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PARTIAL GENERALIZATIONS OF SOME
CONJECTURES IN LORENTZIAN MANIFOLDS

ZHONGYANG SUN

Abstract

In this paper, we mainly investigate complete or compact spacelike hypersurfaces
with constant mean curvature or constant scalar curvature in Lorentzian manifolds
L]”“. We give a new estimate of the Laplacian AS of the squared length S of the
second fundamental form of such spacelike hypersurfaces. Finally, we give partial
generalizations of some Conjectures in Lorentzian manifolds Lf“.

1. Introduction

In 1981, S. Stumbles [19] pointed out that spacelike hypersurfaces with
constant mean curvature in arbitrary spacetimes are interesting in the relativity.
Therefore, complete spacelike hypersurfaces with constant mean curvature in
a Lorentz space form M (c) are studied by many geometers. For example,
A. J. Goddard [8] proposed the following Conjecture:

CONJECTURE 1. If M" is a complete spacelike hypersurface of de Sitter space
S (¢) with constant mean curvature H, then is M" totally umbilical?

When H? < ¢ if n =2 or when n?H? < 4(n— 1)c if n > 3, K. Akutagawa [1]
and J. Ramanathan [18] proved that Goddard’s conjecture is true. S. Montiel
[13] solved Goddard’s problem without restriction over the range of H provided
that M" is compact. For further study in this direction, there are many results
such as [10, 14].

In 2004, J. Ok Baek, Q. M. Cheng and Y. Jin Suh [15] studied complete
spacelike hypersurfaces with constant mean curvature in a locally symmetric
Lorentzian manifold Li’“ and obtained some rigidity theorems.

On the other hand, concerning the study of spacelike hypersurfaces with
constant scalar curvature in a de Sitter space S!""!(c), H. Li proposed an
interesting problem:
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CONJECTURE 2. If M" (n>=3) is a complete spacelike hypersurface in de

Sitter space S{’“(l) with constant normalized scalar curvature R satisfying
n—2

< R< 1, then is M" totally umbilical?

Recently, F. E. C. Camargo et al. [4] proved that Li’s question is true if M"
has bounded mean curvature H. For further study in this direction, there are
many results such as [3, 5] and [9].

In 2010, J. C. Liu and Z. Y. Sun [12] studied complete or compact spacelike
hypersurfaces with constant normalized scalar curvature R in a locally symmetric
Lorentzian manifold L{““ and obtained some rigidity theorems.

It is natural to study complete or compact spacelike hypersurfaces with con-
stant mean curvature or constant scalar curvature in Lorentzian manifolds L]

In Section 3, we give generalizations of [15, Theorem 1 (1)] and [1, Theorem]
in Lorentzian manifolds L?*'. Thus, we obtain Theorems 3.2 and 3.3.

In Section 4, we give generalizations of [12, Theorems 1.1-1.2(i)] in
Lorentzian manifolds Lf“. Thus, we get Theorems 4.4 and 4.5.

In order to prove our results, we need some basic facts and notations. First
we recall that, for some constants ¢, ¢, and c¢3, Jin Ok Baek et al. [15] introduced
the class of (n+ 1)-dimensional Lorentz spaces L' which satisfy the following
conditions:

(i) for any spacelike vector u and any timelike vector v

€]

1.1 K =——
(11) (w0) ==,

(ii) for any spacelike vectors u and v
(1.2) K(u,v) = e,

(i)

—— C3

1.3 VR| < —,
(13) VR < ©

where V, K and R denote semi-Riemannian connection, sectional curvature and
the curvature tensor on L{’“, respectively.

When L' satisfies conditions (1.1) and (1.2), we will say that L™ satisfies
condition ().

When L*! satisfies conditions (1.1) and (1.2) and (1.3), we will say that
LI satisfies condition (x).

Remark 1.1. It can be easily seen that ¢3 = 0, then the Lorentzian manifold
LY is locally symmetric.

