality

ðq� 2N þ n� 1ÞTbðr; f Þa
Xq
j¼1

Nn;bðr; aj; f Þ þ Sbðr; f Þ;

from which we obtain that

0 < q� 2N þ n� 1a
Xq
j¼1

lim sup
r!y

Nn;bðr; aj ; f Þ
Tbðr; f Þ

þ lim sup
r!y

Sbðr; f Þ
Tbðr; f Þ

¼ 0
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from Proposition 3.1(4) and Lemma 3.3(ii). This is a contradiction. This
means that

afD1 UBga 2N � nþ 1:

Theorem 3.2. Suppose that rf > 0 and f is linearly non-degenerate over
Mð f Þ: Then, afD1 UBga nþ 1:

Proof. Suppose that afD1 UBgb nþ 2: Let a1; . . . ; anþ2 be in D1 UB:
Then, from Lemma 3.4 any nþ 1 vectors in fa1; . . . ; anþ2g are linearly inde-
pendent over C : This means that a1; . . . ; anþ2 are in general position in C nþ1:
We can apply Lemma 2.1(I) for N ¼ n and q ¼ nþ 2, and fron Proposition
3.1(4) we obtain a contradiction as follows:

1a
Xnþ2

j¼1

lim sup
r!y

Nn;bðr; aj; f Þ
Tbðr; f Þ

þ lim sup
r!y

Sbðr; f Þ
Tbðr; f Þ

¼ 0

for some positive number b < rf : This is a contradiction. We obtain our
theorem.

Corollary 3.1. Under the same condition as in Theorem 3.2, for any vectors
fa1; . . . ; anþ2gHX nð2Þ,

lim sup
r!y

Pnþ2
j¼1 Nnðr; aj ; f Þ

Tðr; f Þ > 0ð3:5Þ

and at least one of the following nþ 2 numbers

lim sup
r!y

log Nnðr; aj; f Þ=log rð3:6Þ

is equal to rf :

Proof. Suppose that (3.5) does not hold. Then, for j ¼ 1; . . . ; nþ 2

lim sup
r!y

Nnðr; aj; f Þ=Tðr; f Þ ¼ 0:

This means that fa1; . . . ; anþ2gHD1: Namely, aD1
b nþ 2, which contradicts

Theorem 3.2.
Next, suppose that none of the nþ 2 numbers of (3.6) is not equal to rf :

Then, the nþ 2 numbers

lim sup
r!y

log Nnðr; aj ; f Þ=log r ð j ¼ 1; . . . ; nþ 2Þ

are smaller than rf , which means that aBb nþ 2: This contradicts Theorem
3.2. We obtain our corollary.

3-4. Example. The purpose of this section is to give a holomorphic curve.
It is a holomorphic curve fo of positive order and linearly non-degenerate over
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Mð foÞ with a vector a such that dnða; foÞ ¼ 1 but a is not Borel exceptional for
fo.

Lemma 3.5. Let h ¼ g1=g2 be a non-constant meromorphic function, where g1
and g2 are entire functons without common zero and we put

f ¼ ½gn
1 ; g

n�1
1 g2; . . . ; g1g

n�1
2 ; gn

2 �:
Then, Tðr; f Þ ¼ nTðr; hÞ þOð1Þ:

Proof. From the definition of Tðr; f Þ by H. Cartan ([1]),

Tðr; f Þ ¼ 1

2p

ð2p
0

log maxfjg1jn; jg1jn�1jg2j; . . . ; jg1j jg2jn�1; jg2jng dyþOð1Þð3:7Þ

a
1

2p

ð2p
0

log maxfjg1jn; jg2jng dyþOð1Þ

a
n

2p

ð2p
0

log maxfjg1j; jg2jg dyþOð1Þ ¼ nTðr; hÞ þOð1Þ:

On the other hand

Tðr; f Þb 1

2p

ð2p
0

log maxfjg1jn; jg2jng dyþOð1Þð3:8Þ

¼ n

2p

ð 2p
0

log maxfjg1j; jg2jg dyþOð1Þ ¼ nTðr; hÞ þOð1Þ:

From (3.7) and (3.8) we have our lemma.

Lemma 3.6. Let h; g1; . . . ; gnþ1 be meromorphic functions in jzj < y: Then,

T r;
Xnþ1

j¼1

gjh
nþ1�j

 !
a nTðr; hÞ þ

Xnþ1

j¼1

Tðr; gjÞ þOð1Þ:ð3:9Þ

Proof. (a) When n ¼ 1: From fundamental properties of the characteristic
function for meromorphic functions we have the inequality

Tðr; g1hþ g2ÞaTðr; g1hÞ þ Tðr; g2Þ þOð1ÞaTðr; hÞ þ Tðr; g1Þ þ Tðr; g2Þ þOð1Þ:
(b) We suppose that (3.9) holds when n ¼ k, where k is a positive integer.

