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ON THE NUMBER OF EXCEPTIONAL POINTS OF
HOLOMORPHIC CURVES AND THE DEFECT
RELATION FOR HOLOMORPHIC CURVES

NOBUSHIGE TobDA

Abstract

Let X"(2) be a subset of C""'\{0} any two elements of which are not propo-
tional. We estimate the number of exceptional points in X”(2) for several holo-
morphic curves and we consider the defect relation for holomorphic curves. We
shall give an example for which the defect relation is extremal and then give some
holomorphic curves for which the defect relation is not extremal over X”(2). Another
defect relation is also considered.

1. Introduction

Let /' =[fi,..., fur1] be a holomorphic curve from C into the n-dimensional
complex projective space P"(C) with a reduced representation

(ﬁa o 'aﬁH-l) :C— C'7+1\{0}a

where n is a positive integer. We put

IO = AP+ + ()
and the characteristic function of f is given as follows (see [14]):
1 2n i ; i
T ) =55 | Togllr(re") | a0~ togl (O]

It is known ([1]) that for U(z) = max;<;<,1fj(2)]

T(r,f) = %J:n log U(re™) d + O(1).

We suppose throughout the paper that f is transcendental; that is to say,
lim T(r, f)/logr = 0.
F—0o0
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The order p, of f is given as follows:

py = limsup log T'(r, f)/log r.

For a= (ay,...,ay,;) € C""\{0}, we put

(a,f)=a1fi+  + a1 fon

and we use the standard notaitions N(r,a, ), N,(r,a, f), o(a, f), ou(a, f) as usual
(see e.g. [12, Introduction]).
Let S(r,f) be any quantity satisfying
S(r,f) =o(T(r, /) (r—oo;r¢E),
where E is a subset of (0,00) of finite linear measure.

We suppose throughout the paper that f is linearly non-degenerate over C.
Namely, the Wronskian of the functions fi,..., f,.1 is not identically equal to
zero. Let X be a subset of C""'\{0} in N-subgeneral position and we put

(a) D' = {ac X|o,(a ) = 1};

(b) P={aec X|(a,f) has at most a finite number of zeros in |z| < 0};

(c) M' ={ae X|(a,f) has no zeros in |z| < oo},

(d) B={ae X |limsup,_,, log N,(r,a, f)/logr < p,},
where N is an integer such that N > n. We say that @ € B is Borel exceptional
for f. Then, M' =« P = D' and it is known that

#P <#D' <2N —-n+1, B¢ D', D'¢B and #M'<N+N/n

(see e.g. [3], [9], [13)])-

In this paper, with the set X in N-subgeneral position, we consider the
following subsets of C"*'\{0}, which are not always in subgeneral position. For
k=1,...,n+1, let X"(k) be a subset of C"'\{0}, satisfying that any k
elements of which are linearly independent. In particular, our main one is
X™(2) in this paper. From the definition it satisfies

(x) For any a,be X"(2), a# ab (a € C).

The set X"(n+1) is in general position.

The first purpose of this paper is to estimate the number of elements of the
following subsets of X"(2).

DerINITION 1A, (1) 2! = {ae X" (2)|d,(a, f) =1}

(2) 2 ={ae X"(2)|(a, f) has at most a ﬁnlte number of zeros in |z| < c0};
(3) .t = {an"(2)|( f) has no zeros in |z| < 0};

4) #={acX"(2 )|11msupHJQ log Ny(r,a, f)/log r < ps}.

The main tool is the fundamental inequality of H. Cartan ([1]). Some
applications of our results are given. We estimate them when f is linearly non-
degenerate over a function field

Note 1.1. An interesting result is given in a more delicate situation (]2,
Theorem 5.2)).
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The second purpose is to estimate #{D'UB} in X and to estimate
#{2"U#A} in X" (2) under a condition.

The last purpose is to give the defect relation of holomorphic curves, one of
which is extremal and others are not extremal.

As is cited above the main tool in this paper is the fundamental inequality
of H. Cartan ([1]) for holomorphic curves. We also use its generalization by
Nochka ([7]).

2. Number of exceptional points of holomorphic curves

Let f, X, X"(2), N, n etc. be as in Section 1. First of all we give the main
tool of this paper, the fundamental inequality by H. Cartan ([1]).

2-1. Lemma. We shall give some lemmas for later use in this section.

Lemma 2.1 ([1)).  For any q elements a; (j =1,...,q) of C"™'\{0} in general
position (n+2 < q < o), we have the following inequalities:

(D) (q=n=1T(r, f) < XL Nalr,a;, ) + S(r, /).

(I0) 327 0n(ay, /) <n+ 1.

Note 2.1. When p, is finite, the error term S(r,f) can be replaced by
O(log r) without exceptional intervals (see the proof of (I) and [4, Theorem

2.2(1))).
We put
My = {p|meromorphic in |z| < co; T(r,p) = S(r, f)}
and when 0 < p, < ©
A, = {p | meromorphic in |z| < o; p, < ps},

where p, is the order of ¢.

We know that the sets .#; and .#, are fields. We denote by .# the field
My, any subfield of .#; or ./, and from now on we suppose that the curve
f=1f1,---, far1] is linearly non-degenerate over ./.

We note that ¢’ € .4, for ¢ € .My because T(r,p") <2T(r,p)+ S(r,p).

Lemma 2.2. Let aj = (aji,....a11) (j=1,...,v;2<v<n+1) be v lin-
early independent vectors in C""', let a be a vector in C"™' such that

a=) ¢a (#0eC)
=1

and we put



EXCEPTIONAL POINTS OF HOLOMORPHIC CURVES 123

Let g be an entire function such that the functions F)/g, ..., F,/g are entire
functions without common zeros and put F = [Fi/g,...,F,/g].

Then, we have the followings:

(I) The functions F,...,F, are linearly independent over ./.

In particular,
EI/EZ¢'% (lsjl7éjZSv)'
(I) @) T(r, F) < T(r, /) + O(1) (r=1).

(i) T(r ,F]/F]z) < T(r F)+0() (1<ji#jp<v).
(IIT) If F is transcendental,

T(r,F) <> Nu(r,a;, [) + Nu(r,a, [) + S(r, F).

J=1

Proof. (1) Suppose that 37 g;F; =0 (g€ .#). Then, as fi,..., fus1 are
linearly independent over .#, we obtam the equation

Za(,-kgj:O (k:17,l’l+1)

We put by = (a1, a%, ... an) (1 <k <n+1). Then,

b b
(‘ay,...,'a) = : and rank = : =v
by b1
since ay,...,a, are linearly independent, so that there are v linearly independent
vectors by, ...,by, in {by,... by}

From the equation

Zajkigj =0 (i=1,...,v),
J=1

we obtain that g, =0,...,¢9, =0, so that F|,..., F, are linearly independent over
M.
(II) (i) From the definition we have the relation

, 12 , 12
log|| F|| = log (Z IFf/g|2> = log <Z F,/|2> — loglg|
= =

< log| f| — log|g| + O(1),
so that

T(r,F) < T(r,f) = N(r,1/g) + O(1) < T(r.f) + (1) (r> 1).
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(i) From [1, p. 10], we have the inequality
5, /g>

= T(r,F, /F,
F}z/g ( ./1/ __)

(III) We put ¢ = (¢y,...,¢,). Then, we have that e;,...,e,, ce C’ are in
general position since ¢; #0 (j=1,...,v) and that for F, = (a, f)

T(r,F)+ 0(1) > T(r7

(2.1) F, =Y ¢F;.
j=1

We apply Lemma 2.1(I) to (2.1) for n=v—1,F and {ey,...,e,,c}. Then,
we obtain the inequality
T(r,F) < Y Ny a(r,e, F) + Noi(r, ¢, F) + S(r, F).
j=1
Here, from the definition of counting function we have the relations for r > 1
N\’*l(rveij)SNVI(Vvajvf) (jil,...,V); Nv,l(r,c,F)an(r,a,f)

since v—1 < n, so that we obtain (III). O

We denote by .# any one of @', 2, .#' and #. We suppose that f is
linearly non-degenerate over .#, where ./ = ./l; when # = ', .// = C(z) when
A =2, M =C when A = 4" and .M = .M, when # = . Then, we obtain
the following.

LemMa 2.3.  Suppose that A" # ¢. Then, for | < k < min{#X#",n+ 1}, any
k wvectors in A are linearly independent over C.