Remark 1.2. The Lorentz space form M 'f“(c) e L™ satisfies the condition

c
(%), where ¢ = oo,
n

This class of Lorentzian manifolds Li’“ contains several examples. For
example, semi-Riemannian product manifold H{f(—ci/n) x N"*'7%(¢y), ¢ > 0,
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and R¥ x §7+1-K(1). Particularly, R! x §"(1) is the so-called Einstein Static
Universe. Of course, it is not a Lorentz space form. For more details, we refer
the readers to [6, 15] and [20].

2. Preliminaries

In this section, we give a new estimate of the Laplacian AS of the squared
length S of the second fundamental form for spacelike hypersurfaces in
Lorentzian manifolds L*! satisfying (+x). We will use the following convention
for the indices throughout this paper: 1< A4,B,C,...<n+1;1<i jk,...<n.

We assume that M" is a spacelike hypersurface in Lorentzian manifolds
Lf’“. Choose a local field of pseudo-Riemannian orthonormal frames

{e1,...,epp1} in Lf“ such that, restricted to M”", {e;,...,e,} are tangent to
M" and e, is normal to M". That is, {ej,...,e,} are spacelike vectors
and e, is a timelike vector. Let {w,} and {w4p} be the fields of dual frames
and the connection forms of Lf“, respectively. Let & =1, g1 = —1, then the
structure equations of L™ are given by
dws = — ZEACOAB Awp, wyp+ wpys =0,
B
1 _
dwp = — Z Ecyc NWcB — EZ ecepRpcpwc A wp.
C C.D

Here the components Rcp of the Ricci tensor and the scalar curvature R of
Lorentzian manifolds L{”l are given, respectively, by

RCD = Z EBRBCDB7 R= Z SARAA-
B A

Let Rcp be the components of the Ricci tensor of L{’“ satisfying (), then

the scalar curvautre R of L{’“ is given by

n+1 n

(21) R = ZSARAA = _ZZR(n+l)ii(n+1) + Z R,’jji =2c + Z R,’jﬁ.
sy =1 Q=1 i=1

It is well known that R is constant when the Lorentzian manifold L{”l is locally
symmetric. Together with (2.1), we know that = Ry is constant. Hence,
when M" is a spacelike hypersurface in locally symmetric Lorentzian manifolds
L satisfying (), we conclude from (2.5) in Section 2 that the normalized scalar
curvature R of M" is constant if and only if P is constant.

The components R pcp.r of the covariant derivative of the Riemannian

curvature tensor R are defined by

g eeR4Bcp, EOE
E

=dR4pcp — Z ee(Repcp®Es + Rapcp®es + Rapep®Ec + RapcE®ED)-
E
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We restrict these forms to M" in L{’“, then w,.; =0. Hence, we have
> i W) Aw; = 0. Using Cartan’s lemma, we know that there are h; such
that (1), = > hyw; and hy = h;, where the hy are the coefficients of the
second fundamental form of M". This gives the second fundamental form of
Mn, h= Zi,j hij-coi ® wj.

The Gauss equation, components R;; of the Ricci tensor and the normalized
scalar curvature R of M" are given, respectively, by

(2.2) Riji = Rijig — (hihje — hichyp),

(23) R,'j = ZRkUk — I’th,J + Zhikhkj7
k k

(2.4) n(n—1)R=> Ry —n’H*+S8,

ij
1

where H=-3 " h; and S=3, jhé are the mean curvature and the squared
n g

length of the second fundamental form of M", respectively.
From (2.4), we can define a P such that

n
(2.5) n(n—1)P=n*H*—S=>" Ryi—n(n—1)R.
i,j=1

Let hjx, hju denote the first and the second covariant derivatives of Ay,
respectively, so that

Z hi/'ka)k = dhlj — Z /’l,‘ka)kj — Z hk_,»a)k,-,
X % X
Z hijae; = dhye — Z hjrey; — Z higeeoy — Z hijio.
7 7 ] 7

Thus, we have the Codazzi equation and the Ricci identity

(2.6) hijic = it = Rins1)ijk

(2.7) hiir — hijie = — Z Rim Ronjia — Z Rjm Rkl -

m m

Let I_QABCD; r be the covariant derivative of Rypcp. Thus, restricted on M",
R(;erl)ijk;l is given by