We shall prove that (3.9) holds when n ¼ k þ 1: From the hypothesis of
induction we have the inequality:

T r;
Xkþ2

j¼1

gjh
kþ2�j

 !
¼ T r;

Xkþ1

j¼1

gjh
kþ2�j þ gkþ2

 !

aT r; h
Xkþ1

j¼1

gjh
kþ2�j

 !
þ Tðr; gkþ2Þ þOð1Þ
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aTðr; hÞ þ T r;
Xkþ1

j¼1

gjh
kþ2�j

 !
þ Tðr; gkþ2Þ þOðÞ

aTðr; hÞ þ kTðr; hÞ þ
Xkþ1

j¼1

Tðr; gjÞ þ Tðr; gkþ2Þ þOð1Þ

¼ ðk þ 1ÞTðr; hÞ þ
Xkþ2

j¼1

Tðr; gjÞ þOð1Þ:

From (a) and (b) we see that this lemma holds for any positive integer n:

Lemma 3.7. Let h1ðzÞ ¼ ez, h2ðzÞ ¼ Py
n¼2ð1þ z=nðlog nÞ2Þ and we put hðzÞ ¼

h1ðzÞ=h2ðzÞ: Then, hðzÞ is meromorphic in jzj < y, of order 1, Nðr; hÞ is of order
1 and dðy; hÞ ¼ 1:

Proof. It is known that

Tðr; h1Þ ¼ r=pð3:10Þ
(see [4, p. 7]) and that

nðr; 1=h2Þ@ r=ðlog rÞ2:ð3:11Þ
(see [4, p. 29]). We estimate log Mðr; h2Þ: From (3.11) let ro b 1 be a positive
number such that for any rb ro

9

10

r

ðlog rÞ2
a n r;

1

h2

� �
a

10

9

r

ðlog rÞ2
:ð3:12Þ

Since
Py

n¼2 1=ðnðlog nÞ2Þ < y, from an inequality in [4, p. 28] and from
(3.12) we obtain the inequality for any rb ro

log Mðr; h2Þa r

ðy
0

nðt; 1=h2Þ
tðtþ rÞ dt

¼ r

ð r
ro

nðt; 1=h2Þ
tðtþ rÞ dtþ r

ðy
r

nðt; 1=h2Þ
tðtþ rÞ dtþOð1Þ

a
10

9
r

ð r
ro

dt

ðtþ rÞðlog tÞ2
þ r

ðy
r

dt

ðtþ rÞðlog tÞ2

( )
þOð1Þ

a
10

9

r

2

ð r
ro

dt

tðlog tÞ2
þ r

ðy
r

dt

tðlog tÞ2

( )
þOð1Þ

¼ 10

9
r

1

2

ð log r

log ro

du

u2
þ
ðy
log r

du

u2

� �
þOð1Þ

¼ 5r

9

1

log r
þ 1

log ro

� �
þOð1Þ ðrb roÞ;
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so that we have the inequality

Nðr; 1=h2Þ þOð1ÞaTðr; h2Þa log Mðr; h2Þð3:13Þ

a
5r

9

1

log r
þ 1

log ro

� �
þOð1Þ ðrb roÞ

On the other hand, for rb ro

Nðr; 1=h2Þ ¼
ð r
0

nðt; 1=h2Þ
t

dt ¼
ð r
ro

nðt; 1=h2Þ
t

dtþOð1Þð3:14Þ

b
9

10

ð r
ro

dt

ðlog tÞ2
þOð1Þb 9

10

ðr� roÞ
ðlog rÞ2

þOð1Þ

From (3.10) and (3.13),

Tðr; hÞaTðr; h1Þ þ Tðr; h2Þ þOð1Þa r

p
þ 5r

9

1

log r
þ 1

log ro

� �
þOð1Þð3:15Þ

Tðr; hÞbTðr; h1Þ � Tðr; h2Þ þOð1Þb r

p
� 5r

9

1

log r
þ 1

log ro

� �
þOð1Þ:ð3:16Þ

From (3.13), (3.14), (3.15) and (3.16) we obtain that h is of order 1, Nðr; hÞ is
also of order 1 and limr!y Nðr; hÞ=Tðr; hÞ ¼ 0, so that dðy; hÞ ¼ 1, but y is not
Borel exceptional for h:

Example 3.1. Let

fo ¼ ½hn
1 ; h

n�1
1 h2; . . . ; h1h

n�1
2 ; hn

2 � : C ! PnðCÞ;

where h1, h2 are those given in Lemma 3.7. Then fo is a holomorphic curve
(i) of order 1;
(ii) linearly non-degenerate over Mð foÞ;
(iii) dnðej; foÞ ¼ 1 ð j ¼ 2; . . . ; nþ 1Þ and
(iv) ej ð j ¼ 2; . . . ; nþ 1Þ are not Borel exceptional for fo.

