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THE DIXMIER-DOUADY CLASS IN THE
SIMPLICIAL DE RHAM COMPLEX

Naoya Suzuxki

Abstract

On the basis of A. L. Carey, D. Crowley, M. K. Murray’s work, we exhibit a
cocycle in the simplicial de Rham complex which represents the Dixmier-Douady class.

1. Introduction

In [5, Carey, Crowley, Murray], they proved that when a Lie group G
admits a central extension 1 — U(l) — G — G — 1, there exists a characteristic
class of principal G-bundle 7 : ¥ — M which belongs to a cohomology group
H*>(M,U(1)) =~ H*(M,Z). Here U(1) stands for a sheaf of continuous U(1)-
valued functions on M. This class is called a Dixmier-Douady class associated
to the central extension G — G.

On the other hand, we have a simplicial manifold {NG(%)} for any Lie
group G. It is a sequence of manifolds {NG(p) = G’},_,,  together with face
maps & : NG(p) — NG(p —1) for i =0,..., p satistying relations the && = &_1¢;
for i < j. (The standard definition also involves degeneracy maps but we do not
need them here.) Then the n-th cohomology group of classifying space BG
is isomorphic to the total cohomology of a double complex {Q¢(NG(p))}
See [3] [6] [9] for detalils.

In this paper we will exhibit a cocycle on Q*(NG(x)) which represents the
Dixmier-Douady class due to Carey, Crowley, Murray. Such a cocycle is also
studied in a general setting by K. Behrend, J.-L. Tu, P. Xu and C. Laurent-
Gengoux [1] [2] [13] [14], and G. Ginot, M. Stiénon [7] but our construction of
the cocycle is different from theirs, and the proof is more simple. Stevenson [12]
also exhibited a cocycle which represents the Dixmier-Douady class in singular
cohomology group instead of the de Rham cohomology. As a consequence of
our result, we can show that if G is given a discrete topology, the Dixmier-
Douady class in H3(BG°,R) is 0. Furthermore, we can exhibit the “Chern-
Simons form” of Dixmier-Douady class on Q*(NG(x)). Here NG is a simplicial
manifold which plays the role of universal bundle.
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The outline is as follows. In section 2, we briefly recall the notion of
simplicial manifold NG and construct a cocycle in Q*(NG(x)). In section 3,
we recall the definition of a Dixmier-Douady class and prove the main theorem.
In section 4, we give the Chern-Simons form of the Dixmier-Douady class.

2. Cocycle on the double complex
In this section first we recall the relation between the simplicial manifold NG
and the classifying space BG, then we construct the cocycle on Q**(NG).

2.1. The double complex on simplicial manifold 3
For any Lie group G, we define simplicial manifolds NG, NG and a
simplicial G-bundle y: NG — NG as follows:

p—times

/_’%
NG(p)=Gx---xG3(g1,...,9p):
face operators ¢ : NG(p) — NG(p—1)
(92:---+9p) i=0
81‘((11,...,%): (gla"'>gigi+17--~;gp) l:L’p_l
(gh”'vgpfl) l:p
p+1—times
_ — |
NG(p)=Gx---xG3(h,... ")

face operators & : NG(p) — NG(p — 1)
éi(hlw"vthrl) = (h17--~ahiahi+21"'7hp+1) i:Oalw"aP

And we define y: NG — NG as y(h,...,hyq) = (mhy', ... bk L)

To any simplicial manifold X = {X.}, we can associate a topological space
| X|| called the fat realization. Since any G-bundle 7 : E — M can be realized as
the pull-back of the fat realization of y, ||y|| is an universal bundle EG — BG [11].

Now we construct a double complex associated to a simplicial manifold.

DeriNITION 2.1, For any simplicial manifold {X,} with face operators {e.},
we define double complex as follows:

QmI(x) € QY(X,)

Derivatives are:

p+l )
d = Z(—])la* d" := derivatives on X, x (—1)” a

1
i=0

For NG and NG the following holds ([3] [6] [9]).
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THEOREM 2.1. There exists a ring isomorphism
H(Q*(NG)) = H*(BG), H(Q*(NG)) = H*(EG)

Here Q*(NG) and Q*(NG) means the total complexes. O

For a principal G-bundle ¥ — M and an open covering {U,} of M, the
transition functions (guu, Gums - - -5 9oy 12,) * Usgzy-o, — NG(p) induce the coho-
mology map H*(NG) — Hf,, e (M). The elements in the image are the
characteristic class of Y [9].

2.2. Construction of the cocycle

Let p: G — G be a central extension of a Lie group G and we recognize it
as a U(l)-bundle. Using the face operators {¢;} : NG(2) — NG(1) = G, we can
construct the U(1)-bundle over NG(2) = G x G as 6G :=¢,G® (8;‘G)®71 ®&G.
Here we define the tensor product S® 7 of U(l)-bundles S and T over M as

ST := | (Syx Tu/(s,1) ~ (su,tu™"), (ue U(1))

xeM
LemMmA 2.1. 6G — G x G is a trivial bundle.