(2.8)  Rinsvjiit = Ripsnyit + Rinsvyions1ichin + Rins1yijins 1y + Z Roijichmi
m
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where I_Q(nﬂ),»jk; ; denotes the covariant derivative of 1_2(,,+1),-jk as a tensor on M" so
that

Z R yies 101 = dR 1) — Z Ry
7 7

- Z R(n+1)ilszf - Z R(;1+1)g/1wlk-
/ ]

Next we compute the Laplacian Ah; =), hjw. From (2.6) and (2.7), we have

Ahj = Zhikjk + R 1yijk:k
%

= Z (hkikj - Z(hklRlijk + haRygi) + R(n+1)z/k;k> .
% 7
From hklk/ = hkkij + R(n+1)kik;ja we get
(2.9) Ahy= (nH); + Z (i k + Rin1ykik: ) Z(hklR/ijk + NitRigre).-
]

From (2.2) and (2.8) and (2.9), we have

Ohig = (nH); + Z (n1)ijkk + Ry 1)k )
- Z(hkkR(n+1)z]'(n+l) + g R 1)k (s 1)k)
%
- Z(thzl_?/g/k + hji Rk + hiRyje) — nH Z huhy + Shy.
Tl 7

According to the above equation, the Laplacian of the squared length S of the
second fundamental form /4; of M" is obtained

(2.10) fAS th+ZhUAhU

i,j,k
- Zhljk + Z nH z/hlj + Z (n+1)ijk; k + R(n+1)k1k j)hlj
ijk i,j,k
<Zthl/R n+1)ij(n+1) Z (n+1)k(n+1)k )
i,j k

-2 Z (hklhijl(/‘k + hilhlekjk) — nHZhllhljhy + SZ.
i,j,k,l il

Next, we will estimate the right-hand side of (2.10) by using the curvature
conditions (xx). We choose a local orthonormal frame field {ej,...,e,} such
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that h; = A;0;, where 4;, 1 <i<n, are principal curvatures of M". By defi-
nition, we see
<SS =>"i
i

and hence we have
(2.11) —VS < <VS.

First of all, we treat with the third term of (2.10). It is seen that we have
(2.12) Z(I_e(nJrl)yk ke + Riwetyins ) hij = Zl (1) jiksk  Rins 1) 1)
i,j,k J.k

- Z 1251 (1 R 1) ik k] + [ R 1yae 1)
7k

From (1.3) and (2.12), we have
(2.13) Z(R(nJrl)yk k + Rty Yhip = —2¢3V'S.
ik

Next, we consider the forth term of (2.10). From (1.1) and h; = A;0;, we
have

(2.14) (”HZhUR n)ijn+1) T SZ Rk n+1)/>

L]

= - (ﬂHz AR ie(ns1) — S Z R(n+1)kk(n+1)>
% %
. 3 Cl1
S —nH)—
> s it

k
= ¢)(S —nH?).

Finally, we deal with the fifth term of (2.10). Notice that S —nH?=

1 .
%Zj,k(ij — )% (see Eq. (2.17)). Using (1.2), we also have

(2.15) -2 Z hklhr/Rh/k + h; lhz/le/k 22 } )k Rkyk
i,j,k,l

=0 Z(if — )
Tk

=2¢y(nS — n*H?).
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Now, inserting (2.13), (2.14) and (2.15) into (2.10), we obtain

1
(2.16) 308> > hy+ Z/li(nH)ﬁ —2e3VS

ik
+ ne(S — nH?) + <S2 - nHZ/lf),

1 . .
where ¢ =2c¢; +— and ¢;, ¢, ¢3 are given as in (xx).
n

Since we would like to compute AS for spacelike hypersurfaces in Lorentzian
manifolds satisfying (xx), we need the following algebraic Lemma.

Lemma 2.1 ([2, 16]). Let ..., u, be real numbers such that ", yu; =0 and
S 1} = B2, where B> 0 is constant. Then

>ou
i

< n—2 B

Vnn—1)

and equality holds if and only if at least n — 1 of the p;’s are equal.