Proof. (i) From Lemma 3.5, Tðr; foÞ ¼ nTðr; h1=h2Þ þOð1Þ and from
Lemma 3.7 h1=h2 is of order 1, so is fo:

(ii) Suppose that there are g1; . . . ; gnþ1 A Mð foÞ satisfying

Xnþ1

j¼1

gjh
nþ1�j
1 h

j�1
2 ¼ hn

2

Xnþ1

j¼1

gjh
nþ1�j

( )
¼ 0;ð3:17Þ

where h ¼ h1=h2:
(a) When n ¼ 1. (3.17) reduces to

g1hþ g2 ¼ 0:ð3:18Þ
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Suppose that g1 0 0: Then, from (3.18) h ¼ �g2=g1 so that we obtain the
inequality

Tðr; hÞaTðr; g1Þ þ Tðr; g2Þ þOð1Þ:
The left-hand side is of order 1, but the right-hand side is of order less than 1
since g1; g2 A Mð foÞ, which is absurd. This means that g1 must be equal to 0, so
that g2 ¼ 0 from (3.18).

(b) When n ¼ k, we suppose that g1 ¼ � � � ¼ gkþ1 ¼ 0 in (3.17). We shall
show that when n ¼ k þ 1, g1 ¼ � � � ¼ gkþ2 ¼ 0 in (3.17).

Suppose that g1 0 0 in (3.17) for n ¼ k þ 1: Then, from (3.17) we obtain
that

hkþ1 ¼ � 1

g1

Xkþ2

j¼2

gjh
kþ2�j

( )
:

Applying Lemma 3.6 to this equality we obtain that

Tðr; hÞa
Xkþ2

j¼1

Tðr; gjÞ þOð1Þ;

which is absurd since left-hand side is of order 1 but the right-hand side is of
order less than 1 as g1; . . . ; gkþ2 A Mð foÞ: This means that g1 must be equal to
0. From (3.17) for n ¼ k þ 1, we obtain that

h
Xkþ1

j¼1

gjþ1h
kþ1�j ¼ 0:

From the hypothesis of induction, g2 ¼ � � � ¼ gkþ2 ¼ 0:
From (a) and (b) we obtain (ii).
(iii) Since

Nðr; ej ; foÞ ¼ ð j � 1ÞNðr; 1=h2Þ ¼ ð j � 1ÞNðr; hÞ ð j ¼ 2; . . . ; nþ 1Þ
and from Lemma 3.5, Tðr; foÞ ¼ nTðr; hÞ þOð1Þ, we obtain from Lemma 3.7 for
j ¼ 2; . . . ; nþ 1

dnðej ; foÞ ¼ 1� lim sup
r!y

ð j � 1ÞNðr; 1=h2Þ
Tðr; foÞ

¼ 1� j � 1

n
lim sup
r!y

Nðr; hÞ
Tðr; hÞ ¼ 1:

(iv) As in (iii) for j ¼ 2; . . . ; nþ 1,

Nðr; ej; foÞ ¼ ð j � 1ÞNðr; hÞ
so that from Lemma 3.7, Nðr; ej; f Þ is of order 1, namely, ej ð j ¼ 2; . . . ; nþ 1Þ
are not Borel exceptional for fo.

Note 3.1. G. Valiron ([11, p. 73]) writes that it is evident that a Borel
exceptional value is not necessary a deficient value since there are meromorphic
functions of irregular growth.
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4. Defect relation

Let f ;X ;X nðkÞ ðk ¼ 1; . . . ; nþ 1Þ, n etc. be as in Section 1, 2 or 3 such that
2N � nþ 1aminfaX nðkÞ;aXg:

4-1. Defect relation. The fundamental tools are Lemma 2.1 and Lemma
3.1. From Lemma 3.1 we obtain the following

Defect relation. Let Dþ ¼ fa A X j dnða; f Þ > 0g: Then, Dþ is at most
countable and we have the inequalityX

a ADþ

dnðfa; f Þa 2N � nþ 1:ð4:1Þ

We are interested in a holomorphic curve f for which the defect relation is
extremal: X

a ADþ

dnða; f Þ ¼ 2N � nþ 1:ð4:2Þ

As in Introduction, we set D1 ¼ fa A X j dnða; f Þ ¼ 1g. Then, from (4.1), we
have that aD1 a 2N � nþ 1.

For any finite subset S of X , we denote by dðSÞ the dimension of the
subspace generated by elements of S.

Theorem 4.A. Suppose that the relation (4.2) holds.
(I)([9, Theorem 3.2]) If dðD1Þ ¼ nþ 1, then aD1 ¼ 2N � nþ 1:
(II)([12, Theorem 6.1]) If (i) N > n ¼ 2m ðm A NÞ and (ii) dðD1Þa n,

then

aD1 ¼ dðD1Þ þN � n:

The last purpose of this paper is to give an example of holomorphic curve
for which the defect relation is extremal and to give the defect relation of
holomorphic curves which are not extremal in several cases applying these results.

4-2. Preliminaries and lemma. For a non-empty finite subset S of X , we
denote by VðSÞ the vector space spanned by elements of S and by dðSÞ the
dimension of VðSÞ. We put

O ¼ fSHX j 0 <aSaN þ 1g:

Definition 4.1 ([12, Definition 2.1]). (I) We put l ¼ minS AO
dðSÞ
aS

:
(II) For RYS ðR;S A OÞ, we put

LðR;SÞ ¼ dðSÞ � dðRÞ
aS �aR

:

Then, it is known that 0aLðR;SÞa 1 ([3, p. 67]).
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Lemma 4.1. Suppose that l < ðnþ 1Þ=ð2N � nþ 1Þ:
(I)(see [12, Proposition 2.3(II)(i)]) There exist an integer p ð1a p <

ðnþ 1Þ=2Þ and a subfamily fTi j 1a ia pg of O such that
(i) f ¼ T0 YT1 Y � � �YTp, dðTpÞ < ðnþ 1Þ=2:
(ii) LðT0;T1Þ < LðT1;T2Þ < � � � < LðTp�1;TpÞ <

nþ 1� dðTpÞ
2N � nþ 1�aTp

.