Proof. (i) When k = 1. This is trivial since # < X"(2) = C"*'\{0}.

(i) When k£ =2. This is also trivial since ¢ satisfies () in Introduction.

(iii) For 2 < k < min{#% ,n+ 1} — 1, suppose that any k vectors in .#" are
linearly independent over C. We prove that any k£ + 1 vectors in " are linearly
independent over C.

Suppose to the contrary that there are k+ 1 vectors in 4 :ay,...,aa
which are linearly dependent over C. Then, from the hypothesis of the induc-
tion we can write

k
a:chaj (¢ #0,1<j<k),
J=1

from which we obtain the relation

k
(22) (@.f) =Y ¢a;, f).
=1
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We put
FF=(a,f) (j=1,...,k) and F,=(a,f).

Then, we obtain that from Lemma 2.2(I) Fj,..., F; are linearly independent
over .# and that from (2.2)

(2.3) F, = Zc, (¢; #0).

Let g be an entire function such that the functions F/g,..., Fi/g are entire
functions without common zeros, where g is polynomial when " =2 and g = 1
when # = .#'. We put

F:[Fl/g77Fk/g}

Then, F is transcendental from Lemma 2.2(1) and (II)(ii) when .# = 2!, 2 or 4.
When # = /', from Lemma 2.2(I) F;/F;, is not constant (1 < ji # j» < k).
As Fj, F;, have no zero, F; /F;, has neither zero nor pole. This implies that
F; /F;, is transcendental, so that F is transcendental from Lemma 2.2(II)(ii).
Then, from (2.3) and Lemma 2.2(III) we obtain the inequality

k
(2.4) < > Nu(r,a;, [) + Nu(r,a, ) + S(r, F).
j=1

(a) When # = %', from Lemma 2.2(I), (IT)(i),(ii) and (2.4) we obtain the
inequality

. T(r,Fy/F) Nu(r.aj, f)
0 < limsup ——————= limsup ——~-+
l‘~>oO7r¢% T(r) f) Z )—>OOp T( f)

timsup 70 timsup 207

=0

since @j,ae 2'. This is a contradiction. This means that any k + 1 vectors
in ' must be linearly independent over C.
(b) When " = 2, from (2.4) we obtain the inequality

T(r,F) < O(logr)+S(r,F)=S(r,F)

since a;j,ac ? and F is transcendental. This is a contradiction. This means
that any k4 1 vectors in 2 must be linearly independent over C.

(c) When " = ./"', from (2.4) we obtain the inequality T'(r,F) < S(r,F)
since @;,a € ./'. This is a contradiction since F is transcendental. This means
that any k + 1 vectors in .#' must be linearly independent over C.
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(d) When & = %, from (2.4) and Note 2.1 we obtain the inequality

k
T(r,F) < Nu(r,aj, f) + N(r,a, f) + O(log r),
j=1
since pp < p; < 0. As pp = p, from Lemma 2.2(I) and (II)(i),(ii), we have the
. F f F f
inequality

L log T'(r, F)
eI oer
- log(Y Nulr,aj, ) + Na(r,a, ) + O(log r))
< limsup Tog 7 <pr
r— o0

since a;,a € #. This is a contradiction. This means that any k + 1 vectors in #
must be linearly independent over C.
From (i), (ii) and (iii) we obtain our lemma. O

LEmMMA 2.4 (see (4, p. 24]). Let ¢(z) be transcendental meromorphic with at
most a finite number of zeros and poles in |z| < co. Then,

liminf,_,, T(r,¢)/r > 0.
Last of all in this section we shall give the following curve for later use.

Lemma 2.5. Let f,=[l,e*,...,e"™]|. Then, f, is linearly independent over
M,

Jo

Proof. We first note that f, is transcendental since T'(r, f,) ~ (n/%)r and
that

T(r,el=)7) ~ Lnj'r (i #J).
(i) When n=1. We put
g1+ 92" =0 (91,92 € My,).
Suppose that g, #0. Then, e*= —g;/¢g>, and we have T(r,e*)=
T(r,91/92), so that we have the relation
T(r,91/92)

. T(rye?) .
0 < limsup "~ = limsup ———22 =0,
r—o,r¢ £ T(V,f()) r—o,r¢ £ T(V,ﬁ,)
which is a contradiction. This means that g, must be equal to zero and we have
that g, = 0.
(i) We suppose that this lemma holds for an integer k > 2:

k
> e =0 (gedy)=g=0 (j=1,....k)
j=1
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and we prove that if

k+1
(2.5) Doge V=0 (gedy, j=1,....k+1),
Jj=1

then g; =0 (j=1,...,k+1).

Proof. (a) When g; =0. In this case, from (2.5) we have the relation

k+1 )
> g =0,
=

so that from the hypothesis of the induction g, =0,...,gx.1 = 0.

(b) Suppose that g; # 0. Then, there exists at least one j 2 <j<k+1)
such thst g; #0. If ;=0 for all j 2<j<k+1), g1 =0 from (2.5).

From (2.5), we obtain

k+1

gj (j-Dz _
2.6 1+ el =0.
26 >

Here, gj/g1 € My, (j=2,...,k+1). Differentiating (2.6), we obtain
et

1 . / . .
{ <ﬂ> + (- 1)g—f}e<f1)f =0.
= W\J1 g1

Now, g;/g1 € My, (9;/91) € My, (j=2,...,k+1) so that from the hypoth-
esis of the induction we have the relations

gj/ . gj .
GY L-nL—0o (j=2,... k+1)
(gl) U-vL=o0 ¢ )

For j 2<j<k+1) such that g; #0, the function g;/g; satisfies the
differential equation
(9:/90)'/(gi/91) = =(j = 1)
from which we obtain
gi/g1 = ce"U™D7 (¢ #0) and T(r, g—]) = T(r,ce”U™7),
1
From this relation we have that

r / T —(j-1)z
0 = lim sup M = limsup (r,ce )

r—oo,r¢ E T(V,ﬁ,) r—oo,r¢ E T(V,fo)
which is a contradiction. This implies that g; must be equal to 0. Then, we
obtain that ¢, =0,...,gx+1 =0 as in (a).
This means that f, is linearly non-degenerate over .#,. O

>0,



128 NOBUSHIGE TODA

2-2. Theorem. Let f, n, X, X"(2), 9" etc. be as in Section 1.

THEOREM 2.1.

(I) Suppose that f is linearly non-degenerate over My. Then, #9' <n+1.

(I1) Suppose that f is linearly non-degenerate over C(z). Then, #2 <n+ 1.

(IT1) Suppose that f is linearly non-degenerate over C. Then, #.4' <n+ 1.

(IV) Suppose that f is linearly non-degenerate over .M, and 0 < p; < co.
Then, #%# <n+ 1.

Proof. We denote by # any one of 2!, #, .#' and #. We suppose that
f is linearly non-degenerate over .#, where .# = ./y when A = @', M = C(z)
when # =2, #/ = C when # = 4" and .4 = .#, when A = B.

Suppose that ## >n+ 1. Then, # contains at least n + 2 elements. Let
ay,...,a,» be in #. Then, from Lemma 2.3, any n+ 1 vectors of ay,...,a,>
are linearly independent over C. This means that ay,...,a,,, are in general
position in C"*!.

(i) When # = 2", 2 or ./'. As f is transcendental in this paper, from
lemma 2.1(II) we have the inequality

n+2

> oulay, f) <n+1.
=1

On the other hand as 6,(a;, /) =1 (j=1,...,n+2) in any case, we have
the equality
n+2

> oulay, ) =n+2,

j=1

which is a contradiction. This means that #% <n+ 1.
(i) When # = 4. From Lemma 2.1 and Note 2.1, we have the inequality

n+2

T(r.f) < Y Nu(r.a;,f)+ O(logr),

j=1
from which we obtain the inequality
lOg(Zjl'qilz Nﬂ(r7 aj7f) + O(lOg r))

< i < p,
br lr,-risololp log r b1
since @;je # (j=1,...,n+2), which is a contradiction.
From (i) and (ii) we have our theorem. O
CoOROLLARY 2.1. Let ay,...,ay2 be any n+2 elements in X"(2).