Proof. We can construct a bundle isomorphism f : /G ® ;G — ¢/ G as
follows. First we define f to be the map sending [((g1,92),d2), ((91,92),41)] s-t.
p(62) = 92 p(G1) =1 to ((91,92),G1d2). Then we have the inverse /! that
sends ((91,92),9) s-t. p(g) = 9192 to [((91,92),92), ((91,92),997 )] s:t. p(g2) = go.

U

For any connection # on G, there is the induced connection 00 on dG
[4, Brylinski].
1

PropoSITION 2.1.  Let ¢(0) denote the 2-form on G which hits (%) dle

Qz(é) by p*, and § any global section of 5G. Then the following equation holds.

1

(e — & +&3)c1(0) = (i) d(5*(90)) € Q*(NG(2)).

Proof. Choose an open cover ¥ = {V,;}, ., of G such that there exist
local sections 7, : V; — G of p. Then {eg' (V) Ner (V) Nes (V)b s en
is an open cover of G X G and there are the induced local sections 'egm®
(ern,)® ' @ &3n;» on that covering.

If we pull back 60 by these sections, the induced form on
g (V)Ne (V) Ney (V) ds ay(n;0) — 6(10) + &3 (n},0). We  restrict
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(¢ —ef +e5)a1(0) on g (V) Ner'(Vy)Ney'(V,r) then it is equal to
(52 )6 0:0) =500 + 551300, because 1(0) = 555,00
50 is 2 connestion Torms. “This sotmplies the proof = " U1 S
PROPOSITION 2.2. For the face operators {ei};,_o 55 : NG(3) — NG(2),
(66 — i +25 — #)(5°(60)) = 0.

Proof. We consider the U(1)-bundle 6(6G) over NG(3) = G x G x G and
the induced connection 6(d0) on it. Composing {&}: NG(3) — NG(2) and

ro =&)°& = &y °¢, ry = &) o0& = €& 0 &, rp =8)0&3 =& 0¢)
I3 =€ 08 =& 0&, Fy—EO0&=60&, I5=86O0& =2E0&
Then {(\r;7'(V,0)} is a covering of NG(3). Since each ()r;'(V,n) is equal to
& (& (Vi) Ney (Vo) Ney (V) Ney (g (V) Ner (Vo) Ny ' (V)
Ney'(eg ' (Vo) Ny (Vo) Ny ' (V)
Ney' (e (Vo) Ny (V) Ny ' (V)
there are the following induced local sections on that.
& (e0m; ® ()% @e3my) ® & (egm; ® (e1,0)° " @ e3m,0)®7"
® &3 (gny ® (e71,0)° " @ &3m,0) @ &5 (egmr ® (e71,0)° ' @ &3m,9)°

From direct computations we can check that the pull-back of 5(66) by this section
is equal to 0. This means 6(d60) is the Maurer-Cartan connection. Hence if we
pull back d(d0) by the induced section &;§ ® (ef§)®_l ®eI® (e§‘§)®_l, it is also

equal to 0 and this pull-back is nothing but (¢f — & + &5 — &5)(5%(60)). O
-1
The propositions above give the cocycle ¢;(6) — (2—)§*((59) € Q*(NG) be-
low. m
0
T"
1 (0) e QX(G) 0%(G x G)

&y~ e~y
- — 0
2mi

_ (=L §%(00) e Q'(G x G)
&)
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PrOPOSITION 2.3.  The cohomology class {cl 6) — (2—>§*(50)} e H*(Q(NG))
does not depend on 0. T

Proo]ﬁ Suppose 0y and 0; are two connections on G. Consider the U (1)-
bundle G x [0,1] — G x [0,1] and the connection form 6y + (1 —¢)6; on it.

Then we obtain the cocycle c¢(t0y+ (1 —1)0;) — <2_n1i>§*(5(t00 +(1-06))

on QNG x[0,1]). Let ip: NGx {0} - NGx[0,1] and i :NGx {1} —
NG x [0,1] be the natural inclusion map. When we identify NG x {0} with
NG x {1}, (i3) " ir : HQ*(NG x {0})) — H(Q*(NG x {1})) is the identity map.

Hence {cl(ﬁo) - <2—7:i>s*(500)} - [c, (0,) — <2—nll_>§*(5e,)} O

3. Dixmier-Douady class on the double complex

First, we recall the definition of Dixmier-Douady classes, following [5]. Let
n:Y — M be a principal G-bundle and {U,} a Leray covering of M. When G
has a central extension p: G — G, the transition functions g,z : U,z — G lift to
G. ie. there exist continuous maps g,z : Uy — G such that pog,s = g,s. This
is because each U,s is contractible so the pull-back of p by g,z has a
global section. Now the U(1)-valued functions c,s, on U, are defined as
Copy 1= gﬁ},g;y‘g“ﬂ. Note that here they identify g/}‘},é@) (Q;}G)@_] @g;‘/jé with
U,p, x U(1). Then it is easily seen that {c,} is a U(1)-valued Cech-cocycle
on M and hence define a cohomology class in H>(M,U(1)) ~ H*(M,Z). This
class is called the Dixmier-Douady class of Y. T

Here G can be infinite dimensional, but we require G to have a partition of
unity so that we can consider a connection form on the U(1)-bundle over G. A
good example which satisfies such a condition is the loop group of a finite
dimensional Lie group [4] [10].

