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RIEMANN ZETA VIA THE CATEGORY OF MONOIDS

Stanislaw Betley

I. Introduction

It is expected by many mathematicians that in order to study the zeta
function of Z it would be nice to be able to treat Z as a variety over the field F1

with one element and then follow the Deligne’s program on proving the Weil
conjectures over finite fields. I do not know who is to be blamed for the origin
of this idea. For me its is simple, I have heard about if from C. Soule and he is
definitely one of key persons in this subject, compare [S] for example. Of course
field F1 should have characteristic 1 which means that it should carry only one
operation. This means that the place where we should look for such a theory is
the world of monoids. In the following short note we try to justify the statement
that the category of abelian monoids is a good place for calculating the Riemann
zeta function of Z.

Of course the idea that Z treated as a variety over F1 should live in the
category of monoids is well described in the literature, see for example [KOW]
or [D]. But most authors instead of working with monoids directly extend their
field of scalars from F1 to Z (or other rings), assuming that scalar extension from
F1 to Z should take a monoid A to its monoid ring Z½A�. This agrees well
with the expectation that rings should be treated in the category of monoids as
monoids with ring multiplication as a monoidal operation. Then the forgetful
functor from rings to monoids and the scalar extension as described above give us
the nice pair of adjoint functors. But this approach carries one disadvantage.
It takes us quickly from formally new approach via monoids to the classical
world of rings and modules over them or to other abelian categories. In the
present note we show only that the (categorical) zeta function of the category of
abelian monoids calculates also the Riemann zeta function of integers.

II. Zeta function for the category of monoids

Let us start from recalling after Kurokawa (compare [K]) the definition of
the zeta function of a category with 0. If C is a category with 0 we say that
X A ObðCÞ is simple if for any object Y the set HomCðX ;YÞ consists only of
monomorphisms and 0. Let NðXÞ, the norm of X , denote the cardinality of the
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set EndCðXÞ. We say that an object X is finite if NðXÞ is finite. We denote by
PðCÞ the isomorphism classes of all finite simple objects of C. Then we define
the zeta function of C as

zðs;CÞ ¼
Y

P APðCÞ
ð1�NðPÞ�sÞ�1

In [K] Kurokawa studied the properties of such zeta functions but for us the
crucial is the following straightforward observation:

Remark 2.1. Let Ab denote the category of abelian groups and zR stands
for the Riemann zeta function of the integers. It is obvious that the finite cyclic
groups of prime order form the full set of isomorphism classes of finite simple
objects in Ab. So we have

zðs;AbÞ ¼ zR

Let MAb denote the category of abelian monoids with unit and unital maps.
Then

Lemma 2.2. Assume that M is a finite simple object of MAb. Then M is
isomorphic to a cyclic group of prime order or to the monoid B of two elements
f1; bg where 1 is a unit and b2 ¼ b.

Proof. First of all observe that in MAb we have well defined notion of
a quotient object. If M is a unital monoid and AHM is a submonoid then
formula

m1 @m2 , ba1; a2 A A m1a1 ¼ m2a2

defines the equivalence relation on M where every element of A is equivalent
to the unit. Then the obvious formula ½m1� � ½m2� ¼ ½m1m2� defines the monoid
structure on the set of equivalence classes. The quotient monoid M=A comes
with a monoidal homomorphism M ! M=A given by the formula qðmÞ ¼ ½m�.
If M has a quotient M=A which contains more than one element then M is
usually not simple because then the map q is neither monomorphism nor 0.