(II)(see [12, Definition 3.1], [10, Note 2.2], [9, Theorem 3.1]) We put

wðaÞ ¼
LðTi�1;TiÞ if a A TinTi�1 ði ¼ 1; . . . ; pÞ;
nþ 1� dðTpÞ

2N � nþ 1�aTp

if a A XnTp

8<
:

and

h ¼ 2N � nþ 1�aTp

nþ 1� dðTpÞ
:

Then, the function w : X ! ð0; 1� and the constant h have the following
properties:

(a) For any a A X , 0 < hwðaÞa 1 and

Tp ¼ fa A X j hwðaÞ < 1g;

(b-1) For any QHX satisfying (i) QITp and (ii) 2N � nþ 1aaQ < y,

aQ� ð2N � nþ 1Þ ¼ h
X
a AQ

wðaÞ � n� 1

 !
;

(b-2)
P

a AX ð1� hwðaÞÞ ¼ 2N � nþ 1� hðnþ 1Þ;
(c) N=na ha ð2N � nþ 1Þ=ðnþ 1Þ;
(d) For any S A O,

P
a AS wðaÞa dðSÞ:

Suppose that l < ðnþ 1Þ=ð2N � nþ 1Þ and we put

Op ¼ fS A O jTp YS; dðTpÞ < dðSÞg:
Then, we have

Proposition 4.1 (see [12, Proposition 2.3(II)(iv)]). For any S A Op,

nþ 1� dðTpÞ
2N � nþ 1�aTp

a
dðSÞ � dðTpÞ
aS �aTp

:

Definition 4.2 ([12, Definition 3.1]). We say that
(I) X is of type I if for any S A Op

h�1 ¼ nþ 1� dðTpÞ
2N � nþ 1�aTp

<
dðSÞ � dðTpÞ
aS �aTp

:
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(II) X is of type II if for some S A Op

h�1 ¼ nþ 1� dðTpÞ
2N � nþ 1�aTp

¼ dðSÞ � dðTpÞ
aS �aTp

:

We know ([3, p. 68]) that for any S A O, aSa dðSÞ þN � n:

Definition 4.3 ([12, p. 357]). For S A O, we say that S is maximal when

aS ¼ dðSÞ þN � n:

Proposition 4.2 ([3, p. 68]). Let R;S A O such that RYS. If R is
maximal, so is S:

As a note, we estimate 1� hwðaÞ > 0 ða A TpÞ:

Note 4.1. Suppose that l < ðnþ 1Þ=ð2N � nþ 1Þ and that Tp is maximal.
Then,

1� hwðaÞb 2=nð2N � nÞ ða A TpÞ:

Proof. From the definition of w (see Lemma 4.1) there is a subset S, which
may be empty, of Tp such that for any a A Tp

wðaÞa dðTpÞ � dðSÞ
aTp �aS

< h�1 ¼ nþ 1� dðTpÞ
N þ 1� dðTpÞ

;ð4:3Þ

since Tp is maximal, so that we have the inequality

ðdðTpÞ � dðSÞÞðN þ 1� dðTpÞÞ < ðnþ 1� dðTpÞÞðaTp �aSÞ:

As both terms are integers, we have the inequality

ðdðTpÞ � dðSÞÞðN þ 1� dðTpÞÞa ðnþ 1� dðTpÞÞðaTp �aSÞ � 1;

so that we obtain

dðTpÞ � dðSÞ
aTp �aS

�N þ 1� dðTpÞ
nþ 1� dðTpÞ

a 1� 1

ðnþ 1� dðTpÞÞðaTp �aSÞ a 1� 2

nð2N � nÞ :

We obtain this note from this inequality, (4.3) and the inequality

aTp �aSaaTp ¼ dðTpÞ þN � n < ðnþ 1Þ=2þN � n ¼ ð2N � nþ 1Þ=2: r

Lemma 4.2 ([12, Corollary 4.1]). For f and X as in Section 1, we have the
inequality

(I)
P

a AX wðaÞdnða; f Þa nþ 1: (II)
P

a AX dnða; f Þa ðnþ 1Þ=l:
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From the equality ([12, Lemma 5.2]):

2N � nþ 1�
X
a AX

dnða; f Þ ¼
X
a AX

ð1� hwðaÞÞð1� dnða; f ÞÞ

þ h nþ 1�
X
a AX

wðaÞdnða; f Þ
 !

and Lemma 4.2(I) we have the following

Lemma 4.3 ([12, Lemma 6.1]). Suppose that N > n: The truncated defect
relation for f is extremal: X

a AX

dnða; f Þ ¼ 2N � nþ 1

if and only if
(i) ð1� hwðaÞÞð1� dnða; f ÞÞ ¼ 0 ða A XÞ;
(ii)