Secondly, we fix any trivialization 0G ~ G x U(1). Then since 95 G®
(9,,G )® ®gdﬂG is the pull-back of 5G by (928, 9py) + Uspy — G X G, there is
the induced trivialization q[;yG® (gw ) !'® g,vv/,G U,y x U(1). So we have
the Dixmier-Douady cocycle by using this identification.

Now we are ready to state the main theorem.

DeriniTION 3.1.  For the global section 5: G x G — 1, we call the sum
-1
of ¢1(0) e Q*(NG(1)) and —(%)3*(59)GQI(NG(2)) the simplicial Dixmier-
Douady cocycle associated to 6 and the trivialization G ~ G x U(1).

THEOREM 3.1. The simplicial Dixmier-Douady cocycle represents the univer-
sal Dixmier-Douady class associated to p.
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-1
Proof. We show that the [Cy1 + Ci »] below is equal to [{ (2—>d log caﬂy}]
as a Cech-de Rham cohomology class of M = U Us. T

C2,1 € H Qz(Uaﬁ)

E

5
[1Q'(Usyp) —— Ci2 e [[QY(Uy,)

Cor = (o} €2 ={ (57 (o) '5"00)}

. . 1
Since. gy01(0) = dip*(1(0) =d (5 )0, we can e [Car+ Cral =

-1\ .. A
3 (5a) a0} + ol By aefinition” G0 (0 )() - o () = 3y, @
957" ®,p)(p) for any p e Uy, Hence (gup,9p,) 5" (00) + d log cop, = 6{g;50}.
]

COROLLARY 3.1. [If the principal G-bundle over M is flat, then its Dixmier-
Douady class is 0 in H3(M,R).

Proof. This is because the cocycle in Theorem 3.1 vanishes when G is given
a discrete topology. O

COROLLARY 3.2. If the first Chern class of p: G — G is not 0 in H*(G,R),
then the corresponding Dixmier-Douady class of the universal G-bundle is not

0.

Proof. 1In that situation, any differential form x € Q'(NG(1)) does not hit
c1(0) e Q*(NG(1)) by d : Q' (NG(1)) — Q*(NG(1)). O

4. Chern-Simons form

As mentioned in section 2.1, NG plays the role of the universal G-bundle
and NG, the classifying space BG. Then, the pull-back of the cocycle in
Definition 3.1 to Q*(NG) by y: NG — NG should be a coboundary of a
cochain on NG. In this section we shall exhibit an explicit form of the cochain,
which can be called Chern-Simons form for the Dixmier-Douady class.

Recall NG(1) = G x G and y: NG(1) — NG is defined as y(hi,hy) = hh;".
Then we consider the U(1)-bundle 5, G:= 80G® y*G ® (81 G)® ! over Gx G and
the induced connection J,0 on it. We can check 6,,G is trivial using the same
argument as that in Lemma 2.1, so there is a global section 5, : G x G — 4,G.
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-1 _ _
THEOREM 4.1. If we take §, =1, the cochain c,(0) — (—) 5,(0,0) € Q*(NG)

27i
-1
is a Chern-Simons form of c;(0) — (%)ﬁ*(éﬁ) e Q*(NG).

(1)
E

. (—_1>S;( 0) € Q' (NG(1)

2ni

Sk k) =k
&y =& +&,
—

1, Q*(NG
5% (9,0) Q'(NG(2)

Proof. Repeating the same argument as that in Proposition 2.1, we can

see (&5 + 7" —&)((c1(0)) = (2_—11> d(5:(5,0)) e Q*(NG(1)). Because (e9,&1,e2) 07
7[ 7/

= (yo&y,y0f,y08), (50,6)® (,6)° ' ® (4,G) is y*(0G). Hence

(8 — &1 +8)5,(0,0) = y7(57(90)). O

By restricting the Chern-Simons form on Q*(NG) to the edge Q*(NG(0)),
we obtain the cocycle on Q*(G). So there is the induced map of the coho-
mology class H*(BG) =~ H(Q*(NG)) — H*~'(G). This map coincides with the
transgression map for the universal bundle EG — BG in the sense of J. L. Heitsch
and H. B. Lawson in [8]. Hence as a corollary of theorem 4.1, we obtain an
alternative proof of the following theorem from [5] [12].

THEOREM 4.2.  The transgression map of the universal bundle EG — BG
maps the Dixmier-Douady class to the first Chern class of p: G — G.

Remark 4.1. Here the meaning of the terminology “transgression map” is
different from those in [5] [12], but the statement is essentially same.
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