Let ¢:Zi’ /¢ijw,~®wj be a symmetric tensor defined on M", where
¢y = hy — Hoy;. It is easy to check that ¢ is traceless. Choose a local
orthonormal frame field {ei,...,e,} such that h; = 2;,0; and ¢; = u,6;. Let
|§|> = S, 12 A direct computation gets '

1
2 = — 2 = — i — g 2
(2.17) 0 = S —nH? = - E,;j:()' )2,

Hence, |¢|2 =0 if and only if M" is totally umbilical. We also get
Z/lf =nH> +3HZ;11«2+Z/1[3.
i i i
By applying Lemma 2.1 to the real numbers y,...,u,, we obtain
(2.18) anZif:fn2H4f3nHZZ,ui27nHZ,ui3
i i i
> 2t — ansH? — =2 gy - am?) .

Vv —1)

Substituting (2.17) and (2.18) into (2.16), we obtain the following lemma.
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LemMa 2.2. Let M" be a spacelike hypersurface in an (n—+ 1)-dimensional
Lorentzian manifold LT satisfying (s), then

(2.19) %AS = Zh;‘k + Z 4i(nH); — 2e3VS + |¢|2L|H|(|¢D,
ik i
n(n—2)
n(n—1)

In the proof of main Theorems, we need the well known generalized
Maximum Principle due to H. Omori [17].

where |§|* = S —nH? and Ly (|4]) = |4 — |H| || + nc — nH>,

Lemma 2.3 ([17]). Let M™ be an n-dimensional complete Riemannion man-
ifold whose sectional curvature is bounded from below and F: M" — R be a
smooth function which is bounded from above on M". Then there exists a
sequence of points {xx} € M" such that

lim F(x;)=sup F,

k— o0

lim [VF(x)| =0,

Jlim sup max{(V2F(x;)) (X, X) : |X| =1} <0.

3. Spacelike hypersurfaces with constant mean curvature in Lorentzian
manifolds L' satisfying ()

In 2004, J. Ok Baek, Q. M. Cheng and Y. Jin Suh [15] studied a complete
spacelike hypersurface with constant mean curvature in locally symmetric
Lorentzian manifolds and proved the following result.

THEOREM 3.1. Let M" (n>=3) be a complete spacelike hypersurface with
constant mean curvature H in an (n+ 1)-dimensional locally symmetric Lorentzian

manifold L™ satisfying (). If n”H?> <4(n—1)c, ¢ :2cz—l—c—1, where ¢, and
n

¢y are given as in (%), then ¢ >0 and M" is totally umbilical.

In this Section, first we give a generalization of Theorem 3.1 and prove the
following result.

THEOREM 3.2. Let M" (n>=3) be a complete spacelike hypersurface with
constant mean curvature H in an (n+ 1)-dimensional Lorentzian manifold L

satisfying (x+). If n®H* < 4(n—1)c, ¢ = 2¢, + & and c3 =0, where ¢, ¢; and 3
n
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are given as in (xx), then ¢ > 0 and the squared length S of the second fundamental

form of M" satisfies

4(n = V)es +/16(n — 123 + P H2[d(n — e — B
nd(n— 1)c — n2H?]

2

nH? <sup S <

On the other hand, when n =2, we obtain the following theorem.

THEOREM 3.3. Let M? be a complete spacelike hypersurface with constant
mean curvature H in a 3-dimensional Lorentzian manifold L3 satisfying (xx).

(i) If H> <, c—2cz—|—5 and c¢3 = 0, where ¢, ¢, and c3 are given as in

(xx), then ,

e+ +8H (¢ — H?)?

2H* <sup S <
b 2(c — H?)

. C1 . .
(i) If H> = ¢, ¢ =2c, +? and c¢3 = 0, where c¢i, ¢, and c3 are given as in
(xx), then

(sup S — 2H?)* < 2¢34/sup S.