P
a AX wðaÞdnða; f Þ ¼ nþ 1:

Lemma 4.4 ([12, Theorem 5.4]). Suppose that l < ðnþ 1Þ=ð2N � nþ 1Þ and
that (i) X is of type I and Tp is not maximal or (ii) X is of type II. ThenX

a AX

dnða; f Þa 2N � nþ 1� 1

2n
:

Lemma 4.5 ([12, Corollary 5.1]). Suppose that N > n ¼ 2m ðm A NÞ. IfX
a AX

dnða; f Þ > 2N � nþ 1� 1

2n
;

then l < ðnþ 1Þ=ð2N � nþ 1Þ:

4-3. Example. In this section we shall give a transcendental holomorphic
curve and a set X nð2Þ in N-subgeneral position for which the defect relation is
extremal.

Example 4.1. For nb 3, there are a transcendental holomorphic curve f
and a set X nð2Þ in N-subgeneral position satisfyingX

a AX nð2Þ
dða; f Þ ¼ 2N � nþ 1:

Proof. Let d be an integer satisfying 2a da ðnþ 1Þ=2 and p1; . . . ; pnþ1 be
nþ 1 polynomials without common zeros and linearly independent over C . We
put

f ¼ ½ p1; . . . ; pd ; pdþ1e
z; . . . ; pnþ1e

z�:
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Then, f is linearly non-degenerate over C and Tðr; f Þ@Tðr; ezÞ, so that f is
transcendental. Let e 01 ¼ ð1; 0; . . . ; 0Þ; . . . ; e 0d ¼ ð0; . . . ; 0; 1Þ be the standard basis
of C d and let a 0

j ð j ¼ 1; . . . ;N � nÞ be vectors in C d such that e 01; . . . ; e
0
d ,

a 0
1; . . . ; a

0
N�n are in general position in C d . Next, let

e 0dþ1 ¼ ð1; 0; . . . ; 0Þ; . . . ; e 0nþ1 ¼ ð0; . . . ; 0; 1Þ
be the standard basis of C nþ1�d and let b 0

j ð j ¼ 1; . . . ;N � nÞ be vectors in
C nþ1�d such that e 0dþ1; . . . ; e

0
nþ1�d , b

0
1; . . . ; b

0
N�n are in general position in C nþ1�d .

We put

ej ¼ ðe 0j ; 0Þ ð1a ja dÞ; ek ¼ ð0; e 0kÞ ðd þ 1a ka nþ 1Þ
so that the vectors e1; . . . ; enþ1 are the standard basis of C nþ1, and

aj ¼ ða 0
j ; 0Þ A C nþ1 ð1a jaN � nÞ; bk ¼ ð0; b 0

kÞ A C nþ1 ð1a kaN � nÞ:
Then, the set X nð2Þ ¼ fe1; . . . ; enþ1; a1; . . . ; aN�n; b1; . . . ; bN�ng is a subset of

C nþ1nf0g in N-subgeneral position satisfying (*) in Introduction and

dðei; f Þ ¼ 1 ði ¼ 1; . . . ; nþ 1Þ;
dðaj; f Þ ¼ 1 ð j ¼ 1; . . . ;N � nÞ; dðbk; f Þ ¼ 1 ðk ¼ 1; . . . ;N � nÞ

because

ðei; f Þ ði ¼ 1; . . . ; dÞ; ðaj; f Þ ð j ¼ 1; . . . ;N � nÞ
are polynomials and

ðei; f Þ=ez ði ¼ d þ 1; . . . ; nþ 1Þ; ðbk; f Þ=ez ðk ¼ 1; . . . ;N � nÞ
are polynomials. We have thatX

a AX nð2Þ
dða; f Þ ¼ 2N � nþ 1: r

4-4. Holomorphic curves with the non-extremal defect relation. Let
f ;X ;X nðkÞ ðk ¼ 1; . . . ; nþ 1Þ, N > n etc. be as in Introduction, Section 1,
Section 2 or Section 3.

Theorem 4.1. Suppose that the sets X nðkÞ ðk ¼ 2; . . . ; nþ 1Þ are in N-
subgeneral position. When nb kb 2, we have the defect relationX

a AX kðkÞ
dkða; f ÞaN þN=k:

Proof. From the definition of l (Definition 4.1(I)), we have that k=Na l
due to the definition of X kðkÞ. Then from Lemma 4.2(II) we obtain the
inequality X

a AX kðkÞ
dkða; f ÞaN þN=ka 2N � k þ 1: r
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We use Mf as in Section 2.