(I) If f is linearly non-degenerate over .My, then

. Z;zrlan(raajvf)
(2.7 lllrllsal;lp o f) >0
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(IN) If f is linearly non-degenerate over C(z), then

n+2
T Ny(r,a;,
(2.8) lim Lyt Nalro @, /) _ ©
r—om log r

(@) In particular, if ay,. .. ,a,1 € P and if f is of order finite (resp. infinite),

29  timinf 2292 S) 00 oo limsup el @2 f)

r—oo r r—o0,r¢ E r

> 0).

(IIL) If f is linearly non-degenerate over C, then

n+2
(2.10) Ufzl (4, f(2)) =0} # ¢
J=1
(b) In particular, if ay, ... a4, € M",
(2.11) lim N, (r, @2, f)/log r = 0.

(IV) If f is linearly non-degenerate over M, and 0 < p, < oo, then

p oo 1080 Na(ri @y, f)
Hsup log r

= Pr-

Proof. (1) Suppose that there exist n + 2 vectors ay,...,a,» € X"(2) such
that

lim sup Zjn;le ]\7,1(}", a/7f>

F— 00 T(r, f)

Then, for a@; (j=1,...,n+2) we obtain that
limsup N, (r,a;, f)/T(r,f) =0.

r— 00

=0.

This implies that
5}1(aj7f):1 (]:177n+2)7

so that #2' > n+ 2, which contradicts Theorem 2.1(I). (2.7) must hold.
(IT) Suppose that there exist n+ 2 vectors aj,...,a,+2 € X"(2) such that

hm Z/’:rlz Nn(}’, aj7f)
r— 0 log r

< o0

Then, for any j=1,...,n+2 lim,_,, N,(r,a;, f)/logr < co. This means that
ae? (j=1,...,n+2), so that #2 > n+ 2, which contradicts Theorem 2.1(II).
(2.8) must hold.

(IIT) Suppose that there exist n+ 2 vectors ay,...,a,.2 € X"(2) such that
(a;, f) has no zeros (j=1,...,n+2). Then tz_,e,/%l, so that #.4' >n+2,
which contradicts Theorem 2.1(III). (2.10) must hold.



130 NOBUSHIGE TODA

(IV) Suppose that there exist n + 2 vectors aj,...,a,.> € X"(2) such that

. log(32)"F Na(r. s, )
lim sup <
o0 log r

Pr-
then, for any j=1,...,n+2

log N, j
limsup Og l’l(r7a_/7<f)

<pr
r log r bs

This means that ;e # (j=1,...,n+2), so that #% > n+ 2, which contadicts
Theorem 2.1(IV). (IV) must hold.

(IT)(a) and (III)(b) We denote by # any one of # and .#'. We suppose
that f is linearly non-degenerate over .#, where .# = C(z) when X = 2 and
M =C when A ="

As ay,...,a, € A, from Lemma 2.3, ay,...,a,.; are linearly independent,
and so a,., can be represented as a linear combination of ay,...,a,,; with
constant coefficients. We suppose without loss of generality that

k
ni2 = chaj (¢ #0,2<k<n+1),
from which we obtain the relation

K
(2.12) (@.f) = ¢la, f)
J=1

We put Fj=(a;, f) (j=1,...,k) and F, = (a,f). Then, from Lemma
2.2(I) Fy,...,Fy are linearly independent over .# and from (2.12)

(2.13) F, _Zc, (¢; #0).

Let g be a polynomial such that the functions F/g,...,Fi/g are entire
functions without common zeros and put F = [F} /g, ..., Fi/g], where g = 1 when
A ="

Then, from Lemma 2.2(I) and (II)(ii), F is transcendental. We note that
the functions Fj,...,F, have no zeros when # = .#'. From Lemma 2.2(100)
applying to (2.13) we have the inequality

k
(2.14) < > Nu(r,aj, f) + Na(r,ani2, f) + S(r, F)
j=1

< Nu(ryania, ) + S(r, F),
since a;e A (j=1,...,k).
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(a) When " = 2. 1If the order of f is finite, then that of F is also finite
from Lemma 2.2(IT)(i). From Note 2.1 and (2.14) we have that

. Nn(raan+27f)

and so from Lemma 2.2(I), (II)(ii) and Lemma 2.4 we have that

lim inf M 2 hm lnf w . llm lnf (r )
F— o0 r r— o0 T(r, F) F— 0 r

r—0o0 r

> 0.

If the order of f is infinite, from (2.14) we have
limsup Nn(raanJerf)/T(raF) = 11

r—o0,r¢ E

and so from Lemma 2.2(I), (II)(ii) and Lemma 2.4 we have that

: N, ) ) ‘ . N, ) ) ' s T aF
r—oo,r¢ E r r—o0,r¢ E T(r,F) r—oo,r¢ E r
T(r, F\/F;
> timinf LA/
r—o,r¢ E r

We obtain (2.9).

(b) When %" = .#"'. Suppose that N,(r,a,.s,f) = O(logr). Then, from
(2.14) we have that T'(r,F)= S(r,F), which is absurd. As N,(r,a, s, f) is
convex with respect to logr, (2.11) must hold. O

Note 2.2. In (III)(b), we can prove the same conclusion as in (2.9).
Note 2.3. A more delicate result is given in [2, Theorem 5.2].

2-3. Example. Let f, X"(2), @', 2, "', B, n etc. be as in Introduction
and let ¢; (j=1,...,n+1) be the standard basis of C""".

Example 2.1. Let f =[l1,e%,...,e" V7 ¢"]. Then, from [9, (5.3) p. 95,

T(r,f) = (n/m)r+ O(1),
so that f is transcendental. Let X"(2) be any subset of C"™'\{0} containing

e, (j=1,...,n+1), which satisfies (x) in Introduction. From Lemma 2.5 f
is linearly non-degenerate over .#;, over C(z), over C and over .#,. Further
(ej, f) has no zero for j=1,...,n+1 and so

#TD' = #P = #M" = #B =n+ 1.
This shows that Theorem 2.1 is sharp.
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Further, let a = (aj,...,a,+1) € X"(2). Then, at least two elements of
ai,...,any1 are different from 0. Let a;, #0,...,0;, #0 (1 <ji<jp<---<
Jk<n+1,2<k<n+1), a5=0 (j#ji,...,Jr) and put

F=[e*,... ek

Then, T(r,F) = (ji — j1)r/m+ O(1) so that F is transcendental and of order
1. From Lemma 2.2(III) and Note 2.1 we have the inequality

T(r,F) < Ny(r.a, f) + O(log r).
From this inequality we obtain that

i log Nu(r,a, f) _ I, fiminf Nu(r,a, f)

Nn(ra a, f)
r—c0 log r r—oo T(r, f) r

1
lim inf > —.

1
]
n F— o0

Y
a

Example 2.2. Let g(z) be a transcendental entire function such that
T(r,g) = O((log r)z) and let f=][l,e,...,e" V7 g(z)]. Then, it is easy to
see from Example 2.1 that there are positive constants a < b < oo satisfying

ar < T(r, f) < br,
so that f is transcendetral and of order 1. Let
X"2)=A{er,...,enr1}U{er + e,y | e C, #0}.
Then, X"(2) satisfies () in Introduction and
Nu(rye;, /) =0 (j=1,...,n), Ny(r,a,f)=0(logr)?),

where a = e; + oey, .

1) f is linearly degenerate over .#;, .#, and #9' = #% = .

2) f is linearly non-degenerate over C(z), #% =n and (2.8) holds, but
2.9) does not hold since this example does not satisfy the condition of Corollary
2.1(1)(a).

Example 2.3. Let f=[l,e%,...,e"" V7 z] (n>2). Then, f is transcen-
dental and of order 1 as in Example 2.2. Let X"(2) be the set given in Example
2.2. Then, X"(2) satisfies () in Introduction and

Nu(riej, /) =0 (j=1,...,n), Ny(r,a,f)=0O(ogr)

where a = e; + ae, .
1) f is linearly degenerate over C(z) and #Z2 = 0.
2) f is linearly non-degenerate over C, ##' =n and (2.10) holds:
Let ay,...,a,,» be any n+2 elements in X"(2). Then,

2< #{nolz{Z' (aj, f(2)) = 0}} <n+2.
=
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The formula (2.11) does not hold as this example does not satisfy the condition of
Corollary 2.1(IIT)(b):

#{'Ql{ﬂ (¢, f(2)) = 0}} =120, #{z[(a,f(2)) =0}} =1,

where a = e| + oey, .