Remark 3.4. When ¢3 =0 in Theorem 3.2, we know that the Lorentzian
manifold L”+1 is locally symmetric and sup S = nH>. Together with (2.17), w
know that sup|¢| = 0 which shows M" is totally umbilical. Hence, Theorem 3. 2
is a generalization of Theorem 3.1. Furthermore, if L"“ is the de Sitter space

S!™(¢) in Theorem 3.2, then _iz_l =c¢; =cand ¢3 =0. Therefore, Theorem 3.2

is also a generalization of the result due to K. Akutagawa [1, Theorem (ii)],
saying that a complete spacelike hypersurface M" (n > 3) in a de Sitter space
S (¢) with constant mean curvature H satisfying n>H> < 4(n — 1)c must be
totally umbilical.

On the other hand, S. Montiel [13] exhibited examples of complete space-
like hypersurfaces in S{™!(1) with constant mean curvature H satisfying n>H> >
4(n—1) and being non-totally umbilical, the so-called hyperbolic cylinders
(cf. [1] and [10]), which are isometric to the Riemannian product H!(sinh r) x
S"(cosh r) of a hyperbolic line and an (n — 1)-dimensional sphere of constant
sectional curvatures 1 — coth? r and 1 — tanh? r, respectively. Hence, when n > 3,
the assumption n’H? < 4(n —1)c in Theorem 3.2 is essential.

Remark 3.5. When c¢3 =0 in Theorem 3.3, we know that the Lorentzian
manifold L] is IOCdlly symmetric and sup § = 2H2 Together with (2.17), w
know that sup|g|?> =0 which shows M" is totally umbilical. Furthermore, 1f

L3 is the de Sitter space Si(c) in Theorem 3.3, then —% =c¢=cand ¢3=0.

Therefore, theorem 3.3 is a generalization of [1, Theorem (i)].
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On the other hand, K. Akutagawa [l1] constructed, for any constant H
satisfying H? > ¢, complete, noncompact embedded spacelike surfaces in Sf(c),
which have constant mean curvature H and which are not totally umbilical.
Hence, when n =2, the assumption H? < ¢ in Theorem 3.3 is essential.

Proof of Theorem 3.2. Since H is constant, it follows from (2.19) that

-2
(3.1) —A|¢\ ——AS 23S+ [g* | 141 —Muﬂ || +nc —nH> |.
Vv —1)
Choose a local orthonormal frame field {ei,...,e,} such that h; = 2;0;. By a

similar reasoning as in the proof of [15, Theorem 1], we obtain that there is a
sequence of points {x;} € M" such that

lim | (xe) = suplg|?,

(3.2) lim S(x;) =sup S,

k— o0

Jim sup(AJgf*)(x¢) < 0.

Evaluating (3.1) at the points x; of the sequence, taking the limit and using (2.17)
and (3.2), we obtain that

(3.3) 0> lim sup(1A|¢2) (k)

k— o0 2

—2¢3+/sup S+ (sup S — nHz)L|H|(sup S),
n(n

where Ly (sup S) = sup S — 2nH? — 7) |H| sup S — nH? + nc.
Since )

] f““)
we have
(34)  —|H|VS —nH? ,/ ”‘_1 ) i \/7nH

2y/n(n —1) (
2 n—l -2)
- 2
From (3.3) and (3.4), we have

n _ ) Iy B o
(35) 0> [4<”4(}jj 1)”H]sups_zwal5‘s_ HWZ(ni)f) weH]

(S — nH?)
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Since n?H? < 4(n — 1)c, it follows from (3.5) and (2.17) that
2

4n—1)c; + \/16(11 — 1)’ +n3H2[4(n — 1)c — n2H?)?

H> <sup S <
" Sup nd(n —1)c — n2H?]

and ¢ > 0. This completes the proof of Theorem 3.2. O
Proof of Theorem 3.3. (i) When n =2, it follows from (3.3) that
(3.6) 0> —2c3\/sup S+ (sup S — 2H?)(sup S — 2H? + 2c — 2H?)
> —2¢3v/sup S+ 2(sup S — 2H?)(c — H?)
=2(c— H?) sup S — 2¢3+/sup S — 4H*(c — H?).

Since H? < ¢, it follows from (3.6) and (2.17) that
2

e+ \/C3Z+SH2(C—H2)2
2(c — H?)