Let now 10 x A M and let C ¼ hxi be a multiplicative set in M generated
by x. It means it consists of the powers of x. We have to consider three
possibilities:

1. There is x A M such that 1 A C.
Then C is a finite cyclic group Ck of order k, where k is the smallest integer

such that xk ¼ 1. It is easy to see that assumption that M is simple implies k
is a prime. If not then let pjk. Then M contains a submonoid Cp and
M ! M=Cp is neither monomorphism nor 0. Observe that cyclic groups of
prime order are simple as monoids: If f : hxi ¼ Cp ! X is a nontrivial map of
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monoids then f �1ð1Þ is a submonoid of Cp and hence consists only of the unit.
The image of x has to be an element of order p in X so f is an injection of
sets. It means here that f is a categorical monomorphism. Hence the proof of
our lema in this case will be finished if we show that in our case M ¼ C.

Assume that y A MnC. Then for every c A C the classes ½y� and ½c� are
di¤erent in M=C because if ½c� ¼ ½y� then there exist s; t A C such that sc ¼ ty.
But then y ¼ t�1sc A C. So if M0C then the order of M=C is bigger than
one and M is not simple. To justify the last statement consider two monoid
maps f ; g : Cp ! M from the cyclic group of order p to M. The first one is
trivial, f ðCpÞ ¼ 1, and the second is is an isomorphism between C and Cp. If
q : M ! M=C is a quotient map then q is not 0 and q � f ¼ q � g but f 0 g.
Hence q is not a monomorphism.

2. There exists x A M such that for every n we have xn 0 1 and C is infinite as a
set.

It is easy to see that in this case C is isomorphic as a monoid (not unital) to
the monoid of natural numbers with addition. The point is that the assump-
tion on the cardinality of C implies that for k < m, xk 0 xm. Otherwise, if
for k < m, xk ¼ xm then C is equal to the set fx; x2; . . . ; xk; . . . ; xm�1g which is
finite. So C is infinite and let A be a submonoid of M consisting of 1 and even
powers of x. Then the quotient map q : M ! M=A is neither 0 nor a mono-
morphism. Hence M is not simple.

3. For every x A M and n we have xn 0 1 and C is finite as a set.
We want to show first that in such a case the monoid B (isomorphic to) is

contained in M. Because C is finite there exist natural numbers k and l such
that xlxk ¼ xk. Assume that we have such k and l and we choose minimal k
with this property and for it we choose minimal l. If l ¼ k we have xkxk ¼ xk

so the set f1; xkg is a submonoid of M isomorphic to B, as we wanted. By
minimality of k and l we know that C ¼ fx; x2; . . . ; xk; . . . ; xkþl�1g and the
multiplication by x acts as a bijection on the set fxk; . . . ; xkþl�1g. Assume that
l > k. From the previous observation it follows immediately that xlxl ¼ xl and
again we have B in M. Assume now that l < k. Then there exists s such that
ka sl < k þ l. Again we check directly that xslxsl ¼ xsl .

So we know that if condition 3 is satisfied then M contains a submonoid
isomorphic to B. Denote it M 0 ¼ f1;mg. Of course we want to underline that
m0 1. Then m is not invertible in M because if 1 ¼ mx then m ¼ mmx ¼
mx ¼ 1 and we have a contradiction. Let M � denote the set of invertible
elements of M. M � is not empty and also m A ðMnM �Þ. We have a homo-
morphism of monoids f : M ! B which takes elements of M � to the unit and
f ðMnM �Þ ¼ b. If M0M 0 then this map is neither 0 nor a monomorphism.
To see this let f 0 : M ! M be a homomorphism of monoids which takes M �

to 1 and MnM � to m A M 0. Then f � f 0 ¼ f � id but f 0 0 id. This finishes the
proof of our lemma.
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Theorem 2.3.

zR � ð1� 2�sÞ�1 ¼ zðs;MAbÞ

Proof. This is obvious after the previous lemma. The isomorphism classes
of finite simple objects in MAb are the same as in Ab plus additional class of B.
Of course the cardinality of EndMAbðBÞ equals to 2 and hence we have our
formula.

Nothing special follows from the observation above. But we can view it
as a strong evidence supporting the idea that in order to study the Riemann zeta
function of integers we can work in the category of abelian monoids.
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