3. Relation between Z' and %

Let f, X"(2), n etc. be as in Section 1 or 2.

3-1. Lemma. First of all we shall give the main tool in this section, the
fundamental inequality of H. Cartan ([1]) when N = (Lemma 2.1) and that in
general case by E. I. Nochka (see [3]) and then several lemmas to prove theorems.

Lemma 3.1 (1], see [3]). For any q elements a; (j=1,...,q) of X
2N —n+2<qg< w), we have the followmg inequalities:

() (g2 0~ DT(0 /) < 3L Nalr @, f) 4 S ).
(1) S50 6u(ay, ) < 2N —n + 1

Note 3.1. When p, is finite, the error term S(r,f) can be replaced by
O(log r) without exceptional intervals (see the proof of (I) and [4, Theorem

2.2(i))).

DeFmNiTION 3.1, For 0 <o < py, we put

"T(t, "T(t,
O [ T A N
and
CNL0.F) B (. )
Nustra ) = | FESED i 0o p) = 1 = timsup 0T

where ¢ is a meromorphic function in the plane and F = (a, f) for a vector
ae C"\{0}.

ProrosITION 3.1 ([8], Proposition 1). For 0 <« < p;, T,(r, f) tends to +oo
when r — oo and we have the followings: ‘

. log T,(r, f)
(1) limsup,_, T logr

(3) For 0 <a<fB<py,
limsup T(r, ¢)/Tu(r, f) 2 lim sup T(r, 0)/Ty(r. f).

F—00

(4) For any ae C""\{0} and 0 <o < B < pg, onq(a, f) <dnga,f)

=p;— o (2) lim,_, TO(V’fz) =+ 0.
(log )
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In particular, if ae D' or if

. log N,(r,0,F
lim sup 28 V(0. F)
r—o0 log r

then for p> o, 6,p(a, f)=1.

=<

DEFINITION 3.2.
1) C(f) = {¢|meromorphic in |z| < oo and T(r,¢) =o(T(r,f)) (r — ©)};
2) for 0 <a<p,

C,(f) ={¢ | meromorphic in |z| < co and T,(r,9) = o(T,(r, f)) (r — o0)}.
ProposITION 3.2 ([8], Proposition 2). For 0 <o <pf <ps, we have the
following: ‘
C(f) = Culf) = Gp(f).

Proof. (i) Proof of C(f) = C,(f). Let p e C(f). Then, for any positive
number & there is a positive number r, such that for any r >r, we have the
inequality

T(r,p) <eT(r,f),

so that we have the inequality

T,(r,p) < To(ro, ) [{Tu(r, f)
Toc(raf) N Toc(ra’f)/{T“ f

(r, f)
from which we obtain

- Tz(rovf)}+£
= Tu(ro, )} + I

limsup T, (r,0)/Tyu(r, f) <e.

r—0o0

As ¢ is arbitrary, we have that
)ll)rg T“(r> (P)/T%(r’ f) = 0

This means that ¢ belongs to C,(f).

(ii) Proof of C,(f) < Cs(f). Let pe C,(f). Then, for any positive num-
ber ¢ there is a positive number r, such that for any r > r, we have the inequality

(3.1) T,(r,p) <eT,(r, f).

On the other hand the integration by parts gives us the following relations
for y=—o>0:

g Toc t7 Tl I
YMKWZVL 10) gy T0)

1+ r
and
_ rTa(t7f) sz(raf)
TbOnyAfVJ} A=
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From the above two equations with (3.1) we obtain

o) n Tlt,g) —eTu(t, f)
s, @ 1 ll+y
Ty f) =°T7 s ) gy T f) |

tl+y rV

As the denominator of the right-hand side tends to oo for r — oo, we obtain
that

limsup Tp(r,0)/Tp(r, f) <e,

from which we obtain that
,lgg Tﬂ(”? ¢)/T/5'(r7f) =0,

since ¢ is any positive number. This means that ¢ € Cp(f).

DeriNiTION 3.3, We put

M) = C(f)U{ U sz(f)}

0<a<p,

LemmA 3.2, The set 4 (f) is a field.

Proof. Let ¢, ¢, be in #(f). Without loss of generality we suppose that
91,9, € Cp for some positive number £ < p;.
i) We have the relation from the Definition 3.1:

Tﬂ(rawl t (”2) =< T/f(ragﬂl) + Tﬂ(r’ ¢2) + 0(1) = O(Tﬁ(rvf)) (}" - 00)7

which means that ¢, + ¢, € Cp(f) < A4 (f).
ii) From a property of the characteristic function, we obtain the following

inequality
Tp(l’, 1 '(0%—1) =< Tﬂ(r’(pl) + Tﬂ(h 9,) + 0(1> = O(Tﬂ(r’f)) (r— OO),

where ¢, #0 when +1 = —1.
From i) and ii) we have this lemma.

Lemma 3.3. (i)([6], pp. 62-63) For any meromorphic function h in the

plane,
r ! r +
J Wdt:O(J Mdl) (r— o0, 0 <a).
1 1

tl+o
(ii)(see [6], (21), p. 69) For 0 <a < p,

sirn =[Sl a-of | LD a) oty o0
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Proof (ii). We obtain this relation from the proof of Lemma 2.1(1) for the
error term, from the inequality (6') in [1] and (i) of this lemma.

From now on in this section we suppose that the curve f = [fi,..., fur1] 18
of order 0 < p, < oo and is linearly non-degenerate over .#(f). In this case,
Lemma 2.2 holds for .# = .4 (f) since we can apply the proof of Lemma 2.2 for
M= M(f) so that we apply Lemma 2.2 for .# = #(f) in Lemma 3.4.

LemMA 3.4, Suppose that {Z'URB} # ¢. Then, for 1 <k <min{#{2'U%},
n+ 1}, any k vectors in {2'UB} are linearly independent over C.

Proof. (i) When k= 1. This is trivial since ' U% = X"(2) = C"1\{0}.

(i) When k =2. This is also trivial since 2'U 4% satisfies (+) in Introduc-
tion.

(ili) For 2 <k <min{#{2'U%} — 1,n}, suppose that any k vectors in
2'U % are linearly independent over C. We prove that any k + 1 vectors in
2'U# are linearly independent over C.

Suppose to the contrary that there are k + 1 vectors in Z'U 4, linearly
dependent over C. Let ay,...,a;,a be in 2'U% and be linearly dependent
over C. Then, from the hypothesis of induction we can write

k
a:chaj (¢ #0,1<j<k),
J=1
from which we obtain the relation

k
(3.2) (a,f) = ch(aj,f)~
=1

We put
F=(a,f) (j=1,....k) and F,=(af).

Then, we obtain that from Lemma 2.2(I) Fi,..., F; are linearly independent
over ./#(f) and that from (3.2)

(33) F, =Y ¢F (¢ #0).
=1
Let g be an entire function such that the functions F/g,..., Fi/g are entire

functions without common zeros. We put F = [Fi/g,...,F;/g]. Then, F is
transcendental from Lemma 2.2(I) and (II)(i),(ii). From (3.3) and Lemma
2.2(III) we obtain the inequality

k
(3.4) T(r,F) <> Nu(r.a;, f) + Nu(r,a, f) + S(r, F).
=1
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(a) When 2'U% = 2'. From Lemma 2.2(I), (IT)(ii) and (3.4) we obtain
the inequality

. Nnx s &y,
imsup 22127 (.4, /)

. T,(rnF/F) &
0 <limsup —————= < E 1
j=1 r—o0 T&(raf)

reo o Tu(r, f)
o Su(r, f)

: Nn (r’ a’ f') T
+ limsup ———+—=+ lim sup =0
r—o Tu(r, f) r—oo Lo(r, f)
from Lemma 3.3(ii) and Proposition 3.1(4) since a;,ae 2'. This is a contra-
diction. This means that any k + 1 vectors in Z! must be linearly independent
over C.
(b) When 2'U% = #. Suppose that

1 log N,(r,a;
lim sup W: o, and limsup W

:OCJ' (]:1,,]()

Then, there is a number p, > > max{o,o; (j=1,....k)} asa,a4; (j=1,...,k)
are in 4. '
From Lemma 2.2(I), (II)(ii) and (3.4) we obtain the inequality

. T/f(raFZ/Fl) k . Nnﬂ(rvajvf)
0 <limsup —————F— < limsup ————-—
F—00 Tﬁ(raf) ]:Zl r— o0 Tﬁ(rvf)