2H? <sup S <

and ¢ > 0.
(i) When n =2 and H? =, it follows from (3.3) that

(sup S — 2H?)* < 2¢3+/sup S.

This completes the proof of Theorem 3.3. O

4. Spacelike hypersurfaces with constant scalar curvature in Lorentzian
manifolds L' satisfying ()

According to Cheng and Yau’s definition in [7], we introduce the self-adjoint
operator [] acting on any CZ?-function f by

(4.1) C(f) = Y _(nHS; — hy) fy.

ij
In this Section, in order to prove Theorems 4.4-4.5, first we give a new
estimate of [J(nH) for spacelike hypersurfaces in Lorentzian manifolds Lf’“.

PrROPOSITION 4.1.  Let M" (n = 3) be a spacelike hypersurface with constant
P defined by (2.5) in an (n+ 1)-dimensional Lorentzian manifold L™ satisfying
xx).  Suppose that the constant P > 0. Then

(
(4.2) OnH) > =2¢3V/S + ¢ L (|41),

n(n—2)

where |¢|* =S — nH* and Lig/(|¢]) = lg)* — D)

|H| || + nc — nH>,
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Proof.  Choose a local orthonormal frame field {ey,...,e,} such that h; =
Ai0j. In view of (4.1), O(nH) is given by

(4.3) C(nH) = nHA(nH) Zh,j (nH);
Notice that

(44) nHA(nH) = %A(nH)z —n’|VH|.
Thus, it follows from (4.3) and (4.4) that

1
(4.5) O(nH) = EA(nH)Z — n?|VH|* — Zh,,(nH),.j.
ij
Moreover, as P is constant, by (2.5), we have AS = A(nH)>. Therefore, it
follows from (2.19) and (4.5) that

(4.6) > > b = n?|VH|? = 2¢3V/S + |4 Ly (1))

i,j,k
Next, we claim that
2
(4.7) > hiy = n?|VH|?.
i,j,k

Indeed, since P is a constant, differentiating formula (2.5) exteriorly yields
n*HH, =Y, ;highie, then by using Cauchy-Schwarz inequality we have

e xgan) (4] (5)

i,jk
That is, n4H2\VH| < SY, ik hyy. Together with the fact n’H? — S >0 since

>0, we obtain that ), kh,jk n?|VH|* which proves our claim. Conse-

quently, (4.2) follows from (4.6) and (4.7). Finally, Proposition 4.1 is proved.
|

In 2010, J. C. Liu and Z. Y. Sun [12] studied a complete or compact
spacelike hypersurface with constant normalized scalar curvature R in a locally
symmetric Lorentzian manifold Li’“ and proved Theorems 4.2-4.3.

THEOREM 4.2. Let M" (n=3) be a complete spacelike hypersurface with
constant normalized scalar curvature R in an (n + 1)-dimensional locally symmetric
Lorentzian manifold Lf’“ satisfying (). Suppose that M" has bounded mean

curvature H. If 0 < P < 70 and ¢ > 0, where the constant P defined by (2.5),

c
c= 202+—1 and ¢y, ¢y are given as in (x), then M" is totally umbilical.
n
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THEOREM 4.3. Let M" (n>=3) be a compact spacelike hypersurface with
constant normalized scalar curvature R in an (n + 1)-dimensional locally symmetric

2
Lorentzian manifold Lf‘“ satisfying (x). If 0 < P < € and ¢ > 0, where the
n
constant P defined by (2.5), ¢ =2¢; 4—0—1 and ¢y, ¢; are given as in (x), then M"
is totally umbilical. n

In this Section, we give generalizations of Theorems 4.2—4.3 and obtain the
following results.

THEOREM 4.4. Let M" (n>=3) be a complete spacelike hypersurface with
constant P defined by (2.5) in an (n+ 1)-dimensional Lorentzian manifold L™
satisfying (xx). Suppose that M" has bounded mean curvature H.