Lemma 4.6. Suppose that f is linearly non-degenerate over Mf : Let
a1; . . . ; ak; a be k þ 1 vectors in D1 such that a1; . . . ; ak are linearly independent
over C and

a ¼
Xk
j¼1

cjaj ðcj 0 0; 1a ja kÞ:ð4:4Þ

Then, a ¼ c1a1:

Proof. Suppose that kb 2: From (4.4) we obtain the equality

ða; f Þ ¼
Xk
j¼1

cjðaj; f Þ:ð4:5Þ

We put

Fj ¼ ðaj; f Þ ð j ¼ 1; . . . ; kÞ; and Fo ¼ ða; f Þ:

Then, from Lemma 2.1(I) for M ¼ Mf , F1; . . . ;Fk are linearly independent
over Mf and from (4.5) we obrain the equality

Fo ¼
Xk
j¼1

cjFj ðcj 0 0Þ:ð4:6Þ

Let g be an entire function such that the functions F1=g; . . . ;Fk=g are entire
functions without common zeros. We put

F ¼ ½F1=g; . . . ;Fk=g�:

Then, F is transcendental from Lemma 2.1(I) and Lemma 2.1(II)(ii) for
M ¼ Mf : From (4.6) and Lemma 3.1(I) for N ¼ n ¼ k � 1 and q ¼ k þ 1
we obtain the following inequality

Tðr;FÞa
Xk
j¼1

Nk�1ðr; aj; f =gÞ þNk�1ðr; a; f =gÞ þ Sðr;FÞð4:7Þ

a
Xk
j¼1

Nnðr; aj; f Þ þNnðr; a; f Þ þ Sðr; f Þ

since

Nk�1ðr; aj ; f =gÞaNnðr; aj; f Þ ð1a ja kÞ; Nk�1ðr; a; f =gÞaNnðr; a; f Þ

from the definition of these counting functions and

Tðr;FÞaTðr; f Þ þOð1Þ
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from Lemma 2.1(II)(i) for M ¼ Mf : As

Tðr;F1=F2ÞaTðr;FÞ þOð1Þ
from Lemma 2.1(II)(ii) for M ¼ Mf , we have from (4.7) and Lemma 2.2(I) for
M ¼ Mf that

0 < lim sup
r!y; r BE

Tðr;F2=F1Þ
Tðr; f Þ a

Xk
j¼1

lim sup
r!y

Nnðr; aj ; f Þ
Tðr; f Þ

þ lim sup
r!y

Nnðr; a; f Þ
Tðr; f Þ þ lim sup

r!y; r BE

Sðr; f Þ
Tðr; f Þ ¼ 0

since aj; a A D1: This is a contradiction. This means that k must be equal to 1.
r

Theorem 4.2. Suppose that f is linearly non-degenerate over Mf : Then,
aD1 aN þN=n:

Proof. We have only to prove this inequality whenaD1 bN þ 1: As X is
in N-subgeneral position, there are nþ 1 linearly independent vectors a1; . . . ; anþ1

in D1. There is nothing to prove when D1nfa1; . . . ; anþ1g ¼ f: We suppose
that D1nfa1; . . . ; anþ1g0 f: For any a A D1nfa1; . . . ; anþ1g, there are constants
cj ð1a ja nþ 1Þ at least one of which is not zero such that

a ¼
Xnþ1

j¼1

cjaj ðcj A CÞ;

so that from Lemma 4.6 there is only one cj1 0 0 such that a ¼ cj1aj1
Let

aðD1nfa1; . . . ; anþ1gÞ ¼ x:

As X is in N-subgeneral position, we have the following inequality:

fðnþ 1Þnþ nxg=ðnþ 1ÞaN;

so that xaN þN=n� ðnþ 1Þ and we have our inequality.

Theorem 4.3. Suppose that f is linearly non-degenerate over Mf , and that
N > nb 3: If dðD1Þ ¼ nþ 1, thenX

a ADþ

dnða; f Þ < 2N � nþ 1:

Proof. Suppose to the contrary that for an fX
a ADþ

dnða; f Þ ¼ 2N � nþ 1:
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From Theorem 4.A(I), we have that

Dþ ¼ D1 and aD1 ¼ 2N � nþ 1:

On the other hand from Theorem 4.2

aD1
aN þN=n < 2N � nþ 1

as nb 3: This is a contradiction. We have our theorem. r

Theorem 4.4. Suppose that f is linearly non-degenerate over Mf , that
N > n ¼ 2m ðm A NÞ and that X nð2Þ is in N-subgeneral position. Then,X

a AX nð2Þ
dnða; f Þ < 2N � nþ 1:

Proof. (i) When dðD1Þ ¼ nþ 1: This is a special case of Theorem 4.3.
(ii) When dðD1Þa n. Suppose thatX

a AX nð2Þ
dnða; f Þ ¼ 2N � nþ 1:ð4:8Þ

Then, from Theorem 4.A(II), we have that

aD1 ¼ dðD1Þ þN � n:ð4:9Þ

From (4.9) we have that dðD1Þb 2 since X nð2Þ is in N-subgeneral position
satisfying (*) in Introduction. Let dðD1Þ ¼ kðb 2Þ and let b1; . . . ; bk be k
linearly independent vectors in D1: Then, from (4.9) D1nfb1; . . . ; bkg0 f:
For a vector b AD1nfb1; . . . ; bkg, there exist constants cj00 A C ð j ¼ 1; . . . ; kÞ
such that b ¼

Pk
j¼1 cjbj:

Then from Lemma 4.6, k must be equal to 1. This is a contradiction. This
implies that (4.8) does not hold. We have our theorem. r

4-5. The mn-defect relation. Let f ;X ;X nðkÞ ðk ¼ 1; . . . ; nþ 1Þ, n, etc. be
as in the previous sections. Let a be any vector in C nþ1nf0g: We say that

‘‘a has multiplicity m if ða; f Þ has at least one zero and the zeros of the
function ða; f ðzÞÞ have multiplicity at least m, while at least one zero has
multiplicity m.’’