+ lim sup Nup(r,a, /) + lim sup Sp(rf) _

r—0 Tﬂ(”yf) r—o T/}(V,f)
from Lemma 3.3(ii) and Proposition 3.1(4) since a;, a are of order less than f.
This is a contradiction. This means that any k + 1 vectors in % must be linearly
independent over C.
(c) When 2! # ¢ and % # ¢. We may suppose without loss of generality
that 9! = {a,ai,... a1} and B = {ay,+1,...,a;}, where 0 <k <k — 1.
Suppose that

. log N,(r,a;, ) .
1 T = 1,...,k).
msup == e % (J=hki+1,....k)
Let o (j=ki+1,...,k) < <p; From Lemma 2.4(I), (IT)(ii) and (3.4)
we obtain the inequality

Ty(r, Fr/F k o
0<1imsupM < Z]imsu Nup(r.a;, f)

p
r—o0 T[)’(raf) =1 r—o0 T/f(r7f)
. Nn.[f(rvavf) . Sﬂ(}’,f)
+ lim sup —————=+ lim sup =0
F—00 T/;(r,f) r— 00 Tﬂ(raf)

from Lemma 3.3(ii) and Proposition 3.1(4) since a,a; (1 < j<k) are in 7!
and a; (ki +1<j<k) are of order less than f. This is a contradiction.
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This means that any k41 vectors in %'UZ% must be linearly independent
over C.

3-3. Estimates of #{D'UB} and of #{Z'U#%}. We shall give two
theorems on D', 2!, B and %

THeOREM 3.1.  Suppose that p, > 0.  Then, #{D'UB} <2N —n+ 1.

Proof. (a) When {D'UB} = D' It is trivial from Lemma 3.1(II) that
#D!' <2N —n+1 in this case.
(b) When {D'UB} =B. Let B={a;|j=1,...,q}(c X),

limsup N,(r,a;, f)/logr=o; (j=1,...,9)

r—o0

and oy <B<p; (j=1,...,9). Supppose that ¢>2N —n+1. Then from
Lemma 3.1(I) we obtain the inequality

(q 2N+n—lT[}rf ZNn/fraja +S/5(raf)7

from which we obtain that

q
0<q—2N+n—1£ ZlimsupM+llm5upS(r7f):0

= e Tp(n)) - Tp(r, f)

from Proposition 3.1(4) and Lemma 3.3(ii). This is a contradiction. This
means that

#B <2N —n+1.

(c) When D'={a;|j=1,....,k} and B={a;|j=k+1,...,q} (1<k<
g—1). Let

limsup log N, (r,a;, f)/logr=0o; (j=k+1,...,9)

r—o0

and o <f<p, (j=k+1,....9).
Supppose that ¢ >2N —n+ 1. Then from Lemma 3.1(I) we obtain the
inequality

(¢ =2N+n—1)Ty(r, /) < ZNnﬁraj,f)JFSﬁ( /)

from which we obtain that

! (r.a, ) Sp(r, f)
0<g—-2N+n-1< limsup"ﬁij’—i—hmsup =
_,Z:: = Tp(r f) r—o Tp(r, f)
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from Proposition 3.1(4) and Lemma 3.3(ii). This is a contradiction. This
means that

#{D'UB} <2N —n+ 1.

THEOREM 3.2. Suppose that py >0 and f is linearly non-degenerate over
M(f). Then, #{2'URB} <n+1.

Proof. Suppose that #{Z'U%} >n+2. Let ay,...,a,2 be in 2'U%.
Then, from Lemma 3.4 any n+ 1 vectors in {al,.. an+2} are hnearly inde-
pendent over C. This means that a),...,a,» are in general position in C"*!.
We can apply Lemma 2.1(I) for N=n and qg=n+2, and fron Proposmon
3.1(4) we obtain a contradiction as follows:

n+2
1< thsup Nup(r, ;. /) + lim sup Su(r /) _

= oo T/f("af) F—00 Tb’( f)_

for some positive number < p,. This is a contradiction. We obtain our
theorem.

COROLLARY 3.1.  Under the same condition as in Theorem 3.2, for any vectors
{a17 o aaﬂ+2} < Xﬂ(z)’

Z’HZN (rva_hf)
>0

3.5 lim su .

(3:5) mSup =

and at least one of the following n+ 2 numbers

(3.6) lim sup log N, (r,a;, f)/logr

r—0o0

is equal to py.

Proof.  Suppose that (3.5) does not hold. Then, for j=1,...,n+2
limsup N, (r,a;, f)/T(r,f) = 0.

This means that {a,...,a,.»} =€ Z'. Namely, #%2' > n+ 2, which contradicts
Theorem 3.2.

Next, suppose that none of the 7+ 2 numbers of (3.6) is not equal to p;.
Then, the n+ 2 numbers '
limsup log N, (r,a;, f)/logr (j=1,...,n+2)

F—0o0
are smaller than p,, which means that #% >n+2. This contradicts Theorem
3.2. We obtain our corollary.

3-4. Example. The purpose of this section is to give a holomorphic curve.
It is a holomorphic curve f, of positive order and linearly non-degenerate over
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A(f,) with a vector a such that d,(a, f;) =1 but a is not Borel exceptional for
Jo-

LemMA 3.5. Let h = g,1/g> be a non-constant meromorphic function, where ¢,
and g, are entire functons without common zero and we put

f=191.91"92, - 9195, 03]
Then, T(r, f) =nT(r,h) + O(1).

Proof. From the definition of 7'(r, f) by H. Cartan ([1]),

1 (> wo i . n
(3.7) T(r,f)=EJO log max{|g1]", |g1]" "1gal,-- -, lg1]1g2]""" 1g2]"} 4O+ O(1)

1 27-[ n n
sfjl%mwmme}w+om
T J)o

IA

2n
%J log max{|g1], |g2|} d0 + O(1) = nT(r, h) + O(1).
0

On the other hand
1 a n n
B8)  T0f) = 52 | tormaxtiallaal"} a0+ o)

2n
;_nj log max{|g1, |g2]} 40 + O(1) = nT(r, h) + O(1).
0

From (3.7) and (3.8) we have our lemma.

LemmaA 3.6. Let h,gi1,...,gnr1 be meromorphic functions in |z| < co. Then,
n+1 ) n+1
(3.9) T(r, gjh’”l]) <nT(r,h)+ Z T(r,g;) + O(1).
=1 =1

Proof. (a) When n=1. From fundamental properties of the characteristic
function for meromorphic functions we have the inequality

T(r,gih+g2) < T(r,g1h) + T(r,g2) + O(1) < T(r,h) + T(r,g1) + T(r,92) + O(1).

(b) We suppose that (3.9) holds when n = k, where k is a positive integer.
We shall prove that (3.9) holds when n=4k+ 1. From the hypothesis of
induction we have the inequality:

k42 ) k+1 )
r <r > gjhk+2_"> =T (V D gh T gk+z>
J=1

J=1

k+1
< T(r,h ZgthZj) + T(r,gik2) + O(1)
=1
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k+1

T(r,h)+T <r, Zg,hk+2_-/> + T(r,gix+2) + O)
=1
k+1

T(r,h) + kT (r,h) + > T(r,g)) + T(r,gis2) + O(1)
j=1

k+2
= (k+ DT (r,h) + Y T(r,g;) + O(1).

J=1
From (a) and (b) we see that this lemma holds for any positive integer n.
LemMaA 3.7, Let hy(z) = €2, hy(z) = TIZ,(1 + z/n(log n)?) and we put h(z) =

hi1(z)/ha(z).  Then, h(z) is meromorphic in |z| < oo, of order 1, N(r,h) is of order
1 and 6(o0,h) = 1.

Proof. 1t is known that

(3.10) T(r,hy) =r/n
(see [4, p- 7]) and that
(3.11) n(r,1/hy) ~ r/(log r)*.

see [4, p. 29]). We estimate log M (r,h;). From (3.11) let r, > 1 be a positive
number such that for any r >,

9 r 1 10 r
3.12 AL (PRI | L
(3.12) 10 (log r)* < hz) 9 (logr)?