. 2c C1 . ,
i) fOSP<—,c=2c+—and c3 =0, where ¢y, ¢, and c3 are given as in
n n

(xx), then ¢ > 0 and the squared length S of the second fundamental form of M"

satisfies
n \? ’
3+ c32+nP(n—1)2<c—§P)

(n—1)(c—gp>

. ¢ ¢ ) .
(i) If P=—,c=2c+ 1> 0and c3 = 0, where ¢y, ¢y and c3 are given as in
(xx), then n

nP <sup S <

n—1

(sup S —2¢)L(sup S) < 2¢3y/sup S and L(sup S) > 0,

where

2 [(n—2)c+sup S —+/(2(n— 1)c+sup S)(sup S — 2¢)].

L(sup S) = & ;

THEOREM 4.5. Let M" (n>=3) be a compact spacelike hypersurface with
constant P defined by (2.5) in an (n+ 1)-dimensional Lorentzian manifold L™

satisfying (#x).
n \2
c3+4/c3+nP(n— 1)2(0 _EP)

(i) Suppose that
2
n
(n—-1) (c - §P>

S >
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2¢ c . ,
IfOSP<—, c=2c+— and c3 =0, where ¢, ¢; and c3 are given as in (xx),
n n

e+ \/c§ +nP(n — 1)2(0 - gP)2
(n— 1)<c—gP>

"=l 20L(S) 3 25V,

n

then ¢ > 0 and
2

S =

(i) Suppose that

2 y
If P :—C, c=20 + LS 0 and c3 =0, where ci, ¢y and c¢3 are given as in (x%),
then

n—1

—(S-20)L(S) = 2¢3V'S and L(S) >0,

where

L(S):n;Z[( 2)e+ 8 —/2n—1)e+ S)(S - 20)].

Remark 4.6. When c¢3 =0 in Theorem 4.4, we know that the Lorentzian
manifold L"+1 is locally symmetric and sup S =nP. Together with (4.9), w
know that sup|¢| =0 which shows M" is totally umbilical provided that M "
has bounded mean curvature H. Hence, Theorem 4.4 is a generalization of
Theorem 4.1.  Furthermore, if L!"*! is the de Sitter space S|™'(c) in Theorem 4.4,

then —%1 =c¢;=c¢, 3 =0and P = c— R following from (2.5). At the same time,

-2
¢ < R<c. Hence,

. 2c . n
the assumption 0 < P < — in Theorem 4.4 becomes
n

Theorem 4.4 is also a generalization of the result due to F. E. C. Camargo
et al. in [4], saying that a complete spacelike hypersurface M” (n > 3) in the
de Sitter space S{™'(c) with constant normalized scalar curvature R satisfying
n—2

¢ < R < ¢ must be totally umbilical provided that M”" has bounded mean

curvature H.

On the other hand, consider the spacelike hypersurface immersed into
SI(1) defined by Ty, = {xeS!""'(1)|—x} +x? +--- + x; = —sinh? r}, where
r is a positive real number and 1 <k <n—1. Ty, is complete and isometric to
the Riemannian product H*(1 — coth? r) x S"*(1 — tanh? r) of a k-dimensional
hyperbolic space and an (n — k)-dimensional sphere of constant sectional curva-
tures 1 — coth? r and 1 — tanh? r, respectively. It follows from [9] that if k = 1,
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-2 -2
then R satisfies 0 < R = nT(l — tanh? r) < nT; similarly, if k=n—-12>2,

) e

we see that R = n—(l — coth? r) < 0. Thus, for any R satisfying 0 < R <
n

n—

and for any R < 0, we can choose r such that the hypersurfaces 7' , and
T.-1.,, respectively, are complete, non-totally umbilical and have constant

. . 2c .
normalized scalar curvature R. Hence, the assumption 0 < P < — in Theorem
4.4 is essential. n

Remark 4.7. When ¢3; =0 in Theorem 4.5, we know that the Lorentzian
manifold L;’“ is locally symmetric and S =nP. Together with (4.9), we know
that |¢\2 =0 which shows M" is totally umbilical. Hence, Theorem 4.5 is
a generalization of Theorem 4.2. Theorem 4.5 reduces to Li’s result [11,
Theorem 4.3].