When ða; f Þ has no zero, we set m ¼ y:

Definition 4.4 ([11, Definition 1.1]). For a A C nþ1nf0g with multiplicity m
we put

mnða; f Þ ¼ 1� n

m

� �þ
¼ 1� n

maxðm; nÞ ;

where aþ ¼ maxða; 0Þ for any neal number a:
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We call mnða; f Þ the mn-defect of a with respect to f . It is known that

0a mnða; f Þa dnða; f Þa 1ð4:10Þ

(see for example [11, Corollary 2.2]).
As a corollary of the Defect relation (4.1), we have the following defect

relation for mnða; f Þ:

Proposition 4.3 (see [5, Corollary (3.B.46)]). For any a1; . . . ; aq A X
ð2N � nþ 1a q < yÞ, we have the following inequality:

Xq
j¼1

mnðaj; f Þa 2N � nþ 1:

We call this inequality the mn-defect relation. Let

Mþ ¼ fa A X j mnða; f Þ > 0g and M 1 ¼ fa A Mþ j mnða; f Þ ¼ 1g:

Then, Mþ HDþ by (4.10) and we have the defect relation:X
a AX

mnða; f Þa 2N � nþ 1ð4:11Þ

from Proposition 4.3. If the equality holds in (4.11):X
a AX

mnða; f Þ ¼ 2N � nþ 1;ð4:12Þ

then, by (4.1), (4.10) and (4.11) we have

mnða; f Þ ¼ dnða; f Þ ða A MþÞð4:13Þ

and so Mþ ¼ Dþ:
Further we put (see Introduction)

Mþ ¼ fa A X nð2Þ j mnða; f Þ > 0g and M1 ¼ fa A Mþ j mnða; f Þ ¼ 1g:

The main purpose of this section is to estimateX
a AX nð2Þ

mnða; f Þ:

Proposition 4.4. (I)([9, Theorem 4.2 and Proposition 4.2]) (i) If
dðM 1Þ ¼ nþ 1, then, Mþ ¼ M 1: (ii) aM 1 aN þN=n:

(II)([11, Note 3.1]) aMþ þ naM 1 a ðnþ 1Þð2N � nþ 1Þ: In particular,
aMþ is finite.
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Lemma 4.7 ([10, in the proof of Theorem 3.2]). Suppose that N > nb 1 and
that (4.12) holds. If dðM 1Þb 1, then

dðM 1Þ ¼
X
a AM 1

wðaÞ:

Lemma 4.8. Suppose that (i) N > nb 2 and that (ii) (4.12) holds. If
dðM 1Þb 1, then

h ¼ ð2N � nþ 1�aM 1Þ=ðnþ 1� dðM 1ÞÞ:

Proof. From Lemma 4.3 and (4.13) we have that

hwðaÞ ¼ 1 ða A Mþ �M 1Þð4:14Þ
and X

a AMþ

wðaÞmnða; f Þ ¼ nþ 1:ð4:15Þ

From (4.15) and Lemma 4.7,

nþ 1 ¼
X

a AMþ

wðaÞmnða; f Þ ¼
X
a AM 1

wðaÞ þ
X

a AMþ�M 1

wðaÞmnða; f Þ

¼ dðM 1Þ þ
X

a AMþ�M 1

wðaÞmnða; f Þ:

From (4.14)

hðnþ 1� dðM 1ÞÞ ¼
X

a AMþ�M 1

hwðaÞmnða; f Þ

¼
X

a AMþ�M 1

mnða; f Þ ¼ 2N � nþ 1�aM 1:

We have our lemma since dðM 1Þa n from Proposition 4.4(I),(II) and (4.12).
r

Lemma 4.9. Suppose that (i) N > n ¼ 2m ðm A NÞ and that (ii) (4.12)
holds. Then, l < ðnþ 1Þ=ð2N � nþ 1Þ.

Proof. From (4.13) and Lemma 4.5 we have l < ðnþ 1Þ=ð2N � nþ 1Þ:
r

Lemma 4.10. Suppose that (i) N > nb 2 and that (ii) (4.12) holds. If
l < ðnþ 1Þ=ð2N � nþ 1Þ, then X is of type I, Tp is maximal and M 1 ¼ Tp so
that

aM 1 ¼ dðM 1Þ þN � n; dðM 1Þ < ðnþ 1Þ=2:
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Proof. First of all we note that M 1 A O since dðM 1Þa n from Proposition
4.4(I), (4.12), (4.13) and Theorem 4.A(I). By Lemma 4.3 and (4.13) we have