Since .7, 1/(n(log n)?) < oo, from an inequality in [4, p. 28] and from
(3.12) we obtain the inequality for any r > r,

log M(r,hy) < VJ Ma’t
0

Ht+7r)
(" n(t,1/hy) “n(t,1/h)
_rL—t(Hr) dt+rjr ) dt+ O(1)

S rj +rjv dr 5 ¢+ O(1)
(t+7r)( logt r (t+r)(log )
<10 KJ J @t o
2 rntlogt r t(log 1)
logr 0
{ du J du}+0(1>
log r, logr

1
- (10g r+log ra) o) (r=ro),
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so that we have the inequality

(3.13) N(r,1/h) + O(1) < T(r, hy) < log M(r, hy)
1

Sr 1
) <10g o+ o ro) +0o(1) (r=r,)

On the other hand, for r >r,

IA

(3.14) N(r,1/hy) = L”(”t/h” di = J M dt+ 0(1)
2 ! dt 2 (V— ro)
= IOL (log 1) =15 (log r)erO(l)

From (3.10) and (3.13),

(3.15) T(r,h)ST(r,hl)JrT(r,hz)JrO(l)sr+5r( : +1>+0(1)

n 9 \logr logr,
(3.16) T(rh) = T(rh) - T(rnh)+0) = ~— > (L Y oq
' B = 2nm hi “rn 9 \logr logr, '

From (3.13), (3.14), (3.15) and (3.16) we obtain that % is of order 1, N(r, k) is
also of order 1 and lim,_, N(r,i)/T(r,h) =0, so that 5(co0,/) =1, but oo is not
Borel exceptional for /.

Example 3.1. Let
So =10y, bk RS € — PM(C),

where hy, h, are those given in Lemma 3.7. Then f, is a holomorphic curve
(i) of order I;

ii) linearly non- degenerate over A (f,);

i

(
(i) n(ej,fo) =1 (1—2 ;n+1) and
(iv) ¢ (j=2,...,n+1) are not Borel exceptional for f,.

Proof. (i) From Lemma 3.5, T(r,f,) =nT(r,hi/h)+ O(1) and from
Lemma 3.7 hy/hy is of order 1, so is f,.
(i) Suppose that there are gi,...,gn+1 € 4(f,) satisfying

n+1 o n+1 )
6.17) R S )
=1 J=1

where h = hy/h,.
(a) When n=1. (3.17) reduces to
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Suppose that g; # 0. Then, from (3.18) & = —g,/g; so that we obtain the
inequality
T(}", h) < T(r7g1) + T(ra g2) + 0(1)

The left-hand side is of order 1, but the right-hand side is of order less than 1
since g1, 9> € #(f,), which is absurd. This means that g; must be equal to 0, so
that g» =0 from (3.18).

(b) When n =k, we suppose that g =--- =ggs1 =0 in (3.17). We shall
show that when n=k+1, gy = -+ =grs» =0 in (3.17).

Suppose that g; # 0 in (3.17) for n =k + 1. Then, from (3.17) we obtain

that
k+1 LS k42—
pitl — g‘h+f/ )
g1 j;j

Applying Lemma 3.6 to this equality we obtain that

k+2

T(r,h) <> T(r.g) + O(1),

J=1

which is absurd since left-hand side is of order 1 but the right-hand side is of
order less than 1 as gj,...,gx0 € #(f,). This means that g; must be equal to
0. From (3.17) for n =k + 1, we obtain that

k+1 '
Y gih 1 = 0.
=1
From the hypothesis of induction, g = -+ = g2 = 0.
From (a) and (b) we obtain (ii).
(iii) Since
N(re, fo) = (G =N, 1/hy) = (j=ON(r b)) (j=2,...,n+1)
and from Lemma 3.5, T(r, f,) = nT(r,h) + O(1), we obtain from Lemma 3.7 for
j=2,...,n+1
: . (J—=1ON(r,1/hy) j—1 . N(r,h)
a(e, fo) =1—1 =1- | =
e fo) =1 =W G 7 n P T
(iv) As in (iii) for j=2,...,n+1,
N(V7ej7ﬁ1) = (J_ I)N(r,h)

so that from Lemma 3.7, N(r,e;, f) is of order 1, namely, ¢; (j=2,...,n+1)
are not Borel exceptional for f,.

Note 3.1. G. Valiron ([11, p. 73]) writes that it is evident that a Borel
exceptional value is not necessary a deficient value since there are meromorphic
functions of irregular growth.



144 NOBUSHIGE TODA

4. Defect relation

Let f,X,X"(k) (k=1,...,n+1), netc. be as in Section 1, 2 or 3 such that
2N —n+ 1 <min{#X"(k), #X}.

4-1. Defect relation. The fundamental tools are Lemma 2.1 and Lemma
3.1. From Lemma 3.1 we obtain the following

Defect relation. Let D™ ={ae X|d,(a, f) >0}. Then, DT is at most
countable and we have the inequality

(4.1) > ou{a,f) <2N—n+1.

aeD+t

We are interested in a holomorphic curve f for which the defect relation is
extremal:

(4.2) > Oula, f)=2N-n+1.
aecD™
As in Introduction, we set D! = {a e X |d,(a, f) = 1}. Then, from (4.1), we
have that #D' <2N —n+ 1.
For any finite subset S of X, we denote by d(S) the dimension of the
subspace generated by elements of S.

THEOREM 4.A. Suppose that the relation (4.2) holds.

(I)([9, Theorem 3.2]) If d(D') =n—+1, then #D' =2N —n+ 1.

(I)([12, Theorem 6.1]) If (i) N >n=2m (meN) and (ii) d(D') <n,
then

#D' =d(D")+ N — n.

The last purpose of this paper is to give an example of holomorphic curve
for which the defect relation is extremal and to give the defect relation of
holomorphic curves which are not extremal in several cases applying these results.

4-2. Preliminaries and lemma. For a non-empty finite subset S of X, we
denote by V/(S) the vector space spanned by elements of S and by d(S) the
dimension of V(S). We put

O={ScX|0<#S<N+1}.
d(S)
#S

DEerINITION 4.1 ([12, Definition 2.1]). (I) We put A = mingce
(I) For R S (R,S € ), we put

d(S) — d(R)
#S —#R
Then, it is known that 0 < A(R;S) <1 ([3, p. 67]).

A(R; S) =
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Lemma 4.1.  Suppose that 2 < (n+1)/(2N —n+1).

(I)(see [12, Proposition 2.3(I1)(i)]) There exist an integer p (1 <p<
(n+1)/2) and a subfamily {T;|1 <i < p} of O such that

() p=Tog Tig ST )< (1412 1 _ o)

00Aﬂmﬂ)<AUEB)<~«Qﬂnqﬂw<2Nin+li;E.

(

I)(see [12, Definition 3.1], [10, Note 2.2], [9, Theorem 3.1]) We put

A(’Tlthl) lf‘ ae Ti\Tifl (l: 17"'7p)7
X\T,
IN—ni1—z1, AN\

and

2N —n+1-#T,
- on+1-d(T))

Then, the function w: X — (0,1] and the constant /s have the following
properties:
(a) For any ae X, 0 < hw(a) <1 and

T,={aec X |hw(a) < 1};

(b-1) For any Q < X satisfying (i) Q = 7, and (ii) 2N —n+1 < #0 < oo,
#0 — (2N —n+1) h(Zw(a) —n— l);
acQ
(b-2) Y pex (I —hw(a)) =2N —n+1—h(n+1);
() N\n<h< (2N —-n+1)/(n+1);
(d) For any Se 0, Y ,.gw(a) <d(S).
Suppose that 2 < (n+1)/(2N —n+ 1) and we put
0, = {Se 0T, <5, d(T,) < d($)}.

Then, we have
ProposiTION 4.1 (see [12, Proposition 2.3(II)(iv)]). For any S e O,

ntl—d(T,) _ d(S)-d(T,)
2N —n+1—#T, — #S—#T,

DEerINITION 4.2 ([12, Definition 3.1]). We say that
(I) X is of type I if for any Se 0,
1 ntl=d(T) _d(S)—d(T,)
AN —n+1—#T,  #S—#T,
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(II) X is of type II if for some S e 0O,

gl - nt1-d(T) _d(S)—d(T,)
2N —n+1—-#T, #S—#T,

We know ([3, p. 68]) that for any Se O, #S <d(S)+ N —n.

DErINITION 4.3 ([12, p. 357]). For S e @, we say that S is maximal when
#S=d(S)+ N —n.