Proof of Theorem 4.4. (i) By using Lemma 2.3 and taking the similar
method as in the proof of [12, Lemma 2.4 (ii)], we obtain that there is a sequence
of points {x;} € M" such that

lim nH(x;) = sup(nH),

k— o0

(4.8) Jim |V(nH)(xe)| =0,

Jim sup(@(nH)(xx)) < 0.
From (2.5) and (2.17), we have

(4.9) |¢|2:n(n71)(H27P):ngl(anP).

Since limy_.o, (nH)(x;) = sup(nH) and P is a constant, it follows from (4.9) that

(4.10) lim 16]* (xx) = sup|g|?, lim S(x) = sup S.

Evaluating (4.2) at the points x; of the sequence, taking the limit and using (4.8)
and (4.9) and (4.10), we obtain that

4.11) 0= klim sup((I(nH)(x¢))
> —2c3¢/sup S
+ suplg|’ (sup|¢|2 -

n(n—2)

nn—1)

-1
= —2¢34/sup S+ " . (sup S —nP)Lp(sup S),

sup|H| sup|@| + nc — n sup H2>
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where
-2
Lp(sup S) =nc—2(n—1)P+ ! . sup S
n—2
- V/ (n(n —1)P + sup S)(sup S — nP).
Since
(Vn(n—1)P+S —S—nP)> >0,
we have
- —nP

412) =P8 S —np) > = DP+S+S=nP

2
From (4.11) and (4.12), we have

4.13) 0> (n— 1)(c—gP> sup S — 2¢31/sup S — nP(n — 1)(c—gP).

2
Since 0 < P <7c, it follows from (4.13) and (4.9) that

2
o+ \/cf +nP(n— l)z(c—gP>
n
Y
and ¢ > 0.

2 )
(ii) Since P:;C, it follows from (4.11) that

2

nP <sup S <

n—

1
(sup S —2¢)L(sup S) < 2¢3+/sup S,

where

2 [(n—2)c+sup S — /(2(n — 1)c + sup S)(sup S — 2¢)].

L(sup S) = & ;

As ¢ >0, a direct computation gets
L(sup S) > 0.
This completes the proof of Theorem 4.4. O

Proof of theorem 4.5. (i) From (4.2) and (4.9), we have

(4.14) OnH) > —2¢37/'S + "n: (S — nP)Lp(S),
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where
Lp(S) =nc—2(n— 1)P+n;2S—n_2\/(n(n— 1)P+ S)(S — nP).
Since
(Vn(n—1)P+S—vS—nP)* >0,
we have
(4.15) —/(n(n=1)P+ 8)(S —nP) > _n(n—1)P+S+S—nP

2

From (4.14) and (4.15), we have
@16 Clt) > (n- 1)~ 57)5 = 20V5 —nptn =) (e 5 ).

Since M" is compact and [] is self-adjoint operator, we have
(4.17) J (nH) dvpym = 0.
Mrl

Thus, it follows from (4.16) and (4.17) that

4.18) 0> JMH <(n - l)(c - gp>s —2¢3v/S — nP(n— 1) (c - gp)) Aoy,

2
2
3+ \/C% +nP(n— 1)2<C;P)
Since S >

¢>0 and (n1)<ch>

2¢ .
and 0 < P < —, we obtain that
n

(4.19) (n—1)<c—gp>5—2c3\/§—np(n—1)<c—gp)>o.

Hence, it follows from (4.18) and (4.19) that

e+ \/C% +nP(n— 1)2<c - gP)2
(n — 1)<c—gP>

(ii) Since P:%, it follows from (4.14) and (4.17) that

2

S =

(4.20) 0> JMn (—2c3\/§ - ”n: (S - 2c)L(S)) dvyn,
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where

. n
Since

L(S) = ;2 [(n—2)c+ S —/Q2(n—1)c+S)(S—2c)].

(S —2¢)L(S) = 2¢3V/S, it follows from (4.20) that

n—1

— (S = 20)L(S) = 2¢3V/S.

As ¢ >0, a direct computation gets L(S) > 0. This completes the proof of
Theorem 4.5. O
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