Tp HM 1:ð4:16Þ
From (4.12), (4.13) and Lemma 4.4, we have that X is of type I, Tp is

maximal and so M 1 is also maximal from (4.16) and Proposition 4.2:

aM 1 ¼ dðM 1Þ þN � nð4:17Þ
Further, as dðM 1Þb 1 from (4.17), by Lemma 4.8 and Lemma 4.1(II) we

have

h ¼ 2N � nþ 1�aTp

nþ 1� dðTpÞ
¼ 2N � nþ 1�aM 1

nþ 1� dðM 1Þ :

If Tp YM 1, then dðTpÞ < dðM 1Þ and

2N � nþ 1�aTp

nþ 1� dðTpÞ
¼ aM 1 �aTp

dðM 1Þ � dðTpÞ
:

As M 1 A O, this means that X is of type II from Definition 4.2, which is a
contradiction. We have that Tp ¼ M 1: From Lemma 4.1(I) we obtain that
dðM 1Þ ¼ dðTpÞ < ðnþ 1Þ=2: r

Theorem 4.5. Suppose that dðM1Þb 1, N > nb 2 and that X nð2Þ is in
N-subgeneral position. Then,X

a AX nð2Þ
mnða; f Þ < 2N � nþ 1:

Proof. Suppose to the contrary thatX
a AX nð2Þ

mnða; f Þ ¼ 2N � nþ 1:

Then, from Lemma 4.8, we have that

h ¼ ð2N � nþ 1�aM1Þ=ðnþ 1� dðM1ÞÞ:
From Lemma 4.1(II)(c),

ð2N � nþ 1�aM1Þ=ðnþ 1� dðM1ÞÞa ð2N � nþ 1Þ=ðnþ 1Þ;
which reduces to the inequality

dðM1Þ < 2N � nþ 1

nþ 1
dðM1ÞaaM1

and we have that aM1
b dðM1Þ þ 1:

1) When dðM1Þ ¼ 1: It is trivial that there are two vectors a and b in M1

satisfying a ¼ cb ðc0 0, constant). This is absurd since a; b A X nð2Þ.
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2) When dðM1Þ ¼ db 2. We suppose that b1; . . . ; bd are linearly indepen-
dent vectors belonging to M1. Then, any vector a A M1nfb1; . . . ; bdg can be
represented by b1; . . . ; bd as a linear combination over C :

a ¼ c1b1 þ � � � þ cdbd :

From this relation

ða; f Þ ¼
Xd
n¼1

cnðbn; f Þ:ð4:18Þ

As a; b1; . . . ; bd are in M1, from (4.18) we obtain that there is an integer
k ð1a ka dÞ such that

ða; f Þ ¼ ckðbk; f Þ ðck 0 0Þ
due to a Borel’s theorem (see [1, 1o, p. 19]). This relation reduces to a ¼ ckbk
since f is linearly non-degenerate over C . This is absurd since a; bk A X nð2Þ.

From 1) and 2) our theorem must hold. r

Theorem 4.6. Suppose that N > 2m ðm A NÞ and X nð2Þ is in N-subgeneral
position. Then X

a AX nð2Þ
mnða; f Þ < 2N � nþ 1:

Proof. We suppose to the contrary that there exist f , X nð2Þ such thatX
a AX nð2Þ

mnða; f Þ ¼ 2N � nþ 1:ð4:19Þ

Then, from Lemma 4.9, l < ðnþ 1Þ=ð2N � nþ 1Þ, so that from Lemma 4.10
M1 satisfies

aM1 ¼ dðM1Þ þN � n; dðM1Þ < ðnþ 1Þ=2:
This means that dðM1Þb 1: From Theorem 4.5, we have that (4.19) does

not hold. We have our theorem. r
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Gauthier-Villars, Paris, 1929.

[ 7 ] E. I. Nochka, On the theory of meromorphic curves, Dokl. Akad. Nauk SSSR 269 (1983),

547–552 (in Russian).

[ 8 ] N. Toda, On holomorphic curves extremal for the truncated defect relation and some

applications, Proc. Japan Acad., Ser.A. 81 (2005), 99–104.

[ 9 ] N. Toda, On holomorphic curves extremal for the truncated defect relation, Proc. Japan

Acad., Ser.A. 82 (2006), 18–23.

[10] N. Toda, On holomorphic curves extremal for the mn-defect relation, Kodai Math. J. 30

(2007), 111–130.

[11] N. Toda, A generalization of Nochka weight function, Proc. Japan Acad., Ser.A. 83 (2007),

170–175.

[12] N. Toda, On the truncated defect relation for holomorphic curves, Kodai Math. J. 32 (2009),

352–389.

[13] G. Valiron, Remarques sur les valeurs exceptionnelles des fonctions meromorphes, Rend.

Circ. Mat. Palermo. 57 (1933), 71–86.

[14] H. Weyl, Meromorphic functions and analytic curves, Ann. math. studies 12, Princeton

Univ. Press, Princeton, N.J., 1943.

Nobushige Toda

401-C1113

Hoshigaokayamate, Chikusa-ku

Nagoya 464-0808

Japan

E-mail: toda1113@s6.wh.qit.ne.jp

156 nobushige toda