ProposiTION 4.2 ([3, p. 68]). Let R,Se® such that R S. If R is
maximal, so is S.

As a note, we estimate 1 —hw(a) >0 (ae T)).

Note 4.1. Suppose that A < (n+1)/(2N —n+1) and that 7, is maximal.
Then,

1 —hw(a) =2/n(2N —n) (acT,).

Proof. From the definition of w (see Lemma 4.1) there is a subset S, which
may be empty, of 7, such that for any ae 7,

d(T) —d(S) _, .\ _n+1-d(T))

(4.3) w(a) < #T, — #5 SNEI=d(T)

since 7, is maximal, so that we have the inequality
(d(Ty) = d(S))(N +1=d(Tp)) < (n+1—d(T,))(#T, — #5).
As both terms are integers, we have the inequality
(d(Ty) = d(S))(N +1=d(T})) < (n+1—d(T,))(#T, — #5) — 1,
so that we obtain

d(T,) —d(S) N+1-d(T,) 1 2

<1- <l-—
#T,—#S n+1-d(T,) —  (n+1—d(T))(#T,—#S) = n(2N —n)

We obtain this note from this inequality, (4.3) and the inequality

#T, —#S <#T,=d(T))+ N-n<(n+1)/2+N-n=02N-n+1)/2. O

Lemma 4.2 ([12, Corollary 4.1]). For f and X as in Section 1, we have the
inequality

(D) 2pexw@on(a, f) <n+1. (1) 3y on(a, f) < (n+1)/4
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From the equality ([12, Lemma 5.2]):
2N —n+1- Zén(a,f) = Z(l — hw(a))(1 —ou(a, [))

acX acX

+h (n +1=) wla),(a, f))

acX

and Lemma 4.2(I) we have the following

LemMa 4.3 ([12, Lemma 6.1]). Suppose that N > n. The truncated defect
relation for f is extremal.

> dula,f)=2N—n+1

acX
if and only if
(i) (1—hw(a))(l—0du(a,[f))=0 (aeX);
(11) ZueX w(a)é,,(a,f) =n+ L.

LemMA 4.4 ([12, Theorem 5.4]). Suppose that 2 < (n+1)/(2N —n+1) and
that () X is of type I and T, is not maximal or (ii) X is of type Il Then

Zén(a,f)SZN—n—i—l—i.

acX 2n

Lemma 4.5 ([12, Corollary 5.1]). Suppose that N >n=2m (meN). If
1

n\*, ' 2N — 1 - A~

2(5 (a,f) >2N —n+ ”

acX

then < (n+1)/2N —n+1).

4-3. Example. In this section we shall give a transcendental holomorphic
curve and a set X”(2) in N-subgeneral position for which the defect relation is
extremal.

Example 4.1. For n > 3, there are a transcendental holomorphic curve f
and a set X"(2) in N-subgeneral position satisfying

> dla,f)=2N-n+1.

aeX"(2)

Proof. Let d be an integer satisfying 2 <d < (n+1)/2 and py,..., puy1 be
n + 1 polynomials without common zeros and linearly independent over C. We
put

f=1p1,--.,Pa, pasi€’, ..., pnrre].
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Then, f is linearly non- degenerate over C and T(r, f) ~ T(r,e”), so that f is
transcendental. Let e; =(1,0,...,0),...,e,=(0,...,0,1) be the standard basis

of €% and let a (j=1,. —n) be vectors in C“ such that ef,..., e},
aj,...,ay_, are 1n general posmon in C?. Next, let
e, =(1,0,.. 0),...,n+1:(0,...,0,1)

be the standard basis of C”+1 4 and let b’ (j=1,. n) be vectors in
C"""? such that ¢, ,,...,e.,, 4 b,....by_, are in general pos1t1on in C"1
We put

¢=(e,0) (1<j<d); e=(0,¢) (d+l<k<n+l)
so that the vectors ej,...,e, 1 are the standard basis of C ”*1, and

aj=(a,0)eC"" (1<j<N-n); b=(0b)eC"™ (1<k<N-n).

Then, the set X"(2) = {ey,...,enr1,a1,...,ay_n,b1,...,by_,} is a subset of
C”“\{O} in N-subgeneral position satisfying ( ) in Introduction and

ole, f)=1 (i=1,....n+1);
oa,f)=1 (j=1,...,.N—n); 6, f)=1 (k=1,...,N—n)
because
(e, /) (i=1,....d); (a,f) (j=1,...,N—n)
are polynomials and
(e, f))e® (i=d+1,...,n+1); (bi,f)/e (k=1,...,N—n)
are polynomials. We have that

> daf)=2N-n+1. 0O

acX"(2)

4-4. Holomorphic curves with the non-extremal defect relation. Let
X, X"k) (k=1,...,n+1), N>n etc. be as in Introduction, Section 1,
Section 2 or Section 3.

THEOREM 4.1. Suppose that the sets X"(k) (k=2,...,n+1) are in N-
subgeneral position. When n >k > 2, we have the defect relation

Scla, f) < N+ NJk.
ae Xk(k)

Proof. From the definition of 1 (Definition 4.1(I)), we have that k/N < 1
due to the definition of X*(k). Then from Lemma 4.2(II) we obtain the
inequality

Z Oxla, f) < N+ Nk <2N —k+1. O
ae Xk(k)
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We use .#; as in Section 2.
LemMMA 4.6. Suppose that f is linearly non-degenerate over .#y. Let

ai,...,ag,a be k+1 vectors in D' such that a,... a; are linearly independent
over C and

k

(4.4) a=Y ¢a (¢+#0,1<j<k)
j=1

Then, a = cia,.

Proof. Suppose that kK > 2. From (4.4) we obtain the equality

k
(4.5) (@.f) = ¢la, ).
=

We put
Fi=(a;,f) (j=1,....k); and F,=(a,f).

Then, from Lemma 2.1(I) for .# = .4y, F\,...,Fy are linearly independent
over .4y and from (4.5) we obrain the equality

k
(4.6) F, =) gF (g #0).

=1
Let g be an entire function such that the functions F/g,...,Fy/g are entire

functions without common zeros. We put

F:[Fl/g77Fk/g}

Then, F is transcendental from Lemma 2.1(I) and Lemma 2.I1(IT)(ii) for
M = My. From (4.6) and Lemma 3.1(I) for N=n=k—1 and g=k+1
we obtain the following inequality

b

(4.7) T(r,F) < ) Nioi(roa, f/g) + Niei(r,a, f/g) + S(r. F)
1

~.
I

-

Nu(r,aj, ) + Nu(r,a, f) + S(r, f)
1

J

since

Nk*l(rvajaf/g)SNn(raaj’f) (1S]Sk)7 Nk,l(}",a,f/g)SNn(V,a,f)
from the definition of these counting functions and

T(r,F)<T(r,f)+0(Q)
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from Lemma 2.1(I)(i) for # = .#;. As
T(r,Fi/F,) <T(r,F)+ O(1)

from Lemma 2.1(II)(ii) for .# = .#;, we have from (4.7) and Lemma 2.2(I) for
M = M that

. T(r,F>/F) Nu(r,a;, f)
0 < limsup ——————= lim su
rﬂw,ra}z’ T(}’,f) Z ’pr T( f)
+ lim sup Nolr.a /) + lim sup Stnf) _ 0

r—o0 T(”vf) r—oo,r¢ £ T( f)

since @;,a € D'. This is a contradiction. This means that k must be equal to 1.
O

THEOREM 4.2.  Suppose that [ is linearly non-degenerate over My. Then,
#D' < N + N/n.

Proof.  We have only to prove this inequality when #D' > N4+ 1. As X is
in N-subgeneral position, there are n + 1 linearly independent vectors ay, ..., @,
in D'. There is nothing to prove when D'\{ay,...,a,;1} =¢. We suppose
that D'\{ay,...,a,.1} # ¢. For any ae D'\{ay,...,a,, 1}, there are constants
¢; (1 <j<n+1) at least one of which is not zero such that

n+1

a—E ca; (¢jeC),

so that from Lemma 4.6 there is only one ¢; # 0 such that a = ¢;a;,
Let

#(Dl\{ala s 7an+1}) =X

As X is in N-subgeneral position, we have the following inequality:
{(n+1)n+nx}/(n+1) <N,
so that x< N+ N/n— (n+1) and we have our inequality.

THEOREM 4.3.  Suppose that f is linearly non-degenerate over .My, and that
N>n>=3. IfdD")=n+1, then

Zén(a,f)<2an+l.

aeD*

Proof. Suppose to the contrary that for an f

> Oula, f)=2N—n+1.

aeD*
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From Theorem 4.A(I), we have that
D" =D' and #D'=2N-n+1
On the other hand from Theorem 4.2
#D' <N+ N/n<2N —n+1

as n>3. This is a contradiction. We have our theorem. O

THEOREM 4.4. Suppose that f is linearly non-degenerate over My, that
N>n=2m (meN) and that X"(2) is in N-subgeneral position. Then,

> ula,f) <2N—n+1.

acX"(2)

Proof. (i) When d(2') =n+1. This is a special case of Theorem 4.3.
(i) When d(2') <n. Suppose that

(4.8) > dula,f)=2N-n+1.

aeX"(2)
Then, from Theorem 4.A(II), we have that
(4.9) #9' =d(2") + N —n.

From (4.9) we have that d(2') > 2 since X"(2) is in N-subgeneral position
satisfying () in Introduction. Let d(2') =k(=2) and let by,...,b; be k
linearly independent vectors in Z!. Then, from (4.9) 2'\{bi,...,bi} # ¢.
For a vector be 2'\{by,...,b;}, there exist constants ¢; #0eC (j=1,...,k)
such that b= Zj‘:l c;b;.

Then from Lemma 4.6, kK must be equal to 1. This is a contradiction. This
implies that (4.8) does not hold. We have our theorem. O

4-5. The y, -defect relation. Let f X, X"(k) (k=1,...,n+1), n, etc. be
as in the previous sections. Let @ be any vector in C""'\{0}. We say that

“a has multiplicity u if (a, f) has at least one zero and the zeros of the
function (a, f(z)) have multiplicity at least u, while at least one zero has
multiplicity pu.”

When (a, f) has no zero, we set u = 0.

DEFINITION 4.4 ([11, Definition 1.1]). For a e C"™'\{0} with multiplicity x

we put
+
mia)=(1-1) =1- -t

u max(u,n)’

where at = max(a,0) for any neal number a.
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We call y,(a, f) the u,-defect of a with respect to f. It is known that
(410) OSlun(a7f) Sé"(avf) S 1

(see for example [11, Corollary 2.2]).
As a corollary of the Defect relation (4.1), we have the following defect
relation for w,(a, f):

ProposiTION 4.3 (see [5, Corollary (3.B.46)]). For any ai,...,a,€eX
2N —n+1<qg< o), we have the following inequality:

q
> (@, f) <2N —n+1.
j=1

We call this inequality the u,-defect relation. Let
M*={aeX|pa f)>0} and M'={aeM" |y, a,f)=1}.

Then, M+ = D" by (4.10) and we have the defect relation:

(4.11) > wla f)<2N —n+1

acX

from Proposition 4.3. If the equality holds in (4.11):

(412) Zﬂn((l,f)ZZN—l’l—f—l,
acX

then, by (4.1), (4.10) and (4.11) we have

(4.13) to(a, f) =0ua, f) (ae M)

and so Mt =D*.
Further we put (see Introduction)

M ={ae X"(2) | uy(a, f) >0} and 4'={ae.u"|u,(a f)=1}
The main purpose of this section is to estimate

> wlaf).

acX"(2)

ProrosiTiON 4.4, (I)([9, Theorem 4.2 and Proposition 4.2]) (i) If
dM"Y=n+1, then, M* = M"'. (i) #M' <N+ N/n.

(IN([11, Note 3.1)) #M T +n#M' < (n+1)2N —n+1). In particular,
#M™ is finite.
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Lemma 4.7 ([10, in the proof of Theorem 3.2]). Suppose that N > n > 1 and
that (4.12) holds. If d(M"') > 1, then

dM") =" w(a).

aeM!

LemMa 4.8. Suppose that (i) N>n>2 and that (ii) (4.12) holds. If
dM") > 1, then

h=Q2N-n+1—-#M")/(n+1—-dM")).

Proof. From Lemma 4.3 and (4.13) we have that

(4.14) hwia)=1 (aeMt—M")

and

(4.15) > wl@w,(a, ) =n+1.
aeM+

From (4.15) and Lemma 4.7,

n+l=> w@ulaf)=>Y wa+ >  waularf)

aeM+ aeM! acM+—M!
=dMY)+ Y wl@w(a, f).
aeM+—M!
From (4.14)
1 —dM) = S (@, (a, )
aeM+—M!
= > maf)=2N-—n+1-#M"

aeM+t—M!

We have our lemma since d(M!') < n from Proposition 4.4(1),(II) and (4.12).

O

LemMa 4.9. Suppose that (1) N>n=2m (meN) and that (ii) (4.12)
holds.  Then, 2. < (n+1)/2N —n+1).

Proof. From (4.13) and Lemma 4.5 we have 1< (n+1)/2N —n+1).
O

Lemma 4.10. Suppose that (i) N >n=>2 and that (ii) (4.12) holds. If
A< (n+1)/2N —n+1), then X is of type 1, T, is maximal and M' =T, so
that

#AM' =d(M)+ N —n, dM") < (n+1)/2.
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Proof.  First of all we note that M' € ¢ since d(M') < n from Proposition
4.4(I), (4.12), (4.13) and Theorem 4.A(I). By Lemma 4.3 and (4.13) we have

(4.16) T,c M".
From (4.12), (4.13) and Lemma 4.4, we have that X is of type I, 7, is
maximal and so M! is also maximal from (4.16) and Proposition 4.2:
(4.17) #M' =dM")+ N —n
Further, as d(M') > 1 from (4.17), by Lemma 4.8 and Lemma 4.1(II) we
have
_2N—-n+1—#T, 2N-—n+1—-#M'
- on+1-d(T,)  n+1-dM")
If T, M!, then d(T,) < d(M") and
AN —n+1—#T,  #M"'—#T,
ni—d(T,) M) —d(Ly)’

As M' e O, this means that X is of type II from Definition 4.2, which is a
contradiction. We have that 7, = M'. From Lemma 4.1(I) we obtain that
d(M") = d(T,) < (n+1)/2. 0

THEOREM 4.5. Suppose that d(M') =1, N >n=>2 and that X"(2) is in
N-subgeneral position. Then,

Z w,(a, f) <2N —n—+ 1.

acX"(2)

Proof.  Suppose to the contrary that
> wyla,f)=2N-n+1.
aeXx"(2)
Then, from Lemma 4.8, we have that
h=02N—n+1—#4")/(n+1—d(u")).
From Lemma 4.1(1I)(c),
2N —n+1—#d")(n+1—d(#") < (2N —n+1)/(n+ 1),
which reduces to the inequality
2N —n+1
n+1

and we have that #.#' > d(.#") + 1.
1) When d(.#') = 1. Tt is trivial that there are two vectors @ and b in .
satisfying @ = ¢b (c # 0, constant). This is absurd since a,be X"(2).

'y < d(u'"y < #'
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2) When d(.#') =d > 2. We suppose that by, ..., b, are linearly indepen-
dent vectors belonging to .#'. Then, any vector ae.#'\{by,... b;} can be
represented by by,...,b; as a linear combination over C:

a=ch+---+cyby.

From this relation

d
(4.18) (a,f) = ch(bv,f).
v=1
As a,by,...,b; are in /', from (4.18) we obtain that there is an integer

k (1 <k <d) such that
(@, f) = (b, /) (cx #0)

due to a Borel’s theorem (see [1, 1°, p. 19]). This relation reduces to a = c;by
since f is linearly non-degenerate over C. This is absurd since a,b; € X"(2).
From 1) and 2) our theorem must hold. O

THEOREM 4.6.  Suppose that N >2m (me N) and X"(2) is in N-subgeneral
position.  Then

> wyla,f) <2N—n+1.

acX"(2)

Proof. We suppose to the contrary that there exist f, X"(2) such that

(4.19) > wya,f)=2N-n+1.

acX"(2)
Then, from Lemma 4.9, A < (n+1)/(2N —n+ 1), so that from Lemma 4.10
A" satisfies
# Ml =d( MY+ N—n; dlu') < (n+1)/2.

This means that d(.#') > 1. From Theorem 4.5, we have that (4.19) does
not hold. We have our theorem. O
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